
International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 9 

DOI: https://doi.org/10.17762/ijritcc.v11i9.8111 

Article Received: 05 July 2023 Revised: 25 August 2023 Accepted: 15 September 2023 

___________________________________________________________________________________________________________________ 

 
    1 
IJRITCC | September 2023, Available @ http://www.ijritcc.org 

Identification of Fast Radio Bursts using Transfer 

Learning Approach with Data Augmentation 
 

Vandana Jagtap1,2 (0000-0002-9857-0727), Rakesh K Yadav1 

1.Shri Venkateswara University, Gajraula, Amroha, Uttar Pradesh, India 

2. Dr. Vishwanath Karad world peace University, Pune 411038, India 

*Corresponding author. E-mail: vandana.jagtap@mitwpu.edu.in, 

er.rakeshyadava@gmail.com 

 

Abstract: The universe has many mysteries, such as pulsars, dying stars, supernovae, and fast radio bursts (FRBs), FRBs are millisecond long 

radio signals, detected as a spike in radio-telescope data. Identification of Fast Radio Bursts from available data involves manual inspection of 

exhaustive data/plots. Radio Frequency Interference in pose a major challenge in identification of Fast Radio Bursts due to their abundance in 

the observatory data. We present a machine-learning-aided system, which screens telescope-generated data and identifies potential Fast Radio 

Burst candidates in it. Proposed system employs Convolutional Neural Networks and Transfer Learning to classify potential Fast Radio Bursts 

from Radio Frequency Interference from data recorded by the uGMRT. We have used data simulation tools to synthesize additional samples in 

order to make up for the paucity of data. The VGG16-based model displayed the best receiver operating characteristics curve with the area 

under curve being 0.90 along with an accuracy of 90.67%. 
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I. Introduction 

FRBs are bright pulses of emission at radio frequencies (50 

mJy to 100 mJy) with duration in the order of milliseconds or 

less. They are very energetic at their source but by the time 

they reach the earth’s atmosphere, the strength of the signal 

reaching the Earth can be viewed as a thousand times less 

than from a mobile phone on the moon [1,2]. The origin have 

not been identified yet, with suggestions spanning from a 

rapidly rotating neutron star and a black hole to extra-

terrestrial intelligence [1]. Fast radio bursts demonstrate the 

characteristics dispersion sweep of radio pulsars. Lorimer et 

al. identified the first FRB in 2007, but it was actually 

observed some six years earlier, from the archival data of a 

pulsar survey of the Magellanic Clouds. It was named as the 

“Lorimer Burst” [3]. Identification of fast radio bursts 

requires sophisticated methods to transform the raw data 

recorded by telescopes into graphs and plots (images). Since 

it is telescopic data monitoring the data becomes exhaustively 

large. In absence of automated systems, identification of 

FRBs requires manual inspection of these graphs and plots 

for the ever-increasing data. The process becomes more 

complicated due to the high incidence rate of radio frequency 

interference, which deceives the telescope into recording 

incorrect data, at the telescope premises. 

A wide variety of computer systems have been developed for 

screening such data and identifying FRBs in them 

[4,5,6,7,8,9]. Most of the existing systems rely on machine 

learning at some stage in their processing. However, from the 

numerous available FRB-detection systems, not more work 

is available to cater specifically to the Giant Metrewave 

Radio Telescope (GMRT) and identified FRBs in the 

recorded data by the GMRT. The operating frequencies of 

the GMRT are comparatively lower than those at which 

other telescopes which have been able to detect FRBs 

operate. The lower frequencies mean that the telescope is 

more susceptible to noise[ 10,11,12]. Research on FRBs is 

largely dependent on the part of sky that a telescope in 

question observes. A robust system which is designed for 

the GMRT is therefore required to allow astrophysicists 

discover FRBs which will accelerate the research being 

carried out in the domain. 

Proposed system employs systematic pre-processing to 

transform the telescope data into meaningful plots. The 

convolutional neural networks and transfer learning have 

been used to build image classifiers. The data recorded by 

the GMRT has been used to train and test the classifiers. 

Data simulation has been used to generate additional 

samples of FRB and RFI to compensate for the limited 

amount of data that we had. The classifiers were fine-tuned 

to extract the best performance. 

In this research article, our objective is to compare transfer-

learning models in the context of classifying fast radio 

bursts (FRB) and radio frequency interference (RFI). 

Additionally, we elucidate the process of generating 

simulated FRBs and conducting parameter estimation 

analysis. Subsequently, we assess the performance of four 
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models (VGG16, InceptionV3, Xception, and DenseNet121) 

by comparing their accuracy in estimating parameters.  

This article is structured as follows: Section 1 provides an 

explanation of domain-specific terminology used throughout 

the paper. In Section 2, we introduce the methodologies and 

system design, focusing on the design of models for 

classification. Section 3 addresses implementation and data 

presentation. Section 4 presents and discusses the results 

obtained from the transfer learning models. Finally, Section 5 

contains our conclusions. 

Domain terminology 

Several domain-specific terminology has been used 

throughout the paper. While explaining each terminology 

detail is beyond the scope of this paper, some fundamental 

terms have been explained below strictly within the scope of 

this paper. 

Radio wave: A form of electromagnetic radiation having 

frequencies in the radio spectrum (3 KHz to 300 GHz). 

Frequency channel: A radio telescope detects radio waves 

having frequencies in particular ranges. Such a range is called 

a frequency band. A frequency band is further divided into 

smaller portions called channels. A radio telescope measures 

energy of a signal observed in a particular band across all its 

channels. 

Signal-to-noise ratio (SNR): It is a measure of how strong the 

desired signal is with respect to unwanted signal or noise. 

Dispersion measure (DM): The electromagnetic signals 

detected by a radio telescope consists of different 

frequencies. The propagation of these signals is delayed due 

to the presence of charged particles in space. Lower 

frequencies are more susceptible to such delays than higher 

frequencies. The degree of effect due to this phenomenon on 

a signal is represented using a metric called dispersion 

measure [13, 14, 15]. 

II. Methodologies and system design  

The data in very first step is stored as a ‘filterbank’ file. A 

filterbank files stores raw binary data pertaining to the energy 

levels of a signal detected by a radio telescope across several 

frequency channels. By consulting domain experts, a list of 

interesting candidates which were recorded in the filterbank 

file was obtained. An interesting candidate can either be a 

fast radio burst or an instance of radio frequency interference. 

The tool Candmaker, which is a part of the FRB-detection 

system FETCH [9, 24, 25, 26], was used to extract each 

interesting candidate from the filterbank file. Each candidate 

is extracted in its own HDF5 file. The HDF5 file format is 

used to store multidimensional data in the key-value format. 

One key is dedicated for one attribute of data and the 

corresponding value can be a single value or a collection of 

values. Candmaker generates DM-vs-time, frequency-vs-

time and flux-vs-time plots for each candidate. 

Additionally, it determines numeric attributes such as 

dispersion measure, SNR, pulse width and other telescope-

related parameters for each candidate. 

Machine learning techniques are useful to identify hidden 

information in data and determine complex patterns. Using 

such techniques, the mapping function between a certain 

input and output can be determined. Numeric parameters 

such as DM, SNR, flux, etc. can be used to train a machine-

learning model so that it can learn the rules for those 

parameters which can help in classification. Techniques 

such as decision trees, random forest classifiers, etc. can be 

used to build a classifier. The main challenge with these 

methods is that the above mentioned numeric parameters 

don’t assume a precise range for FRBs. Hence, 

classification based only on these parameters might not be 

enough to determine the most distinguishing patterns in 

data. The plots for candidates, however, exhibit a 

sufficiently credible pattern and can be used to classify 

candidates. Fig. 1 shows the DM-vs-time plots for a FRB 

and RFI generated using Candmaker. While there are 

exceptions, majority of FRB plots exhibit the ‘bow tie’ 

pattern at the Centre as seen in Fig. 1. RFI plots do not 

exhibit any particular pattern. Image classifiers which 

accept these plots as input therefore exhibit potential in 

identifying fast radio bursts from radio frequency 

interference. 

 
Figure 1. a. Sample images for FRB and RFI Real candidates 

(Dimensions: 256 x 256 x 3), b. Sample images for FRB and RFI 

Real candidates (Dimensions: 50 x 250 x 3) 

Convolutional neural networks Neural networks are 

massively used to perform classification owing to their 

ability to train over thousands of ‘neurons’, arranged in 

layers, which learn different characteristics of data by 

figuring appropriate ’weights’ for the characteristics. 

Neural networks train over labelled data, i.e., they need to 

be told what the expected output is for every sample they 

train on. In case the neural network produces an incorrect 

output, it calculates the difference between the expected 

and the produced outputs to determine the error and 

updates its weights accordingly. 
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The DM-time plots are treated as images and classification 

are performed using these images. If the size of an image is 

expressed as (width, height, channels), the total number of 

features present in every single image is: width height 

channels.  As the size of input images rises, the aggregate 

number of features to be processed upsurges, which makes 

the classifier highly complex and computationally expensive. 

Convolutional neural networks (CNNs) are extremely 

popular in image based cataloguing tasks. CNNs can handle 

high-dimensional image-data well, owing to the operation of 

‘convolution’. The weights learned by a CNN are arranged in 

2D or 3D matrices called ‘kernels’. A CNN has many 

convolutional layers wherein each layer can have multiple 

kernels. CNNs learn the features in an image by 

understanding the position-based relationships between 

pixels. They can also recognize features irrespective of their 

position in the image [16, 17,18]. These properties, coupled 

with the ability to handle feature rich data, make CNNs 

suitable to solve the problem of FRB classification.  

Transfer learning Due to the low rate of FRB detection, the 

number of samples for the FRB class is very small. Neural 

networks rely on large data sets to train properly and to be 

able to classify unseen data with high confidence. Given the 

paucity of data, it was not feasible to build a neural network, 

which could exhibit high accuracy in classification [19, 20]. 

To combat this, the technique of transfer learning is used. 

In the field of automation, we have multiple domains under 

the umbrella of Artificial Intelligence. Transfer learning (TL) 

is one of the machine-learning approach. In transfer learning, 

the neural network trained to solve a specific problem is 

reused to solve another problem. The previously learned 

weights by the neural network to be reused are relearned. 

Transfer learning is based on the principle that the initial 

layers of a neural network learn primitive features seen in 

input samples which do not represent problem-specific 

information [21,22,23]. For instance, the initial layers of a 

CNN trained on a large image set are capable of identifying 

basic features such as lines, curves, shapes, etc. The 

concluding layer of the previously trained model, which is 

responsible for classification, is replaced by new layers so 

that the model can perform classification for the new 

problem. 

To harness the power of transfer learning, we need to decide 

which layers of the previously trained model are to be frozen 

and which ones should be re-trained. This decision depends 

on the degree of similarity between the original problem and 

the new problem. If the two problems exhibit high 

resemblance, almost all the layers of the original model can 

be reused without training. Otherwise, only the initial layers 

would be frozen and the remaining layers are qualified 

along with the newly added layers. The potential of transfer 

learning in classification of fast radio bursts can be seen in 

the work done by Agarwal et al.2019 [9].  

The pre-trained models VGG16, InceptionV3, Xception, 

DenseNet121 were trained on the ImageNet data set were 

used to implement transfer learning. 

Since the ImageNet data set contains images belonging to 

hundreds of classes, only the initial layers of these models 

were frozen and the last layers were trained so as to reuse 

only those weights that are responsible for identification of 

basic features. 

2.1. System design 

Fig. 2 captures the functioning of the system. The GMRT 

stores radio-wave time-series data in filterbank files. The 

list of interesting candidates generated by the single-pulse-

search program HEIMDALL[29] is used to extract data 

representing interesting events. The tool Candmaker is used 

to plot DM- time, frequency-time and flux-time plots per 

interesting candidate. The classification is done into radio 

frequency interference (class 0) and fast radio burst (class 

1) using these plots. A major issue posing a challenge to 

this system is the imbalance between class samples. Since 

FRB detection is in nascent stages, the number of FRB 

candidates is considerably less. This will coax the classifier 

to get biased towards class 0. To overcome this short 

coming, RFI and FRB candidates are simulated using 

available tools. The candidates are simulated according to 

the specifications of the GMRT so that they bear 

resemblance with the real candidates. The extracted real 

candidates and simulated candidates together form the 

image-set to be used to build the classifier. The real and 

simulated candidates are transformed to make them have 

identical specification. Appropriate pre-processing 

techniques are implemented to enhance the performance of 

the classifier. The processed image-set is then split into 

testing and training sets. The classifier is trained on the 

training set. The model is fine-tuned by determining the 

optimal values for various hyper-parameters. Once the 

classifier delivers acceptable performance in the training 

phase, the testing images are fed to it to have them labelled. 

The performance of the classifier is evaluated by 

considering yardsticks such as accuracy, F1-score, area 

under the receiver operating characteristics curve, etc. The 

classifier outputs a comma-separated-value (CSV) file 

which contains the name of an image and the label assigned 

to it. A chart showing misclassified samples is also 

prepared to provide further scope to the ongoing research.
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Figure 2. System architecture

III. Implementation 

 Data preparation 

Extracting real candidates The DM vs. time and frequency 

vs. time plots for each interesting candidate were obtained 

from the filterbank file by using Candmaker. The plots were 

stored in an HDF5 (Hierarchical Data Format version 5) file 

per candidate.  

Simulation of candidates to train a neural network properly, a 

sufficiently large data set must be used. However, the data set 

used had a mere 1274 samples. Additional frequency-time 

and DM-time images of fast radio bursts and RFI were 

generated through simulation. The package used to perform 

simulation was single_pulse_ml by Dr. Liam Connor [8] This 

package has the facility to simulate images based on the 

specifications of the concerned telescope. The biggest 

contributing factor to these images is the number of 

frequency and time channels as, they affect the resolution of 

the generated images. These numbers must be set so that a 

proper balance between simulation performance and 

simulation accuracy is obtained. The simulation script also 

provides the facility to adjust other parameters such as DM or 

the number of generated images. The number of frequency 

channels as well as the time resolution in the script were 

changed to match those of the GMRT. 

After using the simulation script, the required data were 

generated as an HDF5 file. The actual images were stored as 

0-1 normalized NumPy arrays. Thus, the DM-vs-time and 

frequency-vs-time plots for all simulated candidates were 

obtained as a single HDF5 file.  

Transformation of candidate plots into images  

Only the DM-time plots were used to perform classification 

since they exhibited features which were sufficiently unique 

for both the classes. The time-series in-formation was read 

from the HDF5 files using h5py and the DM-time 

information was transformed into plots using matplotlib. 

The plots had data pertaining to a single image-channel. 

Since all the pre-trained models which we used required 3-

channel images as input, we converted all the plots to 3-

channel PNG (Portable Network Graphics) images. During 

initial testing, it was found that the simulated FRB-like 

candidates were misleading the classifier and affected the 

class-1 recognition rate. Hence, only simulated RFI 

candidates were used for building models. 

Data pre-processing 

Blurring simulated candidates, the simulated- RFI images 

were noisier than the real-RFI images. To counter this, the 

Gaussian Blur filter was applied to each simulated RFI-

image so that both the real and simulated-RFI images had 

similar texture.  

Resizing images  

The dimensions of the real and simulated candidates were 

as follows: 

Real candidates: (256 ×256 ×3), Simulated candidates: (50 

×250 ×3), All images were resized to (10×0 100×3) since 

all samples given to a CNN must have the same dimension. 

This also resulted in each pixel-value being scaled to [0, 1]. 

Normalization of pixels The pixel-values of each image 

were transformed so that they had a mean of zero with unit 

standard deviation. This led to the pixel- values being 

centered. The images used to train ImageNet were centered 

as well. This operation ensured that the distribution of pixel 

values was compatible with the distribution seen in images 

on which the original models were trained. 

Flipping The RFI images were greater in number than the 
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real-FRB images. The classifier would therefore learn the 

features of RFI better and get biased toward class 0. To 

handle this, the class-1 images were flipped about the X- and 

Y- axes and the new image was added to the training data set. 

Flipping the images introduced variety to the training set and 

increased the support of class-1 samples as well. 

Building the model 

We used the Keras framework to construct our neural 

network models. The following pre-trained models were re-

purposed: VGG16, InceptionV3, Xception and DenseNet121. 

A high-level view of the architecture of the classifier is 

shown in Fig. 3. The weights of these models for the 

ImageNet data set were downloaded and the models were set 

up. The topmost layer, which is responsible for classification, 

was removed from each of these models. At the end of the 

last layer, the feature map obtained was flattened and passed 

on as input to a fully connected layer having 48 neurons with 

ReLu activation. Finally, all activation values were fed to a 2-

neuron fully connected layer to perform classification. 

Batch normalization 

When the input to a neural network propagated through all its 

layers, the variance amongst the expected and the actual 

outcome is calculated as the error. This deference, we call it 

error is then corrected by updating the weights in all the 

previous layers. When a layer in a neural network gets 

trained, it learns weights according to the distribution 

observed in its input which it receives from the previous 

layer. Due to error propagation, the weights of layers get 

updated, which may result in a change in the distribution in 

input for some layers (Ioffe and Szegedy, 2015). Thus, the 

neural net-work may never stabilize. To counter this effect, 

the ‘Batch Normalization’ layer provided by Keras was used. 

This layer normalizes per-batch activation scores of the 

previous layers so that their mean is approximately 0 and 

their standard deviation is approximately one. This ensures 

that the weights learned by the model stabilize faster and 

hence the number of epochs required is reduced. 

Dropout layer 

Since the sample data set was not huge in size, there were a 

high possibility of the neural network trying to over fit the 

training data. To avoid this, a dropout layer was introduced 

after the 48-neuron dense layer. Some input activation 

scores was set by dropout layer randomly sets to a layer to 

zero. The weights corresponding to such activation scores 

are not updated during error propagation. This results in the 

neural network treating the same layer differently in each 

epoch since random links are ignored in each epoch. The 

dropout rate was set to 20% to randomly ignore 20% of the 

activation scores of the 48-neuron layer. 

Obtaining class labels  

The last fully connected layer produced output as sequence 

of logits (activation) values, one per class. These values do 

not follow a standard scale and hence must be standardized. 

The Softmax function transforms these logits values into 

corresponding probabilities such that the sum of the 

probabilities is 1. The available sample belongs to the class 

with the highest probability. The Softmax function is given 

as 

Softmax 𝒙⃗⃗ 𝒊 =
ⅇ𝒙𝒊

𝜮𝒋=𝟏 
𝒌  ⅇ

𝒙𝒋 

𝑥 𝑖= Input_Vector 

ⅇ𝑥𝑖= standard_Exponential_Function for Input_Vector 

K = Number_of_Classes in the Multi-Class_Classifier 

ⅇ𝑥𝑗 = Standard_Exponential function for Output_Vector 

 

 

Figure 3. Structure of the classifier 
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Error propagation and optimization 

Minimization of an objective function is achieved by gradient 

descent, and based on its parameters. The parameters of 

neural network  is updated by using gradient descent. By 

updating the parameters of the model in the direction 

opposite to that of its gradients is the method employed. In 

this way, we move downwards towards Minima. Batch 

gradient descent, Stochastic gradient descent, Mini-batch 

gradient descent are based on exactly when/at what intervals 

the parameter updates are performed these are various 

variants of gradient descent as. 

For both gradient descent, an update is performed after 

calculating gradients according to the entire data set. which 

leads to slower convergence. Opposite to that, in stochastic 

gradient descent, updates are performed based on gradients 

from a single sample. While definitely faster, stochastic 

gradient descent causes significantly higher variance, and 

may result in convergence to a local, not a global minimum. 

Thus, we used mini-batch gradient descent, which takes the 

best of both worlds. Due to the used of mini-batch gradient 

descent, a batch size is determined and an update takes place 

per    batch. This reduces the excessive variance of stochastic 

gradient descent, while retaining the advantage of high 

throughput and faster convergence. The weight update for 

mini-batch gradient descent 

𝑤𝑖𝑗 = 𝑤𝑖𝑗 −  𝛼 ∗ 
𝜕 (

1
𝑏
) − 𝐿(𝑤𝑖𝑗) 

𝜕𝑤𝑖𝑗
 

The speed of convergence, however, depends on not only the 

type of gradient descent, but also the learning rate. Learning 

rate decides how much a neural network gets influenced by 

error in output while updating its weights to account for it. 

Too small a learning rate makes for a slow convergence, but 

if it is   made too large, it can lead to fluctuations or even 

divergence. To set a suitable learning rate, optimizers are 

used. We use the AdaDelta optimizer [29,30]. 

IV. Results 

The models based on VGG16, InceptionV3, Xception and 

DenseNet121 were fine-tuned by varying the number of 

frozen layers and other hyper-parameters and training the 

model. For analysing the performance of the models for 

different combinations of hyper-parameters, the details of 

each run were stored in a CSV file. The CSV records the 

information like Pre-trained model used, b- batch size, Wi j - 

the weights of the network, α- the learning rate, L(Wij)- the 

loss function. 

- Number of trained layers from the pre-trained model 

- Size of the dense layer which is not a part of the pre-

trained model 

- Dropout rate 

- Learning rate 

- Number of epochs 

- Training accuracy  

- Training loss   

- Testing accuracy  

- F1-score for test data 

Through analysis of the CSV, the optimal number of layers 

which must be trained for each model was determined. For 

getting comparable results, the following parameter were 

kept constant for all models: Size of dense layer: 48, 

Number of epochs: 10, Learning rate: automatic (figured 

out by the Adadelta optimizer), Dropout rate: 20%. 

Since the number of class-0 samples out number class-1 

samples, we evaluated models based on accuracy and F1-

score. In our case, the accuracy itself is not completely 

indicative of the model’s performance. The F1-score gives 

us an idea about how well the classifier performs for both 

the classes.  

Table 1 shows how each of the models performed against 

various metrics of evaluation. The ‘Trained layers’ column 

gives the number of layers starting from the last layer that 

were trained from the respective base model. The metrics 

accuracy, precision, recall and F1- score will now be 

discussed. In the context of these metrics, we define the 

following symbols: 

True positives (TP): It is the total number of samples that 

are classified in the positive class (FRB, in our case) and 

which actually belong to it. 

True negatives (TN): It is the total number of samples that 

are classified in the negative class (RFI, in our case) and 

which actually belong to it. 

False positives (FP): The number of negative samples 

(RFI) which were classified as positive samples (FRB). 

False negatives (FN): The number of positive samples 

(FRB) which were classified as negative samples (RFI). 

Table 1. Comparative analysis of performance 

Base Model Trained Layers Accuracy(%) Precision Recall F1 Score 

VGG16 6 90.97 0.79 0.89 0.84 

InceptionV3 26 80.56 0.58 0.92 0.71 

Xception 19 86.81 0.69 0.89 0.78 

DenseNet121 21 93.06 0.97 0.76 0.85 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 9 

DOI: https://doi.org/10.17762/ijritcc.v11i9.8111 

Article Received: 05 July 2023 Revised: 25 August 2023 Accepted: 15 September 2023 

___________________________________________________________________________________________________________________ 

 
    7 
IJRITCC | September 2023, Available @ http://www.ijritcc.org 

Accuracy, or the recognition rate, is the proportion of 

samples that were correctly classified among all samples.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹
 

Precision is the proportion of the correctly labelled positive 

samples out of all positive-labelled samples. It is a measure 

of how relevant the result is. 

𝑃𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 

Recall is the proportion of positive samples that were 

correctly labelled. 

𝑅ⅇ𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

Accuracy must be as high as possible. However, accuracy 

doesn’t guarantee good performance in recognition across all 

classes. For problems which suffer from class imbalance, 

such as ours, in which the difference in the number of 

samples for each class is large, accuracy by itself is not 

sufficient to evaluate performance. Precision and recall give a 

better idea of performance in such cases. Precision tells us 

how exact the results are while recall represents the 

proportion of valid results. Ideally, both should be as high as 

possible, but there is always a tradeoff between the two. 

Another metric called the F1-score combines both precision 

and recall by taking their harmonic mean 

 

F1-score collectively accounts for both precision and recall 

and should therefore be as high as possible. The performance 

of different models was therefore com- pared by consulting 

their F1-scores.  

Fig. 4 shows the receiver operating characteristics curves for 

all models along with the area under each curve. The ROC 

curve represents the true-positive rate (the proportion of 

correctly labelled positive samples) and the false-positive rate 

(the complement of true negative rate) for a classifier at 

various classification thresholds. ROC indicates the ability of 

a model to distinguish between various classes. It therefore 

gives an idea of the performance of a model across all 

classes. The area under the ROC curve represents how good a 

model is. The closer the ‘knee’ in the ROC curve to the top-

left corner, more is the area under the curve. The VGG16-

based model had the highest area-under-curve and exhibited 

the best balance between recognition of both the classes.  

 
Figure 4: The Receiver Operating Characteristic (ROC) curve 

for all models. 

V. Conclusion and future work 

The VGG16-based model was the most optimal model to 

solve the problem statement, since it had the best ROC 

curve. Also, the model exhibited good performance in 

recognizing samples of both classes. To some extent, 

false-positives were tolerable for our project due to the 

nascent stages in which FRB data exists, but the goal was 

to have as high sensitivity as possible. As we wish to 

propel research into the domain, it goes without saying, 

that the miss rate (false-negatives) should be low. Based 

on these factors, the VGG16 model is preferred over all 

the other models that we have built. Thus, the model 

implemented successfully with an accuracy of 90.97% to 

classify fast radio bursts and radio frequency interference 

(RFI). Transfer learning with the aforementioned 

architecture and transformations is the optimal path to 

pursue, considering the complexities of the feature space, 

sparsity and lack of availability of data sets and 

anomalies in detection and identification. 

Simulation of data is computationally expensive. We had 

to compromise on the quality of simulated data and the 

number of simulated samples. A graphics processing unit 

(GPU) can perform complex and number-crunching 

operations much faster than a center processing unit 

(CPU) due to its enhanced hardware capabilities and 

sophisticated support for parallel computation. The 

tradeoff between simulation time and accuracy of 

simulated data can be overcome to an extent by using 

powerful GPU-aided hardware.  

The model can be further enhanced by simulating data, 

which bears more resemblance with real data.  

 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 9 

DOI: https://doi.org/10.17762/ijritcc.v11i9.8111 

Article Received: 05 July 2023 Revised: 25 August 2023 Accepted: 15 September 2023 

___________________________________________________________________________________________________________________ 

 
    8 
IJRITCC | September 2023, Available @ http://www.ijritcc.org 

VI. Acknowledgements 

We thank the National Center for Radio Astrophysics (NCRA) 

for providing us with the data recorded by the GMRT and 

allowing us to use their high performance computing servers.  

References 

[1] Petroff E. et al., Fast Radio Bursts,  2019, Astron Astrophys rev. 

27-4 

[2] D. R. Lorimer et al. A Bright Millisecond Radio Burst of 

Extragalactic Origin.Science318,777-780(2007) 

[3] Lynch R. S., http:// 

pulsarsearchcollaboratory.com/wp- 

content/uploads/2016/01/PSC_search_ guide.pdf 

[4] Wagstaff  K.L. et al., A Machine Learning Classifier for Fast 

Radio Burst Detection at the VLBA 2016, The Astronomical 

Society of the Pacific, vol. 128, no. 966,  

[5] The CHIME/FRB Collaboration, The CHIME Fast Radio Burst 

Project: System Overview 2018, The Astrophysical Journal, vol. 

863, no. 1 

[6] Zhang Y. G. et al., Fast Radio Burst 121102 Pulse Detection and 

Periodicity: A Machine Learning Approach ., 2018, The 

Astronomical Journal, vol. 866, no. 2. 

[7] Pang D.et al. A novel single-pulse search approach to detection of 

dispersed radio pulses using clustering and supervised machine 

learning, 2018, Monthly Notices of the Royal Astronomical 

Society, 3302–3323, vol. 480, issue 3. 

[8] Liam Connor et al, Applying Deep Learning to Fast Radio Burst 

Classification, The Astronomical Journal 2018 AJ 156 256 

[9] Agarwal, Devansh et al., FETCH: A deep-learning based 

classifier for fast transient classification,  Monthly Notices of the 

Royal Astronomical Society 497 (2020): 1661-1674.B.  

[10] Bhattacharyya et al., The GMRT high resolution southern sky 

survey for pulsars and transients: survey description and initial 

discoveries, The astronomical journal, vol. 2016 ApJ 817 130  

[11] J. W. T. Hessels et al. FRB 121102 Bursts Show Complex Time–

Frequency Structure, 2019 ApJL 876 L23  

[12] Pilia, Maura, The Low Frequency Perspective on Fast Radio 

Bursts, 2022, Universe 8, no. 1: 9.   

 

[13] Niu, CH., Aggarwal, K., Li, D. et al. A repeating fast radio burst 

associated with a persistent radio source. Nature 606, 873–877 

(2022) 

[14] K M Rajwade, et al., Possible periodic activity in the repeating 

FRB 121102, Monthly Notices of the Royal Astronomical 

Society, Volume 495, Issue 4, July 2020, Pages 3551–3558. 

[15] Bussons Gordo, J., Fernández Ruiz, M., Prieto Mateo, M. et 

al. Automatic Burst Detection in Solar Radio Spectrograms Using 

Deep Learning: deARCE Method. Sol Phys 298, 82 (2023). 

[16] Aya Nabil Sayed, et al., Deep and transfer learning for building 

occupancy detection: A review and comparative analysis, 

Engineering Applications of Artificial Intelligence, Volume 

115,2022 

[17] F. Zhuang et al., A Comprehensive Survey on Transfer Learning, 

in Proceedings of the IEEE, vol. 109, no. 1, pp. 43-76, Jan. 2021.  

[18] Hussain, Mahbub et al. ,A Study on CNN Transfer Learning for 

Image Classification, UK Workshop on Computational 

Intelligence, 2018. 

[19] Lu, Ying., Transfer Learning for Image Classification, 2017. 

[20] Sara Hosseinzadeh Kassani, at el., Deep transfer learning based 

model for colorectal cancer histopathology segmentation: A 

comparative study of deep pre-trained models, International 

Journal of Medical Informatics,Volume 159,2022. 

[21] B. Bamne, et al., Transfer learning-based Object Detection by 

using Convolutional Neural Networks, 2020 International 

Conference on Electronics and Sustainable Communication 

Systems (ICESC), Coimbatore, India, 2020, pp. 328-332 (conf) 

[22] Ioffe, Sergey, and Christian Szegedy, Batch normalization: 

Accelerating deep network training by reducing internal 

covariate shift, International conference on machine learning. 

pmlr, 2015. 

[23] Sandeep Kadam, & T. Srinivasarao. (2023). ElitGA : Elitism 

Based Genetic Algorithm for Evaluation of Mutation Testing 

on Heterogeneous Dataset. International Journal of Intelligent 

Systems and Applications in Engineering, 11(4s), 509–516. 

Retrieved from 

https://ijisae.org/index.php/IJISAE/article/view/2720. 

[24] D. L. Jones et al., "Big data challenges for large radio arrays," 

2012 IEEE Aerospace Conference, Big Sky, MT, USA, 2012, 

pp. 1-6, doi: 10.1109/AERO.2012.6187090.  

[25] C. Patel et al PALFA Single-pulse Pipeline: New Pulsars, 

Rotating Radio Transients, and a Candidate Fast Radio Burst, 

2018 ApJ 869 181 

[26] FETCH,  https://github.com/devanshkv/fetch  

[27] single pulse ml, https://github.com/ 

liamconnor/single_pulse_ml 

[28] HEIMDALL, https://sourceforge.net/p/ heimdall-

astro/wiki/Home/  

[29] Billings Lee, 2013,  Scientific  American,  

https://www.scientificamerican.com/article/a-brilliant-flash-

then-nothing-new-fast- radio-bursts-mystify-astronomers/  

[30] https://towardsdatascience.com/a- comprehensive-hands-on-

guide-to- transfer-learning-with-real-world- applications-in-

deep-learning- 212bf3b2f27a.  

[31] https://machinelearningmastery.com/how- to-use-transfer-

learning-when- developing-convolutional-neural- network-

models/ 

[32] Prof. C. Ranjeeth Kumar. (2020). Malware Detection Using 

Remedimorbus Application. International Journal of New 

Practices in Management and Engineering, 9(01), 08 - 15. 

https://doi.org/10.17762/ijnpme.v9i01.82. 

[33] Sable, N.P., Rathod, V.U. (2023). Rethinking Blockchain and 

Machine Learning for Resource-Constrained WSN. In: 

Neustein, A., Mahalle, P.N., Joshi, P., Shinde, G.R. (eds) AI, 

IoT, Big Data and Cloud Computing for Industry 4.0. Signals 

and Communication Technology. Springer, Cham. 

https://doi.org/10.1007/978-3-031-29713-7_17. 

[34] N. P. Sable, V. U. Rathod, R. Sable and G. R. Shinde, "The 

Secure E-Wallet Powered by Blockchain and Distributed 

Ledger Technology," 2022 IEEE Pune Section International 

Conference (PuneCon), Pune, India, 2022, pp. 1-5, doi: 

10.1109/PuneCon55413.2022.10014893. 

[35] V. U. Rathod and S. V. Gumaste, "Role of Routing Protocol in 

Mobile Ad-Hoc Network for Performance of Mobility Models," 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 9 

DOI: https://doi.org/10.17762/ijritcc.v11i9.8111 

Article Received: 05 July 2023 Revised: 25 August 2023 Accepted: 15 September 2023 

___________________________________________________________________________________________________________________ 

 
    9 
IJRITCC | September 2023, Available @ http://www.ijritcc.org 

2023 IEEE 8th International Conference for Convergence in 

Technology (I2CT), Lonavla, India, 2023, pp. 1-6, doi: 

10.1109/I2CT57861.2023.10126390. 

[36] N. P. Sable, V. U. Rathod, P. N. Mahalle and D. R. Birari, "A 

Multiple Stage Deep Learning Model for NID in MANETs," 2022 

International Conference on Emerging Smart Computing and 

Informatics (ESCI), Pune, India, 2022, pp. 1-6, doi: 

10.1109/ESCI53509.2022.9758191. 

[37] N. P. Sable, M. D. Salunke, V. U. Rathod and P. Dhotre, 

"Network for Cross-Disease Attention to the Severity of Diabetic 

Macular Edema and Joint Retinopathy," 2022 International 

Conference on Smart Generation Computing, Communication and 

Networking (SMART GENCON), Bangalore, India, 2022, pp. 1-

7, doi: 10.1109/SMARTGENCON56628.2022.10083936. 

[38] Dwarkanath Pande, S. ., & Hasane Ahammad, D. S. . (2022). 

Cognitive Computing-Based Network Access Control System in 

Secure Physical Layer. Research Journal of Computer Systems 

and Engineering, 3(1), 14–20. Retrieved from 

https://technicaljournals.org/RJCSE/index.php/journal/article/vie

w/36. 

[39] V. U. Rathod, N. P. Sable, N. N. Thorat and S. N. Ajani, "Deep 

Learning Techniques Using Lightweight Cryptography for IoT 

Based E-Healthcare System," 2023 3rd International Conference 

on Intelligent Technologies (CONIT), Hubli, India, 2023, pp. 1-5, 

doi: 10.1109/CONIT59222.2023.10205808. 

[40] V. U. Rathod and S. V. Gumaste, “Role of Deep Learning in 

Mobile Ad-hoc Networks”, IJRITCC, vol. 10, no. 2s, pp. 237–

246, Dec. 2022. 

[41] N. P. Sable, V. U. Rathod, P. N. Mahalle, and P. N. Railkar, “An 

Efficient and Reliable Data Transmission Service using Network 

Coding Algorithms in Peer-to-Peer Network”, IJRITCC, vol. 10, 

no. 1s, pp. 144–154, Dec. 2022. 

[42] N. P. Sable, R. Sonkamble, V. U. Rathod, S. Shirke, J. Y. 

Deshmukh, and G. T. Chavan, “Web3 Chain Authentication and 

Authorization Security Standard (CAA)”, IJRITCC, vol. 11, no. 

5, pp. 70–76, May 2023. 

[43] Vijay U. Rathod* & Shyamrao V. Gumaste, “Effect Of Deep 

Channel To Improve Performance On Mobile Ad-Hoc 

Networks”, J. Optoelectron. Laser, vol. 41, no. 7, pp. 754–756, 

Jul. 2022. 

[44] Rathod, V.U. and Gumaste, S.V., 2022. Role of Neural Network 

in Mobile Ad Hoc Networks for Mobility Prediction. International 

Journal of Communication Networks and Information 

Security, 14(1s), pp.153-166. 

[45] Y. Mali, “A Comparative Analysis of Machine Learning Models 

for Soil Health Prediction and Crop Selection”, International 

Journal of Intelligent Systems and Applications in Engineering 

(IJISAE), vol. 11, no. 10s, pp. 811–828, Aug. 2023. 

[46] N. P. Sable, V. U. Rathod, M. D. . Salunke, H. B. Jadhav, R. S. . 

Tambe, and S. R. . Kothavle, “Enhancing Routing Performance in 

Software-Defined Wireless Sensor Networks through 

Reinforcement Learning”, International Journal of Intelligent 

Systems and Applications in Engineering (IJISAE), vol. 11, no. 

10s, pp. 73–83, Aug. 2023. 

http://www.ijritcc.org/

