

Journal of Advanced Zoology

ISSN: 0253-7214 Volume 44 Issue 04 Year 2023 Page 498:505

Potency of Micro-Gels in Effective Management of Fungal Infection Diseases

Harsh Kr. Sisodia^{1*}, Vivek Verma², Mohd. Khalid³

^{1,2,3}Krishna Pharmacy College, Bijnor, India Email: Harshsisodia49@gmail.com¹, Verma125iftm@gmail.com², Khalidu007@gmail.com³ ORCID: 0009-0003-7093-7667¹, 0000-0002-9207-8926²

*Corresponding author's E-mail: kpcbijnor@gmail.com

Article History	Abstract					
Received: 06 June 2023 Revised: 05 Sept 2023 Accepted: 20 Nov 2023	Microemulgel has vast application treating and preventing skin infection better absorption and reducing toxicity. Microemulgel offer new alternatio the design that can be against fungal infection. Microemulgel formula increase the efficacy, diffusion, permeation of drug and give optimum re Microemulgel combination of both gel and mcroemulsion so it increases pa compliance. In this review we provide a broad overview on the use microemulgel in fight against fungal infection we have analyzed some rese on microemulgel as a potential step for fungal treatment. We also give a summary of research that has been done and novel development show pro for the further growth of microemulgel in the pharmaceutical field.					
CC License CC-BY-NC-SA 4.0	Keywords: <i>Microemulgel, Co-surfactant, Greaseless, Bioavailability, Amphophilic.</i>					

1. Introduction

The created formulations are known as microemulgels when both micro-emulsion and gel are employed in combination dosage forms. These formulations include the benefits of both emulgel and micro-emulsion. Drugs that are both hydrophilic and hydrophobic are included in dosage formulations.¹ They offer a significant surface area for medication absorption, and the oil part boosts drug permeability and bioavailability.³ Additionally, adding micro-emulsion to gel increases its stability. Moving on to micro-emulsions, microemulgels are elegant and simple to wash when necessary.²

Hoar and Schulman et al, developed the idea of a microemulsion in the 1940s. A microemulsion is a mixture of liquids that is optically isotropic and thermodynamically stable.³ It contains water, oil, and amphophilic. The vehicle that enhances the administration, effectiveness, and bioavailability of many medications is the micro-emulsion.⁴ A microemulsion is a transparent, thermodynamically stable dispersion of two immiscible liquids that contains oil and water and is stabilised by molecules of surfactant through the formation of an interfacial layer.⁵

Figure 1: Development of Microemulgel Formulation

A kinetically stable liquid dispersion of an aqueous phase, a lipid phase, and a surfactant is referred to as a microemulsion.⁶ The size of the dispersed particles ranges from 5 to 200 nm, and there is very little oil/water interfacial surface tension. Because of their small (less than 25%) globule size, microemulsions are transparent.⁷ The microemulsion cannot be formed without a significant amount of energy input. A co-surfactant is frequently used in addition to the surfactant, the lipid phase, and the aqueous phase.⁸

Emulgel:

Emulgel is the dosage form, created when emulsion and gel are used together. It is an emulsion and gel mix, as the name would imply. As a result, it has lately been employed as a means of delivering different medications to the skin for topical and systemic effects.⁹ In reality, an old emulsion becomes an emulgel when a gelling ingredient is present in the water phase. Lipophilic medications are encapsulated using the direct method (oil in water), whereas hydrophilic pharmaceuticals are encapsulated using the reverse system (water in oil).¹⁰

Emulsions are readily cleaned when necessary and offer a certain level of elegance. Additionally, they have a strong capacity for skin penetration. Emulgels used topically have a number of desired qualities, including thixotropy, grease lessness, ease of application and removal, emollience, non-staining, water solubility, a longer shelf life, bio-friendliness, transparency, and a pleasing look.¹¹ Gels are a more recent type of dosage forms that are produced by trapping significant volumes of aqueous or hydroalcoholic liquid in a web of colloidal solid particles.²⁰ These particles may be inorganic, like aluminum salts, or organic polymers that can be either natural or manufactured.¹²

Compared to the ointment or cream basis, they feature a larger aqueous component that allows for increased drug solubility and facile migration of the drug via a vehicle that is virtually a liquid.¹³ These offer greater usability and patient acceptance. Despite the fact that gels have numerous benefits, hydrophobic medication delivery is a significant drawback. Emulgels are created and utilized to get over this restriction so that even a hydrophobic medicinal moiety can benefit from the special qualities of gels.¹⁴

Drugs are delivered to the skin via emulsions made of water and oil, as well as oil in water. It is important to understand the variables that affect percutaneous absorption while using topical medications.¹⁵ Molecules can enter the skin through the intact stratum corneum, sweat ducts, or sebaceous follicles, respectively.¹⁶ More than 99% of the entire skin surface that may be used for percutaneous medication absorption is on the surface of the stratum corneum. For percutaneous absorption, passage through this outermost layer is the rate-limiting stage.¹⁷

The establishment of a concentration gradient, which provides the force for drug movement across the skin, drug release from the vehicle (partition coefficient), and drug diffusion across the layers of skin (diffusion coefficient) are the main steps in percutaneous absorption.¹⁸ Low molecular mass (600 Da), good solubility in oil and water, and a high partition coefficient are all desirable properties of topical medications. Water soluble ions and polar molecules cannot pass through intact stratum corneum, with the exception of very minute particles.¹⁹

The barrier function of the skin can be altered using topical formulations. For instance, topical antibiotics and antibacterials help a compromised barrier ward off infection, sunscreens and the horny layer shield the viable tissues from ultraviolet radiation, and emollient preparations restore the pliability of a desiccated horny layer.²⁰ The necessity and effectiveness of the selected preservative must be proven to the satisfaction of the competent authority during the creation of semi-solid preparations for cutaneous application whose composition includes an antimicrobial preservative.²¹

In Efficacy of Antimicrobial Preservation, an appropriate test procedure and criteria for evaluating the formulation's preservative qualities are given. To assure sterility, prevent the admission of impurities and the growth of microorganisms, and ensure sterility, sterile semi-solid formulations are made for cutaneous application.²² The active ingredient in the preparation, the formulation in which it is included, the container and closure utilized, or other factors might increase or decrease an antimicrobial preservative's effectiveness.²³

Topical preparations must be microbiological in quality and must pass a sterility test. Total viable aerobic count (aerobic bacteria + fungus) per gramme shouldn't exceed 102 microorganisms. It should include no more than 101 enterobacteria, a limited number of other gram-negative bacteria per gramme, and be entirely free of Staphylococcus aureus and Pseudomonas aeruginosa.²⁴

Potency of Micro-Gels in Effective Management of Fungal Infection Diseases

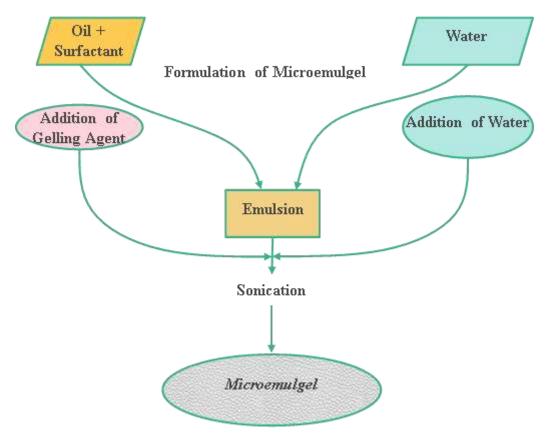


Figure 2: Basic steps in preparation of emulgel²⁵

Recent Advancement in Micro-emulgel Based Formulations

Microemulgel based drug delivery system have made a remarkable difference in the bioavailability of drugs, especially anti-fungal agents, owing to their physical, chemical characteristic & biological attributes.²⁵ Innovative microemulgel formulation have become essential for better diffusion of drug & bioavailability enhancement. Consequently, the relevance of promising microemulgel strategies for fungal infection has become necessary.²⁶

Title	Author	Year	Result	Inferences	Ref.
Optimization of Microemulgel for Tizanidine Hydrochloride	Swati Jagdale et al.	2019	Isopropyl myristate was used as the oil, tween 80 as the surfactant, and transcutol P as the cosurfactant to create the microemulsion. With a Smix ratio of 1:1, the largest clear microemulsion zone was discovered. For batch B1, the FE-SEM revealed globules with a size of 28 m, and the microemulsion's high stability was indicated by its zeta potential of -1.27 mV. The most effective batch was F6, which displayed 92% drug release in under 8 hours.	The results showed tizanidine hydrochloride microemulgel formulation is a potential method for transdermal drug administration that will solve the issues with medication associated with first pass metabolism.	27
Microemulgel formulation of Kepok banana peel extract (Musa paradisiaca L) as an antioxidant	F F Sriarumtias et al.	2019	It can be established that formula 2 is the formula that best satisfies pharmaceutical criteria among emulgel preparations using methanol extract of	Results revieled that, using the methanolic banana peel extract in the emulgel did not cause skin irritation.	28

Table 1: Some recent research of microemulgels for fungal infections

Available online at: https://jazindia.com

		1			
			Kepok banana peel (Musa paradisiaca L) and		
			different quantities of		
			1XIC50, 2XIC50, and		
			3XIC50 employed as		
			antioxidants. To prevent problems with		
			oral administration, to		
			make etoricoxib more		
			soluble, and to enhance		
			skin permeability, a microemulsion-based gel		
Formulation,			for topical delivery of the		
Development and			drug was developed in the	The study showed that	
Evaluation of	Vania		foregoing study. After 8	the gel formulation based	
Etoricoxib Nanosize	Rachael	2019	hours, the improved	on microemulsions may	29
Microemulsion Based Gel for	Fonseca et al.		formulations revealed a 57.8% drug release. The	be used to increase etoricoxib's solubility and	
Topical Drug	ai.		formulation's stability	skin permeability.	
Delivery			was also discovered.	1 5	
			Etoricoxib microemulgel		
			can be utilised to improve percutaneous delivery and		
			provide a prolonged		
			effect of medication		
			release.		
	Panchaxari		In the current research, an		
			effort has been made to develop and assess	Scientists suggest that	
			luliconazole gel based on	Conventional dosage	
			a microemulsion for its	forms such as creams, ointments etc exhibit	
			improved solubility and	drawbacks like problem	
			permeability for antifungal activity by	in stability, stickiness,	
			employing poly	poor absorption as well	
			unsaturated fatty acids	as permeation mainly in case of large molecule.	
Formulation and			like linseed oil. As a	To overcome this isuue,	
Evaluation of			gelling agent, sodium	the origination of	
Microemulsion	Mallappa	2020	alginate, a semi-synthetic polymer, was utilised.	emulgel came into	30
Based Luliconazole	Dandagi et	2020	The globule size of the	existence which basically	50
Gel for Topical Delivery	al.		microemulsion was	focus on the delivery of hydrophobic drugs. The	
Delivery			measured using Nanotrac.	present research	
			E1 and E4 were chosen as optimised	concluded that	
			microemulsions with	preparation and	
			273.7 nm and 189.6 nm	evaluation of microemulsion based	
			and PDI of 0.632 and	luliconazole gel for its	
			0.197 based on the measured MA, that is,	enhanced solubility and	
			surface area distribution	permeability for better	
			of globules and	antifungal activity.	
			polydispersity index.		
Formulation and Evaluation of Topical Microemulgel Containing Terbinafine Hydrochloride		2021	Terbinafine hydrochloride	The study revealed that	31
	valuation of TopicalZingadecroemulgelSarika G.1containinget al.		is an FDA-approved antifungal medication	terbinafine hydrochloride, a	
			used to treat fungal	medication with limited	
			infections on the skin &	bioavailability, is better	
			has several advantages	suited to micro-emulgel	
			over simple traditional formulations, including	formulation. The results revealed that	
			simplicity of	microemulgel may	
			administration, increased	achieve the maximal drug	
			residence duration at the	release after 24 hours	
			application site,	(94.50%). The invention	
			consistent drug release	of the terbinafine	

	1	1			
			with improved	hydrochloride micro-	
			bioavailability, superior	emulgel formulation was	
			thermodynamic stability,	considerably more favourable than the	
			and excellent transdermal permeability. Carbopol	current dosage forms	
			940 and HPMC is used as	since the medication is	
			a gelling agent, oleic acid	lipophilic in nature and	
			as an oil, parabens as a	difficult to enter through	
			preservative, and tween	moist skin. Although the	
			20 as an emulgent and	micro-emulgel	
			penetration enhancer.	formulation can permeate	
				drugs, further research is	
				needed to evaluate its	
				therapeutic effectiveness.	
			The ME-gel was made	This study showd that a	
			from a ME that contained	novel CBD-based	
			1% w/w CBD and was	microemulgel (CBD-	
			loaded with 20% Solutol HS 15, 9% Transcutol P,	MEgel), which has been created and characterised	
			5% Isopropyl Myristate,	for the treatment of	
			and 66% water. Due to	inflammatory and pruritic	
Development and			CBD-ME's weak	skin problems as well as	
optimisation of			viscosity, it was jellified	eczema and other	
biopharmaceutical			using Sepigel 305, which	cutaneous illnesses.	
properties of a new	Giulia Vanti		gave the formulation	Studies on the release	
microemulgel of	et al.	2021	stability, shine, and an	and permeation of CBD	32
cannabidiol for	et al.		almost immediate rise in	formulations in	
locally-acting			viscosity. The resulting	microemulgels using	
dermatological			microemulgel had a nice,	skin-PAMPA and rabbit	
delivery			creamy, gel-like consistency and was non-	ear skin demonstrated regulated release and	
			Newtonian pseudoplastic	absorption qualities,	
			semisolid in formulation,	leading to satisfactory	
			like the majority of gels	retention in the skin	
			mentioned in the	layers without the need	
			literature for topical	for transdermal	
			administration.	administration.	
			The solubilization of the	The first emulgel was the	
			medicine, ibuprofen,	best formulation in the	
			provided by the	current investigation in	
			developed micro emulsion system before it	terms of all factors and	
			was transformed into	attributes. The created	
			emulgel is useful in	micro emulgel	
			boosting the	demonstrated the highest	
			bioavailability of the	level of system stability	
Formulation, Development and Characterization of			drug. The emulgel's	and drug solubility. The produced emulgel may be	
			particle size indicated that	a cost-effective	
			it was in the micro	formulation since it	
	Muhammad		emulsion range and that it	reduces topical dosage	
	Hammad	2022	would be well absorbed	and frequency while also	22
Ibuprofen	Tariq Bhatti	2022	when applied topically to skin. Ibuprofen	having the maximum	33
Microemulgel for Arthritis	et al.		interactions with carbopol	bioavailability (94%) of	
			and other chemicals used	any formulation. The	
			to prepare the	mechanism created for	
			microemulsion were	loading ibuprofen, or	
			studied using	emulgel, is stable and compatible with the	
			comprehensive Fourier	medication, as shown by	
			Transform spectroscopy.	all of the results. The	
			F1 was chosen as the top	emulgel helps treat sports	
			formulation out of all of	injuries and arthritis by	
			them since it had the	quickly relieving pain	
			greatest drug release percentage, at 94.6	and encouraging patient	
			percentage, at 94.6	compliance.	
		I	percent.		

Design, Optimization and Evaluation of Microemulgel Containing Antifungal Drugs	Rajappa Margret Chandira et al.	2022	To increase medication absorption and bioavailability, the current study developed a microemulsion gel formulation of salicylic acid and benzoic acid. Many formulations produced microemulgel formulations have a medication concentration of 85 to 96%. Salicylic acid and benzoic acid were produced at various quantities (2, 4, 6, 8 and 10 g/ml) and examined using the appropriate media and UV at 230 nm and 210 nm.	This study suggests that Benzoic and salicylic acid microemulgels better for the treatment of fungal infections were designed, optimised, and evaluated for stays in the skin for a longer period, allowing for more effective absorption and absorption into the bloodstream. Carbopol 934 and HPMC k 15m were used as gelling agents, oil as a preservative, and emulsifying agent as a penetration enhancer in the research to create benzoic and salicylic acid microemulgels.	34
Development of Phyto cosmeceutical Microemulgel Containing Flaxseed Extract and Its In Vitro and In Vivo characterization	Rabia Tasneem et al.	2022	The most acceptable components that were readily accessible, together with an ethanolic extract of flaxseed, were chosen to effectively synthesise a stable microemulgel. It has to be professionally evaluated on various skin conditions including eczema and psoriasis	Studies on the release of bioactive components demonstrated the controlled release properties of the microemulgel containing flaxseed extract. Results of in vivo experiments shown that the active formulation restored the skin's erythema, melanin, sebum level, hydration, and elasticity after any UV-related flaws.	35

4. Conclusion

Currently available conventional antifungal drug therapy suffers from severe limitation such as bio distribution, insufficient targeting by the therapy agents, poor bioavailability, poor solubility, low therapeutic indices. Combined with microemulgel formulation would be a better option for fungal infection, providing that all the setback and clarifications are dealt with. The microemulsion-based gel was, produced have a high potential for the delivery of the medication through the transdermal route for fungal infection disease.

References:

- 1. Zuckerman J M, Tunkel A R (1994) Itraconazole: a new triazole antifungal agent. Infect Cont Hosp Epidemiol 15(6): 397-410. https://doi.org/10.2307/30145593
- 2. Haria M, Bryson H M, Goa K L (1996) Itraconazole, A reappraisal of its pharmacological properties and therapeutic use in the management of superficial fungal infections. Drugs 51(4): 585-620.
- 3. Vanden Bossche H, Marichal P, Gorrens J (1988) Mode of action studies: Basis for the search of new antifungal drugs. Ann NY Acad Sci 544:191-207. https://doi.org/10.1111/j.1749-6632.1988.tb40404.x
- 4. Van Cauteren H, Heykants J, De Coster R, Cauwenbergh G (1987) Itraconazole: animal and human pharmacological studies. Rev Infect Dis 9(1): S43-S46.
- Christine L. Terrell M.D. (1999) Antifungal Agents. Part II. The Azoles. Mayo Clinic Proc. 74(1): 78-100. https://doi.org/10.4065/74.1.78
- Arrese J E, De Doncker P, and Odds F, Piérard G E (1998) Reduction in the growth of non-dermatophyte moulds by itraconazole: evaluation by corneofungimetry bioassay. Mycoses 41: 461-465. https://doi.org/10.1111/j.1439-0507.1998.tb00706.x
- 7. Van C J (1989) The in vitro antifungal spectrum of itraconazole. Mycoses 32: 7-13. https://doi.org/10.1111/j.1439-0507.1989.tb02290.x
- J. Van Cutsem (1989) Oral, topical and parenteral antifungal treatment with itraconazole in normal and in immunocompromised animals. Mycoses 32(1): 14-34. https://doi.org/10.1111/j.1439-0507.1989.tb02291.x
- 9. De Beule K (1996) Itraconazole: pharmacology, clinical experience and future developments. Int J Antimicrob Ag 6: 175-181. https://doi.org/10.1016/0924-8579(95)00043-7

- Arrese JE, Delvenne P, Van Cutsem J, Pierard-Franchimont C, Pierard Ge (1994) Experimental aspergillosis in guinea pigs. Influence of itraconazole on fungaemia and invasive fungal growth. Mycoses 37: 117-122. https://doi.org/10.1111/j.1439-0507.1994.tb00786.x
- 11. Heykants J, Van Peer A, Van De Velde V (1989) The clinical pharmacokinetics of itraconazole: an overview. Mycoses 32(1): 67-87. https://doi.org/10.1111/j.1439-0507.1989.tb02296.x
- 12. Meinhof W (1993) Kinetics and spectrum of activity of oral antifungals: the therapeutic implications. J. Am. Acad. Dermatol 29: S37-S41. https://doi.org/10.1016/S0190-9622(08)81835-X
- Barone Ja, Moskovitchj Bl, Guarnieri J (1998) Enhanced bioavailability of itraconazole in hydroxypropyl-bcyclodextrin solution versus capsules in healthy volunteers. Antimicrob. Agents. Chemother 42(7): 1862-1865. https://doi.org/10.1128/aac.42.7.1862
- 14. Van De Velde Vjs, Van Peer AP, Heykants JJP (1996) Effects of food on the pharmacokinetics of a new hydroxypropyl-beta-cyclodextrin formulation of itraconazole. Pharmacotherapy 16: 424-428. https://doi.org/10.1002/j.1875-9114.1996.tb02973.x
- 15. Vandewoude K, Vogelaers D, Decruyenaere JJ (1997) Concentrations in plasma and safety of 7 days of intravenous itraconazole followed by 2 weeks of oral itraconazole solution in patients in intensive care units. Antimicrob Agents Chemother 41: 2714-2718. https://doi.org/10.1128/aac.41.12.2714
- 16. Cauwenbergh G, Degreef H, Heykants J, Woestenborghs R, Van Rooy P, Haverans K (1988) Pharmacokinetic profile of orally administered itraconazole in human skin. J Am Acad Dermatol 18: 263-268. https://doi.org/10.1016/S0190-9622(88)70037-7
- 17. Rurangirwa A, Piérard-Franchimont C, Piérard Ge (1989) Culture of fungi on cyanoacrylate skin surface strippings. A quantitative bioassay for evaluating antifungal drugs. Clin Exp Dermatol 14:425-428. 10.1111/j.1365-2230.1989.tb02603.x
- 18. Pierard Ge, Piérard-Franchimont C, Arrese Estrada J (1993) Comparative study of the activity and lingering effect of topical antifungals. Skin Pharmacol 6: 208-214. https://doi.org/10.1159/000211137
- 19. Piérard Ge, Arrese Je, De Doncker P (1995) Antifungal activity of itraconazole and terbinafine in human stratum corneum: a comparative study. J Am Acad Dermatol 32: 429-435. https://doi.org/10.1016/0190-9622(95)90064-0
- 20. Arrese Je, Schrooten P, De Doncker P (1995) Fungal cultures on cyanoacrylate skin surface strippings as a dose-finding method for topical antifungals. A placebo-controlled study with itraconazole 0.25% and 0.50% cream. J Med Vet Mycol 33: 127-130.
- 21. Willemsen M, De Doncker P, Willems J (1992) Posttreatment itraconazole levels in the nail. J Am Acad Dermatol 26: 731-735. https://doi.org/10.1016/0190-9622(92)70102-L
- 22. De Doncker P, Decroix J, Pierard Ge (1996) Antifungal pulse therapy in onychomycosis: a pharmacokinetic/pharmacodynamic investigation of monthly cycles of 1 week pulse with itraconazole Arch Dermatol 132: 34-41.
- 23. Piérard Ge, Arrese Je, Piérard-Franchimont C (1996) Treatment and prophylaxis of tinea infections. Drugs 52: 209-224.
- 24. De Doncker P, Gupta Ak, Marynissen G (1998) Itraconazole pulse therapy for onychomycosis and © Ashley Publications Ltd. All rights reserved. Exp. Opin. Pharmacother. (2000) 1(2) Piérard, Arrese & Piérard-Franchimont 299 dermatomycoses: an overview. J Am Acad Dermatol 37(6): 969-974. https://doi.org/10.1046/j.1365-2230.1998.00319.x
- 25. Swati J, Sujata B, Anuruddha C (2020) Optimization of Microemulgel for Tizanidine Hydrochloride. Anti-Inflammatory & Anti-Allergy Agents in Med Chem 19: 158-179. https://doi.org/10.2174/1871523018666190308123100
- 26. Sriarumtias F F, Najihudin A. Putri I A, Akmal A, Hamdani H (2019) Microemulgel formulation of Kepok banana peel extract (Musa paradisiaca L) as an antioxidant. J Phys Conf Ser 1-6. https://doi.org/10.1088/1742-6596/1402/5/055090
- 27. Vania Rachael Fonseca, Prashant Jivaji Bhide, Madhusudan Purushottam Joshi (2019) Formulation, Development and Evaluation of Etoricoxib Nanosize Microemulsion Based Gel for Topical Drug Delivery. Ind J Pharm Edu Res 53 (4), 571-579. https://doi.org/10.5530/ijper.53.4s.152
- 28. Panchaxari M D, Pratibha P, Anand P G, Vinayak S M (2020) Formulation and Evaluation of Microemulsion Based Luliconazole Gel for Topical Delivery. Ind J Pharm Edu Res 54 (2), 293-301. https://doi.org/10.5530/ijper.54.2.34
- 29. Zingade SG, Nagoba SN, Agwane SG, Swami AB. (2021) Formulation and Evaluation of Topical Microemulgel Containing Terbinafine Hydrochloride. J Pharm Res Int 33(47A): 794-803. https://doi.org/10.9734/JPRI/2021/v33i47A33075
- 30. Giulia V, Lucia G, Maria C B, Emiliano A, Francesca M, Marzia C, Anna R B (2021) Development and optimisation of biopharmaceutical properties of a new microemulgel of cannabidiol for locally-acting dermatological delivery. Int J Pharmaceutics 607: 1-13. https://doi.org/10.1016/j.ijpharm.2021.121036
- 31. Hammad M, Tariq B, Sarim S, M Usama A, Hana A, Talib H, Muhammad K. (2022) Formulation, Development And Characterization Of Ibuprofen Microemulgel For Arthritis. J contemp pharm pract 6(2): 57-64. https://doi.org/10.56770/jcp2022623
- 32. Rajappa M C, Palanisamy P, Gudanagaram R V, Ranjithkumar S. (2022) Design, Optimization and Evaluation of Microemulgel Containing Antifungal Drugs. Asian J Biol Sci 11(2), 374-379. https://doi.org/10.5530/ajbls.2022.11.50

- 33. Rabia T, Haji M S K, Fatima R, Kashif R K, Umair M, Tuba E, Sameh A. Korma (2022) Development of Phytocosmeceutical Microemulgel Containing Flaxseed Extract and Its In Vitro and In Vivo Characterization. Pharmaceutics 14, 1-20. https://doi.org/10.3390/pharmaceutics14081656
- 34. S. Shrestha, S. Pokhrel, S. Sharma, M. Manandhar, I. Alam (2017) Formulation and Evaluation of Topical Microemulgel Loaded with Terbinafine HCl Microemulsion. IJPSR. 8, 4716-4723. http://dx.doi.org/10.13040/IJPSR.0975-8232.8 (11).4716-23
- 35. M. Hamed El Nagar, M. Mahdy, M. Selem, G. El Maghraby (2016) Transdermal Delivery of Kojic Acid from Microemulgel. J. Appl. Pharm. Sci. 6, 008-016. http://doi.org/10.7324/JAPS.2016.60302