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Abstract 

 
The wealth of fauna resources has a strategic role in realizing the sovereignty 

and independence of the nation, so it needs to be preserved. Mammals 

contribute various ecological functions essential to human welfare, including 

sustaining energy flows and productivity and producing a different kind of 

biodiversity that is currently approaching extinction yet still exists. Animal 

biobanking is mostly focused on spermatozoa, oocytes, and embryos in various 

faunas, which is very relevant and an essential idea for producing healthy and 

sustainable populations. The quality of reproduction of local fauna with 

substantial economic value has also been increasingly degraded in recent 

years, so an accelerated effort in the field of conservation is needed, including 

integrating the latest technology with conservation efforts. However, the 

development of biobanking technology for endangered mammals still needs to 

be improved in its studies and innovations. The authors examine this issue since 

there is still information that has to be enhanced on the use of reproductive 

biotechnology techniques that center on the biobanking of animal gametes and 

embryos, particularly those of endangered mammals. This article provides 

information on the biobanking of sperm, oocytes, and embryos in endangered 

mammals. 
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1. Introduction 
The world has a biodiversity that is threatened with extinction, both in terms of habitat and population. 

This population reduction can be caused by forest land, which is their original habitat and has been 

converted into plantations and industrial land. The company's conversion of land around the 

conservation area is also a significant threat to conservation because of the opening up of access roads 

for hunters. The wealth of fauna resources has a strategic role in realizing the nation's independence, so 

it needs to be preserved. Various ecosystem functions are impacted by biodiversity, just as mammalian 

communities are crucial to maintaining ecological integrity. Mammals offer a range of environmental 

services that are critical to human welfare, such as sustaining productivity and energy flows and 

fostering biodiversity [1]. The main threat to all endangered hazards in their lives is habitat destruction 

and degradation of biological resources, many of which are currently extinct, and many more are on the 

verge of extinction [2]. 

The idea that biobanks are essential to different species is not a novel concept. This concept merits 

immediate and thorough conservation since it is highly relevant to the majority of biodiversity that is 

susceptible to epizootics and abrupt changes in social and political structures. In addition, the 

biobanking program serves as an archive for biomaterials, particularly germplasm, which helps 

conservation breeding initiatives create robust and long-lasting populations. Most early animal 

biobanking efforts were directed at spermatozoa and embryos [3] and female genetic material, 

especially oocytes, which are large and complex and require specific cryopreservation [4]. The most 

priceless items in the wildlife biobank—such as DNA, tissues, blood products, and reproductive cells—

are crucial to understanding and preserving biodiversity. 
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Along with the development of the current era, the diversity of Indonesia's fauna is starting to be 

threatened. Habitat destruction and population decline due to illegal hunting and trade are happening 

faster than the effort to protect the fauna. The habitat of some fauna in Indonesia has decreased, resulting 

in isolated fauna and a high probability of inbreeding in these populations, such as the Banteng (Bos 

javanicus; status: endangered). Recent years have also seen a decline in the quality of reproduction of 

the local fauna, which is crucial to the economy. As a result, conservation efforts must be accelerated, 

incorporating innovative technology into both in-situ and ex-situ conservation efforts through the care 

and breeding of animals away from their natural habitat. Research and innovation in biobanking 

technologies for threatened species of mammals must be enhanced. Programs to manage species, such 

as frozen germplasm, can lower the required space; for instance, a partial dependence on frozen semen 

artificial insemination can reduce the number of live animals required in captive facilities and zoos by 

up to 50% [5]. The ex-situ artificial insemination method manages large-scale biobanking, like giant 

pandas, employing thawed, fresh, and stored spermatozoa [6]. Once considered the most endangered 

species in North America, the black-footed civet has adapted to modern times by combining artificial 

insemination with natural mating [7], as well as embryonic biobanking [8]. 

The process of storing biological materials at low temperatures in a way that makes it possible to recover 

them whenever needed is known as cryopreservation. The capacity to intentionally create and reverse 

low-temperature states in a way that reduces or fixes transition-related damage is essential for successful 

storage and cell survival. Two primary cryopreservation methods can be used: vitrification, which 

solidifies material into a glassy state without forming ice, and gradual freezing, which converts a liquid 

phase to a solid crystalline phase [9]. Information regarding the application of reproductive 

biotechnology methods that focus on the biobanking of animal gametes and embryos, especially 

endangered mammals, must be made available. 

The review aims to shed more light on the use of appropriate reproductive biotechnology techniques in 

the gamete or embryonic biobanking program for mammals, particularly those that are endangered. 

Biobanking On Sperm 

A popular assisted reproductive technique that allows gametes with sufficient quality, viability, and 

developmental potential to be stored for an extended period is cryopreservation. Gametes from humans 

and other domestic animals have been preserved using this method over the years [10] to facilitate 

standard assisted reproductive technology operations [11]. Through the application of artificial 

insemination techniques [12] and sperm from males with the desired genetic advantage [13], 

cryopreserved sperm might hasten the pace of gene repair. Additionally, gamete cryopreservation has 

been utilized to keep endangered species from going extinct or help endangered animals reproduce [14]. 

The quality and viability of cryopreserved sperm are decreased by the cooling and heating processes 

used in cryopreservation, which also cause alterations in oxidative metabolism and increased formation 

of reactive oxygen species (ROS) [15]. With sperm cryopreservation technology that retains high 

viability, assisted reproductive technology can be used to save germplasm and generate animals with 

the appropriate genetic advantage that efficiently produce meat and milk. To protect endangered 

species, we examine the developments in gamete and embryo biobanking in this research. The male 

gametes of the severely endangered Italian sheep breed were cryopreserved and freeze-dried to create 

a genetic bank [16]. 

Reproductive programs, including in vitro fertilization (IVF), artificial insemination (AI), and related 

technology such as intracytoplasmic sperm injection (ICSI), can be used to boost the reproductive rate 

of endangered species [17]. In mammalian species, cryopreservation protocols for sperm are well-

established [18]. Conventional cryopreservation in liquid nitrogen lowers the temperature until it 

reaches -196 °C, which causes cellular dehydration. Cryoprotectants must be used throughout this 

process to avoid cell harm from osmotic pressure and membrane shrinking [19]. However, because of 

the high cost and scarcity of liquid nitrogen, particularly in arid regions and developing nations, these 

storage conditions are not always possible. 

Increased laboratory equipment and procedures as a result of technological advancements in a variety 

of biotechnology sectors have increased the caliber of outcomes. Because automated freezing results in 

excellent sperm quality after thawing, it is preferable over traditional procedures that use liquid nitrogen 

vapor for cryopreservation [20]. However, employing conventional and automatic controlled-speed 

freezing produced the same results in multiple experiments [21]. Then, associated cryopreservation 

techniques for sperm include slow freezing, fast freezing, and ultra-quick freezing [22]. The ultra-fast 

cryopreservation procedure known as vitrification is strongly suggested to minimize the danger of 
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damage to sperm cryopreservation caused by the physical effects of temperature drops and intracellular 

water crystallization. 

In contrast to conventional freezing methods, the vitrification approach uses very high concentrations 

of permeable cryoprotectants in an aqueous solution to preserve sperm. The media employed during the 

development phase of this technique has been changed as an alternative to gradual freezing, mainly by 

adding non-permeable cryoprotectants to lessen cell damage during cryopreservation [23]. Without 

cryoprotectants, sperm vitrification has been done, and the outcomes have been encouraging [24]. 

Human osmotic stress resistance is modulated by this technique [25]. However, it has been noted that a 

significant percentage of nonviable and immobile sperm are produced during the vitrification process 

in cattle [26]. Furthermore, sheep's sperm quality is significantly lower than fresh sperm's [28], leading 

to lower sperm motility, viability, and plasma membrane function [29]. In pigs, vitrification also 

significantly reduces sperm motility, viability, and acrosome integrity while not affect the integrity and 

condensation of its chromatin. 

According to the study's findings, lyophilization is a workable technique for conserving spermatozoa 

from the Pagliarola, a domestic sheep species that is endangered. By removing water through the 

process of freeze-drying semen, specimens are preserved in a state known as anhydrousness, which 

raises hopes for the development of an efficient lyophilization technology for sperm storage [30]. 

Furthermore, after being stored at room temperature, both cryopreserved and lyophilized spermatozoa 

could be used in suitable amounts to use ICSI to trigger the development of blastocyst-stage embryos. 

The generation of blastocysts from sheep oocytes following ICSI using the freeze-dried spermatozoa 

approach has just been reported for the first time [31]. The goal of this study was to create reliable and 

scalable procedures that would yield blastocysts of a suitable caliber. Similar to the previous treatment, 

the ICSI procedure was utilized to evaluate the spermatozoa's capacity for fertilization due to their lack 

of vitality after being rehydrated [32]. When spermatozoa with broken membranes are used as an 

activation factor in sperm loss [33], artificial activation becomes a necessary step before using ICSI 

[34]. A sperm cryopreservation process should consider several variables, including the cell volume, 

sperm plasma membrane composition, and the freezing curve of various mammalian species. The 

availability of laboratory equipment and specific protocols for semen collection and seminal plasma 

removal before cryopreservation may account for discrepancies in published study outcomes [35]. 

Biobanking On Oocytes 

Cryopreservation is a preservation process at freezing temperatures for a certain period [36]. The goal 

of oocyte cryopreservation technology is to preserve frozen oocytes in a way that keeps their quality 

for future use. Patients may choose to enhance their oocyte count acquisition through oocyte 

cryopreservation. Oocyte cryopreservation technology is often used to maintain genetic sustainability 

[37,38]. The successful application of oocyte cryopreservation technology to date is a significant 

achievement in cryobiology [39]. The application of cryopreservation technology has made rapid 

progress and is increasingly popular in the reproductive sector in supporting the success of assisted 

reproductive technology programs [40]. Oocyte vitrification, presently an alternative to gradual 

freezing, is a technique for oocyte cryopreservation that involves a quick compaction process with a 

limited volume and a high concentration of cryoprotectants [41, 42]. High cryoprotectant protection can 

stop ice crystals from forming during vitrification, which could harm the oocyte [43, 44]. 

The vitrification method is recommended as an alternative in cryopreservation programs because, in 

contrast to gradual freezing, it does not produce ice crystals that could harm or even kill cells during 

the freezing process [45]. Via the vitrification process, oocytes are rapidly frozen at -196°C while 

utilizing a high cryoprotectant concentration to prevent intracellular ice crystal formation that could 

harm the oocyte and its organelles [46]. Since vitrification produces fewer ice crystals that could 

damage the oocyte, it is more practical and efficient, takes less time, and only needs a small amount of 

liquid nitrogen to freeze; it is a more successful method of preserving oocytes than slow freezing [47]. 

After vitrification, the rates of oocyte survival, fertilization, and embryo division were higher than those 

of gradual freezing [48]. The rate of chromosomal and spindle configuration aberrations was lower in 

vitrification than in slow freezing [49]. Spindle thread recovery was more efficacious [50] and occurred 

faster in vitrification than in slow freezing [51]. 

In assisted reproduction, oocyte cryopreservation technology is frequently used with in vitro maturation 

technology [52]. The use of a mix of vitrification methods and in vitro oocyte maturation is frequently 

investigated in terms of the process, duration of storage, and impact on the capacity of fertilization and 

embryo development to yield the desired generation [53]. The application of vitrification technology 

combined with in vitro maturation is still being developed for optimal achievement rates [54]. 
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Combining oocyte maturation and vitrification techniques can produce low fertilization and cleavage 

rates [55]. Vitrification of oocytes at the germinal vesicle stage followed by in vitro maturation is an 

alternative cryopreservation method in oocyte maintenance because the germinal vesicle stage is 

considered more efficient and tolerant of the effects of stress during vitrification compared to 

vitrification at the metaphase II stage [56]. However, other researchers have suggested that vitrification 

at the germinal vesicle stage not only impairs the ability of the oocyte to reach maturity but also induces 

ultrastructural changes in the meiotic spindle, thereby impairing its ability to align chromosome 

arrangements in the correct plane [57]. Other researchers added that a decrease in oocyte developmental 

competence after vitrification at the germinal vesicle stage might occur due to the mechanism of 

apoptosis initiation and reduction of cytoplasmic mRNA [58]. The findings from these investigations 

suggest variations in the average molecular alterations resulting from treatment of oocytes in vitro and 

in vitro maturation in combination. The combination of vitrification and in vitro maturation techniques 

can still reduce oocyte competence, as researchers reported that vitrification treatment on oocytes could 

cause changes in maturation rates and protein expression [59], changes in oocyte ultrastructure [60], 

changes in gene expression [61] and changes in deoxyribonucleic acid [62]. 

The decrease in oocyte maturation rate after vitrification is an increase in oocyte intracellular ROS 

associated with impaired mitochondrial function, as reported by other researchers [63]. The balance of 

ROS content is vital to maintaining oocyte growth, but excessive ROS production causes oxidative 

stress that affects oocyte quality. Like the role of the source of ROS (H2O2), at lower conditions, it can 

induce the resumption of meiosis in germinal vesicle stage oocytes but inhibit the extrusion of polar 

bodies in mature oocytes [64]. Still, the increase in ROS is associated with cell cycle arrest processes 

and events. Apoptosis [65], DNA fragmentation [66], and chromosomal aberrations during meiosis [67] 

Changes in temperature during vitrification in the critical zone during cooling can impact microtubule 

irregularity [68], which plays a vital role in the separation, arrangement, and movement of 

chromosomes [69]. Vitrification causes changes in protein expression reaching mature oocytes caused 

by changes in temperature during vitrification and the type and duration of immersion of oocytes in 

vitrified solution [70]. The achievement of oocyte maturation levels that are not optimal after 

vitrification and maturation may also be influenced by using oocyte devices [71]. 

Oocyte vitrification technology combined with in vitro maturation shows the complexity of signal 

transduction changes that affect oocyte competence. Adding a combination of hormone concentrations 

in in vitro maturation media significantly increased the percentage of oocytes reaching maturity, normal 

single configuration, normal chromosome arrangement, cortical granule migration, and mitochondrial 

aggregation [72]. However, the addition of inappropriate hormone concentrations in vitro can still 

interfere with oocyte maturation, including disordered chromosomal arrangement and abnormal spindle 

organization, leading to abnormal embryonic development [73]. Optimizing the quality level of oocyte 

maturation after vitrification combined with in vitro maturation needs to be improved by adding 

supplements or relaxants, as reported by other researchers [74,75]. Adding various antioxidants to the 

media can also be a strategy for protecting oocytes from oxidative stress during in vitro maturation [76]. 

Appropriate and effective methods are needed during oocyte cryopreservation to eliminate the toxic 

effects of cryoprotectants, avoid ice crystal formation, and avoid osmotic stress. Pre-treatment (before 

vitrification) can be a strategy for increasing vitrified oocyte survival rate and developmental 

competence [77]. Pre-treatment (before in vitro maturation) can effectively reverse the detrimental 

effect on the spindle [78]. Furthermore, adding antifreeze protein as a supplement in vitrified media has 

a protective impact on maintaining spindle integrity to increase oocyte survival rate [79]. 

Biobanking on Embryos 

Cryopreserved embryos can be stored for an extended period, depending on the method used. The 

nitrogen tube used for cryopreservation must be maintained through careful handling, internal 

temperature control, nitrogen level maintenance, and storage in an appropriate location. Regarding the 

potential impact of longer storage times on the viability of embryos, no information is available. It is 

commonly accepted that in cells kept in liquid nitrogen (-196 oC), cell metabolism and biochemical 

reactions are either halted or reduced to negligible levels. 

Gene expression profiles were altered in embryos that underwent the cryopreservation procedure due 

to exposure to heat and mechanical, toxic, and osmotic stresses [80]. Regardless of the embryos' in vitro 

or in vivo origin, the global gene expression of fresh and cryopreserved embryos revealed distinct 

variations in freezing-induced gene expression [81]. Furthermore, cryopreservation techniques—slow 

freezing or vitrification—can modify the expression of embryonic genes in distinct ways [82, 83]. 

Increased expression of genes linked to inflammatory processes, including immune cell trafficking, 

cellular movement, cell-cell signaling, and cell death, has been observed in cryopreserved embryos 
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[84]. The cryopreservation method requires the selection of embryos based on quality, and typically, 

the embryo's morphology is the most reliable indicator of embryo quality [85]. A high-quality embryo 

should have a well-formed blastocoel and inner cell mass, be at the proper developmental stage, and 

show no degeneration symptoms. Shape, color, number and compactness of cells, size of perivitelline 

space, number of extruded and degenerated cells, and number and size of vesicles are standard 

parameters to assess embryo quality [86]. Other invasive factors, such as total cell count, apoptosis, 

differentiation of cell lineages, screening of embryonic biopsied cell genomes, or intelligence-based 

prediction of embryo quality, can also indicate embryo viability [87]. 

Embryos created by in vitro systems lack the same quality and competency as those produced 

physiologically. However, several traits linked to a lower rate are present in blastocysts generated in 

vitro, including vacuoles in trophoblast cells, a sparse population of microvilli, fewer cell-to-cell 

contacts, variations in gene expression, and modifications in lipid metabolism [88,89]. The 

improvement of embryo manufacturing techniques and cryopreservation is one of the primary obstacles 

to assisted reproduction, as it is necessary to obtain acceptable pregnancy and survival rates after 

embryo cryopreservation. Cryopreserved embryos currently make up around 33% of in vitro embryos, 

while over 50% of in vivo embryos are of this type [90]. 

As compared to in vivo sources, in vitro technological methods continue to generate embryos with 

several defects that lower their quality and survival. Different transcriptional profiles, sparse microvilli 

populations, a reduced cell count, an increase in lipid droplet content, an excess of energy substrate 

metabolism, and high heat sensitivity are all contributing factors to this low embryo competence [91]. 

Based on an embryo-focused approach, some parameters, including in vitro culture systems and 

circumstances, culture media composition, growth factors, proteins, hormones, cytokines, and 

antioxidant supplements, influence embryo quality and survival rates following cryopreservation [92]. 

The total number of cells and a sufficient percentage of the inner cell mass are necessary for embryo 

development. In some species, the trophectoderm appears to dictate developmentally appropriate 

measures to minimize early embryo loss and to boost implantation and live birth rates [93,94]. When 

compared to non-resistant embryos, bovine embryos with a more significant total number of cells had 

a higher rate of re-expansion and hatching following vitrification [95]. Two distinct cryopreservation 

methods' effects on two additional species revealed that vitrifying blastocysts could result in more 

excellent survival rates and reduced cell apoptosis in rat and mouse blastocysts [96]. 

The rise in lipid droplets observed in in vitro embryos is another characteristic that is frequently linked 

to worse cryopreservation yields. All tissues include lipids, an energy storage source, and structural and 

functional elements of cell membranes that keep them fluid. Although the exact process underlying the 

accumulation of increased lipid content in embryos is unknown, the supplementing of embryonic 

culture material is typically linked to this rise. Numerous other factors will affect embryo quality, but 

the in vitro culture methodology and the freezing process have the most effects on the embryonic lipid 

profile [97]. The processes behind survival following cryopreservation are intricate and still mostly 

unknown. It has been shown that the buildup of lipids in the cells of in vitro embryos, particularly lipid 

droplets made of triglycerides, makes them more susceptible to freezing [98,99]. The lipolytic agent 

forskolin was utilized for 48 hours in culture before vitrification to increase embryo viability after 

transfer, which was the cause of the increased cry tolerance and fruitful pregnancy in B. indicus embryos 

in vitro [100]. 

Many biological and management-related elements, including oocyte and embryo developmental 

competence, semen quality, nutrition, hormone concentration, reproductive procedures, and others, are 

involved in the formation of pregnancy [101]. Yes, the majority of miscarriages happen in the early 

stages of embryonic development, including factors that are particular to the male, the donor, and the 

embryo. But to display reproductive features, some additional factors, including seeds, nutrition, and 

other necessary components, must be considered [102]. A population can benefit from enhanced 

reproductive efficiency and genetic benefits through the widespread use of assisted reproductive 

technologies. One of the most important metrics used to assess bull fertility and reproductive efficacy 

in artificial insemination nowadays is the male fertilization rate [103] because the genetic improvement 

of livestock relies on the use of genetically better males [104]. Several studies suggest little benefit from 

increasing female fertility because selection and management of male reproduction are the main stages 

for increasing production [105,106]. In dairy cattle, it was shown that the preimplantation of embryos 

from males with a low conception rate of males showed a decreased capacity to produce pregnancy 

[107]. 
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4.  Conclusion 

Challenges of biobank conservation and biobank research that focuses on conservation and study face 

various challenges such as facilities for sample cryopreservation, implementing procedures and 

employing personnel to process samples, and financial capacity to ensure long-term sustainability. 

Raising awareness of the significance of this biobank in terms of research utilization, contributions to 

animal conservation, and the current and potential socioeconomic consequences of existing collections 

is contingent upon the support of the public and end users. If long-term sustainability is to be attained, 

the biobank's value must also be raised. Additionally, end users must work with the biobank to help 

acquire funding to purchase samples. 

It has been claimed that the combination of in vitro maturation with the vitrification method of 

cryopreservation technology offers numerous advantages for use in assisted reproductive technologies. 

Enhancing the quality of sperm, oocytes, and embryos requires optimizing the use of vitrification 

medium in conjunction with the efficacy of in vitro maturation techniques in the lab. Over the past few 

years, novel biotechnics has truly revolutionized animal reproduction. Among other advantages, these 

instruments can facilitate faster genetic acquisition, more effective reproduction, scheduling of the best 

times for reproduction, and managing animal hygiene. A few decades ago, in vitro embryo 

manufacturing achieved unfathomable traction, and evidence now available indicates that its application 

will only increase in the years to come. The success of cryopreservation and maintenance during 

pregnancy depends on several factors related to the quality of gametes and embryos and competence 

development. 

Furthermore, improvements in cryopreservation techniques are essential to obtain more satisfactory and 

economically justified results so that all the benefits of these techniques can be fully enjoyed. Both 

gametes and embryos must be healthy and prepared at the cellular and molecular levels to survive all 

the challenges due to cryopreservation procedures. Management and standardization of laboratory 

routines are crucial to maintaining the quality level of cryopreservation results. Testing each new 

reagent replaced, checking the osmolarity and pH conditions of the culture media, and proper 

professional training can produce better results than many modified cryopreservation protocols. 
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