

Journal of Advanced Zoology

ISSN: 0253-7214 Volume 44 Issue 03 Year 2023 Page 1286:1295

Connected Vertex-Edge Dominating Sets and Connected Vertex-Edge Domination Polynomials of Friendship F_n

V. S. Radhika^{1*}, R. Roselin Suhi², Devendra Jangiti³

¹Assistant Professor, Department of Mathematics, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnankovil - 626 126, Tamil Nadu, India. mathiradhika86@gmail.com

²Assistant Professor, Department of Mathematics, Mar Ephraem College of Engineering and Technology, Malankara Hills, Elavuvilai, Tamil Nadu, India, suhir20@gmail.com

³Department of Mathematics, GITAM School of Science, GITAM University, Bangalore - 562163, Karnataka, India, djangiti@gitam.edu

*Corresponding author's E-mail: mathiradhika86@gmail.com

Article History	Abstract							
Received: 06 June 2023 Revised: 05 Sept 2023 Accepted: 14 Nov 2023	Let G be a simple connected graph of order n. Let $D_{cve}(G, i)$ be the family of connected vertex-edge dominating sets in G with cardinality i .The polynomial $D_{cve}(G, x) = \sum_{i=Y_{cve}}^{n} d_{cve}(G, i) x^{i}$ is called the connected vertex - edge domination polynomial of G, where $d_{cve}(G, i)$ is the number of connected vertex - edge dominating sets of G. In this paper, we study some properties of connected vertex-edge domination polynomials of the Friendship graph F_n . We obtain a recursive formula for $d_{cve}(F_n, i)$. Using this recursive formula, we construct the connected vertex - edge domination polynomial $D_{cve}(F_n, x) = \sum_{i=2}^{n+1} d_{cve}(F_n, i) x^i$ of F_n , where $d_{cve}(F_n, i)$ is the number of the connected vertex - edge dominating sets of F_n of cardinality i and some properties of this polynomial have been studied.							
CC License CC-BY-NC-SA 4.0	Keywords: Friendship Graph, Connected Vertex - Edge Dominating Set, Connected Vertex - Edge, Domination Number, Connected Vertex - Edge Domination Polynomial.							

1. Introduction

Let G = (V, E) be a simple graph of order n. For any vertex $v \in V$, the open neighbourhood of v is the set $N(v) = \{ u \in V/uv \in E \}$ and the closed neighbourhood of v is the set $N[v] = N(v) \cup \{v\}$. For a set $S \subseteq V$, the open neighbouhood of S is

N(S) = $\bigcup_{v \in S} N(V)$ and the closed neighbourhood of S is $N[S] = N(s) \cup S$.

A vertex $u \in V(G)$ vertex - edge dominates (ve - dominates) an edge $vw \in E(G)$ if

- 1. u = v or u = w (*u* is incident to vw) or
- 2. uv or uw is an edge in G(u is incident to an edge that is adjacent to vw)

A vertex - edge dominating set S of G is called a connected vertex - edge dominating set if the induced subgraph $\langle S \rangle$ is connected.

The minimum cardinality of a connected vertex - edge dominating set of G is called the connected vertex - edge domination number of G and is denoted of $\gamma_{cve}(G)$. A connected vertex - edge dominating set with cardinality $\gamma_{cve}(G)$ is called γ_{cve} – set.

Consider the Friendship graph F_n which has n + 1 vertices. We use a recursive method to construct the families of connected vertex-edge dominating sets of F_n . The connected vertex – edge domination polynomials of the Friendship graph F_n are then studied. For the combination n to i we use $\binom{n}{i}$ as normal.

Connected vertex - edge dominating sets and connected vertex - edge domination polynomials of graphs

Definition 2.1: A set $S \subseteq V$ is a *dominating set* of G, if N[S] = V or equivalently, every vertex in V-S is adjacent to atleast one vertex in S. The *domination number* of a graph G is defined as the minimum cardinality taken over all dominating sets of vertices in G and it is denoted as $\gamma(G)$.

Definition 2.2: The *domination polynomial* D(G,x) of G is defined as $D(G,x) = \sum_{i=\gamma(G)}^{|\nu(G)|} d(G,i)x^i$, where d(G,i) is the number of dominating sets of G of cardinality i and $\gamma(G)$ is the domination number of G.

Definition 2.3: A vertex $u \in V(G)$ vertex-edge dominates (ve - dominates) an edge $vw \in E(G)$ if

- (i) or u = w (*u* is incident to *vw*) or
- (ii) uv or uw is an edge in G(u is incident to an edge that is adjacent to uw).

Definition 2.4: A vertex-edge dominating set *S* of *G* is called a *connected vertex-edge dominating set* if the induced subgraph $\langle S \rangle$ is connected.

Definition 2.5: The minimum cardinality of a connected vertex-edge dominating set of *G* is called the connected vertex-edge domination number of *G* and is denoted by $\gamma_{cve}(G)$. A connected vertex-edge dominating set with cardiality $\gamma_{cve}(G)$ is called γ_{cve} – set.

Definition 2.6: Let $D_{cve}(G, i)$ be the family of connected vertex-edge dominating set of G with cardinality i and let $d_{cve}(G, i) = |D_{cve}(G, i)|$.

Then the connected vertex-edge domination polynomial $D_{cve}(G, x)$ of G is defined as $D_{cve}(G, x) = \sum_{i=\gamma_{cve}}^{|\nu(G)|} d_{cve}(G, i)x^i$.

Example 2.7: Consider the graph *G* in the following Figure 1.27.

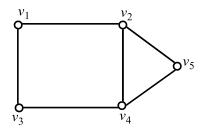
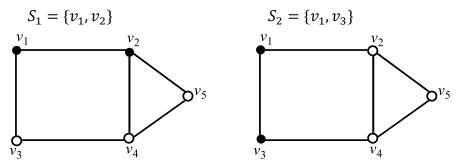


Figure 2.1

In Figure 1.28, S_1 , S_2 , S_3 , S_4 , S_5 and S_6 are the connected vertex-edge dominating sets of cardinalities 2.



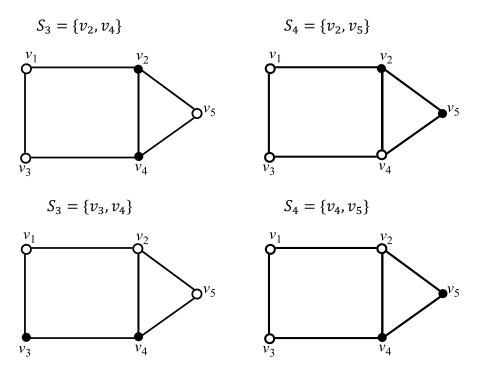
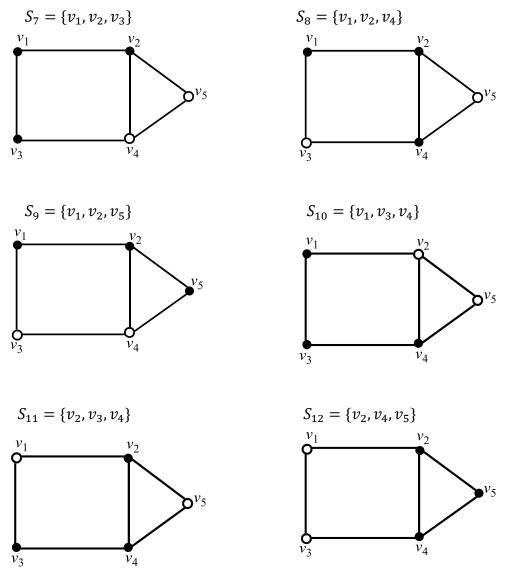
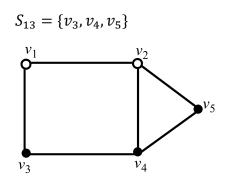


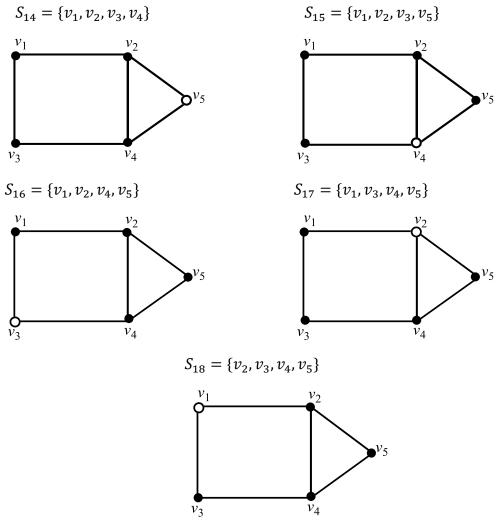
Figure 2.2

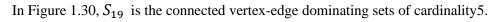
In Figure 1.29, S_7 , S_8 , S_9 , S_{10} , S_{11} , S_{12} and S_{13} are the connected vertex-edge dominating sets of cardinalities 3.



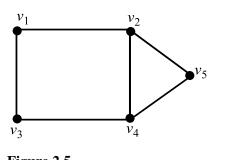


In Figure 1.30, S_{14} , S_{15} , S_{16} , S_{17} and S_{18} are the connected vertex-edge dominating sets of cardinality 4.





 $S_{19} = \{v_1, v_2, v_3, v_4, v_5\}$



Here S_1, S_2, S_3, S_4 and S_5 are the minimum connected vertex-edge dominating sets.

Hence
$$\gamma_{cve}(G) = 2$$
.

The connected vertex-edge domination polynomial of G is

$$D_{cve}(G, x) = \sum_{i=\gamma_{cve}(G)}^{|V(G)|} d_{cve}(G, i) x^{i}$$

= $\sum_{i=2}^{5} d_{cve}(G, i) x^{i}$
= $d_{cve}(G, 2) x^{2} + d_{cve}(G, 3) x^{3} + d_{cve}(G, 4) x^{4} + d_{cve}(G, 5) x^{5}$
= $5x^{2} + 7x^{3} + 5x^{4} + x^{5}$.

Connected Vertex – Edge Dominating Sets of Friendship Graph F_n

Definition 3.1: The Friendship graph F_n can be constructed by joining *n* copies of the cycle graph C_3 with a common vertex. It is a planar undirected graph with 2n + 1 vertices and 3n edges.

Example 3.2: The Friendship graph F_4 is shown below:

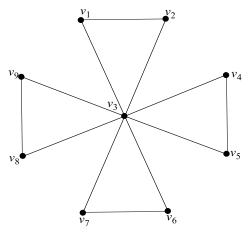


Figure 3.1

Definition 3.3: Let $D_{cve}(F_n, i)$ be the family of connected vertex – edge dominating sets of F_n with cardinality i. Then the connected vertex-edge domination number of F_n is defined as the minimum cardinality taken over all connected vertex – edge dominating sets of vertices in F_n and it is donoted by $\gamma_{cve}(F_n, i)$.

Lemma 3.4: Let F_n be the Friendship graph with 2n + 1 vertices, then its connected vertex – edge domination number is $\gamma_{cve}(F_n) = 2$.

Proof: Let F_n be the Friendship graph with 2n + 1 vertices and 3n edges. Let the vertices be $\{v_1, v_2, v_3, ..., v_n, v_{n+1}, ..., v_{2n}, v_{2n+1}\}$. It is the graph obtained by joining n copies of cycle C_3 with common vertex. Let the common vertex be v_3 . For the *n* copies of cycle C_3 the two edges from each cycle must incident with the common vertex v_3 . Also, by the definition of vertex – edge domination sets, all the edges are covered and they are connected. Thus, the minimum cardinality is 2. Hence, $\gamma_{cve}(F_n) = 2$.

Lemma 3.5: Let F_n , $n \ge 2$ be the Friendship graph with $|V(F_n)| = 2n + 1$. Then $d_{cve}(F_n, i) = 0$ if i < 2 or i > n and $d_{cve}(F_n, i) > 0$ if $2 \le i \le n$.

Proof: If i < 2 or i > n, then there is no connected vertex - edge dominating set of cardinalities i. Therefore, $d_{cve}(F_n, i) = \varphi$. By lemma 2.4, the cardinality of the minimum connected vertex - edge dominating set is 2. Therefore, $d_{cve}(F_n, i) > 0$ if $i \ge 2$ and $i \le n$. Hence, we have $d_{cve}(F_n, i) = 0$ if i < 2 or i > n and $d_{cve}(F_n, i) > 0$ if $2 \le i \le n$.

Lemma 3.6: Let F_n , $n \ge 2$ be the Friendship graph with $|V(F_n)| = 2n + 1$.

Then,

(i) $D_{cve}(F_n, x)$ has no constant and first-degree terms.

(ii) $D_{cve}(F_n, x)$ is a strictly increasing function on $[0, \infty)$.

Proof:

- (i) Since the graph is a connected graph, at least two vertices must need cover the edges. So the polynomial $D_{cve}(F_n, x)$ has no constant and first degree terms.
- (ii) Since n is increasing, the polynomial $D_{cve}(F_n, x)$ is strictly increasing on $[0,\infty)$.

Theorem 3.7: Let F_n , $n \ge 2$ be the Friendship graph with 2n + 1 vertices, then

(i) $d_{cve}(F_n, i) = \binom{2n}{i-1}$ if $i \le 2n+1$.

(ii)
$$d_{cve}(F_n - \{2n\}, i) = \binom{2n-1}{i-1}$$
 if $i < 2n+1$.

Proof: Let F_n be a Friendship graph with 2n + 1 vertices. Let the vertices be $v_1, v_2, v_3, ..., v_n$, $v_{n+1}, ..., v_{2n}, v_{2n+1}$. The Friendship graph F_n can be obtained by joining n copies of cycle C_3 with common vertex. Let the common vertex be v_3 . There are $\binom{2n}{i-1}$ connected vertex - edge dominating sets with n vertices of cardinality i to need cover all the edges. Thus, d_{cve} $(F_n, i) = \binom{2n}{i-1}$ if $i \le 2n + 1$. Also there are $\binom{2n-1}{i-1}$ connected vertex - edge dominating sets with $F_n - \{2n\}$ of cardinality i to need cover all the edges.

Thus, $d_{cve}(F_n - \{2n\}, i) = \binom{2n-1}{i-1}$ if i < 2n + 1. Hence the proof is complete.

Theorem 3.8: Let F_n , $n \ge 2$ be the Friendship graph with 2n + 1 vertices, then

(i)
$$d_{cve}(F_n, i) = d_{cve}(F_n - \{2n\}, i) + d_{cve}(F_n - \{2n\}, i - 1)$$
 if $3 \le i \le n$.

(ii)
$$d_{cve}(F_n, i) = 1 + d_{cve}(F_n - \{2n\}, i)$$
 if $i = 2$.

(iii)
$$d_{cve}(F_n - \{2n\}, i) = d_{cve}(F_{n-1}, i) + d_{cve}(F_{n-1}, i-1)$$
 if $3 \le i \le n$.

(iv)
$$d_{cve}(F_n - \{2n\}, i) = 1 + d_{cve}(F_{n-1}, i), \text{ if } i = 2.$$

Proof: By Theorem 2.7, we have

$$d_{cve} (F_n, i) = {2n \choose i-1} \text{ if } i \le 2n+1 \text{ and}$$

$$d_{cve} (F_n - \{2n\}, i) = {2n-1 \choose i-1} \text{ if } i < 2n+1.$$
(i)
$$d_{cve} (F_n - \{2n\}, i) + d_{cve} (F_n - \{2n\}, i-1)$$

$$= {2n-1 \choose i-1} - {2n-1 \choose i-2}$$

$$= {2n \choose i-1}$$

$$= d_{cve} (F_n, i)$$

(ii) Consider,

$$d_{cve} (F_{n-1}, i) + d_{cve} (F_{n-1}, i-1)$$

= $\binom{2(n-1)}{i-1} - \binom{2(n-1)}{i-1-1}$
= $\binom{2n-2}{i-1} + \binom{2n-2}{i-2}$
= $\binom{2n-1}{i-1}$

$$= d_{cve} (F_n - \{2n\}, i)$$

Proof of (iii) and (iv) are obvious.

Connected vertex - edge domination polynomials of Friendship graph F_n

Definition 4.1: Let $d_{cve}(F_n, i)$ be the number of connected vertex - edge dominating sets of the Lollipop graph F_n with cardinality *i*. Then the connected vertex - edge domination polynomial of F_n is defined as $D_{cve}(F_n, x) = \sum_{i=\gamma_{cve}(F_n)}^{2n+1} d_{cve}(F_n, i) x^i$, where $\gamma_{cve}(F_n)$ is the connected vertex - edge domination number of F_n .

Theorem 4.2: Let $D_{cve}(F_n, x)$ be the connected vertex - edge domination polynomial of a Friendship graph F_n with 2n + 1 vertices, then

(i)
$$D_{cve}(F_n, x) = \sum_{i=2}^{2n+1} {2n \choose i-1} x^i$$
.
(ii) $D_{cve}(F_n - \{2n\}, x) = \sum_{i=2}^{2n} {2n-1 \choose i-1} x^i$

=

Proof: Proof follows from Theorem 3.7 and by the definition of connected vertex - edge domination polynomial.

Theorem 4.3: Let $D_{cve}(F_n, x)$ be the connected vertex – edge domination polynomial of a Friendship graph F_n with 2n + 1 vertices, then

(i)
$$D_{cve}(F_n, x) = x^2 + (1+x)D_{cve}(F_n - \{2n\}, x)$$

(ii)
$$D_{cve}(F_n - \{2n\}, x) = x^2 + (1+x)D_{cve}(F_{n-1}, x)$$

Proof: By the definition of connected vertex - edge domination polynomial, we have

$$\begin{split} D_{cve}(F_n, x) &= \sum_{i=2}^{2n+1} d_{cve}(F_n, i) \, x^i \\ &= d_{cve}(F_n, 2) x^2 + \sum_{i=3}^{2n+1} d_{cve}(F_n, i) \, x^i \\ &= [1 + d_{cve}(F_n - \{2n\}, 2)] x^2 + \sum_{i=3}^{2n+1} \Big[d_{cve} \left(F_n - \{2n\}, i\right) x^i \Big] \\ &+ \sum_{i=3}^{2n+1} \Big[d_{cve} \left(F_n - \{2n\}, i\right) x^i - \sum_{i=3}^{2n+1} \left[d_{cve} \left(F_n - \{2n\}, i\right) x^i \right] \Big] \end{split}$$

1) x^i

by Theorem 3.8

$$= x^{2} + d_{cve}(F_{n} - \{2n\}, 2)x^{2} + \sum_{i=3}^{2n+1} d_{cve}(F_{n} - \{2n\}, i)x^{i} + \sum_{i=3}^{2n+1} d_{cve}(F_{n} - \{2n\}, i-1)x^{i}$$

$$= x^{2} + \sum_{i=2}^{2n+1} d_{cve}(F_{n} - \{2n\}, i)x^{i} + x\sum_{i=3}^{2n+1} d_{cve}(F_{n} - \{2n\}, i-1)x^{i-1}$$

$$= x^{2} + D_{cve}(F_{n} - \{2n\}, x) + xD_{cve}(F_{n} - \{2n\}, x)$$

$$= x^{2} + (1 + x)D_{cve}(F_{n} - \{2n\}, x).$$

(ii) By the definition of connected vertex - edge domination polynomial, we have

$$D_{cve}(F_n - \{2n\}, x) = \sum_{i=2}^{2n+1} d_{cve}(F_n - \{2n\}, i) x^i$$

= $d_{cve}(F_n - \{2n\}, 2) x^2 + \sum_{i=3}^{2n+1} d_{cve}(F_n - \{2n\}, i) x^i$
= $[1 + d_{cve}(F_{n-1}, 2)] x^2 + \sum_{i=3}^{2n+1} [d_{cve}(F_{n-1}, i) + x^i d_{cve}(F_{n-1}, i - 1)]$
= $x^2 + d_{cve}(F_{n-1}, 2) x^2 + \sum_{i=3}^{2n+1} d_{cve}(F_{n-1}, i) x^i$

$$+ \sum_{i=3}^{2n+1} d_{cve}(F_{n-1}, i-1) x^{i}$$

$$= x^{2} + \sum_{i=2}^{2n+1} d_{cve}(F_{n-1}, i) x^{i} + x \sum_{i=3}^{2n+1} d_{cve}(F_{n-1}, i-1) x^{i-1}$$

$$= x^{2} + D_{cve}(F_{n-1}, x) + x D_{cve}(F_{n-1}, x)$$

- 1292 -

Available online at: https://jazindia.com

 $= x^{2} + (1 + x)D_{cve}(F_{n-1}, x).$ Example 4.4: $D_{ve}(F_{4}, x) = 8x^{2} + 28x^{3} + 56x^{4} + 70x^{5} + 56x^{6} + 28x^{7} + 8x^{8} + x^{9}$ Verification: By Theorem 4.3, we have

$$D_{cve}(F_4, x) = x^2 + (1+x)D_{cve}(F_4 - \{8\}, x)$$

= $x^2 + (1+x)[7x^2 + 21x^3 + 35x^4 + 35x^5 + 21x^6 + 7x^7 + 35x^6 + 35x$

 $35x^{5}$

$$= x^{2} + 7x^{2} + 21x^{3} + 35x^{4} + 35x^{5} + 21x^{6} + 7x^{7} + x^{8} + 7x^{3} + 21x^{4} + + 35x^{6} + 21x^{7} + 7x^{8} + x^{9}$$

$$= 8x^{2} + 28x^{3} + 56x^{4} + 70x^{5} + 56x^{6} + 28x^{7} + 8x^{8} + x^{9}$$

Example: $D_{cve}(F_5 - \{10\}, x) = 8x^2 + 36x^3 + 84x^4 + 126x^5 + 126x^6 + 84x^7 + 36x^8 + 9x^9 + x^{10}$

Verification: By Theorem 4.3, we have

$$D_{cve}(F_5 - \{10\}, x) = x^2 + (1 + x)D_{cve}(F_4, x)$$

= $x^2 + (1 + x)[8x^2 + 28x^3 + 56x^4 + 70x^5 + 56x^6 + 28x^7 + 8x^8 + x^9]$

 $= x^2 + 8x^2 + 28x^3 + 56x^4 + 70x^5 + 56x^6 + 28x^7 + 8x^8 + x^9 + 8x^3 + 28x^4 + 56x^5 + 70x^6 + 56x^7 + 28x^8 + 8x^9 + x^{10}$

$$= 8x^{2} + 36x^{3} + 84x^{4} + 126x^{5} + 126x^{6} + 84x^{7} + 36x^{8} + 9x^{9} + x^{10}$$

We obtain $d_{cve}(F_n, i)$, $2 \le n \le 15$ as shown in the following table 1:

i n	2	3	4	5	6	7	8	9	10	11	12	13	14	1 5
$F_2 - \{4\}$	4	3	1											
F ₂	4	6	4	1										
$F_2 - \{6\}$	5	1 0	10	5	1									
F ₃	6	1 5	20	15	6	1								
$F_2 - \{8\}$	7	2 1	35	35	21	7	1							
F_4	8	2 8	56	70	56	28	8	1						
9	9	3 6	84	126	126	84	36	9	1					
F ₅	1 0	4 5	120	210	252	210	120	45	10	1				
$F_2 - \{12\}$	1 1	5 5	165	330	462	462	330	165	55	11	1			
F ₆	1 2	6 6	220	495	792	924	792	495	220	66	12	1		
$F_2 - \{14\}$	1 3	7 8	286	715	1287	1716	171 6	128 7	715	286	78	13	1	
F ₇	1 4	9 1	364	100 1	2002	3003	343 2	300 3	200 2	100 1	36 4	91	14	1

Available online at: <u>https://jazindia.com</u>

Theorem 4.5: For every $n \in N$ and $3 \le i \le n$, $|D_{cve}(L_{n,1}, i)|$ is the coefficient of $u^n v^i$ in the expansion of the function $f(u, v) = \frac{u^4 v^3 [(v+2)^2 + 3]}{1 - u(1+v)}$

Proof: Set $f(u, v) = \sum_{n=4}^{\infty} \sum_{i=3}^{\infty} |D_{cve}(L_{n,1}, i)| u^n v^i$ by recursive formula for $|D_{cve}(L_{n,1}, i)|$ in Theorem 2-9 we can write f(u, v) in the following form: $f(u,v) = \sum_{n=4}^{\infty} \sum_{i=3}^{\infty} \left[|D_{cve}(L_{n-1,i},i-1)| + |D_{cve}(L_{n-1,i},i)| u^n v^i \right]$ $=\sum_{n=4}^{\infty}\sum_{i=3}^{\infty}|D_{cve}(L_{n-1,1},i-1)|u^{n}v^{i}+\sum_{n=4}^{\infty}\sum_{i=3}^{\infty}|D_{cve}(L_{n-1,1},i)|u^{n}v^{i}$ $= uv \sum_{n=4}^{\infty} \sum_{i=3}^{\infty} \left| D_{cve} (L_{n-1,1}, i-1) \right| u^{n-1} v^{i-1} + u \sum_{n=4}^{\infty} \sum_{i=3}^{\infty} \left| D_{cve} (L_{n-1,1}, i) \right| u^{n-1} v^{i-1}$ $= uv \left[\left[\left| D_{cve}(L_{3,1},2) \right| u^3 v^2 + \left| D_{cve}(L_{3,1},3) \right| u^3 v^3 + \left| D_{cve}(L_{3,1}4) \right| u^3 v^4 \right] \right]$ $+ uv \sum_{n=5}^{\infty} \sum_{i=2}^{\infty} |D_{cve}(L_{n-1,i}, i-1)| u^{n-1}v^{i-1}|$ + $u[|D_{cve}(L_{3,1},3)|u^3v^3 + |D_{cve}(L_{3,1},4)|u^3v^4 + u\sum_{n=5}^{\infty}\sum_{i=3}^{\infty}|D_{cve}(L_{n-1,1},i)|u^{n-1}v^i].$ $D_{cve}(L_{n,1}, i)$ is family of connected vertex-edge dominating set with cardinality i of $L_{n,1}$. From Table 1, we have, $|D_{cve}(L_{3,1},2)| = 4$, $|D_{cve}(L_{3,1},3)| = 3$ and $|D_{cve}(L_{3,1},4)| = 1$. Then $f(u,v) = uv[4u^3v^2 + 3u^3v^3 + u^3v^4] + uvf(u,v) + u[3u^3v^3 + u^3v^4] + uf(u,v)$ $= uvu^{3}v^{2}[4 + 3v + v^{2}] + uvf(u, v) + uu^{3}v^{3}[3 + v] + uf(u, v)$ $f(u, v) = u^4 v^3 [4 + 3v + v^2] + u^4 v^3 [3 + v] + f(u, v) [uv + u]$ $f(u,v) = u^4 v^3 [v^2 + 3v + 4] + u^4 v^3 [3 + v] + f(u,v)[uv + u]$ $= u^{4}v^{3}[v^{2} + 3v + 4 + 3 + v] + f(u,v)[uv + u]$ $= u^4 v^3 [v^2 + 4v + 7] + f(u, v)[uv + u]$ $f(u, v) - f(u, v)[uv + v] = u^4 v^3 [v^2 + 4v + 7]$ $f(u, v)[1 - uv - vu] = u^4 v^3 [v^2 + 4v + 4 + 3]$ $f(u,v)[1-u(1+v)] = u^4 v^3 [(v+2)^2 + 3]$ Hence, $f(u, v) = \frac{u^4 v^3 [(v+2)^2 + 3]}{1 - v(1+v)}$.

4. Conclusion

In this paper, the connected vertex - edge domination polynomials of Friendship graph F_n has been derived by identifying its connected vertex - edge dominating sets. Also find the recursive formula for connected vertex - edge dominating sets and using this relation I have derived some interesting properties.

Acknowledgement: The author wishes to thank the anonymous referees for their comments and suggestions.

References:

- 1. S. Alikani and Y.H. Peng, 2008. "Dominating sets and domination polynomials of cycles", Global Journal of Pure and Applied Mathematics, Vol. 4 No.2.
- 2. S. Alikani and Y.H Peng, 2005. "Introduction to domination polynomial of a graph",
- 3. arXiv: 0905.225 Vol.10, No. 14.
- 4. G. Chartrand and P. Zhamg," Introduction to graph theory", McGraw-Hill, Boston, Mass, USA.
- 5. Vijayan, A & Nagarajan, T 2013. "Vertex Edge dominating sets and vertex-edge domination polynomials of Paths", International Journal of Mathematics Trends and Technology, Vol.4(11), 266-279.
- 6. Radhika, VS & Vijayan, A, 2021. "Connected vertex-edge dominating sets and connected vertex- edge domination polynomials of triangular ladder', Malaya Journal of Mathematik, Vol 9, No.1, 474-479.
- 7. Radhika, VS & Vijayan, A, 2021. "Connected vertex-edge domination polynomials of some graphs", Advances and Applications in Discrete Mathematics, Vol.27, No.2, 183-192.
- 8. Radhika, VS & Vijayan, A, 2021. "Connected Vertex-edge dominating sets and connected vertex-edge domination polynomials of gem graph G_n", Journal of Physics: Conference Series: Vol.1947 012044.
- 9. Radhika, VS & Vijayan, A, 2020, "Connected vertex-edge dominating sets and connected domination polynomials of square of paths", Adalya, Vol.9, 15-25.

10. Radhika, VS & Vijayan, A, 2021, "connected vertex-edge domination polynomials of fan graph $F_{2,n}$ ", AIP Conference Proceedings.