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Abstract

The wireless network of consumer drones is particularly
vulnerable to remote attacks due to the weak encryption scheme
involving the exchange of a Global Unique Identifier (GUID)
between transceiver pairs using the binding process, thus exposing
the technology to a host of attack vectors such as data spoofing
and malicious authentication, among others, leading to security
breaches that threaten the prospects of the consumer drone. This
study assesses the feasibility of RF fingerprinting as a
complementary layer of security devoid of cryptography in the
wireless network of unmanned aerial vehicles for enhanced
resilience. We evaluate the feature performance of the toy-grade
and the universal-grade drone RC transmitters to discern the
prospects for device identification in inexpensive, low-end device
and the high-end device. Instantaneous amplitude and phase
features extracted from the transient phase of time-domain signals
acquired off-the-air in the near-field show a high recognition rate
in a support vector machine and k-Nearest Neighbour, suggestive
of device classification in unmanned aerial vehicle RF hardware,
irrespective of built quality.
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1. Introduction
The popularity of consumer drones in diverse fields of human endeavour in recent times has

attracted a host of malicious activities targeting the radio frequency (RF) control and data link
employed in remote operations for flight control and real-time data/payload streaming.

Given the limited processing resources resulting from the drone's power constraints, which
restrict the choices of computing devices and, consequently, the level of encryption that could be
implemented without slowing down system operation, this raises real concerns about security
threats to the weak encryption scheme involving the exchange of Global Unique Identifiers
(GUIDs) between transceiver pairs.

Vulnerability to remote attacks is aggravated by the susceptibility of MAC and upper-layer
security features to malicious modification through software that could be exploited by an attacker
to perform a man-in-the-middle attack and consequently take over the drone from the legitimate
user [1]. These security limitations thus expose the drone to a host of attack vectors, such as data
spoofing and malicious authentication, among others, with the potential to result in remote vehicle
hijack and data or payload interception by an attacker whose motive could be an act of terror,
mischief, or burglary [2], [3]; that implies the intent to commit a heinous crime, crash the drone or
vector away to a hide-out, along with any sensitive payload.

Figure 1. Wireless Network Setup of a Typical Consumer Drone

Figure 1 shows the wireless connectivity of a typical consumer drone secured by a
cryptographic-based encryption scheme between transceiver pairs. Of prime concern to vehicle
security are (i) the Radio Control (RC) Transmitter, which is the primary control channel that
facilitates basic vehicle setup as well as manual flight control typically within 100 meters of
Visual Line of Sight (VLOS), and (ii) the telemetry channel, which enables advanced flight modes,
including autonomous operation through flight planning software installed on a PC, tablet, or
phone connected via the Mavlink or Wi-Fi link, aiding safe flight beyond visual line of sight. The
vulnerability of these vehicle controls and data links to malicious activities thus presents
uncertainty about the prospects of drone technology. The physical (PHY) layer, however, presents
good prospects for a non-cryptographic authentication scheme that imposes a minimum burden on
processing resources and is difficult to mimic remotely [4].

In this study, we assess the feasibility of RF fingerprinting in a transmitter-receiver pair [5] as
an additional layer, non-cryptographic, physical-layer authentication solution in the wireless
network of UAVs for enhanced robustness in the face of ever-increasing security threats. The
scheme of work is for a specific receiver to authenticate a given legitimate transmitter using the
fingerprints formed by the receiver based on its front-end impairments. The resilience of the
scheme draws on the non-portability of RF fingerprints across different receivers [6] due to
differences in receiver front-end impairments. As was demonstrated in [6], the RF fingerprint
created in one receiver cannot serve as a universal sample for the given transmitter, thus making it
difficult to mislead the authenticating receiver with fingerprints of the legitimate transmitter
acquired with a rogue receiver.

RF fingerprinting in the context of transient signals is a technique for identifying a
transmission device by the rise-time signature that characterizes its signal at power-on. This
unique turn-on transient signal behaviour is mainly due to random differences in the intrinsic
characteristics of device hardware, particularly in the RF circuitry, resulting in transmitter-specific
characteristics that can be exploited to form a non-cryptographic, physical-layer authentication
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solution. The technique has been successfully deployed in identified wireless networks, for
example, in cellular networks, to prevent cell phone cloning and related fraud [7].

This research delves into the RF fingerprinting technique for distinct device classification in
unmanned aerial vehicle (UAV) RF hardware, irrespective of built quality while considering the
device's computing constraints. The remaining sections of the paper are structured as follows:
Section 2 reviews related work, Section 3 describes our proposed methodology, Section 4
discusses the results, and Section 5 presents the conclusion.

2. Related Works
Recent work demonstrates the effectiveness of the technique in drone detection and profiling.

The approach is used in [8] to discriminate between multiple UAV transmissions and co-existing
RF signals on the same frequency band in the environment, using features extracted from the
energy transient derived from the time-domain transient of the acquired signal. Similarly, in [9]
and [10], the scheme's potential as an early warning system for curbing security threats posed by
rogue drones is investigated. The scheme is to profile legitimate drones by their RF fingerprints in
a database; any out-of-library signature detected from a drone approaching the restricted area is
then classified as an intruder, consequently triggering prompt countermeasures. The authors in [11]
also demonstrated, with a remarkable success rate, a multi-classifier approach to improving the
detection accuracy of identical drones transmitting non-standard signals.

Recent trends seek to improve feature extraction techniques without manual intervention and
reduce computational time due to feature dimension and algorithm complexity [12]. To detect and
identify UAVs based on their radio fingerprints, a novel approach is presented in [13]. Unlike
previous studies, this approach utilizes an end-to-end deep-learning-based model and a multiscale
feature extraction method to achieve good generalization of the signal capability for quick
decision-making, thus reducing computational time. It is also proposed under the scheme AirID
[14] for the intentional insertion of a custom RF fingerprint in a UAV transmission at the physical
layer to forestall the effects of environmental and channel-induced instability on inherent radio
signatures as a means to improve drone detection and identification.

2.1 Traditional Approach to RF Fingerprinting
Figure 2 presents a simplified overview of the varied approaches to RF fingerprinting. In

principle, subtle features that uniquely characterize the transmission device are extracted either
from the region of interest (ROI) of the transmitted signal or the channel response with respect to
its environment and subsequently profiled and classified to identify a given transmitter.

The concept may be viewed from the perspective of channel fingerprinting, in which channel
state information such as scatter, multi-path fading, power decay over distance, and received
signal strength indicator (RSSI) that describes the response of the channel and its environment is
extracted to uniquely characterize the channel for the identification of a given transmitter and its
location [15], [16], or device fingerprinting utilizing features extracted from either transmitter
turn-on transient (transient-state) [7] or frequency and constellation symbol imperfections from
the steady-state portion of the transmitted signal [17] as shown in Figure 2.
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Figure 2. Simplified Overview of RF Fingerprinting
The concept of device authentication using RF fingerprints is to capture and process wireless

transmission of the legitimate device for the distinctive features that characterize its signals and
use this to generate fingerprints that uniquely identify the transmission device. The fingerprints
are profiled and stored for comparison with a feature set from any device seeking authentication; a
profile match then results in “Access Granted” and a mismatch, “Access Denied”, as shown in
Figure 3.

Figure 3. RF Fingerprint Authentication Scheme
The technique has evolved to the most recent deep learning DL-based algorithms [18] that are

computationally demanding but flexible enough for adaptation to varied scenarios. Such new
schemes in physical-layer authentication from an information theoretic approach may help
establish unique parameters for secure wireless transmission [19] and further reinforce the
potential of the technique to enhance wireless network security. Innovative application domains of
the future, such as healthcare, the Internet of Things (IoT), vehicle-to-everything (V2X) and
autonomous UAV, Smart Grid 2.0, and extended reality (XR) envisioned for 6G networks, will
require lightweight, fast, and resilient device authentication schemes to guarantee user security
and privacy [18] in such a dense and ever-challenging network environment, RF fingerprinting
thus offers a viable option for such stringent security requirements.

Transient-state fingerprinting was thought to have the demerit of a higher sampling rate
≥ 4 ��/� [20] for signal acquisition, thus requiring a high-end, very expensive setup to
accomplish, a disincentive that had the technique relegated to the background, while steady-state
enjoyed greater attention for research over time. Contrary to this, it has been demonstrated in
recent works, for example, in [21], that lower sampling rates equally yield transients of high
signal integrity and classification accuracy, leading to a refocus of research into transient-state
fingerprinting. Research has accelerated in this direction in recent times with novel approaches to
domain fusion [22] techniques for noise-resilient fingerprints that yield higher classification
accuracy compared to the existing single-domain fingerprints.

3. Methodology
The work was conducted experimentally in hardware and set to exploit instantaneous

amplitude and phase features extracted from the transient portion of time domain signals acquired
off-the-air in the near field. For higher accuracy and reliability and to factor in the possible effects
of component instability on transients as they undergo repeated on-off cycles, a high acquisition of
one thousand (1000) waveforms from each drone RC transmitter under test was chosen. Four
transmitters, top-grade labelled Tx1, top-ranking labelled Tx2, both 27 MHz FM toy-grade
devices, and Futaba Skysport 6A labelled Tx3, Futaba Skysport T4YF labelled Tx4, both 72 MHz
FM universal-grade devices, were selected based on availability and similarity in the signal
waveform of the device pair.

104

https://ijcnis.org/


Available online at: https://ijcnis.org

Assessing the Feasibility of RF Fingerprinting for Security in Unmanned Aerial Vehicles

Typically, transmitters of the same brand and type exhibit different transient characteristics
[7]. However, similarity in signal characteristics has the tendency to increase the classification
error rate, hence the need to factor this into transmitter selection. The acquired signals are then
processed in MATLAB to generate profile fingerprints for classification in SVM and k-NN
models. The choice of the two models was influenced by the need for high classification accuracy
using a low-complexity algorithm [23], given the toy-grade device’s lack of resources to process
complex algorithms under the practical implementation of the scheme.
3.1 Experimental Setup

Figure 4. Setup for Signal Acquisition
The setup for capturing wireless signals from the RC transmitters under investigation is shown

in Figure 4. At the core is a 70 MHz, 1 GSa/s Instek GDS 1072B digital storage oscilloscope
fitted with a monopole antenna for off-the-air signal acquisition in the near field. With the
transmit antenna placed 4 cm from the receiving monopole and the instrument set to single trigger
acquisition mode, RF transients are then acquired at a sampling rate of 1 GSa/s and stored on a
flash drive in *.CSV format for processing in MATLAB.

It was demonstrated in [21] that sampling rates much lower than the 4 GSa/s preference in the
literature equally yield transients of high signal integrity and classification accuracy. The entire
signal acquisition work was carried out in an office environment, shown in Figure 5, at the same
time of day when EMI from adjourning sources is deemed low. Sample waveforms of the
acquired signal are presented in Figure 6, 7, 8, and 9 for the respective transmitters. A detailed
procedure for the transient signal acquisition is provided in the appendix.

Figure 5. Experimental Setup in an Office Environment
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Figure 6. Transient Waveform of Tx1

Figure 7. Transient Waveform of Tx2

Figure 8. Transient Waveform of Tx3
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Figure 9. Transient Waveform of Tx4
Figure 6 and 7 show sample waveforms for Tx1 and Tx2 toy-grade RC transmitters, while

Figures 8 and 9 show those for universal-grade devices Tx3 and Tx4.
3.2 Sigal Processing
3.2.1. Transient Detection

An amplitude-based variance detection approach using the threshold technique [24] is adopted
for the detection of the transient start and end points on the premise that (i) the amplitude
characteristics of channel noise and that of the transient differ and (ii) the start of the transient is
abrupt, although some signals may exhibit a gradual transition between channel noise and the start
of the transient [25].

A similar approach in [24] is applied to detect the transient phase of the signal by first defining
a new discrete variance signal Vi as:

�� = � 1
�−1 �=1

� (��−� − ���)2 (1)�

Where:
Vi is a new variance signal created from the input signal S (Acquired Signal), w is the sliding

window size, X�w is the mean of sample values Si – w, Si – 1,
K is the scaling factor for making Vi comparable to S.
The variance signal Vi can be considered an indicator of the degree to which the incoming

signal S deviates from the average of the previous w sample; thus, at the onset of the transient, S
increases rapidly, leading to a higher deviation, hence detecting the transient. Once the signal is
detected and its variance computed, the start and end of the transient become a change point
problem, which is then solved using the cumulative sum (CUSUM) algorithm [24]. Thus, for
transients, the variance of the signal for a given window size w would increase rapidly as compared
to the variance of the previously measured w sample. For the start of the transient, the change point
is where Vi begins to increase rapidly, and the end of the transient is the point at which Vi flattens
out [24]. Signal regions of the input waveforms obtained using the algorithm in Equation 1 are
shown in Figures 10, 11, 12, and 13.

Signal regions of Tx1 and Tx3 are shown in Figure 10 and 11, respectively. Similar results are
obtained for Tx2 and Tx4.
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Figure 10. Signal Regions of Tx1

Figure 11. Signal Regions of Tx3
The extracted transient phases of Tx1 and Tx3 are shown in Figure 12 and 13, respectively.

Similar results are obtained for Tx2 and Tx4.
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Figure 12. Detected Transient Phase for Tx1

Figure 13. Detected Transient Phase for Tx3

3.2.2. Feature Extraction
Once the transient is detected, discrete wavelet transform (dwt) [26] is applied to extract the

energy envelope, which is then converted to an in-phase and quadrature I/Q sample, given as:
SC n = H a n = SI n + SQ n (2)

Instantaneous Amplitude (a) and Phase ∅ features are extracted from the complex I/Q
characteristics [20] of the signal as follows:

a n = I n 2 + Q n 2 3

ϕ n = tan−1 Q[n]
I[n]

for I n ≠ 0 (4)

Where:
a is the instantaneous amplitude of the acquired signal; ϕ, the instantaneous phase; I being the

in-phase amplitude of the input signal; and Q is the quadrature amplitude.
3.2.3. Fingerprint Generation

Statistical fingerprints are then generated as variance σ2, skewness γ, and kurtosis k as follows:

σ2 = 1
Nx
1
Nx
1
Nx

n=1

Nx

(� x n − μ)2 (5)

γ = 1
Nxσ3
1

Nxσ3
1

Nxσ3
n=1

Nx

(� x n − μ)3 (6)

k = 1
Nxσ4
1

Nxσ4
1

Nxσ4
n=1

Nx

(� x n − μ)4 7

Where N is the sample size, μ is the sample mean, and Xn is the nth element in the sample
3.2.4. Machine Learning & Fingerprint Classification

A total of four thousand (4000) samples, 1000 from each transceiver under test, are used in a
4:1 ratio between the test and training samples for the inter-device classification test in a Support
Vector Machine SVM in comparison with the performance of K-Nearest Neighbour k-NN. The
SVM and k-NN classifiers were modelled based on the three test scenarios, and the data was
structured accordingly, with the class or label appended. From a data set of 4000 per scenario, the
model is instructed to use 20% of the data for training and 80% for testing. This choice was
informed by [21], in which it was demonstrated that an increase in training sample size beyond
20% for sizable datasets yields negligible improvement in classification performance.
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4. Results and Discussion
The result is presented for three scenarios:
1. Instantaneous Phase-Only feature
2. Instantaneous Amplitude-Only feature, and
3. Combine (full dimensional) feature set, followed by a comparison of the three scenarios in

terms of accuracy.

4.1 Classification Results
Inter-device classification results for the three scenarios in both k-NN and SVM are presented

in Figures 14, 15, and 16.
4.1.1. Scenario 1: Amplitude-Only Feature Set

(a) (b)

Figure 14. Confusion Matrix for Amplitude-Only Feature Classification Test in Both Models
The results of Figure 14 show high classification accuracy achieved in both the toy-grade

device Tx1, Tx2 and the universal-grade device Tx3, Tx4. All four devices are thus distinguished
by an overall accuracy rate of 96% for the k-NN and 92% for the SVM. The stated accuracy is
computed on the test sample by the embedded performance metrics of the model.
4.1.2. Scenario 2: Phase-Only Feature Set

(a) (b)

Figure 15. Confusion Matrix for Phase-Only Feature Classification in Both Models

Although the phase feature underperformed the amplitude feature set, it shows a good
accuracy rate in the individual transmitters except for Tx3, which was mostly misclassified as Tx4
in both models.
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The overall accuracy rate is in the order of 82% for k-NN and 79% for the SVM, as recorded
in Figure 15.

4.1.3. Scenario 3: Combine (full dimensional) Feature Set

(a) (b)

Figure 16. Confusion Matrix for the Combine (full dimensional) Feature Set in Both Models
As shown in Figure 16, the combined feature set also recorded a high accuracy rate

comparable to the amplitude feature in both classifiers, with an overall performance accuracy of
95% for the k-NN and 93% for the SVM.

4.2 Discussion

(a) (b)

Figure 17. Classification Performance Chart in Both Models: (a) k-NN and (b) SVM

The performance of the three distinct feature sets is seen in Figure 17. Amplitude and the
combined feature set for all four transmitters show high recognition rates in both classifiers.
Comparatively, it is observed that the combined (full dimensional) feature set does not necessarily
result in any significant improvement or otherwise in classification performance over the
amplitude feature; it does, however, outperform the phase feature. Though the phase feature,
except that of Tx1, underperformed the amplitude and the combined feature in both classifiers,
understandably due to its smaller dynamic range as reported in [7], it does, however, offer a good
recognition rate in the order of 82% in the k-NN and 79% for the SVM, making the phase feature
reasonably useful in the fingerprinting process.
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5. Conclusion
This work has used toy-grade and universal-grade drone RC transmitters to evaluate RF

fingerprints at sub-GHz to discern the prospects for device identification. The uniqueness of
signal features of interest has been explored with a high success rate for the validation of an
alternate approach to device authentication devoid of cryptography using simple algorithms that
do not impose a high burden on processing resources and thus present a viable option for
strengthening the security of UAV wireless networks against malicious activities. Hardware
quality invariably influences the attributes of a transmitter, for example, the requisite properties
of the fingerprints, uniqueness, and robustness. However, it was found in this study that the toy-
grade RC transmitter built with inexpensive hardware equally exhibits unique signal features with
a high recognition rate comparable to the high-end universal grade. The results thus demonstrate
that RF fingerprinting is feasible in drone RF hardware, irrespective of built quality.
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