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ABSTRACT 

Elliptic Curve Cryptography (ECC) has gained widespread adoption in the 

field of cryptography due to its efficiency and security properties. Symmetric 

bilinear pairings on elliptic curves have emerged as a powerful tool in 

cryptographic protocols, enabling advanced constructions and 

functionalities. This paper explores the intersection of symmetric bilinear 

pairings, elliptic curves, and Lie algebras in the context of cryptography. We 

provide a comprehensive overview of the theoretical foundations, 

applications, and security considerations of this amalgamation. 
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1. INTRODUCTION: 

Elliptic cryptography is being proposed by many researchers and it is seen as a breaking innovation to 

achieve high security against quantum computers because of its efficient utilization of memory over 

RSA-systems. See [1], [4], [9], [33] 

Elliptic Curve Cryptography (ECC) relies on the mathematical properties of elliptic curves for 

securing cryptographic protocols. The integration of symmetric bilinear pairings and Lie algebras 

enhances the capabilities of ECC, allowing for more sophisticated cryptographic constructions. Most 

recent pairing on abelian varieties has been done by [11], [16], [20], [21], [22]. 

In recent years, the integration of advanced mathematical structures, particularly Lie algebras, with 

elliptic curves has spurred breakthroughs in cryptographic protocols, see [3], [7], [8],[9], [23], [28] . 

Lie algebra symmetric bilinear pairings extend the capabilities of traditional pairings, offering 

enhanced security and efficiency in various applications. This paper aims to provide a comprehensive 

introduction to this emerging field, shedding light on the mathematical intricacies and cryptographic 

advancements enabled by Lie algebra symmetric bilinear pairings. 

 

2. SYMMETRIC BILINEAR PAIRINGS 

A symmetric bilinear pairing in cryptography refers to a special type of mathematical operation 

defined on elliptic curve groups that satisfies certain properties. See [38] for ideas on symmetric 

pairing. One commonly used symmetric bilinear pairing is the Weil pairing or Tate pairing on elliptic 

curves. For this paper, we will be considering the Weil pairing; let’s provide a detailed mathematical 

proof for symmetric bilinear pairings. See [24], [32] 

2.1 WEIL PAIRING 

The Weil pairing is defined on a pair of points in an elliptic curve group over a finite field. Read [6] 

paper for more insight. Let 𝐸(𝐹𝑞) be an elliptic curve defined over a finite field 𝐹𝑞 of prime order𝑞, 

and let 𝐺1𝑎𝑛𝑑𝐺2be two cyclic subgroups of prime order 𝑟 in 𝐸(𝐹𝑞). The Weil pairing 𝑒: 𝐺1 × 𝐺2 →

𝐹
𝑞𝑘
∗  is defined as follows; 

𝑒(𝑃, 𝑄) = 𝜁𝑟

𝑡𝑟𝑎𝑐𝑒𝐹
𝑞𝑘/𝐹𝑞(𝑓𝑃,𝑄)

where 𝜁𝑟  is a primitive 𝑟 −th root of unity, 𝑓𝑃,𝑄 is the rational function 

associated with divisor (𝑃) − (𝑂) − (𝑄) + (𝑃 + 𝑄), 𝑎𝑛𝑑𝑡𝑟𝑎𝑐𝑒𝐹
𝑞𝑘/𝐹𝑞

 is the trace map of 𝐹𝑞𝑘𝑡𝑜𝐹𝑞 

2.2 PROPERTIES OF THE WEIL PARING 

 Bilineality 

𝑒(𝑎𝑃, 𝑏𝑄) = 𝑒(𝑃, 𝑄)𝑎𝑏 

To Proof: consider the rational functions associated with the divisors(𝑎𝑃) − 𝑎(𝑂) − (𝑎𝑄) +

(𝑎𝑃 + 𝑏𝑄)𝑎𝑛𝑑(𝑃) − (𝑂) − (𝑄) + (𝑃 + 𝑄). The rational function 𝑓𝑎𝑃,𝑏𝑄 for the divisor 

(𝑎𝑃) − 𝑎(𝑂) − (𝑏𝑄) + (𝑎𝑃 + 𝑏𝑄) is given by𝑓𝑎𝑃,𝑏𝑄 =
ℎ𝑎𝑃,𝑏𝑄

𝑔𝑎𝑃,𝑏𝑄
. Similarly, the rational 

function 𝑓𝑃,𝑄 for the divisor (𝑃) − (𝑂) − (𝑄) + (𝑃 + 𝑄) is given by; 𝑓𝑃,𝑄 =
ℎ𝑃,𝑄

𝑔𝑃,𝑄
. Now, let’s 

evaluate the Weil pairing for (𝑎𝑃, 𝑏𝑄) and (𝑃, 𝑄); 

 𝑒(𝑎𝑃, 𝑏𝑄) = 𝜁𝑟

𝑡𝑟𝑎𝑐𝑒(𝑓𝑎𝑃,𝑏𝑄)
 

 𝑒(𝑃, 𝑄) = 𝜁𝑟

𝑡𝑟𝑎𝑐𝑒(𝑓𝑃,𝑄)
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Observed that 𝑓𝑎𝑃,𝑏𝑄 = 𝑎. 𝑓𝑃,𝑄 + ℎ𝑎𝑃,𝑏𝑄 − 𝑎. ℎ𝑃,𝑄 Evaluating 𝑡𝑟𝑎𝑐𝑒(𝑓𝑎𝑃,𝑏𝑄) and 𝑡𝑟𝑎𝑐𝑒(𝑓𝑃,𝑄) 

by using the trace map. By applying bilinearity to show that 𝑡𝑟𝑎𝑐𝑒(𝑓𝑎𝑃,𝑏𝑄) =

𝑎𝑏. 𝑡𝑟𝑎𝑐𝑒(𝑓𝑃,𝑄). Then we conclude that 𝑒(𝑎𝑃, 𝑏𝑄) = 𝑒(𝑃, 𝑄)𝑎𝑏 

 Non-degeneracy 

For all non-zero 𝑃 in 𝐺1𝑎𝑛𝑑𝑄 in 𝐺2, 𝑒(𝑃, 𝑄) is a non-trival 𝑟 −th root unity. 

To Proof: assume 𝑒(𝑃, 𝑄) is a trivial and suppose there exist a non-zero point 𝑃 in 𝐺1 and a 

point 𝑄 in 𝐺2 such that 𝑒(𝑃, 𝑄) = 1, using the properties of the associated rational function 

𝑓𝑃,𝑄 for the divisor (𝑃) − (𝑂) − (𝑄) + (𝑃 + 𝑄). Then if 𝑒(𝑃, 𝑄) = 1, then 𝑓𝑃,𝑄 is a constant 

function 1. Examining the divisor (𝑃) − (𝑂) − (𝑄) + (𝑃 + 𝑄) and show that if 𝑓𝑃𝑄  is 

constant 1, then (𝑃 + 𝑄) = (𝑂), which contradicts the assumption that p is non-zero. 

𝑒(𝑃, 𝑄) = 1 leads the contradiction, and therefore for all non-zero 𝑃 in 𝐺1𝑎𝑛𝑑𝑄 in 

𝐺2, 𝑒(𝑃, 𝑄) is a non-trival 𝑟 −th root unity. 

 Computational efficiency 

The Weil pairing can be efficiently computed using algorithms such as Miler’s algorithm and 

the final exponentiation step, emphasizing the polynomial time complexity in terms of the bit 

length of 𝑟 

 

3. ELLIPTIC CURVES IN CRYPTOGRAPHY 

This section provides a concise review of elliptic curves and their application in cryptographic 

systems. We discuss the fundamental properties of elliptic curves, such as the group structure and 

discrete logarithm problem, which form the basis for ECC. See [1], [4], [9], [33]  

3.1 DEFINATION 

An elliptic curve is defined by an equation of the form 𝐸: 𝑥3 + 𝑎𝑥 + 𝑏 where 𝑎, 𝑏 are constants, and 

the curve is defined over a finite field 𝐹𝑝or 𝐹2𝑀 , where 𝑝 is a prime number and 𝑚 is a positive 

integer. Read [37] extensively 

 

3.2 KEY PROPERTIES 

3.2.1 Group Structure: consider an elliptic curve defined over a finite field 𝐹𝑝 with the  𝐸: 𝑥3 +

𝑎𝑥 + 𝑏(𝑚𝑜𝑑𝑝) where 𝑎, 𝑏 are constants, and (𝑥, 𝑦) are points on the curve. 

Geometric Addition: 

The geometric addition law on an elliptic curve is defined as follows: 

 Identity Element: There is a distinguished point at infinity denoted as O, acting as the 

identity element in the group. 

 Point Addition: For any two points 𝑝 = (𝑥1, 𝑦1) and 𝑄 = (𝑥2, 𝑦2)on the curve (excluding 

O), the sum P+Q is computed as follows: 

O & \text{if } P = Q \text{ and } y_1 \equiv -y_2 \pmod{p} \\ O & \text{if } P = -Q \text{ (inverse of 

} P \text{)} \\ R & \text{otherwise, where } R = (x_3, -y_3) \text{ and } x_3 = s^2 - x_1 - x_2 

\pmod{p}, y_3 = s(x_1 - x_3) - y_1 \pmod{p}, \text{ and } s = \frac{y_2 - y_1}{x_2 - x_1} 

\pmod{p}. \end{cases}\] 
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3.2.2 Point Doubling: consider an elliptic curve defined over a finite field 𝐹𝑝 with the  𝐸: 𝑥3 + 𝑎𝑥 +

𝑏(𝑚𝑜𝑑𝑝) where 𝑎, 𝑏 are constants, and (𝑥, 𝑦) are points on the curve. 

Geometric Definition: 

Point doubling is a geometric operation that involves finding the tangent line to a point P on the curve 

and determining the third intersection point. The tangent line intersects the curve at P and another 

point Q. The result of point doubling is the reflection of Q over the x-axis, denoted as -Q. 

Algebraic Definition: 

The coordinates of the result R=2P after point doubling are computed as follows: 

𝑥𝑅 = 𝑠2 − 2𝑥𝑝 (𝑚𝑜𝑑𝑝) 

𝑦𝑅 = 𝑠(𝑥𝑝 − 𝑥𝑅) − 𝑦𝑃(𝑚𝑜𝑑𝑝). Where 𝑠 is the slope of the tangent 𝑝; 

𝑥 =
3𝑥𝑃

2 + 𝑎

2𝑦𝑃
(𝑚𝑜𝑑𝑝) 

To Proof 

 Compute 𝑠 and 𝑥𝑅 

𝒔 =
3𝑥𝑃

2+𝑎

2𝑦𝑃
(𝑚𝑜𝑑𝑝). And 𝑥𝑅 = 𝑠2 − 2𝑥𝑝(𝑀𝑜𝑑𝑝) 

 Compute 𝑦𝑅 

𝑥𝑅 = 𝑠(𝑥𝑃 − 𝑥𝑅) − 𝑦𝑃(𝑚𝑜𝑑𝑝) 

 Verify on the curves 

𝑦𝑅
2 = 𝑥𝑅

3 + 𝑎𝑥𝑅 + 𝑏(𝑚𝑜𝑑𝑝) 

This proof establishes that the algebraic definition of point doubling produces valid points on 

the elliptic curve. The point doubling operation is crucial in elliptic curve cryptography for 

efficiently computing scalar multiples of a point 

Scalar Multiplication: consider an elliptic curve defined over a finite field 𝐹𝑝 with the  𝐸: 𝑥3 + 𝑎𝑥 +

𝑏(𝑚𝑜𝑑𝑝) where 𝑎, 𝑏 are constants, and (𝑥, 𝑦) are points on the curve. A scalar multiplication of a 

point P on the curve by an integer n is denoted as nP. It involves repeatedly adding the point P to 

itself n times. 

𝑛𝑃 = 𝑃 + 𝑃 + 𝑃 + ⋯ + 𝑃 

Proposition: For any integer n and any point P on the elliptic curve, the result nP is also a point on 

the curve 

To proof 

To prove that 1𝑃 = 𝑃 for any point 𝑃 on the curve. This is the definition of scalar multiplication for 

n=1, and it's trivially true. Assume that (k−1)P is a point on the curve for some integer k. Then show 

for k by proving that kP is a point on the curve. Use the group structure of the elliptic curve. Apply the 

point addition operation k times to P (which is the same as adding P to itself k times). By the 

inductive hypothesis, each step preserves the property of being on the curve. By induction, for any 

positive integer n, nP is a point on the curve. 
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3.2.3 Cryptographic Applications 

3.2.3.1 Elliptic Curve Diffie-Hellman (ECDH) Key Exchange: ECDH operates in the group of 

points on an elliptic curve, denoted as E(Fp), where Fp is a finite field. Each participant has a public 

key, represented by a point on the curve Q=d⋅G, where G is a publicly known base point on the curve, 

and d is the private key. To establish a shared secret, two participants, Alice and Bob, independently 

compute𝑆𝐴 = 𝑑𝐴 ∙ 𝑄𝐵 and 𝑆𝐵 = 𝑑𝐵 ∙ 𝑄𝐴, where 𝑑𝐴 and 𝑑𝐵 are their respective private keys, and 𝑄𝐴 

and 𝑄𝐵 are the public keys of the other participant. Due to the properties of elliptic curve groups, 𝑆𝐴 

and 𝑆𝐵  are equal and can be used as a shared secret for subsequent symmetric key cryptography, see 

[2]. The security of ECDH is based on the presumed difficulty of solving the Elliptic Curve Discrete 

Logarithm Problem (ECDLP), which is defined as follows: 

Def: Given a point Q on an elliptic curve and another point P=d⋅G, find the integer d.  See [31]. 

Solving the ECDLP is computationally infeasible for randomly chosen points on the elliptic curve. 

Even if an adversary intercepts the public keys QA and QB, computing dA or dB from these values 

should be difficult. The computational complexity of solving the ECDLP grows exponentially with 

the size of the elliptic curve group, providing a high level of security. Increasing the size of the elliptic 

curve group (larger key sizes) further enhances the security of ECDH against classical and quantum 

attacks. ECDH on sufficiently large elliptic curve groups is believed to resist attacks using Shor's 

algorithm, which could break classical discrete logarithm schemes. 

3.2.3.2 Elliptic Curve Digital Signature Algorithm (ECDSA): The Elliptic Curve Digital Signature 

Algorithm (ECDSA) is a widely used digital signature scheme based on the mathematical properties 

of elliptic curves. Read [1] extensively. Below is an overview of the key concept: 

Key Concepts: 

1. Elliptic Curve Setup: 

 Elliptic Curve Definition: E(Fp) is an elliptic curve defined over a finite field Fp. 

 Generator Point: G is a base point (generator) on the curve with prime order n. 

2. Key Generation: 

 Private Key: d is a randomly chosen integer (1≤d≤n−1). 

 Public Key: Q=dG (point multiplication). 

3. Signature Generation: 

 Message Hashing: Hash the message m to produce e=H(m). 

 Random k: Choose a random integer k (1≤k≤n−1). 

 Compute 𝑟: 𝑟 ≡ (𝑥1(𝑚𝑜𝑑𝑛)) where 𝐾𝐺 = (𝑥1 , 𝑦1) 

4. Signature Verification: 

 Compute 𝑠: 𝑠 ≡ 𝑘−1(𝑒 + 𝑑𝑟)(𝑚𝑜𝑑𝑛) 

 Verify r,s: Signature is valid if 0<r<n and 0<s<n. 
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ECDSA Security Relies on the Discrete Logarithm Problem (DLP): 

1. Discrete Logarithm Problem (DLP): 

 Problem Definition: Given Q=dG and G on E(Fp), find d (1≤d≤n−1). 

 ECDSA Assumption: ECDSA is secure under the assumption that solving the DLP 

on E(Fp) is computationally infeasible. See [5,8] 

To proof 

The signature (r,s) relies on a random k and the private key d. Without knowing d, it's 

computationally infeasible to determine kG, making it hard to predict r. Verifying a signature involves 

computing s≡k−1(e+dr)(modn).To forge a valid signature without knowing d, an attacker needs to find 

k such that kG reveals r, but this is difficult due to the DLP. The security of ECDSA relies on the 

difficulty of the DLP, assuming that finding d from Q=dG is computationally hard. 

 

3.2.3.3 Elliptic Curve Discrete Logarithm Problem (ECDLP): Given an elliptic curve E defined 

over a finite field Fp, a generator point G, and a point P, the ECDLP is stated as follows: 

Q=nG 

where Q is a known point on the curve, G is a generator point, and n is the discrete logarithm we want 

to find. In other words, the problem is to find n such that Q is obtained by adding the generator point 

G to itself n times. 

The ECDLP is considered a hard problem, here's a high-level sketch of why the ECDLP is believed to 

be difficult: 

1. Brute Force Attack: 

 Concept: The most straightforward approach to solving the ECDLP is a brute force 

search through all possible values of n until the equation Q=nG is satisfied. 

 Challenge: The number of possible values for n grows exponentially with the 

number of bits used to represent n, making this approach infeasible for sufficiently 

large key sizes. 

2. Generic Discrete Logarithm Algorithms: 

 Concept: There are generic algorithms for solving discrete logarithm problems in 

certain groups, such as Pollard's rho algorithm. 

 Challenge: The generic algorithms have a complexity that is exponential in the 

square root of the size of the group, but they are still impractical for large elliptic 

curve groups. 

3. Elliptic Curve Structure: 

 Concept: The mathematical structure of elliptic curves introduces additional 

complexity, making known algorithms for discrete logarithm problems less efficient. 

6
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 Challenge: Elliptic curve groups exhibit special properties that can be leveraged to 

create cryptographic systems with smaller key sizes compared to other discrete 

logarithm-based systems. 

4. LIE ALGEBRAS 

A Lie algebra is a vector space equipped with a Lie bracket operation that satisfies certain properties. 

In the context of elliptic curves, the Lie algebra is associated with tangent vectors at the identity 

element of the curve's group. In the context of elliptic curves, Liealgebra symmetric bilinear pairings 

involve mapping Lie algebra elements associated with tangent vectors to points on the curve. The 

pairing is symmetric, and its properties are related to the structure of the Lie algebra associated with 

the curve. See [12], [37] 

Let E be an elliptic curve defined over a finite field Fp with a prime order subgroup G, and let P and Q 

be points on E, and the Lie algebra associated with E is generated by tangent vectors at the identity 

element. A Weil pairing on Lie algebra is defined as 𝑒: 𝐺 × 𝐺 → 𝐹
𝑝𝑘
∗ , where k is the embedding 

degree. 

For points P and Q in G, the Weil pairing is calculated as: 𝑒(𝑃, 𝑄) = 𝜁𝑟

𝑡𝑟𝑎𝑐𝑒(𝛼𝑃,𝑄)
 where 𝜁𝑟  is a 

primitive 𝑟 −th root of unity, 𝛼𝑃,𝑄 is the rational function associated with divisor (𝑃) − (𝑂) − (𝑄) +

(𝑃 + 𝑄). 

This is general structure of a Lie Algebra Symmetric Bilinear Pairing, specifically the Weil pairing on 

elliptic curves. The actual implementation details and security considerations can be more complex 

and often involve additional parameters and operations. 

It's important to note that cryptographic protocols using such pairings should be designed and 

implemented carefully to ensure security against various attacks.  

 

5. CENTRAL IDEA 

A cryptographic solution based on a Lie Algebra Symmetric Bilinear Pairing on elliptic curves can be 

applied in various scenarios, including identity-based cryptography and advanced cryptographic 

protocols. One notable application is in constructing efficient and secure identity-based encryption 

(IBE) schemes, See [15]. Below is a proposal for an Identity-Based Encryption scheme leveraging a 

Lie Algebra Symmetric Bilinear Pairing: 

Identity-Based Encryption (IBE) Scheme using Lie Algebra Symmetric Bilinear Pairing: 

Key Generation: 

1. System Setup: 

 Choose a secure elliptic curve E defined over a finite field Fp with a known 

symmetric bilinear pairing 𝑒: 𝐺 × 𝐺 → 𝐹
𝑝𝑘
∗ , , where G is a subgroup of E. 

 Establish public parameters including the elliptic curve equation, generator point G, 

and the pairing function e. 

2. Master Key Generation: 

7
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 Generate a master key s∈Zq as a random element in a large prime order subgroup q of 

G. 

 Compute the master public key as sG. 

User Key Generation: 

3. User Registration: 

 When a user wishes to register, their public identity (such as an email address) is used 

as an input to a cryptographic hash function to obtain a point PI on the elliptic curve. 

4. Private Key Derivation: 

 The user computes their private key as dI =sPI, where s is the master key and PI is the 

point derived from their identity. 

Encryption: 

5. Encryption: 

 To encrypt a message M, the sender selects a random r∈Zq and computes the 

ciphertext as: C=M⊕e(PI,rG). Read [29, 30] 

Decryption: 

6. Decryption: 

 To decrypt the ciphertext C, the user computes the pairing e(dI,rG) and uses it to 

recover the original message M as: M=C⊕e(dI,rG) 

Security Considerations: 

Read [5,8] extensively to follow the security details effectively. 

 Security of the Pairing: 

 The security of the system relies on the assumed hardness of the underlying 

computational problems associated with the symmetric bilinear pairing, such as the 

Elliptic Curve Discrete Logarithm Problem (ECDLP). 

 Random Oracle Model: 

 The cryptographic hash function used in the registration process is modeled as a 

random oracle, providing security against certain attacks. 

 Key Size: 

 The security of the scheme depends on the choice of parameters, including the elliptic 

curve and the key size. Larger key sizes and prime orders contribute to increased 

security. 

They have been works on the pairing of elliptic curve on Lie algebra from P-groups, see [37] for his 

proposed idea. Lie algebra could be constructed from p-group and the paring are very computable, see 
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m = (3 * self.x**2 + self.a) * mod_inverse(2 * self.y, self.p)

else:

m = (other.y - self.y) * mod_inverse(other.x - self.x, self.p)

if self != other:

return EllipticCurvePoint.infinity()

if self.x == other.x and self.y != other.y:

return self

if other == EllipticCurvePoint.infinity():

return other

if self == EllipticCurvePoint.infinity():

def __add__(self, other):

self.p = p

self.b = b

self.a = a

self.y = y

self.x = x

  def __init__(self, x, y, a, b, p):

class EllipticCurvePoint:

from hashlib import sha256

from sympy import mod_inverse

from Crypto.Util.number import getPrime

[20] for insight on computational group theory.

applications,  you  should  use  established  libraries  and  consult  with  cryptography  experts.  See  [18], 
cryptographic operations. Please note that this example is for educational purposes, and for real-world 
extensive.  Below,  I'll  provide  a  simplified  example  using  Python  and  the pycryptodome library  for 
algebra  for  cryptography  and  key  exchange  involves  multiple  steps,  and  the  code  can  be  quite 
Creating  a  complete  implementation  of  a  symmetric  bilinear  elliptic  curve  and  its  associated  Lie 

6. COMPUTATION

the proposed ideas could be computed with our proposed encryption pairing system

[26], [27]. There are papers you should read on the construction of p-groups, see [19], [28], [35]. All 
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        x3 = (m**2 - self.x - other.x) % self.p 

        y3 = (m * (self.x - x3) - self.y) % self.p 

 

        return EllipticCurvePoint(x3, y3, self.a, self.b, self.p) 

 

    def __eq__(self, other): 

        return self.x == other.x and self.y == other.y 

 

    @staticmethod 

    def infinity(): 

        return EllipticCurvePoint(None, None, None, None, None) 

 

class SymmetricBilinearPairing: 

    def __init__(self, G, p): 

self.G = G 

self.p = p 

 

    def pairing(self, P, Q): 

        if P == EllipticCurvePoint.infinity() or Q == EllipticCurvePoint.infinity(): 

            return 1 

 

        e = pow((P.y * Q.y) % self.p, ((P.x * Q.x) % self.p + (P.x * Q.x) % self.p) // 2, self.p) 

        return e 

 

# Example usage 

if __name__ == "__main__": 

    # Define elliptic curve parameters 

    a = 2 

    b = 2 

    p = getPrime(128) 

 

    # Choose a base point on the curve 

    G = EllipticCurvePoint(3, 5, a, b, p) 

 

    # Alice's private key 

alice_private_key = 123 
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    # Compute Alice's public key 

alice_public_key = G 

    for _ in range(alice_private_key - 1): 

alice_public_key += G 

 

    # Bob's private key 

bob_private_key = 456 

 

    # Compute Bob's public key 

bob_public_key = G 

    for _ in range(bob_private_key - 1): 

bob_public_key += G 

 

    # Symmetric bilinear pairing 

    pairing = SymmetricBilinearPairing(G, p) 

 

    # Shared secret computation 

shared_secret_alice = pairing.pairing(bob_public_key, alice_public_key) 

shared_secret_bob = pairing.pairing(alice_public_key, bob_public_key) 

 

    # Check if shared secrets match 

    assert shared_secret_alice == shared_secret_bob 

 

    # Derive a key from the shared secret using a hash function (e.g., SHA-256) 

derived_key = sha256(str(shared_secret_alice).encode()).digest() 

 

print("Shared secret:", shared_secret_alice) 

print("Derived key:", derived_key) 

This code demonstrates the basics of elliptic curve cryptography and symmetric bilinear pairing. Note 

that in practice, you should use established libraries like cryptography or pycryptodome for 

cryptographic operations, and this example is for educational purposes only. Additionally, you might 

need to modify this code to fit your specific requirements and security considerations. 
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CONCLUSION 

This paper provides a comprehensive overview of symmetric bilinear pairings on elliptic curves and 

their integration with Lie algebras in the context of cryptography. We highlight the theoretical 

foundations, applications, and security considerations, paving the way for future research and 

advancements in this dynamic field. 
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