The Serbian Society for Ceramic Materials

Institute for Multidisciplinary Research (IMSI), University of Belgrade

Institute of Physics, University of Belgrade

Center of Excellence for the Synthesis, Processing and Characterization of Materials for use in Extreme Conditions "CEXTREME LAB" - Institute of Nuclear Sciences "Vinča", University of Belgrade

Faculty of Mechanical Engineering, University of Belgrade

Center for Green Technologies, Institute for Multidisciplinary Research, University of Belgrade

Faculty of Technology and Metallurgy, University of Belgrade Faculty of Technology, University of Novi Sad

Edited by: Branko Matović Zorica Branković Aleksandra Dapčević Vladimir V. Srdić

Programme and Book of Abstracts of The Fifth Conference of The Serbian Society for Ceramic Materilas **publishes abstracts from the field of ceramics, which are presented at international Conference.**

Editors-in-Chief

Dr. Branko Matović Dr. Zorica Branković Prof. Aleksandra Dapčević Prof. Vladimir V. Srdić

Publisher

Institute for Multidisciplinary Research, University of Belgrade Kneza Višeslava 1, 11000 Belgrade, Serbia

For Publisher

Prof. Dr Sonja Veljović Jovanović

Printing layout Vladimir V. Srdić

Press

Faculty of Technology and Metallurgy, Research and Development Centre of Printing Technology, Karnegijeva 4, Belgrade, Serbia

Published: 2019

Circulation: 150 copies

CIР - Каталогизација у публикацији - Народна библиотека Србије, Београд

666.3/.7(048) 66.017/.018(048)

DRUŠTVO za keramičke materijale Srbije. Konferencija (5 ; 2019 ; Beograd)

Programme ; and the Book of Abstracts / 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia ; [organizers] The Serbian Society for Ceramic Materials ... [et al.] ; edited by Branko Matović ... [et al.]. - Belgrade : Institute for Multidisciplinary Research, University, 2019 (Beograd : Faculty of Technology and Metallurgy, Research and Development Centre of Printing Technology). - 139 str. : ilustr. ; 24 cm

Tiraž 150. - Str. 6: Welcome message / Branko Matovic. - Registar.

ISBN 978-86-80109-22-0

а) Керамика - Апстракти

b) Наука о материјалима - Апстракти

с) Наноматеријали - Апстракти

COBISS.SR-ID 276897292

The Serbian Society for Ceramic Materials Institute for Multidisciplinary Research (IMSI), University of Belgrade Institute of Physics, University of Belgrade Center of Excellence for the Synthesis, Processing and Characterization of Materials for use in Extreme Conditions "CEXTREME LAB" -Institute of Nuclear Sciences "Vinča", University of Belgrade Faculty of Mechanical Engineering, University of Belgrade Center for Green Technologies, Institute for Multidisciplinary Research, University of Belgrade Faculty of Technology and Metallurgy, University of Belgrade Faculty of Technology, University of Novi Sad

PROGRAMME AND THE BOOK OF ABSTRACTS

5th Conference of The Serbian Society for Ceramic Materials

> June 11-13, 2019 Belgrade, Serbia 5CSCS-2019

> Edited by: Branko Matović Zorica Branković Aleksandra Dapčević Vladimir V. Srdić

SPECIAL THANKS TO

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА

Turistička organizacija Beograda

ORGANISATION OF SERBIA

Committees

Organizer

- The Serbian Society for Ceramic Materials
- Institute for Multidisciplinary Research (IMSI), University of Belgrade
- Institute of Physics, University of Belgrade
- Center of Excellence for the Synthesis, Processing and Characterization of Materials for use in Extreme Conditions "CEXTREME LAB" Institute of Nuclear Sciences "Vinča", University of Belgrade
- Faculty of Mechanical Engineering, University of Belgrade
- Center for Green Technologies, Institute for Multidisciplinary Research, University of Belgrade
- Faculty of Technology and Metallurgy, University of Belgrade
- Faculty of Technology, University of Novi Sad

Scientiific Committee

- 1. Dr. Snežana Bošković, Institute of Nuclear Sciences "Vinča", University of Belgrade, *Serbia*
- 2. Prof. Biljana Stojanović, Institute for Multidisciplinary Research, University of Belgrade, *Serbia*
- 3. Dr. Branko Matović, Institute of Nuclear Sciences "Vinča", University of Belgrade, *Serbia*
- 4. Prof. Vladimir V. Srdić, Faculty of Technology, University of Novi Sad, *Serbia*
- 5. Dr. Zorica Branković, Institute for Multidisciplinary Research, University of Belgrade, *Serbia*
- 6. Dr. Goran Branković, Institute for Multidisciplinary Research, University of Belgrade, *Serbia*
- 7. Dr. Zorana Dohčević-Mitrović, Institute of Physics, University of Belgrade, *Serbia*
- 8. Dr. Maja Šćepanović, Institute of Physics, University of Belgrade, Serbia
- 9. Prof. Tatjana Volkov-Husović, Faculty of Technology and Metallurgy, University of Belgrade, *Serbia*
- 10. Dr. Miroslav Komljenović, Institute for Multidisciplinary Research, University of Belgrade, *Serbia*
- 11. Dr. Dejan Zagorac, INN Vinca, University of Belgrade, Serbia
- 12. Prof. Gordana Bakić, Faculty of Mechanical Engineering, University of Belgrade, *Serbia*
- 13. Prof. Pavle Premović, Faculty of Science, University of Niš, Serbia
- 14. Dr. Nina Obradović, Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Belgrade, *Serbia*
- 15. Prof. Vladimir Pavlović, Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Belgrade, *Serbia*

International Advisory Board

GERMANY:

Dr. J. Christian Schön, Max-Planck-Institute for Solid State Research

Dr. Klaus Doll, Institute of Theoretical Chemistry, University of Stuttgart Dr. Žaklina Burghard, Institute for Mater. Science, University of Stuttgart

Dr. Vesna Srot, *Max-Planck-Institute for Solid State Research*

UNITED STATES OF AMERICA:

Dr. Yuri Rostovtsev, Department of Physics, University of North Texas Dr. Miladin Radović, Department of Materials Science and Engineering Program, Texas A&M University

Dr. Nikola Dudukovic, Lawrence Livermore National Laboratory

SLOVENIA:

Dr. Barbara Malič, Jozef Stefan Institute, Ljubljana

Dr. Aleksander Rečnik, Jozef Stefan Institute, Ljubljana

Dr. Slavko Bernik, Jozef Stefan Institute, Ljubljana

ITALY:

Dr. Carmen Galassi, Istituto di Scienza e Tecnologia dei Materiali Ceramici-CNR

Dr. Floriana Craciun, Istituto di Struttura della Materia-CNR, Area di Ricerca di Roma-Tor Vergata

Dr. Claudio Ferone, Department of Engineering, University of Napoli

CROATIA:

Dr. Jasminka Popović, *Ruđer Bosković Institute, Zagreb* Dr. Andreja Gajović, *Ruđer Bosković Institute, Zagreb*

FRANCE:

Dr. Xavier Rocquefelte, Institut des Sciences Chimiques de Rennes

HUNGURY:

Dr. Gábor Mucsi, University of Miskolc

INDIA:

Dr. Ravi Kumar, Indian Institute of Technology Madras

JAPAN:

Dr. Anna Gubarevich, Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology

POLAND:

Dr. Malgorzata Makowska-Janusik, Institute of Physics, Faculty of Mathematics and Natural Science, Jan Dlugosz University in Czestochowa

ROMANIA:

Dr. Eniko Volceanov, University Politechica Bucharest

SLOVAKIA:

Dr. Peter Tatarko, Institute of Inorganic Chemistry, Slovak Academy of Sciences

UKRAINE:

Dr. Tetiana Prikhna, V. Bakul Institute for Superhard Materials of the National Academy of Sciences of Ukraine

Organizing Committee

- 1. Dr. Aleksandra Dapčević, Faculty of Technology and Metallurgy, Belgrade, *Serbia*
- 2. Maria Čebela, Institute of Nuclear Sciences "Vinča", Belgrade, Serbia
- 3. Miljana Mirković, Institute of Nuclear Sciences "Vinča", Belgrade, Serbia
- 4. Jelena Luković, Institute of Nuclear Sciences "Vinča", Belgrade, Serbia
- 5. Dr. Marija Vuksanović, Institute of Nuclear Sciences "Vinča", Belgrade, Serbia
- 6. Dr. Milica Počuča Nešić, Institute for Multidisciplinary Research, Belgrade, *Serbia*
- 7. Dr. Milan Žunić, Institute for Multidisciplinary Research, Belgrade, Serbia
- 8. Dr. Jovana Ćirković, Institute for Multidisciplinary Research, Belgrade, *Serbia*
- 9. Dr. Nikola Ilić, Institute for Multidisciplinary Research, Belgrade, Serbia
- 10. Jelena Vukašinović, Institute for Multidisciplinary Research, Belgrade, *Serbia*
- 11. Jelena Jovanović, Institute for Multidisciplinary Research, Belgrade, Serbia
- 12. Olivera Milošević, Institute for Multidisciplinary Research, Belgrade, *Serbia*
- 13. Dr. Sanja Martinović, IHTM Belgrade, Serbia
- 14. Dr. Milica Vlahović, IHTM Belgrade, Serbia
- 15. Dr. Nataša Tomić, Innovation Center of the Faculty of Technology and Metallurgy, Belgrade, *Serbia*
- 16. Dr. Slavica Savić, Biosense Institute, Novi Sad, Serbia
- 17. Dr. Bojan Stojadinović, Institute of Physics, Belgrade, Serbia
- 18. Dr. Marija Milanović, Faculty of Technology, Novi Sad, Serbia

A. Malešević, N. Tasić, J. Ćirković, J. Vukašinović, A. Dapčević, V. Ribić, Z. Branković, G. Branković CuO-BASED NANOPLATELETS FOR HUMIDITY SENSING APPLICATION
A. Malešević, A. Dapčević, A. Radojković, Z. Branković, G. Branković CHEMICAL STABILITY OF DOPED δ-Bi ₂ O ₃ AS AN ELECTROLYTE FOR SOLID OXIDE FUEL CELLS
M.V. Nikolic, M.D. Lukovic, M.P. Dojcinovic, Z.Z. Vasiljevic NANOCRYSTALLINE SnO ₂ -Zn ₂ SnO ₄ COMPOSITE THICK FILMS APPLIED AS HUMIDITY SENSORS
J. Luković, Z. Dohčević-Mitrović, S. Boskovic, J. Maletaškić, M. Mirković, V. Pavkov, B. Matović THE SOLID SOLUTIONS OF DOPED CERIA PREPARED BY SELF- PROPAGATING ROOM TEMPERATURE METHOD
M.P. Nikolić, V.B. Pavlović, A. Maričić, S.S. Stanojević-Nikolić, V.V. Srdić SYNTHESIS AND APPLICATION OF SILICA PARTICLES FOR THE REMOVAL OF HEAVY METALS AND PESTICIDE RESIDUES FROM AQUEOUS SOLUTIONS
M. Vasic, A. Krstic, H. Stankovic, M. Rubezic, M. Randjelovic, B. Matovic, A. Zarubica TITANIA AND CHEMICALLY MODIFIED TITANIA IN PHOTOCATALYTIC CONVERSION OF SELECTED DYE(S) AND PESTICIDE
N. Tomić, M. Grujić-Brojčin, A. Kremenović, V. Lazović, M. Šćepanović PHASE TRANSITION FROM TiO ₂ BROOKITE-BASED NANOPOWDER TO TITANATE: EFFECT OF ANNEALING TEMPERATURE ON MORPHOLOGY AND PHOTOCATALYTIC BEHAVIOR
N. Nikolić, M. Šćepanović, M. Grujić-Brojčin, K. Vojisavljević, T. Srećković THE EFFECTS OF MILLING MEDIA ON MORPHOLOGICAL AND STRUCTURAL CHANGES IN MECHANICALLY ACTIVATED ZnO
V.S. Cvetković, N.M. Vukićević, N.D. Nikolić, G. Branković, Z. Baščarević, T.S. Barudžija, J.N. Jovićević FORMATION OF MgO/Mg(OH) ₂ NANOSTRUCTURES BY MOLTEN SALT ELECTROLYSIS
M. Mirković, J. Maletaškić, S. Nenadović, Lj. Kljajević, P. Vulić, B. Matović GRAIN MORPHOLOGY OF LOW TEMPERATURE TREATED HYDROXYAPATITE MATERIAL
I. Radović, M. Kragović, M. Stojmenović, M. Rosić, F. Veljković, A. Stajčić, V. Dodevski CHARACTERIZATION OF SiO ₂ CERAMIC POWDER SYNTHESIZED BY INCORPORATION OF A PORE GENERATOR INTO THE ACTIVATED CARBON

P-19

THE EFFECTS OF MILLING MEDIA ON MORPHOLOGICAL AND STRUCTURAL CHANGES IN MECHANICALLY ACTIVATED ZnO

<u>Nenad Nikolić</u>¹, Maja Šćepanović², Mirjana Grujić-Brojčin², Katarina Vojisavljević¹, Tatjana Srećković¹

¹Institute for Multidisciplinary Research, University of Belgrade, Serbia ²Center for Solid State Physics and New Materials, Institute of Physics, University of Belgrade, Serbia

Mechanical activation (MA), as a simple and low-cost method for modifying physico-chemical properties of disperse systems, is often used for obtaining powders. Prolonged milling in high-energy mills, necessary for obtaining nanoparticles, leads to contamination of the starting material, and it can be used as an additional route for introducing the milling assembly material as the desired dopant into a powder.

In the present work morphological and structural characteristics of ZnO nanopowders obtained by MA in a high-energy planetary ball mill with stainless steel (Fe), Y-stabilized zirconium oxide (Zr) and tungsten carbide (W) vials and balls were investigated. Knowing that microstructural characteristics of mechanically milled ZnO powder have strongly depended on milling conditions. The milling has been performed in a continual regime in air, with following conditions: the rotation speed of the disk was 400 rpm, ball-to-powder mass ratio was 40:1, and milling time was 300 min. The samples were characterized by scanning electron microscopy (SEM), equipped with an EDS, X-ray diffraction (XRD), Raman and UV-vis spectroscopy. In order to investigate the type of intrinsic defects and impurities introduced by milling, both milled and thermally treated milled ZnO were analyzed.

According to the SEM, the particles of various sizes (100–500 nm) were present in the sample before milling. After milling significant changes in particle shapes and sizes and very pronounced tendency to adhesion in agglomerates, with dimensions in the range of submicron up to a few micrometers, has been noticed.

The phase analysis of both milled and thermally treated milled samples of powders indicates the presence of wurtzite ZnO refined in $P6_{3mc}$ space group [1]. The XRD patterns of milled samples of Fe-, W- and Zr-doped ZnO do not reveal the presence of other ZnO phases. On other side, in thermally treated milled samples of W- and Fe-doped ZnO the ZnWO₄ (samartinite, P2/c) and cubic spinel (*Fd-3m*) are present, respectively. In thermally treated milled Zr-doped sample monoclinic and tetragonal ZrO₂ ($P2_1/c$ and $P4_2/nmc$) are present, whereas ZnZrO₃ structures could not be refined due to very low peak intensities [2].

1. M. Šćepanović, M. Grujić-Brojčin, et al., J. Raman Spectrosc., 41 (2010) 914

2. K. Vojisavljević, M. Šćepanović, et al., J. Phys.: Condens. Matter, 20 (2008) 475202