Magnetic Field Dependence Of Anisotropy Of In-plane Angular Magnetoresistance Of Electron-doped Sr_{1-x}La_xCuO₂ Thin Films

V. P. Jovanović¹, H. Raffy², Z. Z. Li², G. Remenyi³ and P. Monceau³

¹Institute of Physics, Pregrevica 118, Belgrade, Serbia ²Laboratoire de Physique des Solides, UMR8502-CNRS, Université Paris-Sud, 91405 Orsay, France ³Institut Néel, CNRS, Grenoble, France

Abstract. We studied the normal state magnetoresistance of underdoped superconducting epitaxial $Sr_{1-x}La_xCuO_2$ thin films by applying a high magnetic field up to 22 T parallel to the CuO_2 planes and by varying the orientation of a field of given intensity in order to probe the underlying spin system. This infinite layer compound which has the simplest structure of all the cuprates presents a monotonic negative in-plane magnetoresistance with an anisotropic angular dependence which depends on the doping level [1] and on the field intensity [2]. Angular dependence of the in-plane magnetoresistance at highest magnetic fields is the same for films with different doping levels [2]. We compare our observations with the corresponding ones for the other electron-doped family $Ln_{2-x}Ce_xCuO_4$ (Ln=Nd, Pr, La) and we attribute them to a manifestation of antiferromagnetism which appears to be only due to spins in the CuO_2 planes.

REFERENCES

- 1. Jovanović, V. P., Fruchter, L., Li Z. Z., and Raffy H., Phys. Rev. B 81, 134520-134527 (2010).
- 2. Jovanović, V. P., Raffy H., Remenyi G., Li Z. Z., Monceau P., to be published.

66