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ABSTRACT

Deep Polynomial Neural Networks (DPNNs) represent a novel family of function approx-
imators that have demonstrated promising results in a variety of challenging tasks, in-
cluding image generation, face verification, and 3D mesh representation learning. De-
spite their recent introduction to the field of Deep Learning, there are still many aspects of
DPNNs that warrant further exploration in order to solidify their standing among other Deep
Learning architectures. One such aspect is the investigation of regularization techniques.
Regularization plays a crucial role in improving the generalization ability of a model, reduc-
ing overfitting, and aiding in the reduction of network redundancy through the introduction
of stochasticity. However, the application of regularization techniques to DPNNs remains
largely unexplored. Strongly motivated by this gap in the current understanding, this the-
sis aims to provide an introductory exploration into how regularization can be applied to
DPNNs. Two regularization methods, explicit rank reduction and dropout regularization,
are proposed and evaluated. Explicit rank reduction involves reducing the rank of parame-
ter tensors in DPNNs, while dropout regularization involves randomly omitting elements of
parameter tensors during training. Experimental evaluation on the MNIST and CIFAR10
datasets under varying levels of noise addition and adversarial attacks reveals that DPNNs
are impressively resilient to adversarial perturbations. Furthermore, they perform better
and overfit less when regularized with explicit rank reduction, while dropout regularization
typically leads to a degradation in performance. This endeavor serves as a comprehen-
sive foundation, offering valuable insights and findings that will significantly contribute to
and stimulate future research in this domain.

SUBJECT AREA: Computer Vision

KEYWORDS: Deep Learning, Deep Polynomial Neural Networks, Regularization, Explicit
Rank Reduction, Dropout, Tensors





ΠΕΡΙΛΗΨΗ

Τα Βαθιά Πολυωνυμικά Νευρωνικά Δίκτυα (ΒΠΝΔ) αντιπροσωπεύουν μια νέα οικογένεια
συναρτήσεωνπου έχουν επιδείξει πολλά υποσχόμενα αποτελέσματα σε μια ποικιλία απαιτη-
τικών εργασιών, όπως η παραγωγή εικόνων, η επαλήθευση προσώπου και η εκμάθηση
αναπαράστασης 3D mesh. Παρά την πρόσφατη εισαγωγή τους στον τομέα της Βαθιάς
Μηχανικής Μάθησης, εξακολουθούν να υπάρχουν πολλές πτυχές των ΒΠΝΔ που χρήζουν
περαιτέρω εξερεύνησης προκειμένου να εδραιώσουν τη θέση τους μεταξύ άλλων αρχιτεκτο-
νικών ΒαθιάςΜάθησης. Μια τέτοια πτυχή είναι η διερεύνηση των τεχνικών κανονικοποίησης.
Η κανονικοποίησηπαίζει κρίσιμο ρόλο στη βελτίωση της ικανότητας γενίκευσης ενός μοντέ-
λου, στη μείωση της υπερπροσαρμογής και στη βοήθεια όσον αφορά στη μείωση του
πλεονασμού του δικτύου μέσω της εισαγωγής στοχαστικότητας. Ωστόσο, η εφαρμογή
τεχνικών κανονικοποίησης στα ΒΠΝΔ παραμένει σε μεγάλο βαθμό ανεξερεύνητη. Με
έντονο κίνητρο από το συγκεκριμένο κενό στην τρέχουσα βιβλιογραφία, αυτή η διατριβή
στοχεύει να προσφέρει μια εισαγωγική διερεύνηση του τρόπου με τον οποίο η κανονικοποίη-
ση μπορεί να εφαρμοστεί στα ΒΠΝΔ. Προτείνονται και αξιολογούνται δύο μέθοδοι κανονικο-
ποίησης, η χειροκίνητη μείωση βαθμού και η εφαρμογή του dropout. Η χειροκίνητη μείωση
βαθμού περιλαμβάνει τη μείωση του βαθμού των τανυστών παραμέτρων στα ΒΠΝΔ, ενώ
η κανονικοποίηση μέσω dropout περιλαμβάνει την τυχαία αδρανοποίηση στοιχείων των
τανυστών παραμέτρων κατά τη διάρκεια της εκπαίδευσης του δικτύου. Η πειραματική
αξιολόγηση στα σύνολα δεδομένων MNIST και CIFAR10 κάτω από διαφορετικά επίπεδα
προσθήκης θορύβου και κακόβουλων επιθέσεων αποκαλύπτει ότι τα ΒΠΝΔ είναι εντυπωσι-
ακά ανθεκτικά σε εκείνα τα είδη επιθέσεων. Επιπλέον, τα μοντέλα αποδίδουν καλύτερα και
υπερπροσαρμόζονται λιγότερο όταν κανονικοποιούνται με χειροκίνητη μείωση βαθμού,
ενώ η κανονικοποίηση μέσω dropout συνήθως οδηγεί σε υποβάθμιση της απόδοσης.
Αυτή η προσπάθεια σκοπεύει να χρησιμεύσει ως ένα ολοκληρωμένο θεμέλιο, προσφέρο-
ντας πολύτιμες γνώσεις και ευρήματα που θα συμβάλλουν σημαντικά και θα παρακινήσουν
τη μελλοντική έρευνα σε αυτόν τον τομέα.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Μηχανική Όραση

ΛΕΞΕΙΣΚΛΕΙΔΙΑ: ΒαθιάΜηχανικήΜάθηση, Βαθιά ΠολυωνυμικάΝευρωνικά Δίκτυα, Κανο-
νικοποίηση, Χειροκίνητη Μείωση Βαθμού, Dropout, Τανυστές
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An Introduction to Randomizing Deep Polynomial Neural Networks

1. INTRODUCTION

Deep Polynomial Neural Networks (DPNNs), also known as Π−Nets, are a novel class
of function approximators based on polynomial expansions. They are polynomial neu-
ral networks, meaning the output is a high-order polynomial of the input. Despite being
a recent addition to the field of Deep Learning, DPNNs have already demonstrated im-
pressive results. These networks have proven to be highly expressive and efficient in a
variety of tasks and signals, including images, graphs, and audio. Remarkably, they have
achieved these results without the use of non-linear activation functions. Furthermore,
when DPNNs are used in conjunction with activation functions, they have produced state-
of-the-art results in challenging tasks such as image generation, face verification, and 3D
mesh representation learning. This early success of DPNNs underscores their potential
as powerful tools in the Deep Learning toolbox [4].

As a novel class, DPNNs have opened up a new frontier in the field of Deep Learning
and their early success is indeed promising. However, it is important to note that these
networks are still in their infancy. A comprehensive understanding of their full potential is
yet to be achieved and will require extensive investigation and experimentation. Some re-
search directions may include exploring different tensor decompositions to further reduce
the number of parameters, investigating the impact of different activation functions on the
performance of DPNNs, seeking for ways to mitigate overfitting and network redundancy
and further studying the theoretical properties of these networks.

Motivated by the existing research gap in the field of DPNNs, we dedicate this thesis to
exploring the potential of introducing randomization to these networks. Our study focuses
on two distinct methods of stochastically regularizing the networks. The first method in-
volves explicitly reducing the rank of the parameter tensors within the network, thereby
simplifying its structure and potentially improving its generalization capabilities. The sec-
ond method applies dropout regularization to the network’s parameters, a technique that
has proven effective in preventing overfitting in other types of neural networks.

In this study, we conduct a comprehensive series of experiments on two widely recog-
nized datasets: MNIST and CIFAR10. Our experimental design incorporates multiple
levels of Gaussian Noise addition, providing a robust test of the models’ performance un-
der various conditions. Furthermore, we subject the models to three distinct adversarial
attacks: Fast Gradient Sign Method (FGSM), Basic Iterative Method (BIM), and Projected
Gradient Descent (PGD). This rigorous testing approach aims to extract valuable insights
regarding the resilience of DPNNs when faced with noise perturbations and adversarial
attacks. Our findings shed light on the impact of different regularization architectures on
the models. We observe notable variations in model performance, which leads us to draw
several conclusions about the relationship between regularization architectures andmodel
resilience.
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The rest of the thesis is organised as follows:

• Chapter 2 provides a comprehensive background on the mathematical foundations,
history, and definitions of Deep Polynomial Neural Networks, various regularization
schemes, and two influential papers that significantly motivated this thesis.

• Chapter 3 delves into the thesis’s research objective and analyses the proposed
methods for regularizing DPNNs.

• Chapter 4 details the experiments conducted and their respective results.

• Chapter 5 concludes the thesis.

• The appendix includes charts from all conducted experiments.
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2. BACKGROUND AND RELATED WORK

In this chapter, we provide a comprehensive overview of the theoretical and empirical
knowledge necessary to understand the research on Deep Polynomial Neural Networks
and Regularization in Deep Learning. The chapter is divided into four sections. Firstly, we
cover the preliminary notation and knowledge required for understanding tensors and ten-
sor decompositions. Additionally, we provide a quick overview of the essence of low-rank
representations of data in machine learning [37]. We explain how low-rankness can be
used to reduce computational complexity and we present two of the most popular meth-
ods for low-rankness. Secondly, we explore the history and evolution of Deep Polynomial
Neural Networks, including a discussion of some key concepts and architectures, such as
Deep Convolutional Neural Networks and Vanilla Polynomial Networks. Thirdly, we exam-
ine the concept of regularization in deep learning, including its definition and various cat-
egories and types of regularizers, such as Implicit, Explicit, Deterministic and Stochastic
Regularization. Lastly, we delve into our main thesis motivator, by providing an overview
of two major papers, ”Tensor Dropout for Robust Learning” [26] and ”On the Implicit Bias
of Dropout” [35]. By exploring these key topics, this chapter aims to provide the necessary
background knowledge and contextual understanding of the subject matter that underpins
the subsequent sections of the thesis.
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2.1 Preliminaries

2.1.1 Notation

We symbolize:

• Scalars by lowercase non-bold letters, e.g: x.

• Vectors by lowercase bold letters, e.g: yyy.

• The vector of all ones, for any integer d, as 111d ∈ Rd

• Matrices by uppercase non-bold letters, e.g: M .

• Tensors by uppercase bold letters, e.g: UUU .

• The outer product of xxx ∈ Ro and yyy ∈ Rk as xxx⊗ yyy ∈ Ro×k.

• TheHadamard product ofA ∈ RI×N andB ∈ RI×N asA∗B and is equal toA(i,j)B(i,j)

for the (i, j) element.

• The Khatri-Rao product of matrices A ∈ RI×N and B ∈ RJ×N as A ⊙ B. The prod-
uct yields a matrix of dimensions (IJ × N). If we have a set of matrices {A[m] ∈
RIm×N}Mm=1, we denote the product as

⊙M
m=1 A[m].

• The mode − m vector product of a tensor TTT with a vector uuu ∈ RIm , as TTT ×m uuu ∈
RI1×I2×···×Im−1×Im+1×···×IM that results in a tensor of order M − 1. For more than one
vectors, we denote TTT ×1 uuu

(1) ×2 uuu
(2) ×3 · · · ×M uuu(M) as TTT

∏m
m=1 ×muuu

(m).

• The rank of a real-valued matrix X ∈ RI×J as rank(X). It is equivalently defined as:

– The number of linearly independent columns of X.
– The number of linearly independent rows of X.

The above definition immediately implies that ifX ∈ RI×J , then rank(X) ≤ min(I, J).
If rank(X) = min(I, J), then X is full-rank.

• For a matrix X ∈ Rd1×d2, diag(X) ∈ Rmin{d1,d2} as its diagonal elements. Similarly,
for a vector xxx ∈ Rd, diag(xxx) ∈ Rd×d is a diagonal matrix with xxx on its diagonal.

• ∥xxx∥ as the l2-norm of vector xxx and ∥X∥ as the spectral norm of a matrix X.

• The Bernoulli distribution, parametrized by a single parameter p, as Ber(p), where p
represents the probability of success in a single trial.

• An unknown distribution, with uppercase, bold and calligraphic letters, e.g: DDD.
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2.1.2 Tensors

2.1.2.1 Definition

Tensors are multidimensional arrays that extend the concept of vectors and matrices
to higher dimensions. They serve as a foundational tool in numerous areas, including
physics, mathematics, computer science, and machine learning. The versatility and ex-
pressive power of tensors make them essential for modeling and analyzing complex phe-
nomena [9] [48].

Formally, a tensor of order n is an entity that possesses n indices and can be described
as an n−dimensional array of numbers. That said, the order of a tensor is the number of
indices (dimensions) needed to address its elements. Each dimension is called a mode.
Moreover, an N th order tensor has N indices, with each index addressing a mode of TTT .
If we assume that TTT is real-valued, it is defined over the tensor space RI1×I2×···×IN , where
In ∈ Z for n = 1, 2, . . . , N . An element (i1, i2, . . . , iN) of tensor TTT ∈ RI1×I2×···×IN is ac-
cessed as TTT i1,i2,...,iN . This corresponds to viewing a tensor as a multi-dimensional array in
RI1×I2×···×IN .

2.1.2.2 Tensors vs. Matrices

Although tensors and matrices share similarities, they have distinct characteristics [6].
Matrices are two-dimensional arrays that represent linear transformations between vector
spaces; thus they are a special case of tensors where the order is two. Tensors, on the
other hand, can have any order, enabling them to capture higher-dimensional relationships
in a more comprehensive manner. In terms of operations, matrices have a well-defined
algebraic structure and adhere to specific operations such as matrix addition, subtraction,
and multiplication. These operations are performed element-wise or using matrix-specific
rules (e.g., matrix multiplication). Tensors, however, have their own set of operations
tailored to their multidimensional nature. These operations include tensor addition, ten-
sor contraction, tensor outer product, and additionally allow computations across multiple
indices and dimensions, providing a powerful means for manipulating and analyzing com-
plex data structures.
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2.1.3 Low-Rankness

Low-rank representation of data has become an important topic in machine learning due
to its effectiveness in reducing the dimensionality of data [21] [24]. In many applications,
such as image and video processing, large datasets can be computationally expensive
and time-consuming to analyze. By reducing the rank of the data matrices, it is possible
to compress and represent the data in a more compact form, while retaining important
information.

In practice, not all data matrices that represent data sets are exactly low-rank. The ob-
served matrix can deviate from the low-rank structure for several reasons, including noise,
outliers, and non-linear structures underlying the data. In these cases, the value of the
low-rankness paradigm is, for example, to effectively approximate the observed matrix
with a low-rank matrix expressed as a product of two factor matrices.

Low-rank representation has been used in various machine learning tasks such as clus-
tering, classification, and anomaly detection. In clustering, for example, low-rank repre-
sentation has been used to identify subgroups within a larger dataset. In classification,
low-rank representation has been used to reduce the complexity of high-dimensional data
and improve the accuracy of classification models. In anomaly detection, low-rank repre-
sentation has been used to identify outliers in a dataset.

One of the most popular methods for low-rank representation is principal component anal-
ysis (PCA) [12]. PCA is a linear technique that decomposes the data matrix into a set of
orthogonal eigenvectors, ordered by their corresponding eigenvalues. The first few eigen-
vectors correspond to the most significant dimensions of the data, while the remaining
eigenvectors capture the noise or less significant dimensions. PCA has been widely used
in many machine learning applications due to its simplicity and effectiveness.

Another popularmethod for low-rank representation is singular value decomposition (SVD)
[10]. SVD is a matrix factorization technique that decomposes the data matrix into three
matrices: a left singular matrix, a diagonal matrix of singular values and a right singular
matrix. SVD has been used in various machine learning applications such as recommen-
dation systems, image processing, and natural language processing.

Overall, low-rank matrix decompositions have a multitude of valuable applications in ma-
chine learning. With the potential to acquire knowledge from small amounts of data and
providing the capacity to fill in missing information, these decompositions hold significant
power. Additionally, unlike several other models for machine learning, the rapid compu-
tation of low-rank matrix decompositions has been significantly developed. Even though
they come with a few limitations, they can always be used as a building block for more
advanced machine learning models. This is because they can give an interpretable, low-
dimensional representation of very high-dimensional data.
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2.1.4 Tensor Decompositions

Tensor decompositions extend the concept of matrix decompositions to higher-order ten-
sors. They are mathematical methods used to analyze tensors by providing a framework
for representing and understanding complex relationships among multiple variables. By
decomposing tensors into simpler components, tensor decompositions enable the extrac-
tion of meaningful patterns and insights from the data [39]. Some of the most known
tensor decompositions include Canonical-Polyadic (CP) [19], also known as PARAFAC
[17], CANDECOMP [3] or CANDECOMP/PARAFAC decomposition and Tucker [19] [52]
decomposition. In the current thesis, we are interested in both understanding and utilizing
the aforementioned CP decomposition.

2.1.4.1 CP Decomposition

Canonical Polyadic (CP) decomposition [19] is a technique used in multi-dimensional data
analysis in which a multi-dimensional tensor is decomposed into a sum of rank-one ten-
sors. Each rank-one tensor is composed of the product of a vector from each mode or
dimension.

Consider a weight tensor WWW ∈ RA×B×C , where rank(WWW ) = R. The CP decomposition
of this tensor involves finding three tensors UUU ∈ RA×R, VVV ∈ RB×R and KKK ∈ RC×R, such
that WWW can be expressed as the sum of the outer products of the rth column vectors of
tensors UUU , VVV , andWWW respectively:

WWW =
R∑

r=1

ururur ⊗ vrvrvr ⊗wrwrwr (2.1)

2.2 Deep Polynomial Neural Networks

2.2.1 A glance to the past

Over the past decade, deep learning has reached unprecedented heights of success [30]
[34] [8] [43]. When it comes to tasks like image recognition and computer vision, Deep
Convolutional Neural Networks (DCNNs) have become extremely popular [47] [42] [50]
[18] [11]. However, some DCNN architectures lack interpretability and explainability, while
others are not able to capture the long-term dependencies and temporal dynamics in se-
quential data, such as speech and video [55] [25] [1]. Vanilla Polynomial Neural Networks
(PNNs) [22] offer a solution to this problem, but have not been widely adopted yet, due to
their relatively shallow architectures.

Researchers sought to exceed this limitation by integrating DCNNs and PNNs, thus es-
tablishing Deep Polynomial Neural Networks (DPNNs) [4]. In this architecture, there are
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layers designed to extract local features using convolution operations, combined with poly-
nomial activation functions to capture non-linear relationships between the features, sim-
ilar to PNNs. This combination of DCNNs and PNNs allows the network to learn more
complex representations of the data and has shown remarkable performance on a wide
range of tasks. In this section, we will further explore the individual components of DCNNs
and PNNs.

2.2.1.1 Deep Convolutional Neural Networks (DCNNs)

Deep Convolutional Neural Network (DCNN) [13], is one of the most successful types of
neural networks and has achieved state-of-the-art results for both generative and discrim-
inative machine learning tasks.

The key feature of DCNNs is the use of convolutional layers, which are designed to de-
tect local patterns within an image. Each convolutional layer consists of a set of filters,
which are convolved with the input image to produce a set of activation maps. The filters
are learned during the training process, and their values determine which patterns in the
input image will activate the corresponding feature map. This process allows the network
to learn increasingly complex and abstract features as it progresses through the layers.
In addition to convolutional layers, DCNNs typically include other types of layers such as
pooling layers, which downsample the feature maps to reduce the spatial dimensionality
[53], and fully connected layers, which map the high-level features to the output classes.
Eventually, all the aforementioned components make them well-suited for tasks such as
image recognition, where the input data has a complex hierarchical structure.

2.2.1.2 Vanilla Polynomial Networks

Polynomial neural networks are a natural extension of the Group Method of Data Han-
dling (GMDH) [32]. The idea of using polynomial activation functions in neural networks
dates back to the 1960s, with the development of the PNN architecture by Prof. Alexey G.
Ivakhnenko. The PNN is a type of feedforward neural network where each neuron uses
a polynomial activation function. These functions are designed to capture the non-linear
relationships between the input features and the output, allowing the network to learn com-
plex representations of the data.

The GMDH algorithm was introduced in the 1970s as a method for automatically selecting
and combining polynomial models of different orders [22]. The idea is to use a divide-and-
conquer approach to break down a complex problem into smaller sub-problems, and then
use polynomial models of increasing order to fit the data at each level of the hierarchy.
The resulting model is a combination of the polynomial models at each level, with the co-
efficients of the polynomials learned through a recursive algorithm.
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In the context of neural networks, the GMDH algorithm can be used to automatically se-
lect the optimal set of input features and the appropriate order of the polynomial activation
functions. The GMDH-based PNN architecture uses the GMDH algorithm to construct a
hierarchical model of polynomial neurons, where each neuron is a polynomial function of
a subset of the input features. The output of the network is obtained by combining the
outputs of the polynomial neurons at each level of the hierarchy [44].

2.2.2 Definition

In the new family of Π−Nets, the output is a high-order polynomial of the input introduced.
The unknown parameters in Π-Nets, which are naturally represented by high-order ten-
sors, are estimated through a collective tensor factorization with factors sharing. Such
proposed factorization techniques contributed to the avoidance of the combinatorial ex-
plosion in the number of parameters of polynomial activation functions.

More specifically, the authors on ”Deep Polynomial Neural Networks” [4] wanted to create
a function approximator where each element of the output xj, with j ∈ [1, o] is expressed
as a polynomial of all the input elements zi, with i ∈ [1, d]. That is, they wanted to learn a
function G : Rd → Ro of order N ∈ N , such that:

xj = G(zzz)j = bj +www
[1]T

j zzz + zzzTW
[2]
j zzz +WWW

[3]
j ×1 zzz ×2 zzz ×3 zzz + · · ·+WWW

[N ]
j

N∏
n=1

×nzzz (2.2)

where bj ∈ R and {WWW [n]
j ∈ R

∏n
m=1 ×md}Nn=1 are parameters for approximating the output xj.

Concretely, by vectorizing (2.2) we get:

xxx = G(zzz) =
N∑

n=1

(WWW [n]

n+1∏
j=2

×jzzz) + bbb (2.3)

where bbb ∈ Ro and {WWW [n] ∈ Ro×
∏n

m=1 ×md}Nn=1 are the learnable parameters.

There are two main architectures proposed in order to build efficient DPNNs:

1. Expressing the function approximation as a single polynomial by using CP tensor
decomposition (see 2.1.4.1) on the parameters.

2. Expressing the function approximation as a product of lower-degree polynomials.
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2.2.2.1 Single Polynomial

CCP (Coupled CP decomposition)

In order to avoid factorizing each parameter tensorWWW [n] individually, the authors proposed
a method to jointly factorize all the parameter tensors, via a coupled CP decomposition
with a specific pattern of factor sharing. Let’s say that we have a third order approximation
(N = 3) and that the parameter tensors admit the following coupled CP decomposition
with the factors corresponding to lower order levels of approximation being shared across
all parameter tensors:

• First level of approximation: W [1] = CUT
[1].

• Second level of approximation will result in WWW [2] by combining two weight tensors:
WWW

[2]
1:2 +WWW

[2]
1:3. WWW

[2]
1:2 represents the parameters associated with the second-order in-

teractions across the first and second levels of approximation. It captures the inter-
actions between neurons in the first and second layer of the network. Similarly,WWW [2]

1:3

represents the parameters associated with the second-order interactions across the
first and third levels of approximation. It captures the interactions between neurons
in the first and the third layer of the network. By enforcing the CP decomposition of
the above tensors to share the factor with tensors corresponding to lower-order of
approximation we obtain in matrix form:

WWW [2] = C(U[3] ⊙ U[1])
T + C(U[2] ⊙ U[1])

T

• Third level of approximation: WWW [3] = C(U[3] ⊙ U[2] ⊙ U[1])
T

Note that the parameters are C ∈ Ro×k and U[m] ∈ Rd×k for m = 1, 2, 3. By combining all
of the above levels of approximation with the equation (2.3), we finally end up with:

G(zzz) = bbb+ CUT
[1]zzz + C(U[3] ⊙ U[1])

T (zzz ⊙ zzz)+

C(U[2] ⊙ U[1])
T (zzz ⊙ zzz) + C(U[3] ⊙ U[2] ⊙ U[1])

T (zzz ⊙ zzz ⊙ zzz)
(2.4)

If we have a set of N matrices {A[ν]R
Iν×K}Nν=1 and {B[ν]R

Iν×L}Nν=1, the following equality
holds:

(
N⊙
ν=1

A[ν])
T · (

N⊙
ν=1

B[ν])
T = (AT

[1] · B[1]) ∗ · · · ∗ (AT
[N ] · B[N ]) (2.5)

Therefore, If we apply (2.5) to (2.4), we obtain:

G(zzz) = bbb+ C{(UT
[3]zzz) ∗ [(UT

[2]zzz) ∗ (UT
[1]zzz)+

UT
[1]zzz] + (UT

[2]zzz) ∗ (UT
[1]zzz) + UT

[1]zzz}
(2.6)

and we can finally construct a corresponding neural network that represents it. The net-
work’s structure is illustrated in figure 2.1. The recursive relationship considering the N th

order approximation is:
xxxn = (U[n]zzz) ∗ xxxn−1 + xxxn−1 (2.7)
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for n ∈ N+, n ≤ N where :

• zzz ∈ Rd is the input signal.

• xxxn ∈ Ro is the output after n recursive iterations.

• U[n] ∈ Ro×d is the nth parameter matrix.

• xxx1 = U[1]zzz

The resulting equation will be:

xxx = G(zzz) = Cxxxn + bbb (2.8)

where :

• G(zzz) : Rd → Ro is the polynomial output of the input zzz.

• C ∈ Rk×o and bbb ∈ Ro.

Note that Un, C and bbb are learnable parameters.

Figure 2.1: Schematic illustration of CCP for third order approximation.
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NCP (Nested coupled CP decomposition)

While CCP decomposition involves decomposing two or more tensors simultaneously us-
ing a shared factor matrix, NCP decomposition on the other hand, is an extension of cou-
pled CP decomposition that allows for a hierarchical factorization of the data. That means
that each tensor can be decomposed into multiple layers of shared and unique factors.
In other words, the shared factors that are identified in the first level of the decomposition
are further decomposed into their own shared and unique factors in the second level, and
so on. The authors introduced some learnable hyperparameters {bbb[n] ∈ Rω}Nn=1, which act
as scaling factors for each parameter tensor. That said, the equation (2.3) is transformed
to:

G(zzz) =
N∑

n=1

(WWW [n] ×2 bbb[N+1−n]

n+2∏
j=3

×jzzz) + βββ (2.9)

with {WWW [n] ∈ Ro×ω×
∏n

m=1 ×md}Nn=1.

Similarly to CCP, the resulting model can be formulated in a recursive relation as follows:

xxxn = (U[n]zzz) ∗ (S[n]xxxn−1 +B[n]bbb[n]) (2.10)

for n ∈ N+, n ≤ N where :

• zzz ∈ Rd is the input signal.

• xxxn ∈ Ro is the output after n recursive iterations.

• U[n] ∈ Ro×d is the nth parameter matrix.

• S[n] ∈ Ro×o, B[n] ∈ Ro×ω, bbb[n] ∈ Rω

• xxx1 = (U[1]zzz) ∗ (B[1]bbb[1])

And of course, the final outcome after N iterations will still be G(zzz) as mentioned above.
Note that U[n], S[n], B[n] and bbb[n] are learnable parameters.
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Variations of CCP and NCP decompositions

There is a wide array of architectures for both CCP and NCP that hold significant po-
tential for theoretical analysis and experimental investigation. In the realm of CCP, two
notable variations emerge: the CCP-no-skip and CCP-bias architectures.

The CCP-no-skip model bears a strong resemblance to the original CCP architecture,
with the primary distinction being the absence of the additional skip-connection term:

xxxn = (U[n]zzz) ∗ xxxn−1 (2.11)

In the CCP-bias formulation, there exists a bias term that enables the short circuiting of
the CP terms to the output:

xxxn = (U[n]zzz) ∗ (xxxn−1 + bbb[n]) (2.12)

Regarding NCP decomposition, inspired by the skip-connections inherent in the standard
CCP architecture, scholars have introduced the NCP-skip model. This model incorporates
the traditional NCP formulation and augments it with a skip-connection, thereby enhancing
its expressivity:

xxxn = (U[n]zzz) ∗ (S[n]xxxn−1 +B[n]bbb[n]) + V[n]xxxn−1 (2.13)

where V[n] ∈ Ro×o.

2.2.2.2 Product of Polynomials

Instead of expressing the function approximation as a single polynomial, the product of
polynomials formulation gathers successive blocks of polynomials and connects them by
passing the output of the ith polynomial as the input to the (i + 1)th polynomial. Note
that the single polynomial model is increasing the degree of the polynomial by applying
hadamard product to a linear combination of the initial input, while the product of polyno-
mials stacks N polynomials of, let’s say, degree D and results to a total order of DN . It is
worth mentioning that the above example was trivial, since this formulation does not re-
quire the polynomial-blocks to have the same order. Moreover, researchers have proven
that not only it requires much fewer parameters for achieving the same order of approxima-
tion, but it also allows using different decompositions in contrast to the single polynomial
architecture.
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2.3 Regularization in Deep Learning

2.3.1 What is regularization?

Deep Learning has become a dominant approach for tackling complex challenges across
various domains, such as computer vision, natural language processing (NLP) and speech
recognition. It is worth noting, that deep neural networks are capable of learning millions,
billions or even trillions of parameters while building a model and can be highly flexible.
That leads us to situations where they can easily fit to the training data, often leading
to overfitting, a phenomenon where a model learns the training data too well, including
noise and random fluctuations, and is not able to generalize well to new, unseen data.
Regularization is a deep learning technique that aims tomitigate overfitting by encouraging
the model to produce simpler or smoother solutions that tend to generalize better to new
data [15].

2.3.2 Categories & types of regularizers

While there are several ways to categorize regularization procedures, the two most preva-
lent classifications are implicit versus explicit regularization and deterministic versus stochas-
tic regularization. The distinction between implicit and explicit regularization hinges on
whether the regularization is directly incorporated into the objective function. On the other
hand, the classification of deterministic versus stochastic regularization is determined by
whether the regularization employs deterministic or stochastic operations [36].

2.3.2.1 Implicit Regularization

Implicit regularization occurs naturally as a consequence of the optimization algorithm
used to train the model. This regularization is typically attributed to the optimization pro-
cess ”pushing” the model towards solutions that are less likely to overfit the training data.
This hypothesis asserts that the dynamics of the training procedure implicitly introduces a
regularization effect and therefore the explicit imposition of a regularizer is unnecessary.
Some of the most famous implicit regularization techniques are Early Stopping [54] [40]
and Stochastic Gradient Descent (SGD) [2].

In the concept of Early Stopping, during training, the model’s performance on a valida-
tion set is monitored. If the performance on the validation set stops improving or starts to
deteriorate, the training is stopped early. This prevents the model from becoming too spe-
cialized to the training data and allows it to generalize better to unseen examples. Early
stopping requires a separate validation set and the determination of an optimal point to
stop training, which is often based on a predefined number of iterations or epochs without
improvement. By finding the right balance, early stopping helps improve model perfor-
mance and generalization.
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In Stochastic Gradient Descent (SGD), instead of computing gradients using the entire
dataset, the algorithm randomly selects a subset of data (a mini-batch) to compute the gra-
dient estimate. This reduces computational requirements and speeds up training. SGD
iteratively updates the model’s parameters by taking steps in the direction of the negative
gradient with a predefined learning rate. This process continues until a stopping crite-
rion is met, such as reaching a maximum number of iterations or achieving satisfactory
performance.

2.3.2.2 Explicit Regularization

Explicit regularization works by explicitly adding a penalty term to the loss function that
the model optimizes during training. The penalty term is typically a function of the model
parameters, and the regularization strength controls the trade-off between fitting the train-
ing data well and producing a simpler or smoother model.

The simplest formula that describes the explicit regularization on an optimization prob-
lem is as follows:

min
f

N∑
i=1

L(f(xi), yi) + λR(f) (2.14)

where:

• There are N labels we want to train on.

• f is our model function.

• L is a loss function that describes the cost of predicting f(x) when the label is y.

• R(f) is a regularization term (or regularizer) which is added to a loss function.

• λ is a parameter which controls the importance of the regularization term.

Therefore, we wish to minimize the loss of our model function for all target labels with the
addition of the regularization term, in order to impose a penalty on the complexity of f . A
few of the most famous explicit regularization techniques are L1 [51], L2 [20] and Elastic
Net Regularization [57].

L1 (or Lasso) Regularization encourages the model to simultaneously minimize the loss
and the sum of the absolute values of the coefficients. This promotes sparsity in the model
by driving some coefficients to exactly zero, effectively performing feature selection.

L2 Regularization (or Ridge Regression) encourages the model to simultaneously min-
imize the loss and the sum of the squared values of the coefficients. It effectively controls
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the magnitude of the coefficients, shrinking them towards zero. L2 regularization is par-
ticularly useful for preventing overfitting and improving generalization.

Elastic Net Regularization combines L1 and L2 regularization by adding both penalty terms
to the loss function. It provides a balance between the sparsity-inducing property of L1
regularization and the coefficient magnitude control of L2 regularization. Elastic Net is
useful in scenarios where there are multiple correlated features and can effectively han-
dle feature selection and collinearity.

2.3.2.3 Deterministic vs Stochastic Regularization

Deterministic regularization involves adding a fixed penalty term to the objective function
to encourage simpler or more generalizable models. Common deterministic regularization
techniques include L1 and L2 regularization, which add an L1 or L2 norm of the weights
to the objective function.

Stochastic regularization involves introducing randomness or noise into the training pro-
cess, in order to prevent the model from overfitting to the training data. Dropout [49] and
data augmentation [46] are common stochastic regularization techniques.

Data augmentation is a technique used in machine learning to increase the diversity of
a training dataset. It involves applying transformations and modifications to existing data
samples to create synthetic samples. By introducing variations representative of real-
world scenarios, data augmentation improves themodel’s ability to generalize and perform
well on unseen examples. It helps prevent overfitting by exposing the model to a larger
and more diverse set of examples, reducing the risk of memorizing specific instances.
Data augmentation is particularly useful when labeled data is limited or when dealing with
imbalanced datasets. It enhances model performance by providing a larger and more
representative training dataset.

While this thesis covers a range of topics, particular attention is given to dropout.
Dropout is a regularization technique commonly used in neural networks to prevent over-
fitting. The term “dropout” refers to dropping out the nodes in a neural network. All the
forward and backwards connections with a dropped node are temporarily removed, thus
creating a new network architecture out of the parent network. The nodes are dropped by
a dropout probability of p.
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Figure 2.2: Neural network before and after dropout.

2.4 Thesis Motivator

In this section, we will focus on the essence of stochastic regularization for deep neural
networks, by introducing two papers that were a powerful motivator for the development
of this thesis. By presenting these papers, we hope to provide a thorough understanding
of the background that supports the contributions made in this thesis.

2.4.1 Tensor Dropout for Robust Learning

This paper introduces a novel approach to improving the robustness of deep neural net-
works to both adversarial and random perturbations [26]. The approach involves using
tensor regression layers instead of flattening and fully-connected layers, which allows for
the preservation of the structure of multidimensional data. A higher-order randomized fac-
torization method is applied to these layers, leading to the stochastic reduction of the rank
during both training and inference. More specifically, the proposed method is called ten-
sor dropout. The authors demonstrate the effectiveness of tensor dropout in improving the
inductive bias of CNNs, resulting in superior performance compared to regular deep neu-
ral network architectures with fully-connected layers and networks with tensor regression
layers that do not incorporate their proposed randomized decomposition. They establish
a new state-of-the-art for large scale regression from MRI data and show that their model
is significantly more robust to noise in the input, as well as adversarial noise, without ad-
versarial training. They also demonstrate that their proposed method implicitly regularizes
the tensor decomposition and establish theoretically and empirically the link between ten-
sor dropout and deterministic low-rank tensor regression.

One of the key takeaways from this paper that we will shift our focus to, is that the proposed
tensor dropout method applies dropout to the latent factors of the tensor decomposition,
effectively randomizing the rank of the weight tensor and providing a regularization effect
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that eventually improves the overall generalization performance of the model.

2.4.2 On the Implicit Bias of Dropout

The main focus of the paper is to understand the implicit bias in deep learning systems
through the mathematical analysis of the dropout technique [35]. While dropout has had
a tremendous success in training deep neural networks, the theoretical understanding of
how dropout provides regularization in deep learning remained limited.

More specifically, the paper investigates the bias induced:

• in single hidden-layer linear neural networks,

• in the special case of an autoencoder with tied weights,

and also provides a complete characterization of the optimization landscape induced by
dropout.

The authors propose a natural learning algorithm which consists of back-propagation with
dropout and they show that the objective function for dropout can be written as the sum
of the expected loss and a regularizer.

In mathematical terms, the authors consider the following learning problem. Let xxx ∈ Rd2

represent an input feature vector with some unknown distributionDDD such that Exxx∼DDD[xxxxxx
T ] =

I. The output label vector yyy ∈ Rd1 is given as yyy = Mxxx for someM ∈ Rd1×d2. They consider
the hypothesis class represented by a single hidden-layer linear network parametrized as
hU,V (xxx) = UV Txxx, where V ∈ Rd2×r and U ∈ Rd1×r are the weight matrices in the first and
the second layers, respectively. The goal of learning is to find weight matrices U, V that
minimize the expected loss:

l(U, V ) := Exxx∼DDD[∥yyy − hU,V (xxx)∥2] = Exxx∼DDD[∥yyy − UV Txxx∥2] (2.15)

The aforementioned natural learning algorithm is the following:

f(U, V ) := Ebi∼Ber(θ),xxx∼DDD[∥yyy −
1

θ
Udiag(bbb)V Txxx∥2] (2.16)

and they prove that the expression can also be written as:

f(U, V ) = l(U, V ) + λ

r∑
i=1

∥uuui∥2∥vvvi∥2 (2.17)

where λ = 1−θ
θ

is the regularization parameter and uuui and vvvi represent the ith columns
of U and V , respectively. By setting R(U, V ) := λ

∑r
i=1∥uuui∥2∥vvvi∥2, they prove that R (the

regularizer) is closely related to path regularization. The authors formally prove that this
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regularizer serves as an explicit instantiation of the implicit bias of dropout.

The paper contributes to the understanding of implicit regularization in deep learning sys-
tems by analyzing the behavior of dropout in a simple model. The findings of the paper
suggest that dropout induces an implicit bias that helps deep learning systems generalize
even in over-parametrized settings.
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3. METHOD

3.1 Research Objective

3.1.1 The expressiveness of DPNNs

As shown extensively in 2, Deep Polynomial Neural Networks are widely known for their
high expressive power, which is attributed to their use of polynomial activation functions
in their hidden layers. These functions allow the network to represent complex, nonlinear
relationships between the input features and the target variable by expanding the input
features into higher-order polynomial terms. This allows the network to capture higher-
order interactions between the features and learn more intricate relationships within the
data. By using polynomial expansions, DPNNs can approximate any continuous func-
tion to an arbitrary degree of accuracy, making them a powerful tool for solving complex
problems.

3.1.2 The danger of overfitting

Despite their high expressive power, one of the main challenges associated with the use
of deep polynomial networks is overfitting. The flexibility provided by the polynomial ac-
tivation functions makes these networks highly susceptible to overfitting, which occurs
when the model becomes too complex and captures noise in the training data instead
of generalizing to new data. In particular, high-order polynomials are significantly prone
to overfitting, especially when the data do not have sufficient variability or the hypothesis
space is large. This occurs because high-order polynomials have a large number of coeffi-
cients, which can be used to fit even the smallest variations in the training data. However,
when presented with new data, the network may perform poorly due to its inability to gen-
eralize beyond the training data. Therefore, it is essential to carefully balance the model’s
complexity with its generalization performance to avoid overfitting.

3.2 Methodology

In our research, we experiment with the classic DPNN implementation using the plain CCP
decomposition, as shown in recursive formula (2.7). Furthermore, our codebase is based
on a minimal DPNN implementation, using only linear transformation layers. However,
for those interested in tackling more substantial datasets and achieving state-of-the-art
results, exploration of more intricate architectures, such as these ones, is encouraged.

Focusing on the methodology, in order to mitigate the risk of overfitting and improve the
generalization ability of DPNNs on new, unseen data, we aim to apply two levels of regu-
larization:

S. Chalkias 43

https://github.com/polynomial-nets/tutorial-2022-intro-polynomial-nets/blob/master/pytorch/Minimum_example_pytorch.ipynb
https://github.com/grigorisg9gr/polynomial_nets


An Introduction to Randomizing Deep Polynomial Neural Networks

1. Explicitly control the rank of the weight tensors, in order to create low rank represen-
tations of the parameters.

2. Add dropout to the model’s weights as an additional regularizer.

Each one of the regularization levels will be thoroughly discussed in this chapter.

3.2.1 Explicit rank control

Consider a third order approximation of an input vector zzz, done with plain CCP decompo-
sition. Based on (2.7), the recursive formula will result in:

G(zzz) = Cx3x3x3 + b

where,
xxx3 = (U[3]zzz) ∗ xxx2 + xxx2

xxx2 = (U[2]zzz) ∗ xxx1 + xxx1

and finally,
xxx1 = (U[1]zzz)

The schematic illustration is depicted in figure 2.1. Note that U[i], 1 ≤ i ≤ 3 are the weight
matrices of the network. For example, if we want to build a t−order DPNN, we should add
t consecutive layers.

Let’s say that U[i] ∈ RN×M , 1 ≤ i ≤ 3. It is important to consider that the rank of each one
of the weight matrices is at most min(N,M), since the rank of a matrix is the number of
its linearly independent rows or columns. We can try to explicitly reduce the rank of U[i] by
decomposing it to two smaller matrices, such that each U[i] is decomposed to the product
B[i]A

T
[i], where A[i] ∈ RM×k and B[i] ∈ RN×k, k ≪ N,M . That way, the rank of the matrix

product B[i]A
T
[i] is at most equal to the minimum of the rank of matrix A[i] and the rank of

matrix B[i]; thus the total rank cannot be more than k ≪ rank(U[i]). By applying this de-

Figure 3.1: Low rank representation of U matrix.

composition, we manage to add a regularization layer to the current DPNN architecture,
by explicitly representing the model’s parameter matrices with lower rank structures. The
modified version of CCP is illustrated in schema 3.2.

S. Chalkias 44



An Introduction to Randomizing Deep Polynomial Neural Networks

Figure 3.2: Schematic illustration of modified CCP for third order approximation.

3.2.2 Dropout Regularizer

As seen in subsection 2.4.2, the authors of paper ”On the Implicit Bias of Dropout” math-
ematically prove that the dropout technique serves as a regularizer in two architectures:

• In single hidden-layer linear neural networks.

• In the special case of an autoencoder with tied weights.

We will try to extend this claim, by adding the family of DPNNs. Let’s say we have a nth

degree DPNN with linear layers, A ∈ RM×k, B ∈ RN×k and input vector zzz ∈ RM . Following
(2.7), the recursive formula will be as follows:

x0x0x0 = B[0]A
T
[0]zzz

x1x1x1 = (B[1]A
T
[1]zzz) ∗ x0x0x0 + x0x0x0 = (B[1]A

T
[1]zzz +111N) ∗ x0x0x0 = (B[1]A

T
[1]zzz +111N) ∗B[0]A

T
[0]zzz

x2x2x2 = (B[2]A
T
[2]zzz) ∗ x1x1x1 + x1x1x1 = (B[2]A

T
[2]zzz +111N) ∗ (B[1]A

T
[1]zzz +111N) ∗B[0]A

T
[0]zzz

...

xnxnxn = (B[n]A
T
[n]zzz +111N) ∗ (B[n−1]A

T
[n−1]zzz +111N) ∗ . . . ∗ (B[1]A

T
[1]zzz +111N) ∗B[0]A

T
[0]zzz ⇔

xnxnxn = [Πn−1
i=0 (B[n−i]A

T
[n−i]zzz +111N)] ∗B[0]A

T
[0]zzz (3.1)

By plugging DPNN’s recursive formula (3.1) in equations (2.15) and (2.16), we end up
with a modified expected loss l(A,B) and objective function f(A,B), as seen below. Note
that for simplicity, we set diag(bbb) to D, for every diagonal matrix that has its items in the
diagonal sampled from the Bernoulli distribution. In the same style as above, for a nth

degree DPNN with the same A, B layers and dropout regularization, we have:

x0x0x0 =
1

θ
B[0]D[0]A

T
[0]zzz
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x1x1x1 =
1

θ
B[1]D[1]A

T
[1]zzz ∗ x0x0x0 + x0x0x0 = (

1

θ
B[1]D[1]A

T
[1]zzz +111N) ∗ x0x0x0

...

xnxnxn = (
1

θ
B[n]D[n]A

T
[n]zzz +111N) ∗ (

1

θ
B[n−1]D[n−1]A

T
[n−1]zzz +111N) ∗ . . .

. . . ∗ (1
θ
B[1]D[1]A

T
[1]zzz +111N) ∗

1

θ
B[0]D[0]A

T
[0]zzz ⇔

xnxnxn =
1

θ
(B[n]D[n]A

T
[n]zzz + θ111N) ∗

1

θ
(B[n−1]D[n−1]A

T
[n−1]zzz + θ111N) ∗ . . .

. . . ∗ 1

θ
(B[1]D[1]A

T
[1]zzz + θ111N) ∗

1

θ
B[0]D[0]A

T
[0]zzz ⇔

xnxnxn =
1

θn+1
(B[n]D[n]A

T
[n]zzz + θ111N) ∗ (B[n−1]D[n−1]A

T
[n−1]zzz + θ111N) ∗ . . .

. . . ∗ (B[1]D[1]A
T
[1]zzz + θ111N) ∗B[0]D[0]A

T
[0]zzz ⇔

xnxnxn =
1

θn+1
[Πn−1

i=0 (B[n−i]D[n−i]A
T
[n−i]zzz + θ111N)] ∗B[0]D[0]A

T
[0]zzz (3.2)

The neural network created by the equation (3.2) is illustrated in figure 3.3. All in all, by

Figure 3.3: Schematic illustration of modified CCP with dropout regularization, for third
order approximation.

plugging (3.2) to the corresponding loss l(A,B) and objective f(A,B), we will end up with:

l(A,B) := Exxx∼DDD[∥yyy − [Πn−1
i=0 (B[n−i]A

T
[n−i]zzz +111N)] ∗B[0]A

T
[0]zzz∥2]

f(A,B) := Ebi∼Ber(θ),xxx∼DDD[∥yyy −
1

θn+1
[Πn−1

i=0 (B[n−i]D[n−i]A
T
[n−i]zzz + θ111N)] ∗B[0]D[0]A

T
[0]zzz∥2]

Likewise, as shown in 2.17, we expect l(A,B) and f(A,B) to be connected by a similar
formula and provide a legitimate regularization effect related to the one proven on the
paper ”On the Implicit Bias of Dropout”. The mathematical proof of the aforementioned
relationship will not be further developed in this thesis, as it is left as future work.
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4. EXPERIMENTS

4.1 Datasets

For our experiments, we utilized the DPNN architecture for entirely image classification
tasks. In terms of datasets, we used two of the most famous classification datasets:
MNIST [31] & CIFAR10 [27].

4.1.1 MNIST

MNIST (Modified National Institute of Standards and Technology), is a dataset of hand-
written digits that consists of:

• a training set of 60.000 images,

• a test set of 10.000 images.

All images are grayscale and have dimensions of 28x28 pixels. Each image in the dataset
represents a handwritten digit from 0 to 9 (10 classes), and the goal is to classify each
image correctly.

4.1.2 CIFAR10

CIFAR10 is a dataset of small color images. It consists of:

• a training set of 50.000 images,

• a test set of 10.000 images.

Each image is a color image represented in RGB format and has dimensions of 32x32
pixels and belongs to one of 10 classes (airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, and truck). The goal is again to classify each image correctly into one of these
10 classes.

4.2 Implementation Details

4.2.1 General

We used Google Colab & Kaggle as the environments on which the experiments ran.
The code is written in Python and is built with PyTorch framework [38]. Before training,
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the images are normalized to having mean=0.0 and std=1.0. The chosen optimization
method is Stochastic Gradient Descent (SGD) with a learning rate of 0.001. Regarding
the loss function, we used both Cross Entropy Loss (CEL) [45] and Mean Squared Error
(MSE) [7] [14] [23] [29]. The weights of the network are being initialized using the Xavier
normal method [16] and for the flowing gradients, gradient clipping is being used, with a
clipping threshold of 10 (maximum 2-norm value) [56]. Various configurations have been
tested, for an epoch range of 10 - 20. The degrees of the polynomial neural networks we
experimented with are 8 and 16.

4.2.2 Data Perturbation

In order to test both the robustness of our network and its capabilities of generalizing
when trained and tested on real-world data, we applied two categories of data perturbation
techniques:

• The first category involves adding Gaussian Noise to our data.

• The second category focuses on three gradient-based adversarial attacks:

1. Fast Gradient Sign Method.

2. Basic Iterative Method.

3. Projected Gradient Descent.

4.2.2.1 Addition of Gaussian Noise

Gaussian Noise is a statistical noise with a Gaussian (normal) distribution. It means that
the noise values are distributed in a normal Gaussian way. Of course, the Gaussian noise
is added to both training and test data, as it better simulates real-world data, where noise
and other forms of data distortion affect them [5]. The probability density function p of a
Gaussian random variable z is calculated by the following formula:

pG(z) =
1

σ
√
2π

e
−(z−µ)2

2σ2

where:

• where z represents the grey level,

• µ the mean grey value,

• σ the standard deviation.
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The addition of Gaussian noise to the input data acts as a form of regularization by in-
troducing small perturbations that force the model to learn more robust and generalizable
features. The noise effectively adds a level of uncertainty to the training data, forcing the
model to learn more robust representations of the data that are less dependent on the
specific details of the training samples. As a result, the model becomes less likely to over-
fit to the training data and can better generalize to new, unseen data.

Additionally, adding Gaussian noise to the input data during training can also help to re-
duce the impact of outliers or anomalies in the data. Outliers or anomalies are data that
are significantly different from the rest of the data and can have a disproportionate in-
fluence on the model’s training. By adding noise to the input data, the impact of outliers
can be reduced, as the added noise can help to smooth out the effects of these data points.

However, it’s worth noting that the amount of noise added to the input data should be
carefully chosen to balance the benefits of regularization with the potential for degrada-
tion in performance due to excessive noise. Adding too much noise can negatively impact
the model’s performance, as it may make it more difficult for the model to learn the un-
derlying patterns in the data. Conversely, adding too little noise may not provide enough
regularization to prevent overfitting.

All in all, adding Gaussian noise to both the training and test data can act as a form of reg-
ularization that can help prevent overfitting and improve the generalization performance of
machine learning models. By introducing small perturbations to the input data, the model
is forced to learn more robust and generalizable features that are less dependent on the
specific details of the training data.

We tested the robustness of our model to Gaussian noise added to both train and test
data, using the Signal-To-Noise (SNR) ratio, where σ is the variance and is defined as
follows:

SNR =
σ2
signal

σ2
noise

We gradually increase the added noise in the train set, while maintaining the noise in the
test set steady (SNR=50), in order to best simulate real-world data. For a given digit, the
gradual addition of noise is depicted in figure 4.1, via different SNR values. As we can
observe, for high values of SNR, the signal’s strength is much larger than the strength
of the added noise, resulting in minor distortion of the images. That way, anyone can
recognize the number depicted in the images without difficulty. However, as the SNR value
approaches 1, the signal’s strength is pretty comparable to the strength of the added noise,
resulting in very distorted images, where it is difficult not only to recognize the illustrated
numbers, but also to even distinguish the digits from the noisy images.
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Figure 4.1: Gradual addition of noise for a random digit from MNIST dataset.

4.2.2.2 Adversarial Attacks

Adversarial attacks are a well-established technique for assessing the robustness of deep
learning models. Such attacks involve perturbing input data in a manner that is not readily
perceivable by humans but leads to themisclassification of the input by the targetedmodel.
While this may appear counterintuitive, there are several reasons why adversarial attacks
are vital for evaluating deep learning models:

1. Adversarial attacks can identify security vulnerabilities in deep learning models that
malicious actors could exploit. This is especially important in safety-critical appli-
cations such as autonomous vehicles and medical diagnosis, where an incorrect
prediction or decision could result in dire consequences. By conducting adversarial
attacks, researchers can identify weaknesses in deep learning models and develop
appropriate countermeasures.

2. Adversarial attacks can serve as a debugging tool for identifying weaknesses in the
model’s architecture or training process. Through intentionally perturbing input data
and observing the model’s response, researchers can gain insights into how the
model makes decisions and where improvements are needed.

3. Adversarial attacks can be used to enhance the robustness of deep learning models
by training them to be more resilient to attacks. By exposing models to a diverse
range of adversarial examples during training, researchers can improve the model’s
ability to generalize and make accurate predictions on new and unseen data.

In our experiments, we have used three adversarial attacks to assess the robustness of
our deep learning model:
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• The Fast Gradient Sign Method (FGSM) is a popular method that involves perturbing
the input data using the sign of the gradient of the model’s loss function with respect
to the input data. This approach generates adversarial examples that are designed
to cause the model to misclassify the input data in a specific manner [28]. The noise
is calculated by multiplying the sign of the gradient with respect to the image we want
to perturb by a small constant epsilon. As epsilon increases, the model is more likely
to be fooled, but the perturbations become easier to identify as well:

advxxx = xxx+ ϵ · sign(∇xxx, J(Θ,xxx,yyy))

where xxx is the original image, ϵ is a very small number, ∇xxx is the gradient function,
J is the loss function, Θ is the model’s weights and yyy is the true label.

• The Basic Iterative Method (BIM) is an iterative extension of FGSM that involves
applying multiple small perturbations to the input data over several iterations [33].
This approach often leads to more effective adversarial examples than FGSM.

• Projected Gradient Descent (PGD) is a more sophisticated attack method that em-
ploys multiple iterations of BIMwhile constraining the perturbations within a specified
epsilon range. PGD is among the most powerful adversarial attacks and can create
highly effective adversarial examples that can fool deep learning models with high
confidence [33].

In order to perform the adversarial attacks, we used foolbox library [41]. The sign of the
optimization gradient multiplied by the perturbation magnitude is added to the image in a
single iteration. The perturbations used are of magnitudes λ× 10−1λ ∈ {2, 8, 16}. For the
iterative methods BIM and PGD, we set the step size to 1 and the number of iterations to
min(λ + 4, 1.25λ). The model was trained without any adversarial training on the training
set; the adversarial noise was added to the test samples.

4.3 Experimental Setup

In the current section, we provide a detailed description of the experimental agenda used
in this thesis. This information allows readers to evaluate the reliability and validity of the
study and to replicate the experiments themselves. The experiments palette involves:

• Experimenting with and without the aforementioned regularization layers in the plain
CCP, DPNN architecture.

• Testing both Mean Squared Error (MSE) and Cross Entropy Loss (CEL) as loss
functions.

• Running the experiments with {8, 16}−degree deep polynomial networks in order to
demonstrate their generalization ability.

• Testing all of the above with and without perturbations (added noise and adversarial
attacks).

S. Chalkias 51

https://github.com/bethgelab/foolbox


An Introduction to Randomizing Deep Polynomial Neural Networks

4.4 Results

4.4.1 Explicit Rank Reduction

We commence our experiments by observing the rank of the weight matrices of two DPNN
architectures:

1. The classic CCP architecture, as analyzed in (2.8).

2. The proposed modified CCP architecture with reduced rank in the weight matrices,
as shown in subsection 3.2.1.

We have trained a 16−degree DPNN on MNIST and an 8−degree DPNN on CIFAR10 with
and without explicit rank regularization, using the Cross Entropy Loss metric. As men-
tioned in 4.1.1, each image on the MNIST dataset is a 28× 28 grayscale image, therefore
each linear layer on our network has a width of 28× 28× 1 = 784. Similarly, as mentioned
in 4.1.2, each image is a 32×32 RGB image (3 channels), so each linear layer has a width
of 32× 32× 3 = 3072. That said, we want to inspect if the weight matrices of the network
are full-rank. One simple way to investigate this, is to calculate the mean of the singular
values for the set of weight matrices using Singular Value Decomposition (SVD). Then, we
could display a stemplot where the vertical bars (stems) represent the magnitude of the
mean singular values. If all the mean singular values are non-zero and relatively large, it
suggests that the matrices are full-rank or they are close to being full-rank. On the other
hand, if some mean singular values are close to zero or significantly smaller than others,
it may indicate that the matrices have a lower effective rank or are close to being rank-
deficient.

In figures 1 and 2, we can observe that the mean of the singular values shows that each of
the weight matrices is close to being full-rank. In figures 3, 4, 5, 6, 7 and 8 we have trained
the network with exactly the same parameters, but its architecture follows the guidelines
described in 3.2.1. We displayed the same stemplots for the layers A[i], B[i] and their
product B[i]A

T
[i]. The corresponding A and B layers that are used to explicitly reduce the

rank of the network’s weight matrices, are tested by having a wide range of ranks. More
specifically:

• For the MNIST dataset, given that 784 is the maximum rank that a linear layer’s
weights can have, we tested our network with the ranks:

{78, 98, 112, 157, 196, 261, 392, 784}

that correspond to the rank being 1

10
,
1

8
,
1

7
,
1

5
,
1

4
,
1

3
,
1

2
and 1

1
of the full rank.

• For the CIFAR10 dataset, given that 3072 is the maximum rank that a linear layer’s
weights can have, we tested our network with the ranks:

{307, 384, 439, 614, 768, 1024, 1536, 3072}
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that again correspond to the rank being 1
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of the full rank.

The same pattern is observed for all the ranks tested. Both implementations (regularized
and non-regularized) showed that each individual weight matrix is close to being full-rank.
Moving on, the test results regarding whether the regularization through explicit rank con-
trol actually benefits the model are of vital importance, as they will prove whether this kind
of regularization is applicable and works for DPNNs.

As depicted in Figures 9 and 10, we present the training and testing performance of
the model on the MNIST dataset, respectively. It is evident that even when the rank of
the model’s weight matrices is approximately 1

3
of the full rank, the model maintains effi-

ciency comparable to the original, non-regularized model. Interestingly, for larger ranks,
the model exhibits enhanced performance relative to the non-regularized version. Con-
versely, for smaller ranks, while the model’s efficiency does not match that of the initial
model, the discrepancy in scores between it and the non-regularized model remains min-
imal.

In figure 11, we see the maximum scores (accuracy) our model achieved as the weight
matrices’ ranks change. We can obviously notice the upwards trend of both the train-
ing and testing lines, as the rank increases. However, not only the scores increase, but
also the gap between the training and testing lines increases, giving a sign that we can-
not ignore, as it indicates that the model is prone to overfitting more easily. The chart
12 depicts this overfitting over ranks trend separately for each configuration, in order to
showcase the relation between each regularization configuration and overfitting. The fig-
ures 13, 14, 15 and 16 illustrate the same experiments for the CIFAR10 dataset. All in
all, from the aforementioned diagrams, we can confidently conclude to the fact that the
model performs better and overfits less when regularized with explicit rank reduction on
its weight matrices. It is noteworthy that the same conclusions were reached when the
model was tested using the Mean Squared Error metric.

4.4.2 Dropout Regularization

We continue our experiments by applying dropout regularization as seen in [35] in the
classic CCP architecture, as analyzed in (2.8). We have trained a 16−degree DPNN on
MNIST and on CIFAR10, using the Mean Squared Error metric with the following config-
urations:

1. Without explicit rank reduction (parameter tensors are full-rank), but with dropout
regularization.

2. With explicit rank reduction, but no-dropout regularization.

This study aims to evaluate the impact of dropout regularization on Deep Polynomial
Neural Networks (DPNNs), specifically for the MNIST and CIFAR10 datasets. The goal
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is to determine whether dropout regularization enhances or hinders the performance of
DPNNs. Consider for example a DPNN with a standard CCP architecture that does not
employ explicit rank reduction on its parameter tensors. If we introduce dropout between
its layers with a 90% Bernoulli success probability, we can then compare this configura-
tion with another DPNN. This second DPNN also has a standard CCP architecture but
does not use dropout regularization. Instead, it implements a 10% explicit rank reduction,
meaning the output retains 90% of its full size. In essence, both configurations result in
roughly the same level of output sparsity. However, the source of this sparsity differs: in
the first setup, it arises from explicit rank reduction, while in the second, it is due to the
application of dropout to the network’s layers.

That said, the experiments agenda is as follows:

1. We employ explicit rank reduction in the parameter tensors of the DPNNs. This
approach allows us to systematically decrease the complexity of the network by
reducing the full rank of the parameter tensors by a factor ranging from 10% to 40%.

2. We incorporate dropout regularization into the DPNNs. We vary the success prob-
ability of the dropout from 90% to 60%.

3. We monitor the performance of DPNNs that have undergone training with dropout
regularization and no explicit rank reduction.

4. We compare these dropout regularized architectures with those where the rank has
been explicitly reduced but no dropout regularization has been applied, offering a
comparative analysis of their performances.

Performance Monitoring Figures 17 - 22 illustrate the training process of DPNNs un-
der various conditions on the MNIST dataset. The training data encompasses a range of
Signal-to-Noise Ratio (SNR) values, providing a comprehensive overview of the network’s
performance under different noise levels. Furthermore, the figures also explore the im-
pact of varying configurations of dropout regularization on the DPNN’s training process.
Similar to the previous, the figures 23 - 28 illustrate the respective experimental results for
the CIFAR10 dataset.

Several observations can be drawn from the diagrams. Primarily, in relation to the MNIST
dataset, it is evident that as the Bernoulli probability of success escalates, neither over-
fitting nor underfitting is discernible. However, this increase is accompanied by a dete-
rioration in the network’s performance. Furthermore, a decrease in the Signal-to-Noise
Ratio (SNR) value results in the training and testing curves converging towards one an-
other. This convergence signifies a more stable training process and reduced overfitting.
Despite these improvements, a slight degradation in performance is observed as well.
Lastly, with respect to SNR, it is noteworthy that for values less than 50, the curves begin
to diverge, indicating increased instability in the training process. Furthermore, when ex-
amining the CIFAR10 dataset, we can largely infer the same conclusions. The only minor
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deviation observed from the MNIST dataset is associated with the Bernoulli probability of
success. As this probability escalates, the rate at which the network’s performance dete-
riorates also exhibits a corresponding increase.

Architecture Comparison Figures 29 - 36 illustrate a comparative study of the two
aforementioned DPNN architectures: one featuring explicit rank reduction in its parameter
tensors, and the other employing dropout regularization. Each chart depicts the accuracy
that these DPNN models achieved at various SNR values after 15 epochs of training for
a specific Bernoulli probability of success, ranging from 90% to 60%. The networks are
trained using the MNIST dataset. Moreover, figures 37 - 44 extend this study with the
same model comparisons on the CIFAR10 dataset.

Upon analysis of both the MNIST and CIFAR10 datasets, it is observed that the training
and testing curves of both models exhibit a similar trend. This trend is particularly notice-
able as the Signal-to-Noise Ratio (SNR) values and the Bernoulli probability of success
(θ) decrease. Interestingly, the model incorporating dropout regularization consistently
underperforms in comparison to the model with explicit rank reduction. This performance
gap widens as θ decreases. The primary reason for this divergence in performance can
be attributed to the precipitous decline in the efficacy of the dropout regularized model.
In contrast, the model with explicit rank reduction demonstrates only minor performance
degradation.

What if we applied dropout regularization to a subset of the model’s parameter
tensors? This query stems from the observation that, at least for the MNIST and
CIFAR10 datasets, dropout regularization does not enhance the performance of DPNNs
as explicit rank reduction does. To investigate this further, we conducted an experiment
on the MNIST dataset. The results of this experiment are presented in charts 45, 46 and
47.

As anticipated, a discernible pattern emerges in the performance of the models. The
model employing explicit rank reduction, without the use of dropout regularization, exhibits
superior performance. Following closely is the model that applies dropout regularization to
only the latter half of the parameter tensors. The model that applies dropout regularization
to all its parameter tensors trails behind. This trend suggests a correlation between the
extent of dropout application and model performance. As dropout is applied to fewer pa-
rameter tensors, the model’s performance appears to converge towards that of the model
without any dropout regularization.
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4.4.3 Effect of Adversarial Attacks

As analysed thoroughly in 4.2.2, Gaussian noise perturbations and adversarial attacks
serve as a litmus test for the robustness of deep learning models, revealing their suscep-
tibility to minute, carefully crafted perturbations in the input data, and thereby driving the
development of more resilient models and contributing to the overall advancement of the
field.

Our investigation has unveiled the remarkable resilience of Deep Polynomial Neural Net-
works (DPNNs) to noise attacks. As illustrated in the preceding sections, the performance
of the models under test improved as the Signal-to-Noise Ratio (SNR) values ranged from
100 to 50. This trend is clearly visible in most of the presented charts. However, beyond
an SNR value of 50, there was a noticeable decline in performance. Despite this drop, it is
important to highlight that DPNNs successfully covered a broad spectrum of SNR values
that mimic real-world phenomena. Intriguingly, not only did they maintain performance
across this range, but they also enhanced it.

Additionally, DPNNs demonstrated respectful resilience against adversarial attacks of the
FGSM, BIM, and PGD varieties. As the value of lambda (λ) increased, we observed a
small, consistent decrement in performance across all types of attacks, with the variance
remaining minimal. To provide a comprehensive understanding of these observations, we
present four representative charts:

1. Table 4.1 provides an evaluation of the DPNN architecture utilizing the CP decom-
position, devoid of any explicit rank reduction or dropout regularization. The model
was initially subjected to testing on the MNIST dataset using Cross Entropy Loss,
without any adversarial attacks, as depicted in the top right box. Subsequently,
the model was exposed to FGSM, BIM, and PGD adversarial attacks with varying
lambda values of 2, 8, and 16.

2. Table 4.2 provides an evaluation of the DPNN architecture with the same configura-
tions as above, but with Mean Squared Error as a loss function.

3. Table 4.3 offers a comparative analysis between two variants of the Deep Polynomial
Neural Network (DPNN) architecture: one that incorporates explicit rank reduction
and another that utilizes dropout regularization. Both models were evaluated on the
MNIST dataset.

4. Table 4.4 illustrates the same comparison, but themodels are tested on the CIFAR10
dataset.
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Table 4.1: Real-valued network performance on MNIST for FGSM, BIM and PGD attacks
with λ ∈ {2, 8, 16}. We report classification accuracy on test set in all cases. The model
was trained using Cross Entropy Loss metric on MNIST dataset.

Table 4.2: Real-valued network performance on MNIST for FGSM, BIM and PGD attacks
with λ ∈ {2, 8, 16}. We report classification accuracy on test set in all cases. The model
was trained using Mean Squared Error metric on MNIST dataset.

Table 4.3: Real-valued network performance on MNIST for FGSM, BIM and PGD attacks
with λ ∈ {2, 8, 16}. We report classification accuracy on test set in all cases. The models
were trained for 15 epochs onMNIST dataset usingMean Squared Error metric and a SNR
value of 80%. The results in black represent the performance of the model incorporating
a 20% explicit rank reduction, while the data in red depict the performance of the model
employing an 80% dropout regularization on its parameter tensors.
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Table 4.4: Real-valued network performance on MNIST for FGSM, BIM and PGD attacks
with λ ∈ {2, 8, 16}. We report classification accuracy on test set in all cases. The models
were trained for 15 epochs on CIFAR10 dataset using Mean Squared Error metric and a
SNR value of 100%. The results in black represent the performance of the model incor-
porating a 10% explicit rank reduction, while the data in red depict the performance of the
model employing an 90% dropout regularization on its parameter tensors.
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5. CONCLUSION AND FUTURE WORK

In this thesis, we investigate the uncharted territory of regularizing Deep Polynomial Neural
Networks (DPNNs). We propose two methods to regularize DPNNs: explicit rank reduc-
tion and dropout regularization. Explicit rank reduction reduces the rank of the parameter
tensors in DPNNs, while dropout regularization randomly drops out elements of the param-
eter tensors during training. We conduct experiments on MNIST and CIFAR10 datasets to
compare the performance of the two methods under different noise levels and adversarial
attacks.

The main findings of the thesis are:

1. DPNNs perform better and overfit less when regularized with explicit rank reduction
on their parameter tensors.

2. Dropout regularization does not enhance the performance of DPNNs as explicit rank
reduction does; on the contrary, it degrades it.

3. Explicit rank reduction outperforms dropout regularization in all cases, especially
when the noise level is high or the dropout regularization variable θ (Bernoulli prob-
ability of success) is low.

4. Applying dropout regularization to a subset of the parameter tensors may improve
the performance of DPNNs compared to applying it to all parameter tensors.

5. The addition of noise to both the training and test data surprisingly results in en-
hanced performance. This observation suggests that DPNNs exhibit a high degree
of resilience to noise attacks. Furthermore, it indicates their ability to generalize
effectively to real-world data, which is often imperfect and noisy.

6. DPNNs demonstrate robustness against three well-known adversarial attacks, specif-
ically FGSM, BIM and PGD. This resilience against multiple adversarial attack strate-
gies further underscores the potential of DPNNs as a reliable tool in the field of deep
learning.

This thesis contributes to the literature on DPNNs by providing a comprehensive analysis
of two regularization methods and their effects on the robustness and generalization of
DPNNs. However, it is important to note that our observations should not be generalized.
The complexity and diversity of DPNN configurations, as well as the vast array of datasets
(particularly those of higher complexity), necessitate further testing to draw definitive con-
clusions. Therefore, we suggest some directions for future work, such as exploring other
types of regularization methods, investigating the implicit bias of dropout regularization
paired with the architecture of DPNNs, and applying DPNNs to other domains and more
complex tasks.
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ABBREVIATIONS - ACRONYMS

BIM Basic Iterative Method

CANDECOMP Canonical Decomposition

CCP Coupled Canonical-Polyadic

CEL Cross Entropy Loss

CIFAR Canadian Institute For Advanced Research

CNN Convolutional Neural Network

CP Canonical-Polyadic

DCNN Deep Convolutional Neural Network

DPNN Deep Polynomial Neural Network

FGSM Fast Gradient Sign Method

GMDH Group Method of Data Handling

MNIST Modified National Institute of Standards and Technology database

MSE Mean Squared Error

NCP Nested Coupled Canonical-Polyadic

NLP Natural Language Processing

PARAFAC Parallel Factor Analysis

PCA Principal Component Analysis

PGD Projected Gradient Descent

PNN Polynomial Neural Network

RGB Red, Green, Blue

SGD Stochastic Gradient Descent

SNR Signal-To-Noise Ratio

SVD Singular Value Decomposition

ΒΠΝΔ Βαθιά Πολυωνυμικά Νευρωνικά Δίκτυα
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ANNEX

Figure 1: Stemplot illustrating the mean of the singular values for the set of weight matri-
ces in a 16-degree DPNN without regularization, using the Singular Value Decomposition
(SVD). The network is trained on the MNIST dataset.
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Figure 2: Stemplot illustrating the mean of the singular values for the set of weight matri-
ces in a 8-degree DPNN without regularization, using the Singular Value Decomposition
(SVD). The network is trained on the CIFAR10 dataset.

Figure 3: Stemplot illustrating the mean of the singular values for the first set of weight
matrices (A[i]) in a 16-degree DPNN with explicit rank regularization, using the Singular
Value Decomposition (SVD). The network is trained on the MNIST dataset.
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Figure 4: Stemplot illustrating the mean of the singular values for the second set of weight
matrices (B[i]) in a 16-degree DPNN with explicit rank regularization, using the Singular
Value Decomposition (SVD). The network is trained on the MNIST dataset.
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Figure 5: Stemplot illustrating the mean of the singular values for the entire set of weight
matrices (B[i]A

T
[i]) in a 16-degree DPNN with explicit rank regularization, using the Singular

Value Decomposition (SVD). The network is trained on the MNIST dataset.
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Figure 6: Stemplot illustrating the mean of the singular values for the first set of weight
matrices (A[i]) in a 8-degree DPNN with explicit rank regularization, using the Singular
Value Decomposition (SVD). The network is trained on the CIFAR10 dataset.

Figure 7: Stemplot illustrating the mean of the singular values for the second set of weight
matrices (B[i]) in a 8-degree DPNN with explicit rank regularization, using the Singular
Value Decomposition (SVD). The network is trained on the CIFAR10 dataset.
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Figure 8: Stemplot illustrating the mean of the singular values for the entire set of weight
matrices (B[i]A

T
[i]) in a 8-degree DPNN with explicit rank regularization, using the Singular

Value Decomposition (SVD). The network is trained on the CIFAR10 dataset.
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Figure 9: Accuracies on the training set for 15 epochs and different numbers of ranks of the
weight matrices. A 16−degree DPNN model is trained on MNIST dataset with and without
regularization using Cross Entropy Loss. The dashed line corresponds to the trial without
regularization. The continuous colored lines correspond to the trials with regularization,
which is applied via explicit rank reduction.
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Figure 10: Accuracies on the testing set for 15 epochs and different numbers of ranks of
the weight matrices. A 16−degree DPNN model is trained on MNIST dataset with and
without regularization using Cross Entropy Loss. The dashed line corresponds to the trial
without regularization. The continuous colored lines correspond to the trials with regular-
ization, which is applied via explicit rank reduction.
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Figure 11: Maximum training and testing accuracies for different numbers of rank of the
weight matrices. A 16−degree DPNN model is trained on MNIST dataset with and without
regularization using Cross Entropy Loss. The dashed lines correspond to the model’s
performance on the trial without regularization. The regularization is applied via explicit
rank reduction.

Figure 12: Comparison between the performance of the model with and without regu-
larization on MNIST. The regularization is applied via explicit rank reduction. The gap
between the training and the testing lines is analogous to the possibility of overfitting.
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Figure 13: Accuracies on the training set for 20 epochs and different numbers of ranks
of the weight matrices. A 8−degree DPNN model is trained on CIFAR10 dataset with
and without regularization using Cross Entropy Loss. The dashed line corresponds to
the trial without regularization. The continuous colored lines correspond to the trials with
regularization, which is applied via explicit rank reduction.
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Figure 14: Accuracies on the testing set for 20 epochs and different numbers of ranks
of the weight matrices. A 8−degree DPNN model is trained on CIFAR10 dataset with
and without regularization using Cross Entropy Loss. The dashed line corresponds to
the trial without regularization. The continuous colored lines correspond to the trials with
regularization, which is applied via explicit rank reduction.
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Figure 15: Maximum training and testing accuracies for different numbers of rank of the
weight matrices. A 8−degree DPNNmodel is trained on CIFAR10 dataset with and without
regularization using Cross Entropy Loss. The dashed lines correspond to the model’s
performance on the trial without regularization. The regularization is applied via explicit
rank reduction.
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Figure 16: Comparison between the performance of the model with and without regular-
ization on CIFAR10. The regularization is applied via explicit rank reduction. The gap
between the training and the testing lines is analogous to the possibility of overfitting.

S. Chalkias 75



An Introduction to Randomizing Deep Polynomial Neural Networks

Figure 17: Accuracy with respect to epochs diagram. The SNR value for the training data
is equal to 100 and the Bernoulli probability of success varies from 90% to 60%. The
network is trained on the MNIST dataset with dropout regularization, without explicit rank
reduction.
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Figure 18: Accuracy with respect to epochs diagram. The SNR value for the training
data is equal to 80 and the Bernoulli probability of success varies from 90% to 60%. The
network is trained on the MNIST dataset with dropout regularization, without explicit rank
reduction.
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Figure 19: Accuracy with respect to epochs diagram. The SNR value for the training
data is equal to 50 and the Bernoulli probability of success varies from 90% to 60%. The
network is trained on the MNIST dataset with dropout regularization, without explicit rank
reduction.
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Figure 20: Accuracy with respect to epochs diagram. The SNR value for the training
data is equal to 20 and the Bernoulli probability of success varies from 90% to 60%. The
network is trained on the MNIST dataset with dropout regularization, without explicit rank
reduction.
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Figure 21: Accuracy with respect to epochs diagram. The SNR value for the training
data is equal to 10 and the Bernoulli probability of success varies from 90% to 60%. The
network is trained on the MNIST dataset with dropout regularization, without explicit rank
reduction.
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Figure 22: Accuracy with respect to epochs diagram. The SNR value for the training
data is equal to 5 and the Bernoulli probability of success varies from 90% to 60%. The
network is trained on the MNIST dataset with dropout regularization, without explicit rank
reduction.
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Figure 23: Accuracy with respect to epochs diagram. The SNR value for the training data
is equal to 100 and the Bernoulli probability of success varies from 90% to 60%. The
network is trained on the CIFAR10 dataset with dropout regularization, without explicit
rank reduction.
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Figure 24: Accuracy with respect to epochs diagram. The SNR value for the training
data is equal to 80 and the Bernoulli probability of success varies from 90% to 60%. The
network is trained on the CIFAR10 dataset with dropout regularization, without explicit
rank reduction.
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Figure 25: Accuracy with respect to epochs diagram. The SNR value for the training
data is equal to 50 and the Bernoulli probability of success varies from 90% to 60%. The
network is trained on the CIFAR10 dataset with dropout regularization, without explicit
rank reduction.
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Figure 26: Accuracy with respect to epochs diagram. The SNR value for the training
data is equal to 20 and the Bernoulli probability of success varies from 90% to 60%. The
network is trained on the CIFAR10 dataset with dropout regularization, without explicit
rank reduction.
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Figure 27: Accuracy with respect to epochs diagram. The SNR value for the training
data is equal to 10 and the Bernoulli probability of success varies from 90% to 60%. The
network is trained on the CIFAR10 dataset with dropout regularization, without explicit
rank reduction.
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Figure 28: Accuracy with respect to epochs diagram. The SNR value for the training
data is equal to 5 and the Bernoulli probability of success varies from 90% to 60%. The
network is trained on the CIFAR10 dataset with dropout regularization, without explicit
rank reduction.
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Figure 29: This figure presents the accuracy achieved at various SNR values after 15
epochs of training. It offers a comparative study of two distinct DPNN architectures: one
featuring explicit rank reduction in its parameter tensors, and the other employing dropout
regularization. The network is trained using the MNIST dataset. For the dropout regular-
ized model, a Bernoulli probability of success set at 90% is utilized.
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Figure 30: This figure presents the accuracy achieved at various SNR values after 15
epochs of training. It offers a comparative study of two distinct DPNN architectures: one
featuring explicit rank reduction in its parameter tensors, and the other employing dropout
regularization. The network is trained using the MNIST dataset. For the dropout regular-
ized model, a Bernoulli probability of success set at 90% is utilized.
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Figure 31: This figure presents the accuracy achieved at various SNR values after 15
epochs of training. It offers a comparative study of two distinct DPNN architectures: one
featuring explicit rank reduction in its parameter tensors, and the other employing dropout
regularization. The network is trained using the MNIST dataset. For the dropout regular-
ized model, a Bernoulli probability of success set at 80% is utilized.
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Figure 32: This figure presents the accuracy achieved at various SNR values after 15
epochs of training. It offers a comparative study of two distinct DPNN architectures: one
featuring explicit rank reduction in its parameter tensors, and the other employing dropout
regularization. The network is trained using the MNIST dataset. For the dropout regular-
ized model, a Bernoulli probability of success set at 80% is utilized.
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Figure 33: This figure presents the accuracy achieved at various SNR values after 15
epochs of training. It offers a comparative study of two distinct DPNN architectures: one
featuring explicit rank reduction in its parameter tensors, and the other employing dropout
regularization. The network is trained using the MNIST dataset. For the dropout regular-
ized model, a Bernoulli probability of success set at 70% is utilized.

S. Chalkias 92



An Introduction to Randomizing Deep Polynomial Neural Networks

Figure 34: This figure presents the accuracy achieved at various SNR values after 15
epochs of training. It offers a comparative study of two distinct DPNN architectures: one
featuring explicit rank reduction in its parameter tensors, and the other employing dropout
regularization. The network is trained using the MNIST dataset. For the dropout regular-
ized model, a Bernoulli probability of success set at 70% is utilized.
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Figure 35: This figure presents the accuracy achieved at various SNR values after 15
epochs of training. It offers a comparative study of two distinct DPNN architectures: one
featuring explicit rank reduction in its parameter tensors, and the other employing dropout
regularization. The network is trained using the MNIST dataset. For the dropout regular-
ized model, a Bernoulli probability of success set at 60% is utilized.
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Figure 36: This figure presents the accuracy achieved at various SNR values after 15
epochs of training. It offers a comparative study of two distinct DPNN architectures: one
featuring explicit rank reduction in its parameter tensors, and the other employing dropout
regularization. The network is trained using the MNIST dataset. For the dropout regular-
ized model, a Bernoulli probability of success set at 60% is utilized.
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Figure 37: This figure presents the accuracy achieved at various SNR values after 15
epochs of training. It offers a comparative study of two distinct DPNN architectures: one
featuring explicit rank reduction in its parameter tensors, and the other employing dropout
regularization. The network is trained using the CIFAR10 dataset. For the dropout regu-
larized model, a Bernoulli probability of success set at 90% is utilized.
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Figure 38: This figure presents the accuracy achieved at various SNR values after 15
epochs of training. It offers a comparative study of two distinct DPNN architectures: one
featuring explicit rank reduction in its parameter tensors, and the other employing dropout
regularization. The network is trained using the CIFAR10 dataset. For the dropout regu-
larized model, a Bernoulli probability of success set at 90% is utilized.
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Figure 39: This figure presents the accuracy achieved at various SNR values after 15
epochs of training. It offers a comparative study of two distinct DPNN architectures: one
featuring explicit rank reduction in its parameter tensors, and the other employing dropout
regularization. The network is trained using the CIFAR10 dataset. For the dropout regu-
larized model, a Bernoulli probability of success set at 80% is utilized.
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Figure 40: This figure presents the accuracy achieved at various SNR values after 15
epochs of training. It offers a comparative study of two distinct DPNN architectures: one
featuring explicit rank reduction in its parameter tensors, and the other employing dropout
regularization. The network is trained using the CIFAR10 dataset. For the dropout regu-
larized model, a Bernoulli probability of success set at 80% is utilized.
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Figure 41: This figure presents the accuracy achieved at various SNR values after 15
epochs of training. It offers a comparative study of two distinct DPNN architectures: one
featuring explicit rank reduction in its parameter tensors, and the other employing dropout
regularization. The network is trained using the CIFAR10 dataset. For the dropout regu-
larized model, a Bernoulli probability of success set at 70% is utilized.
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Figure 42: This figure presents the accuracy achieved at various SNR values after 15
epochs of training. It offers a comparative study of two distinct DPNN architectures: one
featuring explicit rank reduction in its parameter tensors, and the other employing dropout
regularization. The network is trained using the CIFAR10 dataset. For the dropout regu-
larized model, a Bernoulli probability of success set at 70% is utilized.
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Figure 43: This figure presents the accuracy achieved at various SNR values after 15
epochs of training. It offers a comparative study of two distinct DPNN architectures: one
featuring explicit rank reduction in its parameter tensors, and the other employing dropout
regularization. The network is trained using the CIFAR10 dataset. For the dropout regu-
larized model, a Bernoulli probability of success set at 60% is utilized.
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Figure 44: This figure presents the accuracy achieved at various SNR values after 15
epochs of training. It offers a comparative study of two distinct DPNN architectures: one
featuring explicit rank reduction in its parameter tensors, and the other employing dropout
regularization. The network is trained using the CIFAR10 dataset. For the dropout regu-
larized model, a Bernoulli probability of success set at 60% is utilized.
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Figure 45: The graph illustrates the accuracy relative to epochs for a constant Signal-
to-Noise-Ratio (SNR=100). It compares three distinct configurations of Deep Polynomial
Neural Networks (DPNNs): The first configuration employs 20% explicit rank reduction
without any dropout regularization. The second configuration does not utilize explicit rank
reduction but applies dropout regularization (θ = 80%) to all parameter tensors. The fi-
nal configuration, similar to the second, does not use explicit rank reduction but applies
dropout regularization (θ = 80%) only to the latter half of the parameter tensors.
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Figure 46: The graph illustrates the accuracy relative to epochs for a constant Signal-
to-Noise-Ratio (SNR=100). It compares three distinct configurations of Deep Polynomial
Neural Networks (DPNNs): The first configuration employs 30% explicit rank reduction
without any dropout regularization. The second configuration does not utilize explicit rank
reduction but applies dropout regularization (θ = 70%) to all parameter tensors. The fi-
nal configuration, similar to the second, does not use explicit rank reduction but applies
dropout regularization (θ = 70%) only to the latter half of the parameter tensors.

S. Chalkias 105



An Introduction to Randomizing Deep Polynomial Neural Networks

Figure 47: The graph illustrates the accuracy relative to epochs for a constant Signal-
to-Noise-Ratio (SNR=100). It compares three distinct configurations of Deep Polynomial
Neural Networks (DPNNs): The first configuration employs 40% explicit rank reduction
without any dropout regularization. The second configuration does not utilize explicit rank
reduction but applies dropout regularization (θ = 60%) to all parameter tensors. The fi-
nal configuration, similar to the second, does not use explicit rank reduction but applies
dropout regularization (θ = 60%) only to the latter half of the parameter tensors.
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