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Individuals have heterogeneous beliefs regarding the future speed and shape of the low-carbon 
transition. In this paper, we study to what extent opinion diversity matters for aggregate capital 
investment decisions. We develop a model where firms formulate heterogeneous expectations 
around a dominant narrative, or ‘market norm’, with their dispersion increasing over a finite 
planning horizon. Our analytical and numerical results suggest that belief heterogeneity can 
significantly affect the share of low-carbon investments, with the strength of its effects non-

linearly correlated to market norms. We show that investment behaviour tends to be more 
sensitive to shocks to short-term, rather than long-term, belief heterogeneity, highlighting the 
importance of setting credible short-term targets. Finally, we find beliefs to interact strongly and 
in non-trivial ways with measures of short-termism, with increasing agents’ farsightedness not 
necessarily leading to less carbon-intensive investments under high heterogeneity.

1. Introduction

How do we expect the low-carbon transition to unroll? This question is likely to be answered in radically different ways by 
different individuals. The answer depends on their information set, their degree of trust in policy-makers, their beliefs on future 
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technological advancements, etc. Some might expect the transition to take place rapidly and in line with limiting global warming to 
1.5 °C or 2 °C (IEA, 2021; IPCC, 2022). Others might expect a more gradual dynamics, either allowing carbon-intensive assets to exit 
the economy in an orderly fashion, or to remain in smaller proportion. Others might not even have well-formulated answers, as the 
transition timeline goes beyond the span of their planning horizon.

Disagreement over what lies in the future is common and found to be significant in several spheres of economic behaviour 
(Coibion et al., 2018; Hommes, 2021; Mankiw et al., 2003; Xiong and Yan, 2010). Similarly, some recent contributions have shown 
evidence of heterogeneous expectations for what concerns transition-related beliefs (e.g. Giglio et al., 2023; Nordeng et al., 2021). 
However, these insights have yet to be incorporated in suitable modelling frameworks. Does expectation heterogeneity matter for 
the low-carbon transition dynamics?

In this paper, we address this research question by developing a model of capital investment choices with heterogeneous beliefs.1

Firms choose how to allocate investments between a high- and a low-carbon technology based on their relative expected profits, 
discounted over a finite planning horizon. Profit expectations are affected by how decision-makers perceive the future speed and 
shape of the low-carbon transition. We proxy transition-related beliefs by focusing on the expected degree of ‘stranding’ of the 
high-carbon technology, i.e. its expected utilisation rate. If the firm imagines a rapid low-carbon transition in the near future, it 
will expect the high-carbon technology to be used less than fully, and hence generate lower revenues and profits. If it expects 
instead a slow transition, it will anticipate full or close to full utilisation of carbon-intensive capital stocks. We then use a discrete 
choice model to aggregate the multiple decentralised individual investment choices and compute the overall share of low-carbon 
investments.

We introduce three main features of expectations in the attempt of capturing relevant real-world dimensions. First, a central 
transition projection exists, representing the dominant wisdom, or ‘market norm’, within the community of investors. Agents take 
this as a focal point when formulating their expectations and investment decisions (Beckert and Bronk, 2018; Schelling, 1960). This 
‘common wisdom’ can take the form of a general narrative that most agents believe to be true and that guides their investment 
decisions, which might be more or less close to the government’s stated policy objectives (Boyer, 2018; Campiglio et al., 2023). 
While we refrain from simulating co-existing conflicting narratives, we explore the implications of two distinct possible central 
projections: (i) a low-stranding scenario, roughly aligned with current policies and the expectation of a gradual transition; and (ii) a 
high-stranding scenario, entailing a more rapid transition and the achievement of net-zero emissions by mid-century.

Second, individual agents might drift from this dominant opinion, following their own beliefs. As exemplified by the wide range 
of possible decarbonisation pathways given by IPCC (2022) and other institutions (e.g. IEA, 2020c), the precise pace and shape 
of the transition is far from being well-established. Different combinations of production technologies, energy efficiency measures 
and societal changes may leave investors undecided as to what kind of business will be the most adequate for the future. Further 
uncertainties around the implementation of mitigation policies and technological developments cast doubt on the pace and steadiness 
of the low-carbon transition and force agents to formulate their own expectations around the market norm (Nemet et al., 2017). 
Hence, today’s assessment of the profit prospects of available technological options is a distribution, rather than a point value, with 
its shape depending on the strength of transition-related belief diversity. Heterogeneity in beliefs may make aggregate investment 
decisions uncoordinated, possibly contradictory, ultimately hampering the good course of the transition (Acemoglu and Jensen, 
2018; Fais et al., 2016).

Third, the degree of heterogeneity varies with the length of the time horizon considered. As shown by the literature on the term 
structure of expectations for key macroeconomic variables, diversity in expectations depends crucially on how far away in time 
agents are projecting (Binder et al., 2022; El Ouadghiri and Uctum, 2020; Patton and Timmermann, 2010). Fig. 1 confirms this 
evidence by showing how the dispersion of expectations concerning future carbon price levels increases if individuals are asked to 
provide estimates for periods further in time. We capture this stylised fact by letting the variance of expectation distribution increase 
along the planning horizon. We propose a novel logistic characterisation of this feature, building on the IPCC 6th Assessment Report 
decarbonisation scenarios (IPCC, 2022).

We then calibrate our model on 2019 data for the European Union, and derive both analytical and numerical results. We illustrate 
our findings with a sensitivity analysis based on sensible value ranges of our behavioural parameters. Our main results can be 
summarised as follows.

First, heterogeneity of transition expectations does matter, as it significantly affects firms’ investment allocation decisions. We 
find the direction and strength of this effect to depend on the underlying market norm and its associated capital stranding dynamics. 
In general, stronger belief heterogeneity will decrease the share of low-carbon investment in presence of high-stranding central ex-

pectations, and increase it when central expectations forecast low stranding. However, we also find this relationship to be strongly 
non-linear. Market norms centred around expectations of either very low or very high stranding (i.e. very slow or very rapid transi-

tion) will lock in investment behaviours, while more balanced stranding expectations are exposed to large investment swings if belief 
dispersion moves.

Second, we show how, for our benchmark calibration and for a sizeable proportion of the parameter constellation we explore, 
investment behaviours are more sensitive to shocks to short-term, rather than long-term, belief heterogeneity. This situation only 
reverses if agents are strongly far-sighted. This result suggests that policy-makers should prioritise anchoring expectations for the 
earliest periods of the transition, even if there is no clear consensus about long-term outcomes. The introduction of credible short-term

1 In what follows, we use the word ‘beliefs’ interchangeably with ‘expectations’ to insist on the idea that beliefs about the future are not model-consistent, following 
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Fig. 1. Distribution of expected carbon price in the EU Emission Trading Scheme for different time horizons. Adapted from Nemet et al. (2017), using data from 
Nordeng et al. (2021). (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

targets hence appears crucial. In addition, policy-makers risk misinterpreting the drivers of investment allocation changes (e.g. an 
increase in low-carbon investment share might be due to shocks to short-run belief heterogeneity rather than a change in market 
norms). This warrants a thorough measurement and analysis of transition-related expectations, currently missing.

Third, we find belief heterogeneity to interact strongly with measures of short-termism (high discount rate or short planning 
horizon).2 The effect of a higher discount rate on low-carbon investment share is exacerbated (mitigated) by higher heterogeneity 
if central expectations imply high (low) stranding. Belief heterogeneity can also negatively affect the impact of longer planning 
horizon, which generally increases low-carbon investment shares, by further widening the range of projections and expanding the 
diversity of opinions.

Our article contributes to better understanding the role of expectations and time preferences in defining the carbon intensity 
of capital investment choices. Several contributions rooted in neoclassical economic theory have investigated optimal investment 
decision-making in the context of the low-carbon transition, with or without uncertainty (Cai and Lontzek, 2018; Campiglio et 
al., 2022; Van den Bremer and Van der Ploeg, 2021; Vogt-Schilb et al., 2018, among others). Expectations in these models are 
usually homogeneous and model-consistent. Other contributions in the field of behavioural macroeconomics have studied transition 
dynamics allowing for belief/preference heterogeneity and stronger complexity in individual and systemic behaviours (e.g Dunz 
et al., 2021; Geisendorf, 2016; Knobloch and Mercure, 2016). A particularly relevant stream of work for us is the one studying 
the process of technological diffusion (Mercure, 2012; Mercure et al., 2016), which adopts a similar modelling approach rooted in 
discrete choice theory. However, these models tend to be governed by backward-looking (adaptive) expectations, making it difficult 
to analyse the effect of changes in longer-term thinking of economic agents. We opt for an in-between modelling strategy, able 
to capture expectations that are both forward-looking and (dynamically) heterogeneous. Our approach is similar in spirit to the 
literature developing logit/probit models of switching beliefs. This has been usually applied to issues linked to inflation expectations 
and monetary policy (De Grauwe and Macchiarelli, 2015; Franke and Westerhoff, 2018; Galanis et al., 2022; Hommes, 2021), but 
features recent applications to climate- and transition-related matters (Cafferata et al., 2021; Campiglio et al., 2023; Dávila-Fernández 
and Sordi, 2020; Guilmi et al., 2022; Zeppini, 2015).

Our treatment of transition expectations positions us close to the literature studying the ‘stranding’ of physical or financial assets 
along a low-carbon transition (Campiglio and van der Ploeg, 2022; Daumas, 2023; van der Ploeg and Rezai, 2020). To our knowledge, 
this paper is the first to incorporate capital stranding into a model with heterogeneous expectations, with most other contributions 
assuming homogeneity (see for instance Baldwin et al., 2020; Campiglio et al., 2022; Rozenberg et al., 2020). We also partly connect 
to the large field on the role of time preferences, discounting and planning horizons, in climate-related economic dynamics (see 
Groom et al. (2022) for a review). Finally, our joint representation of idiosyncratic beliefs and market norms calls out an emerging 
literature in economic sociology (Beckert and Bronk, 2018; Bronk, 2009) and macroeconomics (Andre et al., 2021; Barrero, 2022) 
that has emphasised the role of beliefs and narratives in driving economic outcomes.

The remainder of the article is structured as follows. Section 2 presents our modelling framework. Section 3 explains our calibra-

tion strategy. Section 4 discusses some analytical results and illustrates them numerically. Section 5 concludes and discusses future 
research avenues.

2 Many companies extend the time horizon considered to adopt business decisions, including investments, only up to a few years into the future (Souder et al., 
2021; Spiro, 2014). This tendency can be exacerbated by cognitive limitations, biases or norms, creating sets of incentives favouring myopia. While it has been shown 
that short-termist behaviour can slow down the development of relevant technologies and the pace of decarbonisation (Löffler et al., 2019; Nerini et al., 2017; Souder 
et al., 2016), it is yet unclear how different time preferences could interact with heterogeneous transition expectations in determining individual and aggregate capital 
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2. The model

The model is populated by a continuum of firms producing electricity 𝑒 in response to an exogenous level of electricity demand 
𝑒𝑑 , growing at a constant rate 𝑔𝐸 . Electricity can be produced by two technologies: i) a stock of capital 𝐾𝐿 running on renewable 
resources and producing low-carbon electricity, and ii) a stock of capital 𝐾𝐻 running on fossil fuels and producing high-carbon 
electricity. The subscript 𝑖 ∈ {𝐻,𝐿} denotes the technology type. The electricity produced by the two technologies, 𝑒𝑖, 𝑖 ∈ {𝐻,𝐿}, is 
identical. However, capital stocks have different productivities 𝜉𝐻 and 𝜉𝐿.3 Capacity utilisation 𝑢𝑖 =

𝑒𝑖

𝜉𝑖𝐾𝑖
∈ [0, 1], defines the extent 

to which capital stocks are used. We also define a full capacity utilisation level 𝑢𝑓
𝑖

, which can differ from one.

Firms decide how to allocate their investments in new physical capital between the two available technologies. To do so, they 
formulate expectations regarding their future profitability by exploring potential future transition scenarios. We define the space in 
which these calculations take place as ‘psychological time’ (𝑠), which takes the form of a finite planning horizon [|1; 𝑆|] to distinguish 
it from chronological time (𝑡). In other words, psychological time is simply the mental projection of the future by individuals, 
extending for a finite number of periods. This representation of a finite planning horizon is how we represent our behavioural 
understanding of short-termism. This horizon is common to all firms. Expectations by a firm are denoted using the expectations 
operator 𝔼. Chronological time 𝑡 does not move in this paper, as we investigate only the impact of expectations about the future on 
present decision-making. We thus do not use a chronological time subscript 𝑡 for convenience.

2.1. Technological return rates

We assume a continuum of small firms index by 𝑗 ∈ ℝ. Firms compare the two available technologies 𝑖 ∈ {𝐿, 𝐻} by calculating 
their unitary return rate 𝑟𝑖, i.e., the sum of the discounted stream of expected profits 𝜋𝑖,𝑗,𝑠 that can be obtained from a unit of 
technology (in our case, a unit of installed generation capacity). Firms discount profit expectations over this planning horizon with 
the same discount factor 𝛽 = 1

1+𝜌
, with 𝜌 the corporate discount rate our measure of ‘rational’ short-termism. For firm 𝑗, it writes:

𝔼𝑗 (𝑟𝑖) =
𝑆∑

𝑠=0
𝛽𝑠 𝔼(𝜋𝑖,𝑗,𝑠). (1)

Three components determine the unitary profit rate 𝜋𝑖: i) revenues; ii) capital costs; and iii) variable costs.

Revenues come from producing and selling electricity 𝑒𝑖. Electricity is sold on a wholesale market with a merit order structure. 
The energy produced by renewable sources usually comes first in the merit order, as these incur lower marginal costs than fossil-

based technologies (Figueiredo and da Silva, 2019). It means that low-carbon electricity will be sold first and, assuming it is not 
enough by itself to satisfy the entire demand (i.e. 𝑒𝑑 > 𝜉𝐿𝐾𝐿), capacity utilisation 𝑢𝐿 will be equal to 𝑢𝑓

𝐿
. The high-carbon capital 

stock will instead be used to the extent necessary to satisfy demand not already met by low-carbon electricity. That is,

𝑢𝐻 =
𝑒𝑑 − 𝑒𝐿

𝜉𝐻𝐾𝐻

. (2)

The price of electricity 𝑝𝐸 is also determined on the merit order, as the price offered by the marginal technology producing (the 
high-carbon one, typically). Hence, per-period revenues stemming from a unit of capital 𝐾𝑖 can be computed as 𝑝𝐸𝑢𝑖𝜉𝑖.

Capital costs are incurred when installing a new capital unit. The cost of installing a unit of capital 𝑖 is 𝑐𝑖. Firms require external 
finance to perform new investments. We define 𝜓𝑖 as the debt-to-investment ratio, i.e. the proportion of investment expenditure 
funded via borrowed credit. Companies must pay back the debt over the course of the loan tenure 𝐿𝑇 , together with accrued 
interests. Firms spread repayment tranches equally throughout the loan tenure period. We thus calculate a capital recovery factor 
𝛼𝑖 =

𝜄𝑖(1+𝜄𝑖)𝐿𝑇𝑖

1−(1+𝜄𝑖)𝐿𝑇𝑖
, where 𝜄 is the fixed interest rate applied on the loan. 𝛼 represents the ratio between the period repayments (inclusive 

of principal and interests) and the loan stock. Per-period capital costs for technology 𝑖 can thus be computed as 𝛼𝑖𝜓𝑖𝑐𝑖.

Variable costs in the model only arise from purchasing fossil fuels as intermediate inputs necessary to operate 𝐾𝐻 (we abstract 
for simplicity from other variable costs such as labour). We name the price of fossil fuels 𝑝𝐹 and the productivity of fossil fuels in 
producing electricity 𝜉𝐹 . Variable costs can thus be computed as 𝑝𝐹 𝜉𝐻 𝑢𝐻

𝜉𝐹
.

At time 𝑡, we can treat most of the parameters above as constant in the expected future.4 The price of electricity 𝑝𝐸 is more 
and more determined by long-term power purchase agreements and is, therefore, less subjected to uncertainty over long horizons. 
Capital productivity parameters 𝜉𝑖 are embodied in the specific vintage of capital available today. While productivity is likely to 
change in the future in more advanced capital vintages, we explicitly place ourselves in the context of an investor comparing current 
technologies and anticipating their payoffs. Sidestepping from simple productivity losses due to ageing and related maintenance 
costs, we assume investors to consider productivity parameters to be constant over their planning horizon. Finally, we treat the price 
of fossil fuels 𝑝𝐹 as exogenous, as this allows us to disentangle the effect of stranding expectations.

3 Since capital is the only production input in our model, productivities 𝜉𝐻 and 𝜉𝐿 can also be interpreted as Leontief production function coefficients.
4 In Appendix B, we extend the model by allowing for heterogeneity in beliefs on the future profitability of both technologies, which include prices of both 
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The proportion of investments covered by debt 𝜓𝑖 is decided today and remains the same. Loan duration 𝐿𝑇 and interest rate 𝜄
are negotiated with the bank today and remain constant. In other words, firms choose a fixed interest rate and do not renegotiate 
financing conditions.

We can now define the expected unitary retained profit rates5 for the two technologies as:

𝔼𝑗 (𝜋𝐿,𝑗,𝑠) = 𝑝𝐸𝜉𝐿𝑢
𝑓

𝐿
− 𝛼𝐿𝜓𝐿𝑐𝐿, (3)

𝔼𝑗 (𝜋𝐻,𝑗,𝑠) =
(

𝑝𝐸 −
𝑝𝐹

𝜉𝐹

)
𝜉𝐻 𝔼𝑗 (𝑢𝐻,𝑠) − 𝛼𝐻𝜓𝐻𝑐𝐻 , (4)

where the only variable subject to firms’ expectations is the capacity utilisation rate of the high-carbon capital stock, 𝑢𝐻 . We denote 
by 𝔼𝑗 the fact that expectations are firm-specific.

After discounting and summing the stream of expected profits over the planning horizon 𝑆 as shown in equation (1) and given 
a specific vector of expected high-carbon capacity utilisation rates {𝑢𝑠}𝑆

𝑡 , an individual firm obtains values for the expected return 
rates of its two technological options, 𝔼𝑗 (𝑟𝐻 ) and 𝔼𝑗 (𝑟𝐿). Defining

𝔼𝑗 (𝜑) = 𝔼𝑗 (𝑟𝐿) − 𝔼𝑗 (𝑟𝐻 ) (5)

as the difference between the two expected return rates, firm 𝑗 invests in a unit of 𝐾𝐿 if 𝔼𝑗 (𝜑) > 0 or in a unit of 𝐾𝐻 if 𝔼𝑗 (𝜑) < 0.

2.2. Stranding expectations

At the aggregate level, we assume stranding expectations to be heterogeneous across firms, normally distributed around a central 
expectation path and serially uncorrelated. This choice is motivated by the additive stability of independent normal distributions and 
the easy interpretation of parameters.6

Formally, this writes:

𝔼𝑗 (𝑢𝐻,𝑠) = 𝑢∗
𝐻,𝑠

+ 𝜀𝑢,𝑗,𝑠, (6)

where 𝑢∗
𝑖,𝑠

identifies a benchmark ‘central stranding’ expected path and the error term 𝜀𝑢,𝑗,𝑠 represents the idiosyncratic expectation 
of firm 𝑗. Its distribution 𝜀𝑢,𝑠 represents the diversity of expectations. It follows a normal distribution with mean 0 and variance 𝜎2, 
i.e. 𝜀𝑢,𝑠 ∼ (0, 𝜎𝑢,𝑠). We call this schedule ‘central stranding’ in that it would be the path expected if agents did not have idiosyncratic 
beliefs. This path can be considered the ongoing ‘common wisdom’ on the market that serves as a focal point for agents (Schelling, 
1960). This ‘common wisdom’ can take the form of a general narrative that most agents believe to be true and that guides their 
investment decisions (Boyer, 2018). It can also be construed as the government’s policy objective that agents use as an anchor for 
their beliefs. However, we refrain from adopting this definition, since we do not model the interactions between regulator credibility 
and investment behaviours, which may have critical implications (see Campiglio et al., 2023, on this topic). For instance, a very 
ambitious policy plan may be seen as non-credible, and increase belief heterogeneity. As a result, we interpret central expectations 
only as market norms.

2.3. Central stranding expectation

Three crucial factors contribute to determining firms’ transition expectations: i) expected growth of demand; ii) expected speed of 
development of new technologies; iii) expected long-term share of the new technology in the mix. We analyse each of them in turn.

First, firms expect a constant and positive growth rate 𝑔𝐸 of electricity demand within their planning horizon. This assumption 
is supported by energy demand forecasts, which argue that the increase in global population and the economic development of 
emerging economies require an expanding supply of electricity (Enerdata, 2021). An expansion of electricity production is also 
commonly perceived as a crucial component of decarbonisation strategies.

Second, firms expect the transition to follow an S-shaped curve, as technological transitions typically exhibit this pattern (Fouquet, 
2010; Grubb et al., 2020). New technologies often first emerge as niches within a technological paradigm dominated by the incumbent 
technology (in this case: fossil-based capital stocks). After some early adoption, expansion can accelerate due to a number of factors, 
including the decline in production costs, the diffusion of information and the growing social legitimisation of the technology 
(Geels, 2002; Geroski, 2000). In the electricity sector, network effects also play a role in facilitating adoption, as complementary 
infrastructure and policy develop to better integrate renewable technology. This growth is however limited by factors such as market 
saturation and physical capacity and slows down as we approach the ‘carrying capacity’ of the system. Expectations of low-carbon 
energy share 𝓁𝐸 = 𝑒𝐿

𝑒𝐿+𝑒𝐻
thus move logistically in psychological time 𝑠:

5 For the sake of brevity, we conflate in what follows the profit rate and the retained profit rate.
6 We also implement the model with another family of addition-stable distributions, Stable laws, whose skewness and kurtosis can be parameterised and of which the 

Normal distribution is a special case. The qualitative insights are similar. However, as Appendix A discusses, the properties of non-normal Stable distributions render 
the interpretation of results more uncertain. More general results could be found numerically using convolution products; however, we prefer to opt for addition-stable 
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Fig. 2. Illustration of central expectations on future diffusion of low-carbon energy and the associated high-carbon capital utilisation rate. (The logistic function 
defined in equation (5) has a lower asymptote of zero. In the chart, we only show the portion of the curve to the right of our starting calibration value for the share 
of low-carbon energy, 𝓁𝐸,0 = 0.22.)

𝔼(𝓁𝐸,𝑠+1) = 𝔼(𝓁𝐸,𝑠)
[
1 + 𝑏𝓁

(
1 −

𝔼(𝓁𝐸,𝑠)

𝔼(𝓁)

)]
, (7)

where 𝑏𝓁 represents the unconstrained expected speed of transition, i.e. the growth rate of 𝓁𝐸 when close to its lower asymptote and 
𝓁 represents the maximum expected share of low-carbon technologies.

Third, firms expect a less-than-full energy transition. Mainly due to the current lack of reliable large-scale energy storage tech-

nologies, some non-renewable generation capacities — able to adjust their output more rapidly than renewable technologies — will 
likely still be needed to deal with demand peaks. In addition, firms might also include radical technological breakthroughs in their 
mental scenarios (e.g. carbon capture and storage, direct air capture, geoengineering), which might result in an early deceleration of 
𝓁𝐸 . Hence, 𝔼(𝓁) is lower than 1.

Hence, given a set of expectation parameters 𝑔𝐸 , 𝑏𝓁 and 𝓁, the rational stranding path {𝑢∗𝑠}𝑆
𝑡 identifies the succession of expected 

capital utilisation rates for which: i) positive high-carbon investments 𝐼𝐻 are expected to the amount necessary to provide the 
exact amount of 𝐾𝐻 needed to satisfy demand 𝑒𝑑

𝑠 − 𝑒𝐿,𝑠 at a full capacity utilisation rate 𝑢𝑓

𝐻
, which we call 𝐾𝑑

𝐻
; ii) no premature 

decommissioning or technological re-conversion of capital stocks is desired by firms; i.e. firms do not expect negative investments. 
We can thus define central stranding expectations of high-carbon investments 𝐼∗

𝐻,𝑠
as:

𝐼∗
𝐻,𝑠

= 𝑀𝑎𝑥
[
𝐾𝑑

𝐻,𝑠
− (1 − 𝛿)𝐾∗

𝐻,𝑠
; 0

]
. (8)

Given (7) and the definition of 𝑢𝐻 given in section 2.1, we can thus write the resulting rational stranding capacity utilisation 𝑢∗
𝐻

as:

𝑢∗
𝐻,𝑠+1 =

(1 + 𝑔𝐸 )

(
𝑒𝑑
𝑠 − 𝑒𝐿,𝑠

[
1 + 𝑏𝓁

(
1 −

𝑒𝐿,𝑠

𝓁𝑒𝑑
𝑠

)])
𝜉𝐻 [(1 − 𝛿)𝐾𝐻,𝑠 + 𝐼∗

𝐻,𝑠
]

. (9)

Fig. 2 portrays how the expected share of low-carbon energy 𝓁𝐸 and the benchmark expected high-carbon capital utilisation rate 
𝑢∗

𝐻
move in psychological time 𝑠 for different values of expected intrinsic speed of renewable development 𝑏𝓁 .

It is worth noting that these expectations concern the whole of the high-carbon sector. We make the assumption that utilisation is 
homogeneous across high-carbon capital vintages, such that any future decrease in utilisation rates at the sector level will translate 
one-to-one to individual capital units to be installed today. Hence, if agents expect a lower utilisation rate at the sector level, they 
will expect a lower utilisation rate for their prospective new capacity.7

Stranding expectations are key in determining investment behaviours, as per Proposition 1 below:

Proposition 1. For large enough values of 𝑏𝓁 , there exists an interval 𝑇 ⊂ [|0, 𝑆|] such that, ∀𝑠 ∈ 𝑇 , 𝜋𝐿,𝑠 − 𝜋𝐻,𝑠 > 0.

Proof. Demonstration given in Appendix F.1. □

In other words, if they suppose that the development of low-carbon energy will be fast, agents expect at least a period of 
psychological time over their planning horizon over which, in the future, low-carbon technologies will be more profitable than 
high-carbon technology, which could induce them to change their investment behaviour.

7 This simplifying assumption could be challenged on the ground that older units will be under-utilised first. However, as noted by prospective studies (Grant and 
Coffin, 2020), high-carbon capital installed today will anyways have to suffer significant under-utilisation or premature decommissioning, even if older units stopped 
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Fig. 3. Evolution of disagreement in psychological time - Source: AR6 Scenario Explorer and own calculations. Each point is the variance of the share of renewable 
energy across all scenarios provided by the AR6.

2.4. Heterogeneity of stranding expectations

Heterogeneity in expectations is represented by the error term 𝜀𝑢,𝑠 ∼ (0, 𝜎2
𝑢,𝑠) of Equation (6), where 𝜎𝑢,𝑠 is a parameter indicating 

the strength of expectation diversity. The lower 𝜎𝑢,𝑠, the more stranding expectations are homogeneous and close to 𝑢∗
𝐻,𝑠

. The higher 
𝜎𝑢,𝑠, the more stranding expectations are diverse and possibly far away from 𝑢∗

𝐻,𝑠
.

An important question is how this dispersion should change in time 𝑠. The literature on projection disagreements amongst 
economic forecasters provides inconclusive insights on the term structure of opinion diversity. Binder et al. (2022) show that dis-

agreements largely depend on the variable at stake. The term structure for some variables (growth rate, inflation) show higher 
(lower) disagreement over short-run (long-run) forecasts. For other variables (unemployment, base rates), the disagreement’s term 
structure is strictly increasing. Patton and Timmermann (2010) show a logistically increasing uncertainty disagreement for all the 
variables they consider. However, these studies focus on macroeconomic, short-run macroeconomic variables. Inter-model compari-

son exercises using Integrated Assessment Models (IAMs) focus instead on more relevant variables for our purposes, such as energy 
capacity shares. Kriegler et al. (2014) show that technology deployment schedules can vary importantly across models, which can be 
taken as a measure of disagreement along the term structure.

To build on this insight, we consider projections of the share of renewables in total electricity production across all IPCC (2022)

scenarios8 and compute their variance at each available simulation step over the 2020-2060 period.9 We consider IPCC scenarios 
as a good proxy for expectations, in that they provide long-run projections that policymakers and economic agents can take as 
a benchmark in forming their own expectations. We assume further that the cross-scenario variance in the share of renewables 
reasonably proxies disagreement across agents, who can give more or less credence to one or the other IPCC projection. The result 
of this exercise is displayed in Fig. 3.

As can be seen, the variance follows a near-perfect sigmoid pattern, on which we fit a logistic function with an intrinsic growth 
rate of 0.28. Hence, we let 𝜎 increase in psychological time 𝑠 following a logistic pattern:

𝜎𝑢,𝑠+1 = 𝜎𝑢,𝑠

[
𝑏𝜎

(
1 −

𝜎𝑢,𝑠

�̄�𝑢

)]
, (10)

where 𝑏𝜎 is the unconstrained growth rate of 𝜎𝑢,𝑠, �̄�𝑢 represents the maximum heterogeneity in the long run and 𝜎𝑢 = 𝜎0 at time 𝑡. 
Short-term views regarding the transition are roughly aligned, as agents observe the current state of things and recent trends. In other 
words, given the past evolution of low-carbon energy production shares up to time 𝑡, the expected low-carbon energy share for 𝑡 + 1
will be rather homogeneous across firms. However, transition expectations then diverge rapidly over the medium term, capturing the 
heterogeneity of opinions concerning technological and policy prospects. While some might be expecting decarbonisation to unravel 
rapidly in the course of the next decade, others might expect fossil fuels to remain the backbone of the global economy in the decades 
to come. In the longer run, the marginal divergence of expectations weakens, approaching a fixed maximum level �̄�𝑢. In other words, 
the diversity of long-term opinions remains roughly constant once a certain beyond a certain threshold in psychological time.

8 IPCC scenarios are available at https://data.ece.iiasa.ac.at/ar6.
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9 The picture over 2020-2100 is similar, with the variance of projections oscillating around a carrying capacity.
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Fig. 4. Stylised representation of our approach to belief heterogeneity. To each time 𝑠 ∈ [|1, 𝑆|] corresponds a central utilisation expectation. Each bell curve represents 
the actual distribution of expectations (rotated 90°), with time-varying variances and means. Here displayed an example for 𝓁 = 0.9, 𝑏𝓁 = 0.2, 𝜎0 = 0.01 and �̄� = 0.5.

2.5. Aggregate investment decisions

We now want to calculate the share of aggregate investments flowing into each technology. We define 𝓁𝐼 = 𝐼𝐿

𝐼𝐻+𝐼𝐿
as the share of 

total investments allocated to low-carbon capital stocks. In our setting, this is equivalent to the probability for an individual firm to 
obtain a positive 𝜑; that is, to expect the low-carbon return rate 𝑟𝐿 to be higher than the high-carbon return rate 𝑟𝐻 .

Given our assumption of a normal distribution of the error term 𝜀𝑢 in equation (6) and considering that linear transformations 
maintain the normal distribution pattern, we can rewrite 𝜑 as the sum of a deterministic ‘rational stranding’ component 𝜑∗ and an 
error term 𝜀𝜑 ∼ (0, 1):

𝜑∗ = 𝑅∗

Γ
, (11)

with:

𝑅∗ =
𝑆∑

𝑠=0
𝛽𝑠

{
𝑝𝐸𝜉𝐿 − 𝛼𝐿𝜓𝐿𝑐𝐿 −

[(
𝑝𝐸 −

𝑝𝐹

𝜉𝐹

)
𝜉𝐻𝑢∗

𝐻,𝑠
− 𝛼𝐻𝜓𝐻𝑐𝐻

]}
(12)

Γ =

√√√√ 𝑆∑
𝑠=0

𝛽2𝑠(𝑝𝐸 −
𝑝𝐹

𝜉𝐹

)2𝜎2
𝑢,𝑠. (13)

All details of the transformation are discussed in Appendix D. Fig. 4 schematises our representation of belief heterogeneity as a 
set of normal distributions with varying means and variances.

𝑅∗ can be thought of as a ‘benchmark return rate’, which would prevail in the absence of idiosyncratic beliefs 𝜀, i.e., when agents’ 
expectations are aligned on the central projection. In the presence of belief dispersion, it represents the average return expectation. Γ
is a measure of the extent of belief dispersion across the planning horizon. In the definition of 𝜑∗, Γ can be taken as a belief-correction 
term used on 𝑅∗ to account for the extent of belief dispersion. A high Γ implies that agents form beliefs that can be significantly 
different from the average expectations, making 𝑅∗ less important for aggregate behaviour.

We can then derive 𝓁𝐼 , our main variable of interest, as the value of the cumulative distribution function Φ(⋅) of the standard 
normal distribution at 𝜑∗. That is,

𝓁𝐼 = 𝑃𝑟(𝜀𝜑 < 𝜑∗) = 𝑃𝑟(𝑟𝐿 > 𝑟𝐻 ) = Φ(𝜑∗) (14)

To allow ourselves to explore large 𝜎𝑢,𝑠 values while keeping heterogeneous beliefs realistic, we censor the 𝜀𝑢,𝑠 distributions above 
1 and below zero. After some transformations (see Appendix D and E), the final definition of 𝓁𝐼 is:

𝓁𝐼 =
𝛿𝜑0𝜑∗ (Φ(𝜑∗) − Φ(𝜑∗

0)) − 𝛿𝜑1𝜑∗ (Φ(𝜑∗
1) − Φ(𝜑∗))

Φ(𝜑∗
1) − Φ(𝜑1)

, (15)

where 𝛿𝑢𝑣 =

{
1 𝑢 < 𝑣

0 𝑢 ≥ 𝑣
,

and 𝜑∗
0 and 𝜑∗

1 are the values 𝜑 would take if 𝜇∗
𝐻,𝑠

= 0 ∀𝑠 or 𝜇∗
𝐻,𝑠

= 1 ∀𝑠 respectively. For the values of 𝜑∗ we are exploring, we are 
always in a case in which 𝜑0 ≤ 𝜑∗ ≤ 𝜑1, such that the equation reduces to:

Φ(𝜑∗) − Φ(𝜑0)
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𝓁𝐼 =
Φ(𝜑1) − Φ(𝜑0)

(16)
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Table 1

Technological and financial parameters.

Symbol Variable Value Source

Production

𝑒𝑑 Initial energy production 3243 GWh European Commission (2019)

𝐾𝐻,0; 𝐾𝐿,0 Initial capital stock 659 GW; 288 GW European Commission (2019)

𝜉𝐻 ; 𝜉𝐿 Capital productivity 4.5158; 2.9145 Eurostat (2022)

𝑢
𝑓

𝐻
; 𝑢

𝑓

𝐿
Full capacity utilisation rate 0.85 Eurostat (2022)

𝑢𝐻 , 𝑢𝐿 Initial utilisation rate 0.85 Eurostat (2022)

𝑝𝑒 Price of electricity 0.2 bn$/TWh Eurostat (2022)

𝜉𝑓 Productivity of fossil fuels 0.114 EIA (2020)

𝑝𝑓 Price of fossil fuels 0.0022 bn$/TWh Eurostat (2022)

𝛿𝐻 ; 𝛿𝐿 Capital depreciation rate 0.03; 0.04 IEA (2020d)

𝑐𝐾
𝐻

; 𝑐𝐾
𝐿

Capital cost 3.5 bn$/GW; 2.9 bn$/GW IEA (2020d)

𝑔𝑒 Energy demand growth 0.012 Enerdata (2021)

Finance

𝜓𝐻 ; 𝜓𝐿 Debt-to-investment ratio 0.7; 0.75 Baruya (2017); IRENA (2020)

𝜄𝐻 ; 𝜄𝐿 Interest rate on loans 0.045; 0.0394 Kempa et al. (2021)

𝐿𝑇𝐻 ; 𝐿𝑇𝐿 Loan tenor 15 years Refinitiv (2022)

Belief heterogeneity

𝑏𝜎 Intrinsic growth rate for 𝜎𝑢,𝑠 0.28 IPCC (2022)

3. Calibration

This section presents our calibration strategy. The model’s time step in 𝑠-time is explicitly yearly. All monetary values are 
expressed in billion 2019$US; electricity production in terawatt-hours (TWh); electricity generation in gigawatts (GW); fossil energy 
in British thermal unit (Btu). We use the EU27 region in 2019 as our model economy. We can distinguish two categories of parameters. 
First, a set of technological or financial parameters calibrated to replicate empirical evidence and summarised in Table 1. Second, a 
set of behavioural parameters for which, in absence of solid empirical foundations, we perform a sensitivity analysis along reasonable 
value ranges in Section 4.

3.1. Technological and financial parameters

We include solar, wind and other minor renewable energy technologies in our low-carbon category and all other technologies 
in the high-carbon category. While hydropower and nuclear can be considered to be low-carbon considering their low emission 
intensity, additional environment-related issues (e.g. land use, waste treatment) usually lead them to be treated separately from 
wind, solar, geothermal and other renewable technologies. In addition, we take into consideration the fact that installing large hydro 
plants is now mostly infeasible in Europe, where generation of electricity from hydro has been stationary since 2000, nor strongly 
desired by policy-makers due its environmental footprint. Furthermore, across scenarios, uncertainty revolves mostly around the 
share of ‘modern’ renewables compared to other energy sources (Tsiropoulos et al., 2021). We thus focus on them and include 
nuclear and hydro in our ‘high-carbon’ category. We investigate alternative categorisations, with hydro and nuclear included as part 
of the low-carbon technology, in Appendix C.

We set the initial values of capital stocks following the European Commission (2019), which reports a total installed capacity of 
approximately 947 GW in 2019 for the EU-27 region, of which around 30% is made of solar, wind or geothermal plants. We thus set 
𝐾𝐿,0 = 288 GW and 𝐾𝐻,0 = 659 GW, which implies that the share of low-carbon capital 𝓁𝐾,0 =

288
947 ≈ 30%.

We further make a difference between utilisation rates and capacity factors. Utilisation rates are demand-driven and depend on 
economic factors. They refer to the degree to which the capital stock is used and are measured as the ratio between production and 
potential production at the best of technical possibilities. It is common for firms to maintain their available capital stocks operating 
on average at a rate lower than 100%, to be able to accommodate for peaks in demand. The normal capacity utilisation rate 𝑢𝑓 is 
equal to 0.85 for both technologies, which is roughly in line with utilisation rates at the macro level in the European Union in 2019 
given by Eurostat. We assume that the economy starts from a situation where both technologies operate at normal capacity and that 
firms expect the current-period utilisation to be equal to normal i.e., we set 𝑢𝐿,0 = 𝑢𝐻,0 = 0.85.

On the other hand, capacity factors represent the technical limitations preventing an electricity-generation technology to operate 
at 100%. We assume them to be encapsulated in our productivity factors 𝜉𝐻 and 𝜉𝐿, in the sense that they are purely defined 
by technology. Given our assumptions on utilisation rates, we calibrate our productivity parameters 𝜉𝐻 and 𝜉𝐿 to match energy 
production from high- and low-carbon technology in Europe. The share of wind, solar and geothermal technologies in total gross 
electricity production in Europe was around 22% in 2019. With a utilisation rate of 85% and a total energy demand equal to 
3243 TWh this yields 𝜉𝐿 = 0.22∗3243

0.85∗288 = 2.9145 and 𝜉𝐿 = 0.78∗3243
0.85∗659 = 4.5158. Given that a GW of capacity would produce 8.76 TWh in a 

year at full capacity, this yields implicit capacity factors of 2.91458.76 ≈ 33% and 4.51588.76 ≈ 51%, which are both roughly in line with 2018 
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capacity factors (i.e. uncorrected for utilisation rates in Europe) (IEA, 2019).
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Table 2

Behavioural parameters.

Variable Meaning Reference value(s) Sensitivity range

𝑆 Length of planning horizon 20 [2, 40]

𝑏𝓁 Expected intrinsic growth rate for 𝓁 0.15; 0.25 [0, 0.5]

𝓁 Maximum expected 𝓁 0.85 [0.5, 0.95]

𝜎0 Opinion diversity at time 𝑡 0.01 [0, 0.1]

�̄� Maximum opinion diversity 0.5 [0.01, 2]

𝜌 Corporate discount rate 0.05 [0.01, 0.1]

The data on electricity prices for both households and non-household consumers is provided by Eurostat,10 and shows values 
ranging from 0.005 to 0.27 e/KWh in 2019 for the EU27 region. We adopt a middle value by setting 𝑝𝐸 = 0.2 bn$/TWh.

Fossil productivity parameter 𝜉𝐹 transforms fossil fuels, expressed in trillion British thermal units (Btu), into electricity, expressed 
in TWh. 1 TWh physically corresponds to approximately 3.5 trillion British thermal units (Btu). We then need to adjust this number 
for the efficiency of thermal plants (heat rate), to account for energy losses arising from the conversion process. According to EIA 
(2020), the efficiency of thermal plants is around 0.33-0.45. Taking an intermediate value of 0.4, we calculate EU thermal plants 
to require 8.75 (=3.5/0.4) trillion Btu to produce 1 TWh of electricity. The 𝜉𝐹 coefficient is then computed as the inverse of this 
number, that is 1

8.75 ≈ 0.114.

The price of natural gas in 2019 for non-household consumers in the EU27 region was around 0.03e/KWh.11 Rescaling to Btu 
and taking into consideration that the price of coal is usually lower than the one of gas, we set 𝑝𝐹 = 0.0025 bn$/tnBtu.

We set depreciation rates 𝛿𝐻 and 𝛿𝐿 as the inverse of technology-specific asset lifetimes. IEA (2020a) reports expected lifetimes 
of 25 years for solar and wind plants and 30-40 years for fossil-fuelled plants. We thus set 𝛿𝐻 = 0.03 ≈ 100∕33 and 𝛿𝐿 = 0.04 = 100∕25.

Capacity installation cost parameters 𝑐𝑖 represent the cost of installing a unit of generating capacity (the ‘overnight constructions 
costs’). IEA (2020a) describes the overnight cost for various technologies hypotheses made by the IEA in its projection exercises.12

By taking a weighted average based on the European energy mix, we retain 𝑐𝑘
𝐻

= 3.5 bn$/GW and 𝑐𝑘
𝐿
= 2.9 bn$/GW.

Financing costs depend on the loan interest rate 𝜄𝑖. Recent findings from Kempa et al. (2021) show an average 3.5% spread 
to Libor for high-carbon projects and that renewable projects face a 16% lesser markup. We then assume, for Europe, a 1% risk-

free interest rate, resulting in 𝜄𝐻 = 0.01 + 0.035 = 0.045 and 𝜄𝐿 = 0.01 + 0.035 × 0.84 ≈ 0.0394 Debt-to-investment ratios (𝜓𝐻 , 𝜓𝐻 ) for 
renewable projects are taken from IRENA (2020), which reports a 75% rate. For high-carbon energy sources, sources are more 
conflicted (Baruya, 2017), with numbers ranging between 60 and 80% debt-financing. We thus adopt a middle-range assumption of 
a 70% rate. Regarding the loan term of debt financing, we rely on the Refinitiv project database. Albeit scarce, data shows a rough 
average of a 15-year loan term for all technologies (𝐿𝑇 = 15).

Finally, we take energy demand growth from EnerData Enerblue scenario (Enerdata, 2021), which projects a 43% increase in 
final electricity consumption demand between 2020 and 2050. Assuming a constant growth rate over this period yields a yearly 1.2% 
growth.13

3.2. Behavioural parameters

Our model includes several parameters capturing the expectations and behavioural features of investment decision-makers. De-

spite the recent emergence of a stream of research contributions trying to assess climate-related expectations via surveys or financial 
econometrics (Bolton and Kacperczyk, 2020; Krueger et al., 2020), we currently do not have reliable data on which to calibrate these 
parameters. An exception is 𝑏𝜎 , which we calibrate to 0.28 based on our analysis of IPCC scenarios (see Section 2.4). However, since 
uncertainty acts on a different compact, we keep 𝜎0 and �̄� free.

For this reason, we illustrate our analytical results with sensitivity analyses on pairs of parameters while keeping the rest of the 
behavioural parameters fixed. We thus choose a reference value (to be kept constant while the parameter is not part of the sensitivity 
analysis) and a sensitivity range for each parameter. Since we are interested in exploring how these behavioural parameters could 
affect investment choices, we keep the sensitivity ranges large enough to capture all possible dynamics. In particular, we choose 
the sensitivity range for the maximum expected share of low-carbon technologies 𝓁 and the intrinsic growth rate of the expected 
low-carbon energy share 𝑏𝜎 to match scenarios for the European Green New Deal (Tsiropoulos et al., 2021). Table 2 offers a summary 
of our choices.

3.3. High- and low-stranding projections

We conclude our calibration by specifying two representative central projection paths. In both of them, the long-run share of 
low-carbon energy is left fixed at 90%, in the upper distribution of the European Commission’s scenarios (Tsiropoulos et al., 2021), 

10 See series nrg_pc_204 and nrg_pc_205 available at https://ec.europa.eu/eurostat/data/database.
11 See Eurostat series nrg_pc_203_c.
12 For hydro, the IEA does not provide data specific to Europe; we thus relied on a weighted average of costs across countries (IEA, 2020b).
13 We follow most of the energy modelling literature in assuming that, while electricity demand can be affected by energy efficiency and other demand-side 
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measures, the composition of its supply does not significantly affect the amount of power demanded by economic agents.

https://ec.europa.eu/eurostat/data/database
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Table 3

Intrinsic growth rate values for low and 
high-stranding central expectations.

Scenario type 𝑏𝓁

Low stranding 0.15

High ambition 0.25

so to leave the intrinsic growth rate as the only degree of freedom. In formal terms, low-stranding projections can be defined as the 
set of 𝑏𝓁 such that 𝑅∗ < 0 for our benchmark 𝑆 and 𝜌. Reciprocally, high-stranding projections can be seen as the set of 𝑏𝓁 such 
that the benchmark return rate 𝑅∗ is strictly positive. We choose 𝑏𝓁 = 0.15 for a low-stranding central projection and 𝑏𝓁 = 0.25 for a 
high-stranding central projection. We summarise this choice in Table 3. Whenever relevant, we will compare results from these two 
central projections.

We characterise a low-stranding scenario as a gradual transition, with a slow development of low-carbon technologies that does 
not result in much stranding. High-carbon energy sources remain operational for relatively long and be decommissioned gradually. 
By contrast, a high-stranding central expectation would feature a quicker deployment of low-carbon technology, resulting in larger 
stranding. This narrative implies a more disruptive transition, in which high-carbon technology is quickly replaced in the short run 
(Grubb et al., 2020). Our ‘low-stranding’ scenario can be roughly compared to the IEA’s ‘Announced Pledges’ scenario (IEA, 2022a), 
in which fossil fuels are slowly replaced by alternative technologies. The IEA’s ‘Net Zero by 2050’ scenario (IEA, 2022b) entailing a 
more rapid and intense low-carbon transition, could be compared instead to our ‘high-stranding’ path.

4. Results

This section expounds our main takeaways. We start by studying how belief heterogeneity affects aggregate investment decisions. 
To do so, we begin in Section 4.1 with a polar case without belief heterogeneity, corresponding to a benchmark in which agents’ 
expectations are fully coordinated around the central expectation. We then lift the no-heterogeneity assumption to explore how 
our modelling proposal influences results compared to the benchmark. Subsequently, in Section 4.2, we explore how aggregate 
investment behaviours change with various levels of belief heterogeneity. We notably characterise the relative effect of short (𝜎0) 
and long-run (�̄�) belief heterogeneity and derive some properties in the case of hyperbolic heterogeneity. Sections 4.3 and 4.4

explore instead the interactions between belief heterogeneity and preference for the present: the discount rate 𝜌 and the length of 
the planning horizon 𝑆 .

4.1. Introducing belief heterogeneity

We start by assuming 𝜎𝑢,𝑠 = 0 ∀ 𝑠 ∈ [|1, 𝑆|], i.e., we describe a situation in which all agents believe in the central projection. Being 
this a limit condition on our model, we can prove Proposition 2:

Proposition 2. For 𝜎𝑢,𝑠 = 0 ∀𝑠 ∈ [|1, 𝑆|], 𝓁𝐼 tends towards a degenerate probability distribution function, whereby:

𝓁𝐼 =
⎧⎪⎨⎪⎩
0 𝑖𝑓 𝑅∗ < 0
0.5 𝑖𝑓 𝑅∗ = 0
1 𝑖𝑓 𝑅∗ > 0

(17)

Proof. Demonstration is given in Appendix F.2. □

In other words, without belief heterogeneity the system can only achieve three outcomes: i) the whole populating invests in 
low-carbon energy (𝓁𝐼 = 1); ii) none of it does (𝓁𝐼 = 0); or iii) exactly half of the population does (𝓁𝐼 = 0.5). The interpretation 
is straightforward: absent belief heterogeneity, only the central projection, which rules the sign of 𝑅∗, matters. If this implies that 
low-carbon sources will be more profitable over the planning horizon according to this central projection (𝑅∗ > 0), then it is rational 
for all investors to invest in low-carbon energy. The intermediate case 𝑅∗ = 0 would denote a ‘total indecision’ situation, in which 
agents are indifferent between the two technologies and therefore exhibit a 50-50 dispatch in aggregate. We illustrate these findings 
in Fig. 5, Panel (a).14

The value of 𝑅∗ depends on the discount rate 𝜌, the planning horizon 𝑆 and on the variables linked to the central expectations, 
i.e. the maximum expected share of low-carbon technologies 𝓁 and the intrinsic growth rate 𝑏𝓁 . More precisely, we rewrite:

𝑅∗ = 𝑅∗(𝜌,𝑆, (𝑢𝐻,𝑠)𝑠∈[|1,𝑆|]) (18)
545

14 Note that the case 𝓁𝐼 = 0.5 does not show because of the numerical simulation steps used for the chart.
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Fig. 5. Effect of belief heterogeneity.

Based on the definition of Equation (12), it can be shown 𝜕𝑅∗

𝜕𝜌
< 0. This is a standard effect of increasing the discount rate. It leads 

agents to weigh less later periods over which stranding is expected to be strong enough to give an edge to low-carbon sources. For a 
high 𝜌, 𝑅∗ can be negative.

Further, the lower the (𝑢𝐻,𝑠)𝑠∈[|1,𝑆|] schedule, the lower 𝑅∗. The position of the 
(
𝑢𝐻,𝑠

)
𝑠∈[|1,𝑆|] schedule depends directly on the (

𝓁𝐸,𝑠

)
𝑠∈[|1,𝑆|] schedule, governed by 𝓁 and 𝑏𝓁 , as per Proposition 3 below:

Proposition 3. Consider a logistic sequence 𝑥𝑛 = 𝑥𝑛−1

(
1 + 𝑏(1 − 𝑥𝑛−1

𝐾
)
)

where 𝐾 is a carrying capacity and 𝑏 an intrinsic growth rate. 
Consider then 𝑥0 the first term of this sequence. It follows that, ∀𝑛 such that 𝑥𝑛 < 𝐾 and 𝑏 ≤ 1:

𝜕𝑥𝑛

𝜕𝐾
≥ 0 (19)

𝜕𝑥𝑛

𝜕𝑏
≥ 0 (20)

𝜕𝑥𝑛

𝜕𝑥0
≥ 0 (21)

With the last proposition holding for 𝑥0 < 𝐾 .

Proof. Demonstration is given in Appendix F.3. □

For what concerns the expected low-carbon share of energy, this implies that ∀𝑠:

𝜕𝓁𝐸,𝑠

𝜕𝓁
≥ 0 (22)

𝜕𝓁𝐸,𝑠

𝜕𝑏𝓁
≥ 0 (23)

The intrinsic growth rate 𝑏𝓁 rules the number of periods in time 𝑠 needed to reach the maximum share 𝓁 in expectations. If 𝓁 is 
increased with 𝑏𝓁 held constant, agents will expect that a higher maximum share will be reached within the same amount of time. 
It requires 𝓁𝑠 to be higher or equal ∀𝑠. Conversely, given a certain 𝓁, a higher 𝑏𝓁 means that less time is required to reach 𝓁. This 
entails a steeper growth and higher 𝓁𝑠 ∀𝑠. Hence, a path with higher 𝓁 or 𝑏𝓁 entails more stranding expectations due to a speedier 
increase of the share of low-carbon energy, which will result in higher low-carbon investment.

In economic terms, this proposition demonstrates that, under reasonable assumptions, if agents expect a higher long-term share of 
renewables 𝓁 or a speedier transition 𝑏𝓁 , they will expect a higher share of renewables for all periods within their planning horizon. 
Given that stranding expectations are directly governed by the expected share of low-carbon investment, this implies that a higher 𝓁
or 𝑏𝓁 will imply higher stranding for all periods within the agents’ planning horizon.

Finally, as per the definition of 𝑅∗, a minimum planning horizon is required for low-carbon investment to emerge. Indeed, if 
agents are so short-sighted to only account for early periods, over which stranding is low, they will expect a negative 𝑅∗. However, 
very long planning horizons are not necessarily improving. Given that stranding is transitory in our model — as high-carbon capital 
naturally depreciates — the period over which low-carbon capital becomes more profitable is finite. Once it is over, agents will 
expect an edge for high-carbon technologies again over subsequent periods, which may compensate for the positive payoff over the 
stranding period. Hence the following Proposition:

Proposition 4. It is possible to define an interval  = [|𝑆
¯
; �̄�|] ⊂ [|1, 𝑆|] such that, for a given 𝜌, 𝑏𝓁 and 𝓁, 𝑅∗ > 0 ∀𝑠 ∈  and 𝑅∗ ≤ 0

otherwise.  can be empty.
546

Proof. Demonstration is given in Appendix F.4. □
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Fig. 6. Long-run and short-run belief heterogeneity. Panel (a) describes our high-stranding case, while Panel (b) shows our low-stranding case. The charts plot isovalue 
lines. For instance, the curve with legend “0.85” on Panel (a) corresponds to all (�̄�, 𝜎0) combinations for which the share of low-carbon investment 𝓁𝐼 is equal to 0.85 
in the case of high stranding central expectation.

This proposition states that, over their planning horizon, agents will expect low-carbon energy sources to be more profitable than 
high-carbon technologies over a sub-period  , typically the period over which the stock of high-carbon capital will suffer most from 
stranding.

We now introduce belief heterogeneity, by assuming the shape for the 𝜎𝑢,𝑠 schedule presented in Equation (10). Results are 
illustrated in Fig. 5, Panel (b).

As can be seen, the bang-bang solution disappears to give rise to a whole gradient of interior solutions ranging between 0 
and 1 depending on the value of parameters 𝑏𝓁 and 𝓁. The smoothness of the corresponding surface depends positively on belief 
heterogeneity.

Lifting the limit condition implies that the variables linked to relative return rates, 𝜑∗, 𝜑0 and 𝜑1, take finite value and that the 𝓁𝐼

function takes value over the whole [0, 1] interval. Intuitively, introducing belief heterogeneity allows for the existence of investors 
whose behaviour will drift from the central projection. Hence, for a projection entailing zero investment in the no-heterogeneity case, 
introducing idiosyncratic beliefs is equivalent to assuming that a part of the population will expect sufficient stranding to invest in 
low-carbon energy.15 Reciprocally, for a high-stranding central projection, entailing 100% low-carbon investment in the absence of 
heterogeneity, allowing for a population of norm-contrarians will entail less low-carbon investment than in a no-heterogeneity case, 
since this share of the population will expect insufficient stranding.

Including a degree of belief heterogeneity increases significantly the indeterminacy of the model. This result is of important 
policy relevance, as the results implied by different degrees of belief heterogeneity can be very different from those flowing from an 
assumption of perfectly aligned expectations. We explore the impact of various levels of belief heterogeneity in the following and 
their policy consequences.

4.2. Belief heterogeneity, investment decisions and the central projection

To explore the role of belief heterogeneity, we let our parameters 𝜎0 (short-run belief dispersion) and �̄� (long-run belief dispersion) 
vary. Proposition 3 implies that:

𝜕𝜎𝑢,𝑠

𝜕𝜎0
≥ 0 (24)

𝜕𝜎𝑢,𝑠

𝜕�̄�
≥ 0 (25)

As a result, any increase in these two parameters will result in a higher (𝜎𝑢,𝑠)𝑠∈[|1,𝑆|] schedule, which will increase the belief-

correction factor Γ defined in Equation (12). It is possible to demonstrate the following proposition:

Proposition 5. The effect of a higher 𝜎0 or �̄� will depend on the sign of 𝑅∗. If 𝑅∗ < 0, then 𝜕𝓁𝐼

𝜕𝜎0
≥ 0, 𝜕𝓁𝐼

𝜕�̄�
≥ 0. Furthermore, 𝓁𝐼 is concave 

in 𝜎0 and �̄�. If 𝑅∗ > 0, then 𝜕𝓁𝐼

𝜕𝜎0
≤ 0 and 𝜕𝓁𝐼

𝜕�̄�
≤ 0. Plus, 𝓁𝐼 is convex in 𝜎0 and �̄�. Plus, there exists an 𝑅′ ∈ [𝑅0; 𝑅1] such that 𝜕𝓁𝐼

𝜕𝜎0
(𝑅′) and 

𝜕𝓁𝐼

𝜕�̄�
(𝑅′) equal to zero.

Proof. Demonstration is given in Appendix F.5. □

We further illustrate the effect of belief heterogeneity on 𝓁𝐼 in Fig. 6. As a contour plot, it shows isovalue lines, i.e., all the 
combinations within the (�̄�, 𝜎0) space that yield the same 𝓁𝐼 value. The space between the lines gives indication on how the value 

15 Due to the symmetry of belief heterogeneity, belief heterogeneity also entails that a population expects less stranding than with expectations aligned on the 
central projection. However, expecting even less stranding than on the central projection does not change the investment choice of these agents. As a result, only the 
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population expecting more stranding has an impact on aggregate investment decisions.
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Fig. 7. Evolution of the sensitivity of the share of low-carbon investment 𝓁𝐼 to the belief correction factor Γ as a function of the central expectation return spread 𝑅∗ .

of the outcome evolves when one of the two parameters is fixed. Typically, an increasing space across isovalue lines for increasing 
values of a parameter — like in Fig. 6 — would denote a decreasing marginal effect of the moving parameter. In the high-stranding 
scenario, increasing belief heterogeneity, either in the short or the long run, unambiguously decreases the low-carbon investment 
share. By contrast, increasing dispersion in the low-stranding case tends to increase low-carbon investment. In both cases, the effect of 
higher heterogeneity is bounded, as the low-carbon share tends towards a minimum (high stranding) or a maximum (low stranding) 
as dispersion increases. These results emerge because we define belief heterogeneity as deviations from the central projection or 
‘market norm’. Hence, the effects of belief heterogeneity on investment decisions also depend on the existing central projection. 
In the case of low-stranding expectations, ‘transition believers’ investing in low-carbon projects will be the ‘norm contrarians’. 
Reciprocally, contrarians in the high-stranding case will be ‘transition sceptics’, who will invest more in high-carbon energy. As a 
result, belief heterogeneity will have a balancing effect on investment behaviour, the direction of which will depend on the existing 
norm.

We can also show that the (absolute) effect of more belief heterogeneity on investment allocation is higher when belief heterogene-

ity is lower. It shows on Fig. 6 through the increasing distance across isovalue lines. This is due to the concavity (in the low-stranding 
case) or convexity (in the high-stranding case) property of 𝓁𝐼 in Γ. Increasing belief heterogeneity from a low-dispersion situation 
will open a range of stranding expectations close to the cut-off point from which agents switch behaviours. Hence, many switches 
will occur. Conversely, if belief heterogeneity is high, most beliefs relevant for behaviour switch will already have a sizeable mass in 
the distribution. Hence a decreasing marginal (absolute) effect of belief heterogeneity.

The previous result, however, only holds for a fixed central projection. This begs studying how changes in belief heterogeneity 
will affect investment behaviours for various central expectation scenarios.

We first consider the expression of 𝜕𝓁𝐼

𝜕Γ from the demonstration of Proposition 5 (see Appendix F.5, Equation (53)). Then, we fix 
the belief correction factor Γ (see (12)) to match our benchmark values (𝜎0 = 0.01 and �̄� = 0.5). Reducing 𝜕𝓁𝐼

𝜕Γ to a function of 𝑅∗, the 
function takes the shape displayed in Fig. 7.

Fig. 7 shows that the higher (lower) the curve, the more positive (negative) a change in investment behaviour following a shift 
in Γ and vice-versa. A value of zero would denote that, for the corresponding central projection, moving belief heterogeneity has no 
effect on investment behaviour, which would be a case of ‘perfect resilience’. However, norm resilience is non-monotonic. Sensitivity 
reaches two optima on each side of the y-axis. As can be seen in Fig. 7, sensitivity is zero for 𝑅∗ = 0, i.e., a perfect balance between 
profit rates at the benchmark. Moving from this point, (absolute) sensitivity increases to a maximum and decreases to perfect 
resilience.

Policy-wise, this implies that medium-stranding projections are fragile to belief heterogeneity shocks (e.g. shocks to confidence; 
decrease in policy credibility). As a result, policymakers should strive to measure the state of the central expectation to anticipate its 
resilience to possible shocks in belief dispersion. To reach a given penetration of renewable energy, the regulator may seek to anchor 
expectations towards higher stranding. It can do so by influencing the central expectation with policy announcements, while making 
sure to remain credible.

Regarding low-stranding projections, if the market norm is close to business-as-usual (very low stranding), the share of the 
population expecting enough stranding is so little that marginally increasing it will only affect aggregate investment decisions 
negligibly. This kind of ‘low equilibrium’ cannot be changed by a transition-believer minority but only by changing the ongoing 
market norm.

Another feature emerging from Fig. 6 is that the relative effects of short- (𝜎0) and long-run heterogeneity (�̄�) depend on the 
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magnitude of one another:
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Proposition 6. For a given 𝑆 and 𝜌, there exists a threshold ratio 
(

�̄�

𝜎0

)∗
=

√
1−𝑒𝑥𝑝(−𝑏𝜎𝑆)
𝑒𝑥𝑝(−𝑏𝜎𝑆) such that 

|||| 𝜕𝓁𝐼

𝜕𝜎0

|||| >
||| 𝜕𝓁𝐼

𝜕�̄�

||| ∀ �̄�

𝜎0
>

(
�̄�

𝜎0

)∗
. In other 

words, the effect of increasing short-run belief dispersion 𝜎0 on investment behaviours is higher than that of increasing long-run dispersion �̄�
if �̄� is sufficiently high relatively to 𝜎0.

Proof. Demonstration is given in Appendix F.6. □

Whether the condition holds or not depends directly on the length of the planning horizon. Unsurprisingly, the more far-sighted 
agents are, the more the aggregate investment behaviour will be influenced by belief dispersion on long-run outcomes, unless belief 
dispersion on long-run developments is already very high.

It is possible to show that this condition holds true for a large proportion of the parameter space we explore. In particular, it 
holds for our benchmark calibration with 𝑆 = 20 and 𝜎0 = 0.01 for �̄� > 0.16. It accounts for the whole parameter space we explore in 
Fig. 6. We therefore focus on this case.

Let us first notice that long-run belief heterogeneity �̄� does not need to be very high for the condition to be fulfilled in our 
benchmark calibration. Because investment shares are more sensitive to belief heterogeneity for low values if 𝜎0 and �̄�, it entails 
that, for reasonable values of �̄�, an increase in 𝜎0 can have sizeable effects on aggregate investment behaviours. For high �̄� values, 
however an increase in 𝜎0, although it will bear larger effects than an increase in �̄�, will have quantitatively small impacts on 𝓁𝐼 . It 
is due the concavity/convexity properties of 𝓁𝐼 in Γ (see above).

The policy implications are nonetheless clear. In the case of a high-stranding central expectation, the priority for policymakers 
should be to anchor expectations firmly for the earliest periods of the transition, if there is no clear consensus about long-run 
outcomes. If short-run belief heterogeneity is very low and long-run dispersion even moderately high, slightly higher short-run 
belief dispersion can have sizeable effects. Anchoring short-term expectations is all the more crucial considering that long-run 
belief dispersion is to some extent inevitable due to the many uncertainties surrounding the long-run future. Comparatively, aligning 
expectations on short-term outcomes seems more feasible. In the case of low-stranding expectations, policymakers should be cautious 
in interpreting positively a large tilt of investment behaviours towards low-carbon investment, as it may represent only a shock to 
short-run belief heterogeneity. These insights confirm the need for policymakers to carefully measure the state of expectations, in 
mean and in dispersion.

Fig. 6 further shows that the effect of higher belief heterogeneity dies down as 𝜎0 or �̄� increases, until seemingly reaching a finite 
value. What happens when the belief-dispersion term Γ tends towards infinity, describing a state of ‘full dispersion’ of beliefs?

Proposition 7. As belief heterogeneity approaches infinity, 𝓁𝐼 will tend towards a finite value 𝓁𝐼 = 𝑅∗−𝑅0
𝑅1−𝑅0

, where 𝑅∗, 𝑅0 and 𝑅1 are the 
numerators of 𝜑∗, 𝜑0 and 𝜑1 respectively. It defines a uniform distribution on 𝑅∗ over [𝑅0, 𝑅1]. We call 𝓁𝐼 ‘full dispersion’ equilibrium and 
it is a function of 𝑏𝓁 , �̄� for a given 𝑆 and 𝜌. Note that if we do not censor our distribution, the ‘full-dispersion’ equilibrium 𝓁𝐼 is always equal 
to 0.5.

Proof. Demonstration is given in Appendix F.7. □

This result means that, if we ensure that expected utilisation rates remain between 0 and 1 (i.e., agents have ‘reasonable’ beliefs), 
only the position of the central expectation within the realm of acceptable beliefs matters for aggregate investment behaviour when 
belief dispersion is very high. Because the distribution of beliefs converges towards a uniform distribution, so does the distribution of 
expected return rates. As a result, all expectations have the same weight in determining investment decisions as long as they remain 
within the boundaries of acceptable beliefs. It implies that the only determinant of investment shares will be the position of the 
central expectation relative to the boundaries defining acceptable beliefs.

This feature has several policy implications. First, it implies that, with high belief heterogeneity, 100% low-carbon investment 
can only be achieved if the central expectation entails maximum stranding (𝑢𝐻,𝑠 = 0 ∀𝑠 ∈ [|1, 𝑆|]), i.e. 𝑅∗ = 𝑅1. However, stranding 
the entire stock of high-carbon capital overnight is a hardly credible scenario. Hence, in the case of a full-dispersion equilibrium, 
low-carbon investment will always represent less than 100% of the total.

Second, low- and high-stranding projections are asymmetric. High belief heterogeneity for low-stranding projections will always 
yield less low-carbon investment than high belief heterogeneity with high-stranding expectations. This implies that a strong minority 
of ‘high-stranding believers’ will never be able to turn the tide of low-carbon investments and reach investment shares that would 
prevail for a high-stranding projection.

Finally, for a benchmark return rate 𝑅∗ equal to zero, the limit is not equal to 0.5, unlike for the case Γ = 0. This is because, 
for Γ very high or close to infinity, the censoring of opinions becomes more relevant for aggregate investment behaviour. As a 
result, unless −𝑅0 = 2(𝑅1 −𝑅0) ⟺ 𝑅0 = −𝑅1, i.e. a case of perfect symmetry in censoring, high belief heterogeneity will introduce a 
distortion if beliefs are censored. Even in a situation of indifference (𝑅0 = 0), the aggregate investment behaviour will be biased. For 
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our calibration, −𝑅0
𝑅1−𝑅0

≈ 3.43
6.59+3.43 = 0.3426, which denotes a bias in disfavour of low-carbon technology.
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Fig. 8. Interaction between long-run belief heterogeneity �̄� and the discount rate 𝜌. Panel (a) describes our high-stranding case, while Panel (b) shows our low-

stranding case. The charts plot isovalue lines. For instance, the curve with legend “0.995” on Panel (a) corresponds to all (�̄�, 𝜌) combinations for which the share of 
low-carbon investment 𝓁𝐼 is equal to 0.995 in the case of high stranding central expectation.

4.3. The discount rate and belief heterogeneity

We now explore the effects of the discount rate 𝜌 on investment behaviours and how it interacts with belief heterogeneity.16

While the strong dependence on other parameters does not allow us to derive analytical results for the effect of discount rate 𝜌 on 
aggregate investments, it is possible to draw some insights from numerical simulations.

As Fig. 8 shows, for high-stranding plans (Panel (a)), 𝜌 and �̄� interact non-linearly. For sufficiently low levels of belief hetero-

geneity, the effect of the discount rate is negligible. In other words, when �̄� is low, an increase in 𝜌 requires only a marginal change 
in �̄� to remain on the same isovalue curve. For higher levels of belief heterogeneity, instead, the relationship become strongly non-

linear. When discount rate 𝜌 is low, remaining on the same isovalue line requires a higher belief heterogeneity, i.e., an equal level of 
belief uncertainty would yield a higher low-carbon investment share. When 𝜌 becomes higher, its effect on low-carbon investments 
becomes unambiguously negative, as lower belief heterogeneity is now necessary to compensate for the increase in 𝜌 and remain on 
the same isovalue line. This pattern emerges because of two opposite effects of the discount rate. On the one hand, the discount rate 
decreases the weight of periods over which agents expect a higher payoff for low-carbon energy in the central expectation. On the 
other hand, because longer-run beliefs are also discounted, agents tend to give less weight to opinions relevant for later periods. This 
suggests that the belief-discounting effect of 𝜌 dominates the discounting of the central expectation for low values of 𝜌. The opposite 
is true for higher values of 𝜌. It also explains why belief heterogeneity and 𝜌 should interact positively for high values of 𝜌. In the 
presence of high belief heterogeneity, discounting more those beliefs straying from the central expectation will tend to give even 
more weight to the central expectation, which yields less low-carbon investment due to higher discounting.

The low-stranding projection (Panel (b)), by contrast, entails an unambiguously negative impact of the discount rate on low-

carbon investment shares. We can see that the interaction between belief heterogeneity and discounting is reversed compared to the 
high-stranding case. The mechanism is the same as in the above: discounting heterogeneity decreases the weight of norm-contrarian 
beliefs for investor behaviours which, with a low-stranding central expectation, will reduce low-carbon investment.

This interaction between belief heterogeneity and the discount rate shows that, regardless of their beliefs, agents exhibiting 
a higher discount rate will invest less in low-carbon technology. It suggests that anchoring expectations and striving to decrease 
socially inadequate preferences for the present (Steffen, 2020) should go hand in hand. For low-stranding projections, an optimal 
discount rate is zero. For high-stranding ones, our results show that a non-zero discount rate maximises low-carbon investment 
through the lower weighting of heterogeneous beliefs over later periods.

4.4. Farsightedness and belief heterogeneity

We now turn to the interactions between belief heterogeneity and farsightedness, denoted by the length of the planning horizon 
𝑆. The general impact of increasing the planning horizon by one period is given by Proposition 8.

Proposition 8. Let us define 𝑅∗
𝑆

the value of the benchmark return rate for a given length for the planning horizon 𝑆. An increase in the 
planning horizon 𝑆 has a positive effect if 𝑅∗

𝑆−1 + 𝜋𝐿,𝑆 − 𝜋𝐻,𝑆 > 0. Based on Proposition 1, there exists an 𝑠1 ∈ [|1, 𝑆|] sufficiently large 
such that this condition holds (if 𝜋𝐿,1 − 𝜋𝐻,1 > 0, 𝑠1 = 1). Still based on Proposition 1, there exists an 𝑠2 > 𝑠1 such that the condition reverses 
if 𝜋𝐿,1 − 𝜋𝐻,1 is negative and low enough. 𝑠2 increase with 𝓁 and 𝑏𝓁 .

Proof. Demonstration is given in Appendix F.8. □

16 For the sake of brevity, we only allow �̄� to vary in modulating belief heterogeneity in our illustrations. Effects would be qualitatively similar if we changed the 
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level of 𝜎0 , as long as we keep 𝜎0 < �̄�.
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Fig. 9. Interaction between long-run belief heterogeneity �̄� and the planning horizon 𝑆. Panel (a) describes our high-stranding case, while Panel (b) shows our 
low-stranding case. The charts plot isovalue lines. For instance, the curve with legend “0.5” on Panel (a) corresponds to all (�̄�, 𝑆) combinations for which the share of 
low-carbon investment 𝓁𝐼 is equal to 0.5 in the case of high stranding central expectation.

Intuitively, agents with a longer planning horizon account for interval tend to include more periods 𝑠 where low-carbon tech is 
expected to be more profitable. However, as shown in Proposition 8, this effect is compensated for by negative 𝜋𝐿,𝑠 − 𝜋𝐻,𝑠 emerging 
once the stranding period ends. This latter effect is exacerbated by low discounting.

These figures illustrate the fact that a minimum planning horizon is required for low-carbon investment to emerge in the current 
period. This minimum planning horizon corresponds to the expectation horizon necessary for agents to account for enough 𝑠-time 
intervals so to tilt the expected profit rate in favour of low-carbon technologies.

Starting with the high-stranding central expectation (Panel (a)), increasing belief heterogeneity has two opposite effects. It in-

creases low-carbon investment for low planning horizons, consistently with the discussion above. It can also decrease by a moderate 
amount (≈ 10%) the share of low-carbon investment if the horizon of expectation is long and belief heterogeneity is high.17 This 
feature is due to our assumption of time 𝑠-increasing opinion diversity. As the planning horizon increases, expectations will diverge 
more for later periods. Hence, agents will tend to exhibit a more balanced investment portfolio as their planning horizon increases. 
This highlights a trade-off between sufficient long-termism and the uncertainty linked to very late periods. Finally an increase in be-

lief heterogeneity decreases the cutoff point from which the effect of a longer planning horizon entails lower low-carbon investment. 
This is because higher heterogeneity will tend to decrease the expected value of positive 𝜋𝐿,𝑠 −𝜋𝐻,𝑠 over [|𝑠1, 𝑠2|] in aggregate, result-

ing in negative 𝜑∗ if the planning horizon is sufficiently longer to include periods over which agents expect low-carbon technologies 
to be less profitable.

The low-stranding case (Panel (b)) shows a synergy between the length of the planning horizon and belief heterogeneity. It is 
because, with higher belief dispersion, including more periods into the planning horizon will lead a greater part of the investors’ pop-

ulation believe that low-carbon investments will be profitable, and for longer. Conversely, if belief heterogeneity is low, increasing 
the planning horizon has only a very moderate impact low-carbon investment. It is because agents expect that the period of stranding 
over which low-carbon investments will be more profitable is only transitory. Because the central projection features low stranding, 
the stranding period will be short and too transitory to outweigh subsequent periods, over which the edge of the low-carbon tech-

nology is reduced. Quantitative implications are greater than in the high-stranding case and function of the length of the planning 
horizon. Intuitively, for a planning horizon maximising stranding expectation, allowing for greater belief heterogeneity pushes even 
farther the range of transition-prone expectations. Hence, the share of low-carbon investors will increase.

These results also show that a relatively high share of low-carbon investment (40-50%) can emerge for some planning horizons 
in the event of important belief heterogeneity, regardless of the underlying central expectation. As sketched in Sections 4.2 and 
4.3, introducing belief heterogeneity introduces a whole gradient of interior solutions between 0 and 1. A same share of low-carbon 
investment can correspond to many parameter constellations. As a result, considering observed shares of low-carbon investment 
alone as an indicator of the good health of the transition can be misleading.

For instance, the share of renewable investment in Europe revolves around 40%, which may be seen as encouraging. Yet, poli-

cymakers should be cautious, in that this figure may correspond equally to a state of high central expectation, but short planning 
horizon (Fig. 9 Panel (a) or, conversely, to a state of long planning horizon, but high belief dispersion (Panel (b)). Given that both 
possibilities lead to different policy implications, regulators should consider surveying investors to gauge as much as possible to state 
of the market wisdom, how dispersed beliefs are, and how short-sighted agents are.

5. Conclusion

Transitioning to a carbon-free economy requires convincing a sufficiently relevant proportion of private decision-makers that 
investing in low-carbon technology is the most profitable strategy. High-carbon technologies still often represent the most convenient 
investment alternative due to higher productivity, better financing conditions, and other factors. However, firms might decide to 
invest in low-carbon technologies if they expect them to diffuse rapidly and, consequently, high-carbon capital units to become 
under-utilised (‘stranded’) and deliver lower profits in the future.
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17 This feature shows in Panel (a) through the upward-sloping shape of the “0.9” line.



Journal of Economic Behavior and Organization 216 (2023) 535–567L. Cahen-Fourot, E. Campiglio, L. Daumas et al.

Firms have diverse beliefs about what will happen in the future. We introduce heterogeneity by representing firms’ opinions 
as normally distributed around a central expectation, which we take as an announced policy pathway or a common market norm, 
and increasing logistically in the length of their planning horizon. Our model allows us to explore the role of opinion diversity on 
investment behaviours, relaxing the hypothesis of coordinated expectations usually encountered in macroeconomic modelling.

Our analytical framework is not immune to limitations, paving the way for future research. The assumption of homogeneous 
time preferences could be relaxed by representing populations with heterogeneous planning horizons and discount rates. Including 
expectations for other variables than the utilisation rate, as we start exploring in Appendix B, would be equally relevant, possibly 
down to the conception of a full ‘mental model’ of the economy for the agents, close to Gabaix’s (2014) endeavour. Our work 
could also include different and more complex distributions for opinion diversity, as suggested by Appendix A. Finally, exploring the 
dynamic implications of the model is likely to offer valuable insights. For instance, competing market norms across which agents 
could switch (in a way similar to Franke and Westerhoff, 2017; Hommes, 2021, among others) could be included; or climate policies 
and their implications could be explicitly represented. However, despite its limitations, we believe our paper offers a novel perspective 
on the low-carbon transition dynamics, with a framework that is close enough to reality to capture several key behavioural dimensions 
for the first time, while maintaining analytical tractability.

We find that the effects of belief heterogeneity on investment shares depend significantly on the existing market norm. If cen-

tral market expectations entail a rapid transition and large high-carbon stranding, stronger belief heterogeneity reduce low-carbon 
investment. The opposite is true for central expectations implying low stranding expectations. The strength of this effect is strongly 
non-linear: in a context of both very polarised or fully balanced market expectations, investment shares will not react much to 
changes in belief heterogeneity; by contrast, milder central expectations in favour of either technology will be very sensitive to 
changes in heterogeneity. Another key finding is that high-stranding market norms will deliver higher low-carbon investment shares, 
even with high belief dispersion. Our main policy takeaway is that policymakers should strive to estimate the state of existing cen-

tral expectations and of belief heterogeneity in the marketplace in order to best anticipate possible market reactions to real-world 
developments. They could also try to infuse high-stranding market norms within the business community, if their goal is to increase 
the share of low-carbon energy, with the caveat that such policy move should not endanger their credibility.

We also find that under our benchmark calibration, and for a sizeable proportion of the parameter constellation we explore, 
low-carbon investment shares are more sensitive to shocks to short-run belief heterogeneity than to long-run belief heterogeneity. 
For moderate overall belief dispersion, this implies that shocks to short-run belief dispersion can have disproportionate effects. In this 
respect, we suggest that policymakers should make sure that agents’ expectations are aligned as much possible regarding short-run 
outcomes. This could be done, for instance, by adopting short-term planning involving all stakeholders to reach consensus, with 
regular evaluation from an independent authority. These findings finally suggest that policymakers should assess investors’ views 
about the low-carbon transition — e.g. through surveys or expert auditions — to fully grasp whether the dynamics of today will keep 
going in the future.

Finally, we study how heterogeneous beliefs interact with agents’ time preferences along two dimensions. Belief heterogeneity 
interacts with the discount rate in various ways. If the central expectation has high stranding content, higher belief heterogeneity 
exacerbates the effects of the discount rate. Reciprocally, higher belief heterogeneity tones down the impact of the discount rate 
if the central expectation has low stranding content. In that case, transition believers tend to expect more stranding in the early 
periods of their planning horizon. More importantly, we show that belief heterogeneity can thwart the positive effects of longer 
planning horizons. Indeed, while increasing the planning horizon augments expected stranding, it also increases the impact of 
opinion diversity by widening the range of projections. Again, the final result depends on the underlying central expectations. In 
particular, belief heterogeneity can have a highly detrimental effect if the central expectation has low stranding content by keeping 
low-carbon investment close to a 50-50 dispatch. Finally, we find that, in the presence of belief heterogeneity, simply looking at the 
share of low-carbon investment to assess the state of investor expectations is misleading, as the same share of low-carbon investment 
can correspond to many different states of investor opinion, lengths of the planning horizon, or levels of the market norm.
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Appendix A. Using a stable distribution for belief heterogeneity

We present here some insights on the use of alternative distributions to depict belief heterogeneity. The normal distribution has 
the important drawback of being symmetric, which does not allow for skewed distributions. It also puts great emphasis on values 
around the mean. The normal distribution, however, is a special case of a broader family of distributions, Stable laws. They are stable 
by addition and whose skewness and kurtosis can be parameterised.

Stable laws are not directly depicted by a density, but can be derived from their characteristic function. With 𝑋 ∼ 𝑆𝑡𝑎𝑏𝑙𝑒(𝛼, 𝛾, 𝛽, 𝛿), 
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the characteristic function writes, with 𝑖 the imaginary number and ∀𝑡 ∈ℝ:
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Fig. A1. Comparison of the Normal distribution benchmark to various Stable laws for the same 𝜎𝑢,𝑠 schedule.

𝔼(𝑒𝑖𝑡𝑋 ) =
⎧⎪⎨⎪⎩
exp

(
−𝛾𝛼|𝑡|𝛼 [

1 + 𝑖𝛽𝑠𝑖𝑔𝑛(𝑡) tan( 𝜋𝛼

2 )((|𝛾|)1−𝛼 − 1)
]
+ 𝑖𝛿𝑡

)
𝑖𝑓 𝛼 ≠ 1

exp
(
−𝛾|𝑡| [1 + 𝑖𝛽𝑠𝑖𝑔𝑛(𝑡) 2

𝜋
ln(𝛾|𝑡|)]+ 𝑖𝛿𝑡

)
𝑖𝑓 𝛼 = 1

This function is parameterised by:

• 𝛼 ∈]0; 2], named the ‘stability parameter’, which is a proxy for kurtosis. 𝛼 = 2 is a normal distribution.

• 𝛾 ∈ ℝ+ is the scale parameter, which rules the range on which the distribution will take most of its values and is therefore a 
proxy for the variance.

• 𝛽 ∈ [−1; 1] is the skewness parameter. 𝛽 = 1 indicates rightward skewness and vice-versa.

• 𝛿 ∈ℝ is a position parameter, which is an approximation for the mode for high 𝛼s.

The stable distribution is called 𝛼-stable, in the sense that the sum of stable distributions with the same 𝛼s is a stable distribution. 
More precisely, with 𝑋1 ∼ 𝑆𝑡𝑎𝑏𝑙𝑒(𝛼, 𝛾1, 𝛽1, 𝛿1) and 𝑋2 ∼ 𝑆𝑡𝑎𝑏𝑙𝑒(𝛼, 𝛾2, 𝛽2, 𝛿2), the sum 𝑋1 +𝑋2 ∼ 𝑆𝑡𝑎𝑏𝑙𝑒(𝛼, 𝛾, 𝛽, 𝛿), with:

𝛾 = (𝛾𝛼
1 + 𝛾𝛼

2 )
1
𝛼

𝛽 =
𝛽1𝛾

𝛼
1 + 𝛽2𝛾

𝛼
2

𝛾𝛼
1 + 𝛾𝛼

2

𝛿 = 𝛿1 + 𝛿2

This can be easily generalised to the sum of 𝑛 stable distributions, which allows us to define our 𝜀𝑢,𝑠 much more generally than 
with a normal distribution while still being able to compute our aggregate profitability metric 𝑅∗ .

However, worth emphasising is that stable distributions are in general not as readily interpretable as the Gaussian special case. 
Typically, the variance is undefined for 𝛼 < 2 (i.e. any case that is not a normal distribution) and the mean value is undefined for 
𝛼 < 1. As a result, the two parameters 𝛾 and 𝛿 are only proxies for respectively the variance and the mode of the distribution in the 
general case. Any result should therefore be taken with precaution given their lesser interpretability.

We nonetheless parameterise our 𝜀𝑢,𝑠, such that 𝛿𝑢,𝑠 = 0 and 𝛾𝑢,𝑠 = 𝜎𝑢,𝑠, leaving 𝛽 and 𝛼 free. To keep an interpretable 0-mean, we 
modulate 𝛼 to keep it within the ]1, 2[ interval. To study the impact of leftward-skewed beliefs (i.e., a greater mass of agents believing 
in stranding), we set to start with 𝛽 = −1. We illustrate how this constellation of parameters changes the distribution with respect to 
a Normal benchmark in Fig. A1, for a same scale (𝜎𝑢,𝑠) schedule and various 𝛼s.

As can be seen, distributions are obviously more skewed leftward. Plus, the mode tends to shift away from the zero mean to make 
for the skewness. Finally, non-normal distributions tend to de-emphasise values around the mode and focus on ‘rarer’ events to the 
left. However, as can be seen, they also tend to include more events to the right of the zero-mean. As a result, especially for low 𝛼s, 
Stable distributions are useful in representing populations that are more polarised. We display results in Fig. A2 for the 𝜎0 and �̄�, 
over a smaller compact than in Section 4 to make it more tractable and for various values of 𝛼.

As can be seen, changing the distribution has both qualitative and quantitative implications. Interestingly, more skewness leads 
most often to lower low-carbon investment, even if it makes a greater part of the population believing in high stranding. This is 
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entirely attributable to the fact that skewness is compensated by a greater share of the population believing in higher stranding. 
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Fig. A2. Sensitivity figures on dissent parameters 𝜎0 and �̄�.

Because of our censoring process, this share of the population will become more relevant as the central stranding projection hits 
lower values, resulting in lower low-carbon investment values. Interestingly, however, this logic gets reversed for low 𝛼s and high 
𝜎𝑢,𝑠 schedules, as the population believing in high stranding is more important. These results suggest that a greater polarisation of 
beliefs acts in disfavour of the low-carbon transition, unless it is characterised by a very ‘strong minority’. Note nonetheless that, 
within our parameter range, the impact of this strong minority seems reduced.

Appendix B. Expanding the realm of uncertainty

In this Appendix, we offer some insights on how our results would change if belief heterogeneity went beyond the utilisation rate 
of high-carbon capital to also affect the prices of both electricity and fossil fuels. We redefine the return rates for the two technologies 
as:

𝑟𝐻 =
𝑆∑

𝑠=𝑡

𝛽𝑠

[(
𝑝𝐸 −

𝑝𝐹

𝜉𝐹

+ 𝜀𝐻
𝜋,𝑠

)
𝜉𝐻 (𝑢∗

𝐻,𝑠
+ 𝜀𝑢,𝑠) − 𝛼𝐻𝜓𝐻𝑐𝐻

]
(26)

𝑟𝐿 =
𝑆∑

𝛽𝑠
[
(𝑝𝐸 + 𝜀𝐿

𝜋,𝑠)𝑢
𝑓

𝐿
𝜉𝐿 − 𝛼𝐿𝑐𝐿

]
(27)
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where 𝜀(𝐻,𝐿)
𝜋,𝑠 ∼

(
0, (𝜎(𝐻,𝐿)

𝜋,𝑠 )2
)

is now the dispersion of beliefs around the normal expected unit profitability for both technologies. 
These terms include movements in intermediate fossil input prices 𝑝𝐹 (including taxes) and changes in electricity prices 𝑝𝐸 .

By recalling our investment rule for which 𝓁𝐼 = 𝑃
(
𝑟𝐿 − 𝑟𝐻 > 0

)
and developing the expression, we can write:

𝓁𝐼 = 𝑃

⎛⎜⎜⎜⎜⎜⎝
𝑆∑

𝑠=𝑡

𝛽𝑠

[(
𝑝𝐸 −

𝑝𝐹

𝜉𝐹

)
𝜉𝐻𝑢∗

𝐻,𝑠
− 𝑝𝐸𝜉𝐿𝑢

𝑓

𝐿
− 𝛼𝐻𝜓𝐻𝑐𝐻 + 𝛼𝐿𝑐𝐿

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

“𝑀𝑒𝑎𝑛 𝑏𝑒𝑙𝑖𝑒𝑓”𝑡𝑒𝑟𝑚

+
𝑆∑

𝑠=𝑡

𝛽𝑠

[
𝜀𝑢,𝑠𝜉𝐻

(
𝑝𝐸 −

𝑝𝐹

𝜉𝐹

)
+ 𝜀𝐻

𝜋,𝑠𝜉𝐻𝑢∗
𝐻,𝑠

− 𝜀𝐿
𝜋,𝑠𝜉𝐿

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑁𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚

+
𝑆∑

𝑠=𝑡

𝛽𝑠
[
𝜀𝑢,𝑠𝜀

𝐻
𝜋,𝑠𝜉𝐻

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑁𝑜𝑟𝑚𝑎𝑙−𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑇 𝑒𝑟𝑚

≥ 0

⎞⎟⎟⎟⎟⎟⎠
(28)

Equation (28) yields a product of Normal random variables (bottom term in the equation), which is known to be described by 
a Normal-Product distribution. The sum of such a distribution, which we need to derive our aggregate return rate, does not have a 
readily available functional form. However, if the random variables are assumed to be independent, the central-limit theorem allows 
us to approximate the whole distribution by a well-parametrised Normal distribution. Ware and Lad (2003) further show that for 
Normal-Product distribution, this approximation holds once we sum as few as five products of normal random variables. Hence, 
because we sum more than five random variables in our benchmark case with 𝑆 = 20, all the random variables having a mean of 
zero, and since we assume independence between 𝜀𝑢,𝑠 and 𝜀𝐻

𝜋,𝑠, products can be well approximated by a Normal distribution with 

mean zero and variance 
(
𝜀𝑢,𝑠𝜀

𝐻
𝜋,𝑠𝜉𝐻

)2
.

As a result, waiving the censoring described in Appendix E for simplicity, we can write:

𝓁𝐼 ∼

⎛⎜⎜⎜⎜⎜⎝
𝑆∑

𝑠=𝑡

𝛽𝑠

[(
𝑝𝐸 −

𝑝𝐹

𝜉𝐹

)
𝜉𝐻𝑢∗

𝐻,𝑠
− 𝑝𝐸𝜉𝐿𝑢

𝑓

𝐿
− 𝛼𝐻𝜓𝐻𝑐𝐻 + 𝛼𝐿𝑐𝐿

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑀𝑒𝑎𝑛

,

√√√√ 𝑆∑
𝑠=𝑡

𝛽2𝑠

(
𝜎2

𝑢,𝑠𝜉𝐻

(
𝑝𝐸 −

𝑝𝐹

𝜉𝐹

)2
+
(
𝜎𝐻

𝜋,𝑠𝜉𝐻𝑢∗
𝐻,𝑠

)2
+
(
𝜎𝐿

𝜋,𝑠𝜉𝐿𝑢
𝑓

𝐿

)2
+
(
𝜎𝑢,𝑠𝜎𝜋,𝑠𝜉𝐻

)2)
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𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑−𝐸𝑟𝑟𝑜𝑟

⎞⎟⎟⎟⎟⎟⎠
(29)

Hence, the Normal distribution above allows us to maintain the same Probit approach we use in the main text. Equation (29) is a 
direct extension of our basic formula described in Equations (11)-(16) and with three additional terms:

•
(
𝜎𝐻

𝜋,𝑠𝜉𝐻𝑢∗
𝐻,𝑠

)2
, the belief dispersion on the profitability of high-carbon technology;

•
(
𝜎𝐿

𝜋,𝑠𝜉𝐿𝑢
𝑓

𝐿

)2
, the belief dispersion on low-carbon profitability;

•
(
𝜎𝑢,𝑠𝜎𝜋,𝑠𝜉𝐻

)2
, the interaction between belief dispersion on the profitability of high-carbon technology and on the utilisation rate.

Notice that expanding the realm of uncertainty has, quantitatively, the same implications as shifting the 𝜎𝑢,𝑠 schedule in the case 
when there is only belief dispersion around future utilisation rates (asset stranding). We therefore expect this augmented model to 
yield lower values of 𝓁𝐼 , all other things left equal. Furthermore, increasing any 𝜎 would yield the same qualitative results as in the 
benchmark case with beliefs only on future utilisation rates.

Without providing analytical proofs for brevity, we report some results along the line of Section 4 by supposing that belief 
dispersion on 𝜋𝐿 and 𝜋𝐻 (𝜎𝜋𝐿

and 𝜎𝜋𝐻
) increases through time 𝑠 following the same logistic behaviour identified for 𝜎𝑢𝐻

and with 
the same default minimum and maximum belief dispersion (i.e. 𝜎𝜋𝐿,0 = 𝜎𝜋𝐻 ,0 = 𝜎𝑢𝐻 ,0 = 0.01 and �̄�𝜋𝐿,0 = �̄�𝜋𝐻 ,0 = �̄�𝑢𝐻 ,0 = 0.5).

First, we study how the introduction of these new dimensions of belief uncertainty affects our results. For this purpose, we 
reproduce Fig. 6, including our new hypotheses on 𝜎𝜋𝐿

and 𝜎𝜋𝐻
. Results are reported in Fig. A3. For the ambitious scenario (high 

stranding), results are close to those in Fig. 6, qualitatively and quantitatively. However, effects are more in disfavour of low-carbon 
energy sources overall: a full low-carbon investment share is never reached, with a 95% maximum, and the lower values are reached 
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for high belief dispersion. Furthermore, the effects of �̄�𝑢𝐻
and 𝜎𝑢𝐻 ,0 are much more non-linear, with sharper curvatures. This is 
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Fig. A3. Long-run and short-run belief heterogeneity (extended uncertainty). Panel (a) describes our high-stranding case, while Panel (b) shows our low-stranding 
case. The charts plot isovalue lines. For instance, the curve with legend “0.85” on Panel (a) corresponds to all (�̄�𝑢𝐻

, 𝜎𝑢𝐻 ,0) combinations for which the share of 
low-carbon investment 𝓁𝐼 is equal to 0.85 in the case of high stranding central expectation.

Fig. A4. Long-run belief heterogeneity on low- and high-carbon profitability (extended uncertainty). Panel (a) describes our high-stranding case, while Panel (b) 
shows our low-stranding case. The charts plot isovalue lines. For instance, the curve with legend “0.85” on Panel (a) corresponds to all (�̄�𝜋𝐿

, ̄𝜎𝜋𝐻
) combinations for 

which the share of low-carbon investment 𝓁𝐼 is equal to 0.85 in the case of high stranding central expectation.

attributable to: (i) belief dispersion on low-carbon energy profitability, which tends to decrease low-carbon investment; and (ii) 
the interaction term 

(
𝜎𝑢𝐻 ,𝑠𝜎𝜋𝐻 ,𝑠𝜉𝐻

)2
, which exacerbates the effects of uncertainty on asset stranding. In the unambitious case (low 

stranding), we find again effects to be in disfavour of low-carbon energy sources compared to our default case, due to the belief 
dispersion on low-carbon energy profitability. We also find a non-linear effect, with �̄�𝑢𝐻

and 𝜎𝑢𝐻 ,0 associated with less low-carbon 
investment than lower combinations, especially for high 𝜎𝑢,0. This non-linearity emerges because of the interaction term 𝜎𝜋𝐻

𝜎𝑢𝐻
, 

which amplifies the effect of high �̄�𝑢𝐻
and 𝜎𝑢𝐻 ,0 in late periods. In this context, agents hardly take into account the slow progresses 

of low-carbon energy in the long run prevailing under the central expectation, and consider, in the aggregate, low-carbon energy 
to be overall less profitable than for lower levels of belief dispersion. Hence a lower share of low-carbon energy for high belief 
dispersion levels in the unambitious case. Otherwise, results are qualitatively similar, albeit sharper due to the interaction between 
𝜎𝑢𝐻

and 𝜎𝜋𝐻 ,𝑠.

Second, we fix belief dispersion parameters on the utilisation rate to their benchmark values and modulate the maximum value 
of 𝜎𝜋𝐿

and 𝜎𝜋𝐻
. As above, we differentiate between an ambitious and an unambitious central expectation. Results are displayed in 

Fig. A4. The effects of higher belief dispersion on profitability are less pronounced than the ones associated to capacity utilisation 
belief dispersion, for both scenarios. This is because these beliefs apply to variables that do not move in time 𝑠, while we assume a 
moving central projection for stranding. However, we never reach a full investment in low-carbon technologies, the highest achieved 
value being 95% in the ambitious scenarios. We also find that the effects of both types of belief dispersion are non-linear, but not 
symmetrical. In the high-stranding scenarios, long-run belief heterogeneity on 𝜎𝜋𝐿

has relatively low effect on investment behaviour 
for low values, as figured by the flatness of the upper part of the curves in the bottom-left corner. These magnitudes are very close to 
the effects of 𝜎𝑢𝐻

shown in Fig. 6. Conversely, 𝜎𝜋𝐻
exhibits much larger effects. This is explained by the multiplicative term including 

𝜎𝜋𝐻
and 𝜎𝑢𝐻

, which exacerbates the effects of any increase in 𝜎𝜋𝐻
. This, however, only holds true until a certain point, after which 

effects become relatively linear. Results are qualitatively similar, but reversed, in the non-ambitious case.

All in all, extending the realm of uncertainty bears similar qualitative results to the analysis provided in the main text. Quanti-

tatively, it tends to reduce low-carbon investment shares due to uncertainty on future profitability. Most importantly, the effects of 
belief dispersion are sharper and more non-linear due to interactions between different belief items. This compound effect of belief 
dispersion suggests that several types of uncertainties can exacerbate each other and that regulators should aim to tackle various 
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types of uncertainties simultaneously as much as possible.
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Fig. A5. Long-run and short-run belief heterogeneity (hydro in low-carbon category). Panel (a) describes our high-stranding case, while Panel (b) shows our low-

stranding case. The charts plot isovalue lines. For instance, the curve with legend “0.85” on Panel (a) corresponds to all (�̄�, 𝜎0) combinations for which the share of 
low-carbon investment 𝓁𝐼 is equal to 0.85 in the case of high stranding central expectation.

Fig. A6. Long-run and short-run belief heterogeneity (hydro and nuclear energy in low-carbon category). Panel (a) describes our high-stranding case, while Panel (b) 
shows our low-stranding case. The charts plot isovalue lines. For instance, the curve with legend “0.85” on Panel (a) corresponds to all (�̄�, 𝜎0) combinations for which 
the share of low-carbon investment 𝓁𝐼 is equal to 0.85 in the case of high stranding central expectation.

Appendix C. Alternative dispatch composition for low- and high-carbon technologies

In this Appendix, we consider alternative dispatch compositions for the definition of our ‘low-carbon’ category to address poten-

tially misleading results linked to our choice of including hydropower and nuclear technologies in the ‘high-carbon’ category.

First, we include hydro in the low-carbon category. This brings the initial share of low-carbon energy production to 34%, and total 
low-carbon capacity to 438 GW, i.e. around 45% of total installed capacity (Eurostat, 2021). Productivity parameters are redefined 
accordingly to 𝜉𝐻 ≈ 5.0221 and 𝜉𝐿 ≈ 2.8745. To adjust for the change in the starting value of the low-carbon share, we recalibrate 
the intrinsic growth rate of our ambitious and unambitious scenarios to 0.2 and 0.1, respectively, while setting the long-term share 
to 95% after 30 years, consistently with the goals laid in the Fit for 55 package (EC, 2021). We reproduce here results displayed in 
Fig. 6, to compare the effect of short- and long-run belief heterogeneity. As shown in Fig. A5, results are qualitatively very close to 
the ones obtained with our default dispatch. The dichotomy between ambitious and unambitious scenarios remains, and we still find 
the decreasing marginal effect of increasing uncertainty in both cases. Our effects become slightly sharper than in the benchmark 
case due to the redefinition of our ambitious and unambitious scenarios, which tend to favour the incumbent.

Second, we also introduce nuclear power. Given the high weight of this energy source in the European mix, including nuclear 
brings the low-carbon share of energy to 53%, and total low-carbon capacity to around 550 GW, i.e. around 55% of total installed 
capacity Eurostat (2021). Productivity parameters are redefined as 𝜉𝐻 = 4.4942 and 𝜉𝐿 = 3.69. Given the large change to our energy 
shares, we redefine our ambitious and unambitious scenarios. The intrinsic growth rate 𝑏𝓁 for the ambitious scenario is decreased 
from 0.25 to 0.1; the carrying capacity 𝓁 is moved from 0.9 to 0.95 as in the case above. For the unambitious scenario, while 
retaining the same carrying capacity of 0.95, we assume an intrinsic growth rate of 0.05. Results are displayed in Fig. A6.

In the ambitious scenario (high stranding), results are similar to the ones with the default dispatch composition, with similar 
gradients and effects. For the unambitious scenario (low stranding), the model yields a non-linearity in belief dispersion for low 
values, as shown by the outward orange line. Further, the overall pattern matches that of the ambitious scenario, with most cold-

coloured line corresponding to low levels of low-carbon investments. Results differ due to the redefinition of productivity parameters. 
Although they still give an edge to the high-carbon sector for low levels of belief heterogeneity, this edge is very small due to the 
high productivity of nuclear power plants. As a result, for high level of belief dispersion, this edge is reversed (the spread between 
𝑟𝐿 and 𝑟𝐻 becomes positive). This yields a behaviour similar to the ambitious scenario for high levels of belief dispersion. This result 
shows that, if the technologies are very close in terms of mean expected returns, non-linearities can emerge in the model. And, under 
certain conditions, such as those in the example above, belief uncertainty can diminish low-carbon investment even for otherwise 
557

unambitious scenarios.
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Fig. A7. Shifting bounds along with a change in variable.

Appendix D. Derivation of return rates

Heterogeneity in transition expectations creates heterogeneity in the expected return rates for the two technologies. Given equa-

tions (4) and (6), we can rewrite equation (1) for the high-carbon sector as

𝑟𝐻,𝑡 =
𝑆∑

𝑠=𝑡

𝛽𝑠

[(
𝑝𝐸 −

𝑝𝐹

𝜉𝐹

)
𝜉𝐻 (𝑢∗

𝐻,𝑠
+ 𝜀𝑢,𝑠) − 𝛼𝐻𝜓𝐻𝑐𝐻

]
. (30)

Similarly to what was done with the expected capacity utilisation 𝑢𝐻 , the expected return rate on a unit of 𝐾𝐻 can be disaggre-

gated into a ‘rational stranding’ deterministic part and an error term. Defining for convenience a new variable 𝛾𝐻 = (𝑝𝐸 − 𝑝𝐹

𝜉𝐹
)𝜉𝐻 , 

equation (30) becomes 𝑟𝐻,𝑡 = 𝑅∗
𝐻
+ 𝜀𝑟, with 𝑅∗

𝐻
=

∑𝑆
𝑠=𝑡 𝛽

𝑠
[
𝛾𝐻𝑢∗

𝐻
− 𝛼𝐻𝜓𝐻𝑐𝐻

]
and 𝜀𝑟 ∼ (0, ∑𝑆

𝑠=𝑡 𝛽
2𝑠𝛾2𝜎2

𝑢,𝑠). The expected return rate 
on low-carbon capital 𝑟𝐻 , on the other hand, lacks by assumption any random part. That is, 𝑟𝐿 = 𝑅∗

𝐿
=
∑𝑆

𝑠=𝑡 𝛽
𝑠
[
𝑝𝐸𝜉𝐿 − 𝛼𝐿𝜓𝐿𝑐𝐿

]
. This 

gives us the net present value of future technological investments but it now remains to find an expression 𝜗 such that Equation (14)

is satisfied.

Pr(𝑟𝐿 > 𝑟𝐻 ) = Pr(𝑟𝐿 − 𝑟𝐻 > 0) = Pr(𝜗 > 0). (31)

From the above we see that 𝜗 = 𝑅∗
𝐿
− 𝑅∗

𝐻
− 𝜀𝑟, but this expression must be scaled so the error term has a standard normal 

distribution. We thus divide the expression by the variance of 𝜀𝑟 to get our final expression 𝜑:

𝜑 =
𝑅∗

𝐿
−𝑅∗

𝐻∑𝑆
𝑠=𝑡 𝛽

2𝑠𝛾2𝜎2
𝑢,𝑠

−
𝜀𝑟∑𝑆

𝑠=𝑡 𝛽
2𝑠𝛾2𝜎2

𝑢,𝑠

= 𝜑∗ − 𝜀𝜑, (32)

where 𝜀𝜑 ∼ (0, 1).
Furthermore, since the variance term ∑𝑆

𝑠=𝑡 𝛽
2𝑠𝛾2𝜎2

𝑢,𝑠 > 0,

Pr(𝑟𝐿 > 𝑟𝐻 ) = Pr(𝜗 > 0) = Pr( 𝜗∑𝑆
𝑠=𝑡 𝛽

2𝑠𝛾2𝜎2
𝑢,𝑠 > 0

> 0) = Pr(𝜑 > 0). (33)

As a final step, using the symmetry of the normal distribution,

Pr(𝜑 > 0) = Pr(𝜑∗ − 𝜀𝜑 > 0) = Pr(𝜀𝜑 −𝜑∗ < 0) = Pr(𝜀𝜑 < 𝜑∗) = Φ(𝜑∗). (34)

Appendix E. Censoring the bounds of the distribution

To deal with the caveat that the utilisation rate is clearly bounded, we have to find a way to factor in the clear technical constraints 
imposed on it. If 𝑢𝐻 is between 𝑎 and 𝑏 we must find out what the bounds are for the error and associated latent variable and how 
we deal with it as a probability. By censoring the random part of 𝑢𝐻 in the relevant bounds and shifting these bounds along with the 
variable, we get bounds for 𝜀𝜑. The final probability is then calculated conditionally on these bounds.

We begin by censoring the normal random variables in our given bounds. Given a utilisation rate constrained in the interval ]𝑎, 𝑏[, 
the error of 𝑢𝐻,𝑠, 𝜀𝑢,𝑠, is constrained by the inequality in Equation (18). Pictured in Fig. A7, we may shift the distribution down to 
centre it on 0, simply by subtracting the central value 𝜇𝐻 from both bounds.

∗ ∗
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𝑎− 𝑢
𝐻,𝑠

< 𝜀𝑢,𝑠 < 𝑏− 𝑢
𝐻,𝑠

. (35)
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Fig. A8. Representation of possible values for bounds A and B and a value of interest C.

Likewise, the random variable derived from 𝜑, 𝜀𝜑 =
∑𝑆

𝑠=𝑡 𝛽𝑠𝛾𝑠𝜀𝑢,𝑠∑𝑆
𝑠=𝑡 𝛽2𝑠𝛾2𝜎2𝑢,𝑠

, is hence constrained by the following bounds:

∑𝑆
𝑠=𝑡 𝛽

𝑠𝛾𝑠(𝑎− 𝑢∗
𝐻,𝑠

)∑𝑆
𝑠=𝑡 𝛽

2𝑠𝛾2𝜎2
𝑢,𝑠

< 𝜀𝜑 <

∑𝑆
𝑠=𝑡 𝛽

𝑠𝛾𝑠(𝑏− 𝑢∗
𝐻,𝑠

)∑𝑆
𝑠=𝑡 𝛽

2𝑠𝛾2𝜎2
𝑢,𝑠

. (36)

Let 𝐴 and 𝐵 be the lower and upper bounds of 𝜀𝜑 in Equation (36), respectively and let 𝐶 = 𝜇𝜑. We proceed with the probability 
as in Equation (16), but this time it is calculated as a conditional probability using the censored standard normal variable that we 
have derived. The situation is pictured in Fig. A8, with the value of interest 𝐶 between bounds 𝐴 and 𝐵. The probability that 𝜀𝜑 is 
less than 𝐶 is the area left of the value 𝐶 , Φ(𝐶) −Φ(𝐴). We must account for the limited values of possibility, so we divide by the 
shaded area representing all possible values, Φ(𝐵) −Φ(𝐴), giving us Equation (37).

𝓁𝐼 = Pr(𝜀𝜑 < 𝐶 |𝐴 < 𝜀𝜑 < 𝐵) = Φ(𝐶) − Φ(𝐴)
Φ(𝐵) − Φ(𝐴)

(37)

Extending this process, we must account for the fact that the value 𝐶 may be taken out of the realm of possibility. Thus we make 
a further extension to say that if the value is less than the possible range the probability is 0 and if higher then it is 1.

𝓁𝑖 = Pr(𝜀𝜑 < 𝐶 |𝐴 < 𝜀𝜑 < 𝐵) =
𝛿𝐴𝐶 (Φ(𝐶) − Φ(𝐴)) − 𝛿𝐵𝐶 (Φ(𝐵) − Φ(𝐶))

Φ(𝐵) − Φ(𝐴)
(38)

where 𝛿𝑖𝑗 =

{
1 𝑖 < 𝑗

0 𝑖 ≥ 𝑗
.

Appendix F. Proofs

F.1. Proof of Proposition 1

Proposition. For 𝑏𝓁 large enough, 𝑢∗
𝐻,𝑠

is non-monotonic in 𝑠 ∈ [|𝑡 + 1, 𝑆|] and reaches a minimum in 𝑠𝑚𝑖𝑛 ∈ [|1, 𝑆|].
Proof. The proposition above is equivalent to showing that there exists an interval [|𝑣, 𝑠𝑚𝑖𝑛|] ⊂ [|𝑡 + 1, 𝑆|] such that 

𝑢∗
𝐻,𝑠+1
𝑢∗
𝐻,𝑠

< 1 ∀𝑠 ∈

[|𝑡 + 1, 𝑠𝑚𝑖𝑛|] and 
𝑢∗
𝐻,𝑠+1
𝑢∗
𝐻,𝑠

> 1 ∀𝑠 ∉ [|𝑣, 𝑠𝑚𝑖𝑛|]. Let us first notice that 𝑢∗
𝐻,𝑠+1 is defined as:

𝑢∗
𝐻,𝑠+1 =

⎧⎪⎨ 𝑒𝐻,𝑠+1
(1−𝛿)𝐾𝑠𝜉𝐻

if 𝐼∗
𝐻,𝑠

= 0
𝑒𝐻,𝑠+1 if 𝐼∗ > 0
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⎪⎩ (1−𝛿)𝐾𝑑
𝐻,𝑠

𝜉𝐻
𝐻,𝑠
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Hence that 
𝑢∗
𝐻,𝑠+1
𝑢∗
𝐻,𝑠

can take 4 possible values:

𝑢∗
𝐻,𝑠+1

𝑢∗
𝐻,𝑠

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑒𝐻,𝑠+1(1−𝛿)𝐾𝑠−1𝜉𝐻

(1−𝛿)𝐾𝑠𝜉𝐻 𝑒𝐻,𝑠−1
if 𝐼∗

𝐻,𝑠
= 0 𝑎𝑛𝑑 𝐼∗

𝐻,𝑠−1 = 0 (1)
𝑒𝐻,𝑠+1𝐾𝑑

𝐻,𝑠−1𝜉𝐻

(1−𝛿)𝐾𝑠𝜉𝐻 𝑒𝐻,𝑠−1
if 𝐼∗

𝐻,𝑠
= 0 𝑎𝑛𝑑 𝐼∗

𝐻,𝑠−1 > 0 (2)
𝑒𝐻,𝑠+1(1−𝛿)𝐾𝐻,𝑠−1𝜉𝐻

𝐾𝑑
𝑠 𝜉𝐻 𝑒𝐻,𝑠−1

if 𝐼∗
𝐻,𝑠

> 0 𝑎𝑛𝑑 𝐼∗
𝐻,𝑠−1 = 0 (3)

𝑒𝐻,𝑠+1𝐾𝑑
𝐻,𝑠−1𝜉𝐻

𝐾𝑑
𝐻,𝑠

𝜉𝐻 𝑒𝐻,𝑠−1
if 𝐼∗

𝐻,𝑠
> 0 𝑎𝑛𝑑 𝐼∗

𝐻,𝑠−1 > 0 (4)

We focus on cases (1) and (2), since cases (3) and (4) describe cases in which no stranding is expected and therefore on which 
𝑢𝐻,𝑠 is constant and equal to 𝑢𝑓 .

Let us first notice that the condition for 𝐼∗
𝐻,𝑠

= 0 ∀𝑠 is:

𝑢𝐻,𝑠−1

𝑢𝑓
<

(1 − 𝛿)
(1 + 𝑔𝑒𝐻,𝑠

)
(39)

It is easy to show that:

(1 − 𝑏𝓁)(1 + 𝑔𝑒) < (1 + 𝑔𝑒𝐻,𝑠
) < (1 + 𝑔𝑒) (40)

And that the sequence 
(
(1 + 𝑔𝑒𝐻,𝑠

)
)

𝑠∈[|𝑡,𝑆|] is increasing and converges towards (1 + 𝑔𝑒).

Hence, it is possible to find a 𝑏 large enough such that Condition (1) is fulfilled at a given �̄�. For instance, the condition for �̄� = 𝑡 +1
supposing that 𝑢𝐻,𝑡 = 𝑢𝑓 yields:

1 <
(1 − 𝛿)

(1 + 𝑔𝑒𝐻,�̄�
)
⇔

(
1 + 𝑔𝑒

)(
1 − 𝑏

(
𝓁 − 𝓁𝐸,𝑡

(1 − 𝓁𝐸,𝑡)𝓁

))
< (1 − 𝛿)⇔ 𝑏 >

1 − (1−𝛿)
(1+𝑔𝑒)(

𝓁−𝓁𝐸,𝑡

(1−𝓁𝐸,𝑡)𝓁

) (41)

This condition can be generalised for any 𝑠 > 𝑡 since, in expectations, as long as 𝐼∗
𝐻,𝑠

> 0, 𝑢𝐻,𝑠 = 𝑢𝑓 .

The condition for 𝐼∗
𝐻,�̄�+1 = 0 is:

𝑢𝐻,�̄�

𝑢𝑓
<

(1 − 𝛿)
(1 + 𝑔𝑒𝐻,�̄�

)
(42)

In that case, we can write 𝐾𝐻,�̄�+1 = (1 − 𝛿)𝐾𝐻,�̄� = (1 − 𝛿)2𝐾𝐻,�̄�−1 = (1 − 𝛿)2 𝑒𝐻,�̄�−1
𝑢�̄�−1𝜉𝐻

and Condition (1) can be rewritten as:

𝑢𝐻,�̄�−1

𝑢𝑓
<

(1 − 𝛿)2

(1 + 𝑔𝑒𝐻,�̄�
)(1 + 𝑔𝑒𝐻,�̄�+1

)
(43)

Which can again be fulfilled for 𝑏 large enough. More generally, the condition for 𝐼∗
𝐻,𝑘

= 0, 𝑘 > �̄� writes:

𝑢𝐻,�̄�

𝑢𝑓
<

(1 − 𝛿)𝑘−�̄�

Π𝑘
𝑖=�̄�

(1 + 𝑔𝑒𝐻,𝑖
)

(44)

As we saw above, the sequence 
(
(1 + 𝑔𝑒𝐻,𝑠

)
)

𝑠∈[|𝑡,𝑆|] is increasing and converges towards (1 + 𝑔𝑒) > (1 − 𝛿). Since 𝑔𝑒 and 𝛿 are 
positive, based on the intermediate values theorem, there exists a 𝑠∗ for which:

(1 + 𝑔𝑒𝐻,𝑠∗
) < (1 − 𝛿) < (1 + 𝑔𝑒𝐻,𝑠∗+1

)

Hence that, for 𝑘 > 𝑠∗, we can write (1−𝛿)𝑘−�̄�

Π𝑘
𝑖=�̄�

(1+𝑔𝑒𝐻,𝑖
)

as follows:

(1 − 𝛿)𝑘−�̄�

Π𝑘
𝑖=�̄�

(1 + 𝑔𝑒𝐻,𝑖
)
= 1

Π𝑠∗
𝑖=�̄�

(1 + 𝑔𝑒𝐻,𝑖
)

(1 − 𝛿)𝑘−�̄�

Π𝑘
𝑖=𝑠∗+1(1 + 𝑔𝑒𝐻,𝑖

)

For 𝑆 large enough, 𝑘∗ < 𝑆. This result shows that there exists an interval 𝑈 ⊂ [|𝑡, 𝑆|] on which 𝐼∗
𝐻,𝑠

= 0 and that, for 𝑆 large 
enough, 𝑘∗ < 𝑆. For 𝑠 > 𝑘∗, 𝐼∗

𝐻,𝑠
> 0.

The right-hand term is decreasing in 𝑘 and converges towards zero. As a result, there exists a 𝑘∗ for which:

𝑢𝐻,�̄�

𝑢𝑓
>

(1 − 𝛿)𝑘∗−�̄�

Π𝑘∗
𝑖=�̄�

(1 + 𝑔𝑒𝐻,𝑖
)

(45)
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Cases (1) and (2) 𝐼∗
𝐻,𝑘

= 0 𝑎𝑛𝑑 𝐼∗
𝐻,𝑘−1 = 0 ∀𝑘 ∈ 𝑈 thus depict situations arising for 𝑏 large enough.
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Considering case (1) and simplifying the corresponding equation, we get:

𝑢∗
𝐻,𝑠+1

𝑢∗
𝐻,𝑠

=
𝑒𝐻,𝑠+1(1 − 𝛿)𝐾𝐻,𝑠−1𝜉𝐻

(1 − 𝛿)2𝐾𝐻,𝑠−1𝜉𝐻𝑒𝐻,𝑠

=
𝑒𝐻,𝑠+1

(1 − 𝛿)𝑒𝐻,𝑠

Which is below 1 if and only if 𝑒𝐻,𝑠+1
𝑒𝐻,𝑠

= (1 + 𝑔𝑒𝐻,𝑠
) < (1 − 𝛿), that is, the decrease rate in high-carbon energy demand is superior 

to the depreciation rate. Using the fact that 
(
(1 + 𝑔𝑒𝐻,𝑠

)
)

𝑠∈[|𝑡,𝑆|] is increasing and converges towards (1 + 𝑔𝑒) > (1 − 𝛿) and using again 

the intermediate value theorem, it follows that, for 𝑠 > 𝑠𝑚𝑖𝑛 = 𝑠∗, 𝑒𝐻,𝑠+1
𝑒𝐻,𝑠

> 1 and < 1 otherwise.

Considering now case (2) and noticing that in this instance 𝐾𝐻,𝑠 = 𝐾𝑑
𝐻,𝑠−1, we get:

𝑢∗
𝐻,𝑠+1

𝑢∗
𝐻,𝑠

=
𝑒𝐻,𝑠+1𝐾

𝑑
𝐻,𝑠

𝜉𝐻

(1 − 𝛿)2𝐾𝑑
𝐻,𝑠

𝜉𝐻𝑒𝐻,𝑠

=
𝑒𝐻,𝑠+1

(1 − 𝛿)𝑒𝐻,𝑠

Which yields the same condition as above: for 𝑏𝓁 large enough, the utilisation rate will decrease. □

Lemma 1. For 𝑏𝓁 large enough, there exists an interval 𝑇 ⊂ [|𝑡, 𝑆|] such that, ∀𝑠 ∈ 𝑇 , 𝜋𝐿,𝑠 − 𝜋𝐻,𝑠 > 0.

Proof. The condition for 𝜋𝐿,𝑠 − 𝜋𝐻,𝑠 > 0 is:

𝑢𝐻,𝑠 <
1

𝑝𝐸 − 𝑝𝐹

𝑓𝐹

(𝑝𝐸𝜉𝐿 − 𝛼𝐾𝜓𝐿𝑐𝑘
𝐿
+ 𝛼𝐻𝜓𝐻𝑐𝑘

𝐻
)

As per Proposition 1, with 𝑏𝓁 large enough, it is possible to define a subset 𝑈 ⊂ [|𝑡, 𝑆|] on which 𝑢𝐻,𝑠 is decreasing, with the 
sequence (𝑢𝐻,𝑠)𝑠∈[|𝑡+1,𝑆|] hitting a minimum at the highest value of 𝑈 : 𝑠𝑚𝑖𝑛. Now, we know that, ∀𝑠 ∈ [|𝑡 + 1, 𝑆|]:

𝑢∗
𝐻,𝑠+1 =

𝑒𝑑
𝑠 (1 + 𝑔𝐸 ) − 𝑒𝐿,𝑠(1 + 𝑔𝐸 )

[
1 + 𝑏𝓁

(
1 −

𝑒𝐿,𝑠

𝓁𝑒𝑑
𝑠

)]
𝜉𝐻 [(1 − 𝛿)𝐾𝐻,𝑠 + 𝐼∗

𝐻,𝑠
]

(46)

A fortiori,

𝑢∗
𝐻,𝑠𝑚𝑖𝑛

=

𝑒𝑑
𝑠𝑚𝑖𝑛−1

(1 + 𝑔𝐸 ) − 𝑒𝐿,𝑠𝑚𝑖𝑛−1(1 + 𝑔𝐸 )
⎡⎢⎢⎣1 + 𝑏𝓁

⎛⎜⎜⎝1 −
𝑒𝐿,𝑠𝑚𝑖𝑛−1

𝓁𝑒𝑑
𝑠𝑚𝑖𝑛−1

⎞⎟⎟⎠
⎤⎥⎥⎦

𝜉𝐻 [(1 − 𝛿)𝐾𝐻,𝑠𝑚𝑖𝑛−1 + 𝐼∗
𝐻,𝑠𝑚𝑖𝑛−1

]
(47)

Which is an obviously decreasing function of 𝑏𝓁 . Then, for 𝑏𝓁 large enough, 𝑢∗
𝐻,𝑠𝑚𝑖𝑛

will fulfil the condition above. It is further 
possible to define an interval [|𝑠𝑚𝑖𝑛 − 𝑎; 𝑠𝑚𝑖𝑛 + 𝑎|] on which this condition holds, again for 𝑏𝓁 large enough. □

F.2. Proof of Proposition 2

Proposition. For 𝜎𝑢,𝑠 = 0 ∀𝑠 ∈ [|1, 𝑆|], 𝓁𝐼 tends towards a degenerate probability distribution function, whereby:

𝓁𝐼 =
⎧⎪⎨⎪⎩
0 𝑖𝑓 𝑅∗ < 0
0.5 𝑖𝑓 𝑅∗ = 0
1 𝑖𝑓 𝑅∗ > 0

(48)

Proof. Starting from 𝓁𝐼 = Φ(𝜑∗)−Φ(𝜑0)
Φ(𝜑1)−Φ(𝜑0)

and noticing that 𝜑0 =
𝑅0
Γ < 0 and 𝜑1 =

𝑅1
Γ > 0 within our parameter space, we have:

lim
Γ→0+

Φ
(
𝜑0

)
= lim

Γ→0+
Φ

(
𝑅0
Γ

)
= 0

lim
Γ→0+

Φ(𝜑1) = lim
Γ→0+

Φ
(

𝑅1
Γ

)
= 1

For 𝑅∗ = 0, the result flows from the definition of Φ. For any Γ, we have:

𝓁𝐼 =
Φ(0) −Φ(𝜑0)
Φ(𝜑1) − Φ(𝜑0)

=
0.5 −Φ(𝜑0)
Φ(𝜑1 −Φ(𝜑0)
561

Which, given the limits above, has Φ(0) = 0.5 as limit for Γ → 0.
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All in all,

lim
Γ→0+

𝓁𝐼 = lim
Γ→0+

Φ(𝜑∗) =
⎧⎪⎨⎪⎩
0 𝑖𝑓 𝑅∗ < 0
0.5 𝑖𝑓 𝑅∗ = 0
1 𝑖𝑓 𝑅∗ > 0

□ (49)

F.3. Proof of Proposition 3

Let us consider a logistic sequence 𝑥𝑛 = 𝑥𝑛−1

(
1 + 𝑏(1 − 𝑥𝑛−1

𝐾
)
)

where 𝐾 is a carrying capacity and 𝑏 an intrinsic growth rate. Let 
us then consider 𝑥0 the first term of this sequence. Then, ∀𝑛|𝑥𝑛 < 𝐾 :

𝜕𝑥𝑛

𝜕𝐾
≥ 0 (50)

𝜕𝑥𝑛

𝜕𝑏
≥ 0 (51)

𝜕𝑥𝑛

𝜕𝑥0
≥ 0 (52)

With the last proposition holding for 𝑥0 < 𝐾 .

Proof. The first property can be shown by recurrence. Considering 𝜕𝑥𝑛

𝜕𝐾
, it is obvious, with 𝑥0 given that 𝜕𝑥1

𝜕𝐾
> 0. Supposing that 

𝜕𝑥𝑛

𝜕𝐾
≥ 0, we can show that 𝜕𝑥𝑛+1

𝜕𝐾
≥ 0.

𝜕𝑥𝑛+1
𝜕𝐾

=
𝜕𝑥𝑛

𝜕𝐾
(1 + 𝑏(1 −

𝑥𝑛

𝐾
)) − 𝑥𝑛𝑏

⎛⎜⎜⎝
𝜕𝑥𝑛

𝜕𝐾
𝐾 − 𝑥𝑛

𝐾2

⎞⎟⎟⎠
=

𝜕𝑥𝑛

𝜕𝐾
(1 + 𝑏(1 −

𝑥𝑛

𝐾
)) − 𝑏

𝑥𝑛

𝐾
) +

𝑥𝑛

𝐾2

=
𝜕𝑥𝑛

𝜕𝐾
(1 + 𝑏(1 − 2𝑏

𝑥𝑛

𝐾
)) +

𝑥𝑛

𝐾2

The condition for this expression to be negative is:

1 +
𝜕𝑥𝑛

𝜕𝐾

𝐾2

𝑥2
𝑛

< 𝑏(
𝑥𝑛

𝐾
− 1)

1 + 𝐾2

𝑥2𝑛

𝜕𝐾

𝜕𝑥𝑛
is positive as per the assumption 𝜕𝑥𝑛

𝜕𝐾
> 0 and 𝑥2𝑛

𝐾2 > 0. Hence that the condition above cannot hold for 𝑥𝑛 ≤ 𝐾 . We 
consider in the following only constellations of parameters for which 𝑥𝑛 ≤ 𝐾 , without loss of generality for the purpose of the paper.

Regarding 𝑏, we can also proceed by recurrence. Defining:

𝑥𝑛 = 𝑥𝑛−1(1 + 𝑏(1 −
𝑥𝑛−1
𝐾

))

𝑥′
𝑛 = 𝑥′

𝑛−1(1 + (𝑏+ 𝑑𝑏)(1 −
𝑥′

𝑛−1
𝐾

))

= 𝑥′
𝑛−1(1 + (𝑏′)(1 −

𝑥′
𝑛−1
𝐾

))𝑥0 = 𝑥′
0

It is easy to check that, for 𝑥0 given, 𝑥′
1 − 𝑥1 ≥ 0. Supposing that 𝑥′

𝑛 − 𝑥𝑛 ≥ 0, we write:

𝑥′
𝑛+1 − 𝑥𝑛+1 = 𝑥′

𝑛(1 + (𝑏′)(1 −
𝑥′

𝑛

𝐾
)) − 𝑥𝑛(1 + 𝑏(1 −

𝑥𝑛

𝐾
))

= 𝑥′
𝑛 − 𝑥𝑛 + 𝑏′(1 −

𝑥′
𝑛

𝐾
) − 𝑏(1 −

𝑥𝑛

𝐾
)

≥ 𝑥′
𝑛 − 𝑥𝑛 + 𝑏′(1 −

𝑥′
𝑛

𝐾
) − 𝑏′(1 −

𝑥𝑛

𝐾
)

≥ 𝑥′
𝑛 − 𝑥𝑛 + 𝑏′(

𝑥𝑛

𝐾
−

𝑥′
𝑛

𝐾
)

≥ (𝑥′
𝑛 − 𝑥𝑛)

(1 − 𝑏)
𝐾

Given that (1 − 𝑏

𝐾
) > 0 for 𝑏 < 1 and null when 𝑏 = 1, we can consider this condition to hold for reasonable values of 𝑏.

For 𝑥0, we can use once again the same method. Defining:

𝑥

562

𝑥𝑛 = 𝑥𝑛−1(1 + 𝑏(1 − 𝑛−1
𝐾

)) , 𝑥0 = 𝑥0
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𝑥′
𝑛 = 𝑥′

𝑛−1(1 + 𝑏)(1 −
𝑥′

𝑛−1
𝐾

)) , 𝑥0 = 𝑥′
0

𝑥0 ≤ 𝑥′
0

Showing that 𝑥′
1 ≥ 𝑥1 and supposing that 𝑥′

𝑛 ≥ 𝑥𝑛, we get the similar condition:

𝑥′
𝑛+1 − 𝑥𝑛+1 = 𝑥′

𝑛(1 + 𝑏)(1 −
𝑥′

𝑛

𝐾
)) − 𝑥𝑛(1 + 𝑏(1 −

𝑥𝑛

𝐾
))

= 𝑥′
𝑛 − 𝑥𝑛 + 𝑏′(1 −

𝑥′
𝑛

𝐾
) − 𝑏(1 −

𝑥𝑛

𝐾
)

= 𝑥′
𝑛 − 𝑥𝑛 + 𝑏′(

𝑥𝑛

𝐾
−

𝑥′
𝑛

𝐾
)

= (𝑥′
𝑛 − 𝑥𝑛)

(1 − 𝑏)
𝐾

Which again holds true for 𝑏 ≤ 1. □

Lemma 2. All else held equal, increasing 𝓁 or 𝑏𝓁 will have a positive effect on low-carbon investment.

Proof. This property follows from Proposition 2, Φ being a positive function of 𝜑 itself obviously a positive function of 𝓁𝐸,𝑠. □

Lemma 3. All else held equal, increasing 𝜎0, ̄𝑠𝑖𝑔𝑚𝑎, and 𝑏𝜎 will have a negative effect on low-carbon investment.

Proof. This property follows from Proposition 2, |𝜑∗
𝑡 | being a negative function of the 𝜎𝑢,𝑠 with a limit in zero. □

F.4. Proof of Proposition 4

Proposition. It is possible to define an interval  = [|𝑆
¯
; �̄�|] such that, for a given 𝜌, 𝑏𝓁 and 𝓁, 𝑅∗ > 0 ∀𝑆 ∈  and 𝑅∗ ≤ 0 otherwise.  can 

be empty.

Proof. As per Proposition 1, 𝑢𝐻,𝑠 gets back closer to 𝑢𝑓 , if the profit rate spread between high and low technologies 𝜋𝐿,1 −𝜋𝐻,1 is low 
enough, a longer planning horizon may have a negative effect on low-carbon investment, as agents account for more time periods 
during which 𝜋𝐿,𝑠 − 𝜋𝐻,𝑠 < 0. □

F.5. Proof of Proposition 5

Proposition. The effect of a higher 𝜎0 or �̄� will depend on the sign of 𝑅∗. If 𝑅∗ < 0, 𝜕𝓁𝐼

𝜕𝜎0
≥ 0 and 𝜕𝓁𝐼

𝜕�̄�
≥ 0 and 𝓁𝐼 is concave in 𝜎0 and �̄�. If 

𝑅∗ > 0, 𝜕𝓁𝐼

𝜕𝜎0
≤ 0 and 𝜕𝓁𝐼

𝜕�̄�
≤ 0 and 𝓁𝐼 is convex in 𝜎0 and �̄�. Plus, there exists an 𝑅′ ∈ [𝑅0; 𝑅1] such that 𝜕𝓁𝐼

𝜕Γ (𝑅′) is equal to zero.

Proof. Taking first the derivative of 𝓁𝐼 with respect to Γ, we find:

𝜕𝓁𝐼

𝜕Γ
=

𝑢1𝑣
∗ − 𝑣1𝑢

∗

2Γ
3
2 𝑣21

(53)

With:

𝑢1 = 𝑅1𝜙(𝜑1) −𝑅0𝜙(𝜑0)

𝑢∗ = 𝑅∗𝜙(𝜑∗) −𝑅0𝜙(𝜑0)

𝜙(𝑥) = 𝜕Φ
𝜕𝑥

∀𝑥

𝑣1 = Φ(𝜑1) − Φ(𝜑0)

𝑣∗ = Φ(𝜑∗) − Φ(𝜑0)

Considering the cross-derivative 𝜕𝓁𝐼

𝜕Γ𝜕𝑅∗ , we obtain:

𝜕𝓁𝐼

𝜕Γ𝜕𝑅∗ = (𝑣1(𝜑∗)2 − 𝑣1 −
𝑢1
Γ
) 𝑒

− 𝑥2
2

2𝜋
Since 𝑢1 > 0 and 𝑣1 > 0, the determinant of (𝑣1𝜑∗ −𝑣1 −

𝑢1
Γ ) is always positive. Hence, this function admits two roots in 𝑅∗, 𝑅− and 
563

𝑅+, and is strictly negative between the two corresponding local optima. Noticing that 𝜕𝓁𝐼

𝜕Γ (𝑅0) > 0 and 𝜕𝓁𝐼

𝜕Γ (𝑅1) < 0, it follows that 
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𝜕𝓁𝐼

𝜕Γ (𝑅−) > 0 and 𝜕𝓁𝐼

𝜕Γ (𝑅+) < 0. By the theorem of intermediate value, there exists a 𝑅′ ∈ [𝑅0; 𝑅1] such that 𝜕𝓁𝐼

𝜕Γ (𝑅′) is equal to zero. 
The concavity/convexity properties of 𝓁𝐼 follow from the definition of its second derivative. □

F.6. Proof of Proposition 6

Proposition. For a given 𝑆 and 𝜌, there exists a 
(

�̄�

𝜎0

)∗
ratio high enough such that ||| 𝜕𝓁𝐼

𝜕�̄�

||| >
||| 𝜕𝓁𝐼

𝜕�̄�

|||.
Proof. Using the result of Proposition 3, suffices to prove that, for a 

(
�̄�

𝜎0

)∗
high enough, 𝜕Γ

𝜕𝜎0
>

𝜕Γ
𝜕𝜎0

.

Considering that the logistic sequence is well-approximated by a continuous counterpart, we write the following logistic function 
𝑙(𝑥) ∀𝑥 ≥ 0, which includes a starting value 𝜎0 and a carrying capacity �̄�:

𝑙(𝑥) = �̄�

1 + ( �̄�

𝜎0
− 1)𝑒−𝑏𝜎𝑥

Taking the corresponding derivatives:

𝜕𝑙

𝜕�̄�
= 1 − 𝑒−𝑏𝜎𝑥(

1 + ( �̄�

𝜎0
− 1)𝑒−𝑏𝜎𝑥

)2 ≥ 0

𝜕𝑙

𝜕𝜎0
=

(
𝜎0
�̄�

)2
𝑒−𝑏𝜎𝑥(

1 + ( �̄�

𝜎0
− 1)𝑒−𝑏𝜎𝑥

)2 ≥ 0

We consider the ratio 
𝜕𝑙

𝜕𝜎0
𝜕𝑙
𝜕�̄�

to determine the condition under which 𝜕𝑙

𝜕𝜎0
>

𝜕𝑙

𝜕�̄�
, which is a sufficient condition for 𝜕Γ

𝜕𝜎0
>

𝜕Γ
𝜕𝜎0

:

�̄�

𝜎0
>

√
1 − 𝑒−𝑏𝜎𝑥

𝑒−𝑏𝜎𝑥

Given that we only consider 𝑆-long logistic sequences and because (1−exp(−𝑥))
exp(−𝑥) is a strictly increasing function of 𝑥, a sufficient 

condition is that:

�̄�

𝜎0
> max

𝑥

√
1 − 𝑒−𝑏𝜎𝑥

𝑒−𝑏𝜎𝑥
=
√

1 − 𝑒−𝑏𝜎𝑆

𝑒−𝑏𝜎𝑆
(54)

Given Proposition 3, this defines a �̄�

𝜎0
high enough for ||| 𝜕𝓁𝐼

𝜕�̄�

||| >
||| 𝜕𝓁𝐼

𝜕�̄�

|||.
Let us fix 𝜎0 to its benchmark value of 0.01. The value of the threshold for 𝑆 = 30 is around 66, which implies that the condition 

would hold for this planning horizon for �̄� ≥ 0.6;, that is, for a sizeable range of our parameter constellation. The condition would 
hold for �̄� ≥ 1 with a planning horizon equal to 32, and �̄� ≥ 1.5 for a planning horizon of 35. Fig. A9 below gives the range of �̄� values 
for which the condition holds true for each length of the planning horizon. □

F.7. Proof of Proposition 7

Proposition. As belief heterogeneity approaches infinity, 𝓁𝐼 will tend towards a finite value 𝓁𝐼 = 𝑅∗−𝑅0
𝑅1−𝑅0

, where 𝑅∗, 𝑅0 and 𝑅1 are the 
numerators of 𝜑∗, 𝜑0 and 𝜑1 respectively. We call 𝓁𝐼 ‘full dispersion’ equilibrium and it is a function of 𝑏𝓁 , �̄� for a given 𝑆 and 𝜌.

Proof. Using l’Hôpital’s Rule, we have:

lim
Γ→+∞

𝓁𝐼 = lim
Γ→+∞

Φ(𝜑∗) − Φ(𝜑0)
Φ(𝜑1) − Φ(𝜑0)

= lim
Γ→+∞

𝜕Φ(𝜑∗)−Φ(𝜑0)
𝜕Γ

𝜕Φ(𝜑1)−Φ(𝜑0)
𝜕Γ

Differentiating, we obtain:

𝜕Φ(𝜑∗)−Φ(𝜑0)
𝜕Γ

𝜕Φ(𝜑1)−Φ(𝜑0)
𝜕Γ

=

−𝑅∗

2Γ
3
2

𝜙(𝜑∗) − −𝑅0

2Γ
3
2

𝜙(𝜑0)

−𝑅1

2Γ
3
2

𝜙(𝜑1) −
−𝑅0

2Γ
3
2

𝜙(𝜑0)

Where 𝜙(𝑥) = 𝜕Φ
𝜕𝑥

∀𝑥, the probability density function of a  (0, 1). Simplifying, we get:

𝜕Φ(𝜑∗)−Φ(𝜑0)
𝜕Γ

𝜕Φ(𝜑1)−Φ(𝜑0)
=

𝑅∗𝜙(𝜑∗) −𝑅0𝜙(𝜑0)
𝑅 𝜙(𝜑 ) −𝑅 𝜙(𝜑 )
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𝜕Γ
1 1 0 0



Journal of Economic Behavior and Organization 216 (2023) 535–567L. Cahen-Fourot, E. Campiglio, L. Daumas et al.

Fig. A9. Range of �̄� values for which Condition (54) holds true for each length of the planning horizon. The shaded area gives the range of acceptable value, while 
the red line gives the value of the threshold as defined in Equation (54).

Since 𝜙(𝑥) = 1
2
√

𝜋
exp(− 𝑥2

2 ), it is easy to see that, for any 𝑅, limΓ→+∞ 𝜙(𝑅

Γ ) = lim𝑥→0+ 𝜙(𝑥) for 𝑥 = Γ, which is equal to 1. Hence, we 
get the results

lim
Γ→+∞

𝓁𝐼 =
𝑅∗ −𝑅0
𝑅1 −𝑅0

.

Which indeed belongs to [0, 1] for 𝑅0 ≤ 𝑅∗ ≤ 𝑅1. □

If 𝓁𝐼 =Φ(𝜑∗), (i.e. the distribution is not censored), it is straightforward that, the limit of 𝜑∗ being zero, that of Φ(𝜑∗) is Φ(0) = 0.5.

F.8. Proof of Proposition 8

Proposition. An increase in the planning horizon 𝑆 will have a positive effect if 𝑅∗
𝑆−1 + 𝜋𝐿,𝑆 −𝜋𝐻,𝑆 > 0. For 𝑏𝓁 There exists an 𝑠1 ∈ [|1, 𝑆|]

sufficiently large such that this condition holds. If 𝜋𝐿,𝑡 − 𝜋𝐻,𝑡 > 0, 𝑆 = 1. There also exists an 𝑠2 > 𝑠1 such that the condition reverses if 
𝜋𝐿,𝑆2

− 𝜋𝐻,𝑆2
is negative and low enough. 𝑠2 increases with 𝓁 and 𝑏𝓁 .

Proof. Let us assume that agents have a sufficiently large planning horizon 𝑆. In all generality, from Proposition 1, it is possible to 
decompose ∑𝑆

1 𝛽𝑠(𝜋𝐿,𝑠 − 𝜋𝐻,𝑠) as follows:

𝑆∑
𝑠

(𝜋𝐿,𝑠 − 𝜋𝐻,𝑠) =
𝑠1∑
1

𝛽𝑠(𝜋𝐿,𝑠 − 𝜋𝐻,𝑠)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
<0

+
𝑠2∑

𝑠1+1
𝛽𝑠(𝜋𝐿,𝑠 − 𝜋𝐻,𝑠)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
>0

+
𝑆∑

𝑠2+1
𝛽𝑠(𝜋𝐿,𝑠 − 𝜋𝐻,𝑠)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
<0

Where 𝑠1 and 𝑠2 are the thresholds derived from Proposition 1. It is obvious from this decomposition that, because from 𝑠2 + 1, 
only negative terms are added, a sufficiently large 𝑆 will yield ∑𝑆−1

0 𝛽𝑠(𝜋𝐿,𝑠 − 𝜋𝐻,𝑠) + 𝛽𝑠(𝜋𝐿,𝑆 − 𝜋𝐻,𝑆 ) if (𝜋𝐿,𝑆 − 𝜋𝐻,𝑆 ) sufficiently 
negative.

Let us now assume that the planning horizon is equal to 𝑠1 ≤ 𝑆′ ≤ 𝑠2. From Proposition 1, increasing the planning horizon to 𝑆′ +1
will have a positive effect on 𝜑∗

𝑡 if (𝜋𝐿,𝑆′ − 𝜋𝐻,𝑆′ ) sufficiently high, which is true for 𝑏𝓁 (or 𝓁) high enough. It follows immediately 

that 𝑆2 is a positive function of 𝑏𝓁 and 𝓁, the term 
𝑠2∑

𝑠1+1
𝛽𝑠(𝜋𝐿,𝑠 − 𝜋𝐻,𝑠)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
>0

increasing in 𝑏𝓁 and 𝓁. □
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