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Simple Summary: The objective of our study was to explore the potential of using a polygenic risk
score (PRS) to estimate the overall genetic risk of developing breast or ovarian cancer for women
with inherited BRCA1 pathogenic variants. We applied a previously developed PRS to 406 women
with germline BRCA1 pathogenic variants and found that the PRS accurately predicted breast cancer
risk, but not ovarian cancer risk. These findings suggest that the use of the PRS may improve patient
stratification and decision-making for breast cancer treatment and prevention strategies.

Abstract: The aim of this study was to assess the power of the polygenic risk score (PRS) in estimating
the overall genetic risk of women carrying germline BRCA1 pathogenic variants (PVs) c.4035del or
c.5266dup to develop breast (BC) or ovarian cancer (OC) due to additional genetic variations. In this
study, PRSs previously developed from two joint models using summary statistics of age-at-onset
(BayesW model) and case–control data (BayesRR-RC model) from a genome-wide association analysis
(GWAS) were applied to 406 germline BRCA1 PV (c.4035del or c.5266dup) carriers affected by BC or
OC, compared with unaffected individuals. A binomial logistic regression model was used to assess
the association of PRS with BC or OC development risk. We observed that the best-fitting BayesW
PRS model effectively predicted the individual’s BC risk (OR = 1.37; 95% CI = 1.03–1.81, p = 0.02905
with AUC = 0.759). However, none of the applied PRS models was a good predictor of OC risk.
The best-fitted PRS model (BayesW) contributed to assessing the risk of developing BC for germline
BRCA1 PV (c.4035del or c.5266dup) carriers and may facilitate more precise and timely patient
stratification and decision-making to improve the current BC treatment or even prevention strategies.

Keywords: polygenic risk score (PRS); breast cancer; ovarian cancer; BRCA1 pathogenic variant carriers

1. Introduction

Breast cancer (BC) is the most common malignant tumor diagnosed among women
in Western countries [1]. Every year, approximately 1200 and 300 women are diagnosed
with BC and ovarian cancer (OC) in Latvia, respectively [2]. Female carriers of pathogenic
variants (PVs) in high and moderate penetrance susceptibility genes, such as BRCA1 DNA
repair-associated gene (BRCA1), BRCA2 DNA repair-associated gene (BRCA2), tumor
protein p53 gene (TP53), partner and localizer of BRCA2 gene (PALB2), checkpoint kinase
2 gene (CHEK2), and ATM serine/threonine kinase gene (ATM), are at a highly increased
risk of developing BC and OC compared with women in the general population [3,4].
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Inherited PVs in the BRCA1 gene are the most common cause of hereditary breast and
ovarian cancer (HBOC). Associated lifetime risk (by the age of 80 years) for BC development
has been evaluated in a variety of studies, with recent estimates ranging from 60% to 75%
for female BRCA1 germline PV carriers [5]. The corresponding OC risk has been estimated
to be 34% to 44% for female BRCA1 PV carriers [6,7]. In the Baltic region, previous research
by several groups has demonstrated that two germline PVs in the BRCA1 gene—c.4035del
and c.5266dup—are founder variants in these populations and account for approximately
80% of all identified PVs in the BRCA1 gene in BC and OC patients [4,8–11].

Currently, the clinical management of women carrying BRCA1 PVs focuses on a
combination of early diagnosis and cancer risk reduction through frequent screening, risk-
reducing surgeries, and chemoprevention [12]. Preventive measures, such as bilateral
mastectomy or risk-reducing salpingo-oophorectomy, are invasive and have substantial
psychological and physiological effects. Accurate age-dependent estimates of cancer pene-
trance in BRCA1 PV carriers are crucial in genetic counseling to make informed decisions
about preventive measures that correspond to personalized BC or OC risk. Improved risk
prediction may facilitate the identification of high-risk women who could benefit from early
clinical intervention and low-risk women who may decide to delay prophylactic surgery or
chemoprevention [5,12].

However, BRCA1 PV-associated HBOC is inherited in autosomal dominant pattern
with incomplete penetrance. Variable penetrance leads to challenging genetic counselling
and risk assessment for each individual with BRCA1 PV [13]. It has been demonstrated
that for BRCA1 PV carriers, the disease risk displays a polygenic pattern and mode of
inheritance, with an elevated cancer risk observed in individuals with an increased num-
ber of affected first- and second-degree relatives. This observation suggests that other
genetic factors modify cancer risk for BRCA1 PV carriers [6,14–16]. Consistent with this
observation, an increasing number of common BC and OC susceptibility single nucleotide
variants (SNVs) have been identified through population-based genome-wide association
studies (GWASs) that have demonstrated an effect on BC and OC risk in BRCA1 PV carri-
ers [6,17,18]. Although the identified SNVs confer small to modest risk individually, the
combined multiplicative effect can be summarized using polygenic risk scores (PRSs) and
incorporated into individual risk stratification [1,5]. PRSs are calculated by aggregating the
weighted sum scores of risk alleles based on the effect sizes derived from GWAS results [19].

Global biobank initiatives and an increasing number of GWASs have created the
opportunities to calculate more accurate effects of genetic markers, providing new tools
for improved personalized risk assessments [14,20–22]. PRSs have the potential to be
implemented in clinical risk models alongside independent biomarkers, such as BRCA1 PV
carrier status. Furthermore, many methods have been developed to compute PRSs, each
with different strengths and weaknesses [20]. A common approach in PRS development
involves using GWAS results to aggregate the effects of many genetic markers that are
statistically associated with a specific trait or disease [19].

Recently, more complex PRSs with improved prediction accuracy have been developed
using random-effects models. To develop joint PRS models containing a genome-wise set
of 2,174,072 SNVs, the authors utilized a Bayesian grouped mixture of regressions model
(GMRM), which jointly estimates genetic marker effects [23]. Two Bayesian approaches
have been implemented for joint PRS model calculations: the age-at-onset BayesW and
case–control BayesRR-RC model. The BayesW model was developed by Ojavee et al.,
providing probabilistic inference of the genetic architecture of age-at-onset phenotypes. It
implements the parametrization of the Weibull distribution by using the logarithm (log)
of the time-to-event and its moment, improving performance through enhanced variance
estimation [24]. In simple terms, both models use a Bayesian approach, which makes
probabilistic statements about or estimates the likelihood of outcomes, such as the status
and age-of-onset of BC and/or OC, based on the input data, such as genetic factors. In
our study, BayesW model was used to predict the age at which a woman may develop
BC and/or OC based on her genetic information. For this, the BayesW model uses a
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specific type of probability distribution, the Weibull distribution, to model the time until
the event, i.e., the onset of BC and/or OC. Moreover, the BayesW model uses a specific
way of representing the Weibull distribution to model the age-at-onset of the disease. This
involves taking the natural log of the time until the disease occurs (time-to-event) and using
it along with a measure of the distribution’s shape (its moment) to define the parameters of
the distribution. This approach allows for more accurate modelling of the age-at-onset of
BC and/or OC and the genetic factors that contribute to it [24].

On the other hand, the grouped Dirac spike-and-slab model (termed BayesRR-RC),
developed by Patxot et al., provides probabilistic inference of the genetic architecture by
implementing an extended version of BayesR model. It provided estimates for group-
specific variance, allowing for flexibility in prioritizing certain genomic regions (intronic,
exonic, and distal regulatory regions) and demonstrating robust model performance [25]. In
simple terms, our purpose of using the BayesRR-RC model was to understand the genetic
factors that contribute to the onset of BC and/or OC. The model uses a statistical approach
called a grouped Dirac spike-and-slab model to analyze the data. This approach enables
the model to consider the fact that genetic markers can have different effects on different
traits. The model is called a “spike-and-slab” model because it uses two different types of
probability distributions to represent the effects of genetic markers on a trait or disease. The
“spike” distribution represents markers that have no effect, while the “slab” distribution
represents markers that do influence the onset of BC and/or OC. The model is also called
a “grouped” model because it allows for the grouping of genetic markers into different
categories based on their characteristics. For example, markers could be grouped based
on their location in the genome (intronic, exonic, and distal regulatory regions) or their
function. This approach allows us to identify which genetic markers are most likely to have
an effect on a trait or disease and to estimate the size of that effect [25].

In this study, we investigated and compared the capacity of these two PRS models
(BayesW vs. BayesRR-RC) to estimate the overall genetic risk of women carrying the 2
most common germline BRCA1 PVs (c.4035del or c.5266dup) in the Latvian population to
develop BC or OC due to additional genetic variations.

2. Materials and Methods
2.1. Study Cohort

Patients were selected based on two germline BRCA1 PVs—NM_007294.4:c.4035del
(rs80357711) and NM_007294.4:c.5266dup (rs80357906), regardless of family history of
cancer. Both variants are frameshift variants that result in a premature stop codon and
produce truncated (c.5266dup) or reduced (c.4035del) BRCA1 protein. The biological
effect of the PVs is the loss of function of the protein. Based on the American College
of Medical Genetics and Genomics (ACMG) classification, both variants are classified as
pathogenic [26].

The study cohort consisted of 406 germline BRCA1 PV (c.4035del or c.5266dup) carri-
ers, recruited between 2002 and 2022, who were over 18 years at the recruitment. Among
the cohort, 171 individuals were diagnosed with BC, 121 individuals were diagnosed
with OC, and 114 individuals were unaffected. The diagnosis was confirmed through
diagnostic germline testing at the Breast Surgery Unit of the Pauls Stradin, š Clinical Univer-
sity Hospital. All carriers had only one BRCA1 PV (c.4035del or c.5266dup) present in a
heterozygous state.

2.2. Genotyping with OncoArray

All the study samples were genotyped using the Infinium OncoArray-500K BeadChip
(Illumina, San Diego, CA, USA) at the Institute of Oncology, Rı̄ga Stradin, š University.
The array comprises approximately 500,000 SNVs, including a genome-wide backbone
of 250,000 tag SNVs representing common variants. The remaining markers encompass
genetic variants associated with breast, ovarian, and other types of cancers, identified
through GWAS and other approaches.



Cancers 2023, 15, 2957 4 of 11

2.3. Genotype Calling and Quality Control (QC)

A standard genotype QC process was implemented for the dataset, which has been
described in detail elsewhere [27]. Briefly, this process involved sample-based and SNV-
based QC steps primarily using GenomeStudio software (Illumina, Genotyping module
v2.0.5) and the command-line program PLINK v1.07 (Purcell et al., Boston, MA, USA) [28].
Samples with a call rate <98%, gender mismatch, race mismatch (>mean± 6 SD) determined
using principal component (PC) analysis [29], extreme heterozygosity (>mean ± 4.89 SD),
inbreeding coefficient > 0.1, as well as SNVs located on chromosome Y, those with minor
allele frequency (MAF) < 0.01, and those showing extreme deviation from Hardy–Weinberg
equilibrium (HWE) (p < 1 × 10−7 for controls and p < 1 × 10−12 for cases) were excluded
from the analysis.

2.4. Genotype Imputation

Missing genotypes for approximately 40 million SNVs were imputed for all indi-
viduals using the Estonian population-based high-coverage whole-genome sequencing
(WGS) dataset (n = 2244) as the reference panel, as described previously [30]. A two-stage
imputation approach was implemented, involving phasing with EAGLE v2.3 (Loh et al.,
Boston, MA, USA) [31] and imputation with BEAGLE v5.1 (Browning et al., Washington,
WA, USA) [32]. Estimated genotypes were generated for approximately 38 million SNVs.
Post-imputation QC was performed, excluding SNVs with MAF < 0.01 and imputation
quality score DR2 < 0.8. The resulting filtered dataset consisted of 7,911,505 good-quality
SNVs for subsequent analysis.

2.5. Polygenic Risk Score (PRS) Calculations

The PRS estimates employed in this study incorporated information from 2,174,072 SNVs
that are present in both the UK Biobank (https://www.ukbiobank.ac.uk/ (accessed on 22
May 2023) [33]) and Estonian Biobank individuals (https://genomics.ut.ee/en/content/
estonian-biobank (accessed on 22 May 2023) [30]). These PRSs were developed using
data from 428,747 UK Biobank individuals and 105,000 Estonian Genome Center partic-
ipants [23]. For the calculations conducted in this study, 2,041,044 SNVs were used due
to the missingness of the remaining 133,028 variants in our dataset. The PLINK v2.00
function-score was used for all PRS calculations.

2.6. Statistical Analysis

For the statistical analysis, R v4.0.2 (R Core Team, Vienna, Austria) [34] and RStudio
v1.3.1093 (RStudio Team, Boston, MA, USA) [35] software programs were used. All statisti-
cal tests conducted were two-sided, and p values below 0.05 were considered statistically
significant. The association between PRS and the presence of BC and/or OC in BRCA1 PV
carriers was evaluated by using a binomial logistic regression model. The outcome variable
had three categories: 0 (no cancer), 1 (BC), and/or 2 (OC). The model was adjusted for
age, age squared, BRCA1 PV (c.4035del or c.5266dup), and the first two PCs. Odds ratios
(OR) and 95% confidence intervals (95% CI) were calculated using the R package Epi [36].
Receiver operating characteristic (ROC) curve analysis was performed to select the most
optimal binomial logistic regression analysis model using the R package pROC [37].

3. Results

We studied 406 women who were carriers of one of BRCA1 PVs with diagnosed BC or
OC, or no cancer diagnosis at the time of recruitment. Among the study cohort, 171 women
(42.1%) had been diagnosed with BC, and 121 women (29.8%) had been diagnosed with
OC. The mean ages of disease onset were 46.67 years (range 25–92) and 50.55 years (range
27–79), respectively. The main characteristics of the study cohort are presented in Table 1.

https://www.ukbiobank.ac.uk/
https://genomics.ut.ee/en/content/estonian-biobank
https://genomics.ut.ee/en/content/estonian-biobank
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Table 1. Patient characteristics. In all cases, the percentage of the total (N = 406) is given in brackets.

Total BRCA1:c.4035del BRCA1:c.5266dup

Study sample 406 161 (39.66%) 245 (60.34%)
Breast cancer 171 (42.12%) 49 (12.07%) 122 (30.05%)
Ovarian cancer 121 (29.80%) 64 (15.76%) 57 (14.04%)
Controls 114 (28.08%) 48 (11.82%) 66 (16.26%)

Mean age 45.38 47.55 43.52
Breast cancer 46.67 49.53 45.52
Ovarian cancer 50.55 51.53 49.44
Controls 37.98 40.61 36.28

Four different PRS joint models were employed for the risk calculations, i.e., score1–4.
The description of each score is presented in Table 2.

Table 2. Joint model characteristics employed for the risk calculations.

Score Description

score1 The weighted effect size calculated in BC
patients with the BayesW model

score2 The weighted effect size calculated in BC
patients with the BayesRR-RC model

score3 The weighted effect size calculated in OC
patients with the BayesW model

score4 The weighted effect size calculated in OC
patients with the BayesRR-RC model

We tested the association of four PRSs (score1–4) with the risk of BC or OC devel-
opment using binomial logistic regression analysis, assessing, whether the two recently
developed PRS models (BayesW vs. BayesRR-RC) are effective predictors of the BC or OC
risk in BRCA1 PV carriers in the Latvian population by comparing the PRS weighted effect
size in mutation carriers with cancer (BC and/or OC) vs. in mutation carriers without
cancer (controls).

As a result, we observed that overall, the average PRSs (score1 and score2) calculated
for BC patients were significantly higher in the BC group compared with the average PRS
in the control group (Figure 1). The difference between the BC and control groups was
statistically significant, with p values of 0.029 for score1 and 0.042 for score2. However, in
the OC group, no statistical significance was observed (Figure 1, p > 0.05).

Among the four tested PRSs, score1 yielded the strongest association with the risk
of developing BC (OR = 1.37; 95% CI = 1.03–1.81, p = 0.0291, Table 3). In addition to the
PRS, we observed a significant association between the BRCA1 PV c.5266dup and BC risk
(OR = 2.55; 95% CI = 1.44–4.53, p = 0.0013). Regardless of the PRS employed, no statistically
significant association was found between any of the PRSs and the risk of OC (Table 3).

The area under the receiver operating characteristic curve (AUC) analysis was per-
formed to assess the predictive accuracy of three different models with varying covariates,
including the PRS (Figure 2). The highest AUC value of 0.7587 was observed in the model
that included age at onset, age squared, BRCA1 PV, and the best-performing PRS (score1).
Among the three models compared, our analysis using bootstrap method revealed a statis-
tically significant difference (p value = 0.0368) specifically between the AUC of the model
incorporating age and age squared as covariates and the model that incorporated age at
onset, age squared, BRCA1 PV, and the highest performing PRS represented by score1.
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Figure 1. Boxplots and binomial logistic regression analysis p values of polygenic risk scores in 406
BRCA1 PV carriers. Controls, no cancer; BC, breast cancer; OC, ovarian cancer. * p value below 0.05.

Table 3. Binomial logistic regression analysis results in three different study groups (BC, breast cancer;
OC, ovarian cancer; BC + OC, both cancers combined). OR, odds ratios; 95% CI, 95% confidence
interval for the associations of PRS with BC and/or OC risk in BRCA1 PV carriers. Four different PRS
joint models were employed for the risk calculations (see Table 2). * p value below 0.05; ** p value
below 0.01.

OR 95% CI p Value

BC + OC vs. Controls
score1 1.14 0.89–1.46 0.3119
score2 1.11 0.86–1.42 0.4205
score3 1.00 0.78–1.28 0.9781
score4 0.89 0.69–1.14 0.3514
BRCA1:c.5266dup 1.73 1.03–2.91 0.0375 *

BC vs. Controls
score1 1.37 1.03–1.81 0.0291 *
score2 1.33 1.01–1.76 0.0423 *
score3 1.00 0.76–1.31 0.9825
score4 0.95 0.72–1.25 0.7109
BRCA1:c.5266dup 2.55 1.44–4.53 0.0013 **

OC vs. Controls
score1 0.94 0.68–1.31 0.7180
score2 0.91 0.65–1.27 0.5800
score3 0.99 0.71–1.38 0.9530
score4 0.81 0.57–1.14 0.2250
BRCA1:c.5266dup 0.93 0.48–1.79 0.8170
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Figure 2. A comparison of the AUC (area under the receiver operating characteristic curve) to select
the most optimal binomial logistic regression analysis model. In black—the model with only age and
age squared as covariates; in red—the model with the BRCA1 PV added; in blue—the model with the
BRCA1 PV and the best performing PRS added (i.e., score1).

4. Discussion

In this study, we investigated the association between two recently reported novel
genome-wise PRSs [23], containing 2,174,072 SNVs, with the risk of BC and OC in BRCA1
PV carriers. Although the best approach to select the SNV set and their weights to compute
best performing PRS is still unknown, we hypothesized that by jointly estimating the
effects of genome-wise SNVs in the PRS models, improved predictive performance could
be achieved compared with commonly used approaches for PRS development [3]. Since
most PRSs, as well as those evaluated in this study, are developed in population-based
cohorts, it is urgent to carefully review and validate their performance specifically in
BRCA1 PV carriers to improve individualized risk assessments. The variable penetrance
of germline PVs in the BRCA1 gene presents challenges in estimating the likelihood, age,
and site of disease onset in any individual, it is important to study how to schedule the
initiation of screening and clinical management for high-risk women. PRS has the potential
to stratify individuals based on their disease risk. To achieve this goal and implement PRSs
in clinical practice, it is necessary to identify the most optimal set of SNVs that constitute
the best-performing PRSs.

The results of the study demonstrate that the best-fitting BayesW PRS model could
effectively predict the individual’s risk of developing BC, confirming the polygenic contribu-
tion to the development of BC phenotype in germline BRCA1 PV carriers [6,12]. Although
the BayesRR-RC PRS model performed well in predicting the risk of developing BC, the
BayesW PRS model remained superior (Table 3).

Previously, only a few studies have focused on assessing PRS in individuals carrying
PVs in the high-risk BRCA1 gene. One notable study by Kuchenbaecker et al. [12] developed
three PRSs for overall, estrogen receptor (ER)-positive and ER-negative BC, and one for OC
patients. They utilized data from 15,252 female BRCA1 PV carriers (BC = 7797, OC = 2462)
and found strong associations between the PRS and BC and OC risk (particularly, the PRS
for ER-negative BC displayed the strongest association with BC risk with a hazard ratio
(HR) = 1.27, 95% CI = 1.23–1.31, p = 8.2× 10−53). Another study in 9473 female BRCA1 PV
carriers with BC [6] demonstrated similar results, showing that the ER-negative PRS had the
strongest association with BC risk for BRCA1 PV carriers (HR = 1.29, 95% CI = 1.25–1.33,
p = 3 × 10−72). ER-negative BC is the predominant tumor subtype in BRCA1 PV carri-
ers [38]; therefore, these studies highlight the strong association of BC subtype-specific PRS
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with the BC risk. This confirms that the best BC risk prediction accuracy can be achieved by
implementing comprehensive clinical information in the analysis [6,12]. Unfortunately, in
our study, the information concerning ER status could not be considered due to incomplete
clinical data. The available information on ER status was only accessible for a small fraction
(<80) of BC patients.

In the general population, studies have consistently demonstrated a strong associa-
tion between PRS and overall BC risk (OR = 1.61, 95% CI = 1.57–1.65, with AUC = 0.630,
95% CI = 0.628–0.651) [1]. Consistent with previous studies, we observed that the calcu-
lated OR estimates for BC in BRCA1 PV carriers are smaller than previously reported
estimates in the general population, suggesting a potential subset of SNVs in PRS that do
not combine multiplicatively with the BRCA1 PV status. However, it is important to note
that these results may not be directly comparable due to differences in sample size and
study design [12].

Although previous studies have shown a strong association between PRS and OC risk
(for example, Barnes et al. demonstrated that their developed high-grade serous PRS is
strongly associated with OC risk (HR = 1.32, 95% CI = 1.25–1.40, p = 3× 10−22) [6,12]), in our
study no statistically significant association was observed. We observed that genome-wise
PRS performed better in predicting BC risk than OC risk in BRCA1 PV carriers (OR = 1.37,
95% CI = 1.03–1.81, p = 0.0291 * vs. OR = 0.99, 95% CI = 0.71–1.38, p = 0.9530). Our results
might be explained by the relatively small number of 121 BRCA1 PV carriers with the OC
diagnosis in the study cohort.

The observation of a strong association between the BRCA1 PV c.5266dup and BC risk
can be explained by the mutation effect on the BRCA1 protein. It is well established that the
BRCA1 PV c.5266dup in exon 19 causes a frameshift and introduces a premature stop codon
at position 74 of the new reading frame, which is located at the last exon. This mutant
transcript is predicted to escape nonsense-mediated decay (NMD), and this variant is likely
to yield a stable mutant truncated protein that lacks the C-terminal BRCT domain [39,40].
Similarly, BRCA1 PV c.4035del in exon 10 causes a frameshift and introduces a premature
stop codon at position 20 of the new reading frame. However, because all truncating
mutations located in the exon 10 are subject to NMD, this mutation is also predicted to
undergo NMD, resulting in a reduced protein yield [40]. Therefore, we can observe the
genotype–phenotype correlation and differing clinical presentation based on the effect of
BRCA1 PVs on structural and functional changes in the mutated protein. It has previously
been shown that the PVs located at the 3′ part of the BRCA1 gene (e.g., c.5266dup) are
associated with a higher risk of BC development, and PVs in exon 10 (e.g., c.4035del)
exhibit almost equal BC and OC incidence among PV carriers [41]. In our data, the PV
c.4035del did not provide statistically significant evidence for elevated BC risk compared
with OC risk, supporting the observation that this BRCA1 PV is associated with relatively
equivalent risks of both cancers. It has been suggested that the BRCA1 PV position could
be an important additional variable in risk assessment [18].

There are several limitations in this research that should be noted, as they might have
influenced the obtained results. In particular, the number of women with BC or OC who are
carriers of germline BRCA1 PV was relatively small in this study. Additionally, the study
cohort does not reflect the general population of BRCA1 PV carriers as the samples were
obtained due to diagnostic germline variant testing in a clinical setting, which introduces
potential selection biases. Although previous studies in our region have demonstrated
that the tested BRCA1 PVs—c.4035del and c.5266dup—account for approximately 80% of
identified BRCA1 PVs [4,8–11], it is important to acknowledge that this study focused only
on these variants and did not investigate individuals with additional BRCA1 PVs relevant
to the development of BC and OC. This may result in an incomplete understanding of the
genetic landscape and may not capture the full population of BRCA1 PV carriers.

Second, we only analyzed 2,041,044 SNVs from 2,174,072 SNVs that were implemented
in the PRS joint model (due to the missingness of the remaining 133,028 variants in our
dataset). Different aspects, such as the quality of the DNA samples or microarray used,
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might have influenced the number of available SNVs. Additionally, one of the reasons for
missing SNVs could be the imputation quality. Although we used a genetically similar
reference panel provided by WGS data of 2244 Estonian biobank participants [30], certain
genetic differences in the Latvian population remain that could potentially affect the PRS
performance. Thus, the future improvement could be to increase imputation accuracy
using a more population-specific reference panel from the Genome Database of Latvian
Population (LGDB), when the respective WGS data will be obtained and available [42].

Third, as mentioned above, the lack of extensive clinical information on the particular
tumor phenotypes was missing in a substantial proportion of our patients; therefore, our
results represent average estimates of all phenotypes of BC or OC.

Finally, although the genome-wise PRSs used were developed in a population-based
study, our results represent an independent evaluation of these PRSs in the BRCA1 PV
carriers of the Latvian population. We believe that genome-wise PRSs have the potential
to be equally or even more predictive than previously developed PRSs. However, further
validation with a larger study cohort of BRCA1 PV carriers is needed, and our study can
serve as preliminary data for a more comprehensive comparison of all available PRSs.
Additionally, it is worth noting that our study design only considered the occurrence of
a first BC or OC, and the risks of second or subsequent cancers were ignored. In future
perspective, it would be valuable to investigate whether the tested PRS also contribute to
the risk of developing secondary cancer in BRCA1 PV carriers.

5. Conclusions

In conclusion, the PRSs tested in our study provide valuable information for assessing
the risk of developing BC in germline BRCA1 PV c.4035del and c.5266dup carriers. The
data obtained in this study may have useful applications for risk assessment and when de-
termining the appropriate age of implementation of BC prevention strategies in individuals
with germline BRCA1 PVs.
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