

Voinea, Adriana Laura (2023) Programming languages and tools with
multiparty session. PhD thesis.

http://theses.gla.ac.uk/83946/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge

This work cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,
title, awarding institution and date of the thesis must be given

Enlighten: Theses
https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://theses.gla.ac.uk/83946/
mailto:research-enlighten@glasgow.ac.uk

Programming Languages and Tools with Multiparty Session
Types

Adriana Laura Voinea

Submitted in fulfilment of the requirements for the

Degree of Doctor of Philosophy

School of Computing Science

College of Science and Engineering

University of Glasgow

January 2023

Abstract

Distributed software systems are used in a wide variety of applications, including health care,
telecommunications, finance, and entertainment. These systems typically consist of multiple
software components, each with its own local memory, that are deployed across networks of hosts
and communicate by passing messages in order to achieve a common goal. Distributed systems
offer several benefits, including scalability — since computation happens independently on each
component, it is easy and generally inexpensive to add additional components and functionality
as necessary; reliability — since systems can be made up of hundreds of components working
together, there is little disruption if a single component fails; performance — since work loads
can be broken up and sent to multiple components, distributed systems tend to be very efficient.
However, they can also be difficult to implement and analyze due to the need for heterogeneous
software components to communicate and synchronize correctly and the potential for hardware
or software failures.

Distributed and concurrent programming is challenging due to the complexity of coordinating
the communication and interactions between the various components of a system that may be
running on different machines or different threads. Behavioural types can help to address some of
these difficulties by providing a way to formally specify the communication between components
of a distributed system. This specification can then be used to verify the correctness of the
communication between these components using static typechecking, dynamic monitoring, or
a combination of the two. Perhaps the most well-known form of behavioural types are session
types. They define the sequences of messages that are exchanged between two or more parties
in a communication protocol, as well as the order in which these messages are exchanged.
More generally, behavioural types include typestate systems, which specify the state-dependent
availability of operations, choreographies, which specify collective communication behaviour,
and behavioural contracts that specify the expected behaviour of a system. By using behavioural
types, it is possible to ensure that the communication between components of a distributed system
is well-defined and follows a set of predefined rules, which can help to prevent errors and ensure
that the system behaves correctly.

The focus of this thesis is on using session type systems to provide static guarantees about the
runtime behaviour of concurrent programs. We investigate two strands of work in this context.
The first strand focuses on the relationship between session types and linearity. Linearity is a

i

ABSTRACT ii

property of certain resources, in this case communication channels, that can only be used once.
For instance a linear variable can only be assigned once, after which it cannot be changed. This
property is useful for session types because it helps to prevent race conditions and guarantees that
no messages are lost or duplicated. We look at relaxing the standard access control in multiparty
session types systems. This is typically based on linear or affine types, that offer strong guarantees
of communication safety and session. However, these exclude many naturally occurring scenarios
that make use of shared channels or need to store channels in shared data structures. We introduce
a new and more flexible session type system, which allows channel references to be shared and
stored in persistent data structures. We prove that the resulting language satisfies type safety, and
we illustrate our type system through examples.

The second strand of research in this thesis looks at the expressive power of session types, and
their connection to typestate for safe distributed programming in the Java language. Typestates
are a way of annotating objects with a set of operations that are valid to perform on them at
a given state. We expand the expressive power of two existing tools, use them to represent
real-world case studies, and end by considering language usability and human factors.

Contents

Abstract i

Acknowledgements vii

Declaration viii

1 Introduction 1
1.1 Research Questions . 2
1.2 Contributions . 3

1.2.1 Publications . 4
1.3 Thesis Outline . 4

I Background 6

2 Session types 8
2.1 Syntax and Semantics . 9
2.2 Types and Subtypes . 12
2.3 Typing . 15
2.4 Main Results . 16
2.5 Implementations . 17

3 Multiparty Session Types 20
3.1 Introduction . 20
3.2 Syntax and Semantics . 23
3.3 Types and Subtypes . 25
3.4 Typing . 29
3.5 Main Results . 31
3.6 Implementations . 32

iii

CONTENTS iv

II Resource Sharing via Capability-Based Multiparty Session Types 34

4 Resource Sharing via Capability-Based Multiparty Session Types 36
4.1 Introduction . 36
4.2 Syntax and Semantics . 38
4.3 Types and Subtypes . 39
4.4 Typing . 45
4.5 Main Results . 46

4.5.1 Subject Reduction . 46
4.5.2 Deadlock Freedom . 57

5 Case Study 59
5.1 Producer-Consumer Expanded . 59
5.2 One Producer Two Consumers . 61

6 Discussion 65

III Typechecking Java Protocols with [St]Mungo 67

7 [St]Mungo toolchain: An overview 68
7.1 Introduction . 68
7.2 StMungo . 69
7.3 Mungo . 74

8 Real-World Case Studies 78
8.1 Introduction . 78
8.2 HTTP . 79
8.3 FTP . 87
8.4 Paxos . 98

IV Conclusion 107

9 Conclusion 108
9.1 Research Questions Revisited . 108
9.2 Research Questions . 108
9.3 Future Work . 109

A Proofs for Resource Sharing via Capability-Based Multiparty Session Types 111
A.1 Proofs . 111

List of Figures

2.1 Math Server Types . 8
2.2 Syntax of π-calculus with session types . 10
2.3 Structural congruence for the session π-calculus 11
2.4 Semantics of the session π-calculus . 11
2.5 Syntax of session types . 13
2.6 Type duality for session types . 13
2.7 Subtyping for session types. 14
2.8 Typing rules for the π-calculus with session types 16

3.1 Two-buyer Protocol . 20
3.2 TwoBuyer Global Type . 21
3.3 TwoBuyer Session Types . 21
3.4 Multiparty session π-calculus . 23
3.5 Structural congruence for the π-calculus with multiparty sessions 24
3.6 Reduction for the π-calculus with multiparty sessions 25
3.7 Types and environments for the π-calculus with multiparty sessions 26
3.8 Subtyping for local session types . 29
3.9 Subtyping for partial session types . 29
3.10 Typing rules for the π-calculus with multiparty sessions 30

4.1 Producer-consumer system: Producer—P and Consumer—C sharing access to
Buffer—B by implementing the same role q. 37

4.2 Producer-consumer Protocol . 38
4.3 Multiparty session π-calculus with capabilities 39
4.4 Reduction (processes) . 40
4.5 Types, capabilities, environments . 41
4.6 Subtyping for local session types. 44
4.7 Subtyping for partial session types. 45
4.8 Typing rules . 58

5.1 Typing Derivation for Producer . 61

v

LIST OF FIGURES vi

5.2 Typing Derivation for Consumer . 62
5.3 Typing Derivation for B . 63

7.1 [St]Mungo toolchain workflow . 69
7.2 State Machine for Buyer1Protocol . 72

8.1 State Machine for CProtocol . 82
8.2 Implementation of the Paxos consensus protocol 103

Acknowledgements

I wish to express my sincere appreciation to my supervisor, Professor Simon Gay for his support,
guidance, and patience throughout my time as a PhD student. He has truly gone above and
beyond as a supervisor, and without his persistent help, the goal of this project would not have
been realized. I am also very grateful to Ornela Dardha, my second supervisor, for her help,
support and advice. It has been a pleasure to work with her. A big thank you to Prof Wim
Vanderbauwhede for many interesting conversations and great advice.

I am indebted to the ABCD group for many interesting meetings and stimulating discussions,
that have contributed to my understanding of programming languages.

My time as a PhD student has been greatly enriched by being a member of the FATA and
PLUG groups: I have met many wonderful people and learnt many new topics through their
meetings.

I would like to thank my fellow doctoral students for all of the discussions and cameraderie.
In particular, I am grateful to David Maxwell for his advice and viva tips, and Oseghale Igene for
his support through the write-up process.

I wish to acknowledge my family and friends for their support and encouragement throughtout
this PhD. They kept me going on and this work would not have been possible without their input.
My parents, Marinela and George Voinea raised me with a love of science and supported me in
all my pursuits, for which I am grateful. Cristina Mihailescu has always opened her home to
me and has always been helpful in numerous ways. A big thank you goes to Cristian Urlea, for
his continuous encouragement, putting up with my rants while writing up, and his invaluable
assistance in keeping me well caffeinated.

My studies were supported by an EPSRC PhD studentship. COST Action IC1201 (BETTY)
supported my attendance at the BETTY Summer Schools in 2016. UK EPSRC grant EP/K034413/1,
“From Data Types to Session Types: A Basis for Concurrency and Distribution (ABCD)” sup-
ported my attendance at the Oregon summer school in 2017. EU HORIZON 2020 MSCA RISE
project 778233 “BehAPI: Behavioural Application Program Interfaces” supported my attendance
at the BETTY Summer Schools in 2019.

vii

Declaration

With the exception of chapters 1, 2 and 3, which contain introductory material, all work in this
thesis was carried out by the author unless otherwise explicitly stated.

viii

Chapter 1

Introduction

Distributed systems are ubiquitous and communication is an important feature and reason for
their success. Communication-centric programming has proven to be one of the most successful
attempts to replace shared memory for building concurrent, distributed systems. Communication
is often easier to reason about and scales well as opposed to shared memory, because it allows
processes to interact without the need to coordinate access to a shared state. When working with
shared memory, multiple processes communicate with each other via access to shared variables or
data structures. Coordinating access to shared memory can be difficult to do correctly, requiring
sublte design and implemention of synchronization mechanisms to ensure thread-safety. In
contrast, communication between processes involves sending messages over a communication
channel, such as a network socket or message queue, rather than coordinating access to shared
memory. This can be easier to understand and more scalable, as each process can operate
independently and communicate with each other as needed without having to synchronize
access to shared state. This makes communication a more suitable approach for systems where
scalability is a must, as in the case of multi-core programming, service-oriented applications or
cloud computing.

Communication between processes is typically standardized using protocols that specify
the allowed interactions between the parties in a specific order. Behavioural types [80] allow
these protocols to be formally specified, capturing the causal and branching structures of the
communication among the participants. These type systems can help to prevent errors such as
race conditions, where concurrent processes compete for shared resources and may produce
inconsistent states or unexpected behaviors; communication errors, where participants have
different expectations; or message not understood errors, where a remote participant is unable to
process a message it receives.

Session types is a significant area within behavioral types, allowing the communication
structures to be defined as type definitions in programming languages. These types can be used
by compilers, development environments, and runtime systems for compile-time analysis or
runtime monitoring. Other examples of behavioral types include typestate systems, that specify

1

CHAPTER 1. INTRODUCTION 2

the availability of operations or methods in an object or data structure based on the current state,
choreographies, which specify collective communication behavior of a system, and behavioral
contracts, which specify the expected behavior of a process or group of processes in the form of a
set of rules or obligations that they must follow.

The expressiveness of session types has enabled their application in diverse contexts, targeting
different programming models such as functional [134] or object-oriented programming [48], and
also addressing lower-levels of application such as operating system design [52] or middleware
communication protocols [132], to name just a few.

Session-typed models are used to describe open-ended systems where loosely coupled parties
can synchronize to start a session on a specific public service, and then communicate privately
over the session channel. Because session participants must follow their session types, their
behavior is more predictable and disciplined than untyped processes. This allows session-typed
models to provide strong guarantees of communication safety, protocol fidelity, and progress.
Communication safety means that the types of the messages sent correspond to that of the expected
messages; protocol fidelity that the interactions that occur follow the prescribed protocol; and
progress that every message sent is eventually received, and every process waiting for a message
eventually receives one. However, these strong guarantees can make it difficult to use session-
typed models in scenarios that require shared resources, such as shared databases or output
devices, or in implementations that use shared resources for performance reasons. To make
session-typed models more practical in these situations, we propose using capability-based
resource sharing, where channels are split into a reference for the channel and a capability for
using the channel. This allows for more flexible resource sharing while still preserving the
guarantees of session fidelity.

1.1 Research Questions

Q1 What is the relationship between session types and linearity or affinity, and how can we check

resource sharing and aliasing to guarantee type safety?

In the context of session types, linearity, respectively affinity, is used specify the ownership
of communication channels or resources. Each communication channel is then associated
with a single participant, and can only be used by that participant. This is useful in providing
strong guarantees for communication safety, protocol fidelity, and progress, but the use of
linearity or affinity can limit their expressivity. For example in the use of session-typed
models to describe scenarios that require shared resources, such as shared databases or
output devices, or in implementations that use shared resources for performance reasons.
In order to make session-typed models more practical and widely applicable, we look at
relaxing the use of linearity or affinity for multiparty session types, while still preserving
the strong guarantees provided by this model. This allows session types to be used to model

CHAPTER 1. INTRODUCTION 3

a wider range of programming scenarios and improve their expressivity.

Q2 How can session types be adapted to support real-world case studies, and can we assess if

they are really beneficial?

Distributed systems pose many more challenges than other forms of computing, such as
latency, scaling, non-determinism, independent failures, and the complexity of algorithms
such as Paxos. To support realistic protocols, session type languages and tools should be
able to detect the most common and critical errors. What are the ways in which session
type constructs need to be adapted to support real-world case studies? How can we assess
if the restrictions imposed by the type system provide sufficient value to be justifiable.

Distributed systems present many challenges, including latency, scaling, non-determinism,
independent failures, and the complexity of algorithms like Paxos. In order to support
realistic protocols in these systems, session type languages and tools need to be able to
detect and prevent common and critical errors. We look at ways in which session type
constructs need to be adapted to support real-world case studies. We also look at how we
can assess if the restrictions imposed by the type system provide sufficient value to be
justifiable.

1.2 Contributions

This thesis makes contributions in two strands of work: resource sharing for multiparty session
π-calculus, and static type-checking of communication protocols in Java.

The contributions of Part II are:

(i) MPST with capabilities: we present a new version of multiparty session theory that does
not use linear typing for channels, but instead uses linearly-typed capabilities. In Section4.2
we define a multiparty session π-calculus with capabilities, and its operational semantics,
and in Section4.3 we define a MPST system for it.

(ii) Type Safety: in Section4.5 we state the type safety property, and outline its proof. This
property ensures that the system behaves correctly and prevents certain kinds of errors.

(iii) Producer-Consumer Case Study: in Chapter 5 we present case study of a producer-
consumer scenario, which illustrates the use of capabilities and resource sharing in the
MPST with capabilities. This case study provides a detailed account of how the system can
be used to model and verify the behavior of distributed systems.

The contributions of Part III are:

(i) HTTP Case Study: in Section8.2 we present a statically typechecked HTTP client which
illustrates the [St]Mungo toolchain

CHAPTER 1. INTRODUCTION 4

(ii) FTP Case Study: in Section 8.3 we present a statically typechecked FTP client which
illustrates the [St]Mungo toolchain

(iii) Paxos Case Study: in Section 8.4 we present a statically typechecked Paxos protocol
implementation which illustrates the [St]Mungo toolchain

1.2.1 Publications

1. A. Laura Voinea, Ornela Dardha, and Simon J. Gay. Typechecking Java Protocols with
[St]Mungo. In FORTE, volume 12136 of Lecture Notes in Computer Science, pages
208–224. Springer, 2020

Primary author, based on extensions to the [St]Mungo toolchain and case study.

2. A. Laura Voinea, Ornela Dardha, and Simon J. Gay. Resource Sharing via Capability-Based
Multiparty Session Types. In IFM, volume 11918 of Lecture Notes in Computer Science,
pages 437–455. Springer, 2019

Primary author.

3. Ornela Dardha, Simon J Gay, Dimitrios Kouzapas, Roly Perera, A Laura Voinea, and
Florian Weber. Mungo and StMungo: Tools for Typechecking Protocols in Java. In
Simon J Gay and António Ravara, editors, Behavioural Types: from Theory to Tools,
chapter 14, pages 309–328. River Publishers, 2017

Contributed extensions to the [St]Mungo toolchain.

4. Dimitrios Kouzapas, Ramunas Forsberg Gutkovas, A Laura Voinea, and Simon J Gay.
A Session Type System for Asynchronous Unreliable Broadcast Communication. arXiv

preprint arXiv:1902.01353, 2019

Contributed the Paxos case study.

5. A Laura Voinea and Simon J Gay. Benefits of session types for software development. In
Proceedings of the 7th International Workshop on Evaluation and Usability of Program-

ming Languages and Tools, pages 26–29. ACM, 2016

Primary author.

1.3 Thesis Outline

The remainder of this thesis is structured as follows.
Part I introduces the relevant background material. Chapter2 introduces binary session types,

surveys the literature and introduces session π-calculus, and the theoretical results and properties

CHAPTER 1. INTRODUCTION 5

that the type system satisfies. Chapter3 introduces multiparty session types, surveys the literature
and introduces multiparty session π-calculus, and the theoretical results and properties that the
type system satisfies.

Part II introduces capability-based resource sharing for multiparty session types and is based
on [136]. Chapter 4 introduces the calculus, the type system, the theoretical results and their
detailed proofs. Chapter5 illustrates the language on a producer-consumer example. Chapter6
concludes and discusses related work.

Part III introduces the [St]Mungo toolchain. Chapter7 gives an overview of the toolchain,
its use and its implementation and is based on [38, 137]. Chapter8 presents a collection of case
studies that showcase and test the applicability of the toolchain to typecheck protocols, and is
based on [87, 137].

Part IV concludes. Chapter9 reprises the contributions and discusses directions for future
work.

Part I

Background

6

7

In this first part we present background material required for the remainder of the thesis, and
survey the literature on session types. We begin by introducing binary session types, a behavioural
type system for formally specifying communication protocols between two participants. Session
types capture the sequence of messages exchanged and the types of individual messages. This is
encoded as types for channel endpoints, and enables conformance to protocols to be verified by
type checking. We look at various approaches with particular focus on the π − calculus. Next,
we look at implementations of binary session types in programming languages.

The second half of the background describes multiparty session types, which generalise binary
session types by supporting more sophisticated protocols between any number of participants.
They give a bird’s-eye view of the interactions between multiple participants as a global type,
which can then be projected into local session types. We look at various approaches with a focus
on the multiparty session π − calculus system. Next, we look at implementations of multiparty
session types in programming languages.

Chapter 2

Session types

Session types, first introduced by Honda et al. [68, 71], are types for protocols, and describe both
the type and the order of messages. In this section we are concerned with binary session types,
which describe communication between exactly two participants. A session type describes the
communication pattern from the point of view of one of the participants.

We illustrate the concepts of session types using a classic example from the literature, namely
the math server example from Gay and Hole [61]. We show the types for this in Figure2.1. The
server offers a choice (branch) between two services, addition of two integers (represented by
plus) and equality test between two integers (represented by eq). The plus option receives as
input two integers —?Int.?Int., and sends the result of their addition back to the client before
terminating— !Int.end. The eq option receives two integers — ?Int.?Int., and sends the result
of the equality test to the client before terminating — !Bool.end.
A key notion in session types is duality. Duality captures the idea that endpoints of the same
session should be used in complementary ways: when a session type specifies the output of
a message, its dual specifies the input of a message with the same type; when a session type
specifies an internal choice (selection), the dual specifies an external choice (branching). The
type for the math server’s Client Figure2.1 is the dual of the Server type. Whenever the Server

offers a choice (&) the client makes a selection (⊕), and vice versa. Whenever the Server receives
a value, the Client sends a value, and vice versa. Duality ensures that the behaviour of the server
matches the behaviour of the client and hence they are able to communicate with each other
correctly. We give the formal definition of duality later on in Figure2.6.

Session delegation is another important feature related to session types. Session delegation
allows a process to transfer its role in the communication to another process, allowing the second

Server = &
{
plus : ?Int.?Int.!Int.end
eq : ?Int.?Int.!Bool.end

}
Client=⊕

{
plus : !Int.!Int.?Int.end
eq : !Int.!Int.?Bool.end

}
Figure 2.1: Math Server Types

8

CHAPTER 2. SESSION TYPES 9

process to take over the communication for the rest of the session. This is typically done by
sending a message that contains a reference to the session endpoint, which represents the state of
the session, to the second participant. This second participant can use the session endpoint to send
and receive messages according to the session type specification, just as the initial process would
have been able to do. Session delegation can be useful for a number of different contexts. For
instance when different parts of a session need to be fulfilled by different processes such as a bank
transfer where a process implements authentication and another process implements the transfer
itself. Another example is when the a process is no longer able to continue communicating due
to an error or other failure and hands off the session to a process that can take over.

Session types and linearity. A source of inspiration for session types has been linear
logic [65]. In order to maintain session fidelity, i.e. the session channel has the expected structure,
and ensure that all communication actions in a session type occur, session type systems require
each channel endpoint to be used by exactly one participant at a time. To ensure this channel
endpoints were originally treated as linear resources. This approach is reinforced by several
connections between session types and other linear type theories: the encodings of binary session
types and multiparty session types into linear π-calculus types [39, 122]; the Curry-Howard
correspondence between binary session types and linear logic [20, 139]; the connection between
multiparty session types and linear logic [23, 24]. Some session type systems generalise linearity.
Vasconcelos [133] allows a session type to become non-linear, and shareable, when it reaches
a state that is invariant with every subsequent message. Mostrous and Vasconcelos [95] define
affine session types, in which each endpoint must be used at most once and can be discarded with
an explicit operator. In Fowler et al.’s [56] implementation of session types for the Links web
programming language, affine typing allows sessions to be cancelled when exceptions (including
dropped connections) occur. Caires and Pérez [19] use monadic types to describe cancellation
(i.e. affine sessions) and non-determinism. Pruiksma and Pfenning [120] use adjoint logic to
describe session cancellation and other behaviours including multicast and replication.

Session types were initially developed in the context of the π-calculus [68, 71]. Since then,
the concept has been incorporated into different areas including functional and object-oriented
languages.

We now describe the classic session π-calculus, its syntax, semantics, and typing system.
Our formulation is based on Gay and Hole [61], but uses the popular double binder restriction
introduced by Vasconcelos [135]. We present the type safety result in this setting.

2.1 Syntax and Semantics

The syntax of processes is defined by the grammar in Figure2.2.
The inaction 0 represents a terminated process. The parallel composition P |Q represents two

processes that can execute concurrently, and potentially communicate. The session restriction

CHAPTER 2. SESSION TYPES 10

P,Q ::= 0 | P |Q | !P inaction, composition, replication
| x!⟨v⟩.P | x?(y).P send, receive
| x◁ ℓ j.P | x▷{ℓi : Pi}i∈I selection, branching
| (ν xy)P | (ν x)P session restriction, channel restriction

v ::= x | true | false | 0 | 1 . . . variable, base value

Figure 2.2: Syntax of π-calculus with session types

(ν xy)P declares a new session with two channel endpoints (co-variables) x,y, which have scope
limited to process P. Channel restriction, (ν x)P creates a new standard π-calculus channel x.
Process x!⟨v⟩.P sends a value v over channel x, and continues as P. Dually, process x?(y).P uses
channel x to receive a value used to substitute the bound variable y, then proceeds as P. Process
x◁ ℓ j.P selects one of the options ℓ j offered by a branching process y▷{ℓi : Pi}i∈I where x and y

are dual channel endpoints. The process handles a selection at label ℓ j by executing process Pj,
if j ∈ I. In both branching and selection, the labels li (i ∈ I) are all different and their order is
irrelevant. The replication process, !P, is the standard π-calculus process, and models recursive
behaviour.

Values v can be either variables or base values. Variables are bound in inputs and channels are
bound in restrictions. The derived notions of bound and free identifiers, alpha equivalence, and
substitution are standard. bv(P) denotes the set of bound variables of process P; fv(P) denotes
the set of free variables of process P.

The processes that implement the protocol described by the types in Figure2.1 are as follows:

serverbody(y) = y▷

{
plus : y?(num1).y?(num2).y!⟨num1 +num2⟩.0,
eq : y?(num1).y?(num2).y!⟨num1 == num2⟩.0

}

clientbody(x) = x◁{plus : x!⟨num1⟩.x!⟨num2⟩.x?(result).0}

Before presenting the operational semantics, we introduce the notion of structural con-
gruence, a relation used to write processes in some canonical form, allowing a more concise
presentation of the reduction relation. Structural congruence is the smallest congruence relation
on processes that satisfies the axioms in Figure2.3, and is denoted by ≡. The first three axioms
say that parallel composition has the terminated process 0 as the neutral element: P |0 ≡ P; is
commutative: P |Q ≡ Q |P; and is associative: (P |Q) |R ≡ P |(Q |R). The next three axioms state
that one can safely add or remove a session restriction to the terminated process: (ν xy)0 ≡ 0;
the order is not important: (ν xy)(ν zw)P ≡ (ν zw)(ν xy)P; and that one can extend the scope
of the restriction to another process in parallel (called scope extrusion) if x and y are not free
variables in the other process: (ν xy)P |Q ≡ (ν xy)(P |Q). The last three axioms are similar to
the previous, but for channel restriction. The axioms state that one can safely add or remove
a channel restriction to the terminated process: (ν x)0 ≡ 0, the order of channel restrictions is

CHAPTER 2. SESSION TYPES 11

P |0 ≡ P (2.1)
P |Q ≡ Q |P (2.2)

(P |Q) |R ≡ P |(Q |R) (2.3)

(ν xy)0 ≡ 0 (2.4)
(ν xy)(ν zw)P ≡ (ν zw)(ν xy)P (2.5)

(ν xy)P |Q ≡ (ν xy)(P |Q), x,y ̸∈ fv(Q) (2.6)

(ν x)0 ≡ 0 (2.7)
(ν x)(ν y)P ≡ (ν y)(ν x)P (2.8)
(ν x)P |Q ≡ (ν x)(P |Q), x ̸∈ fv(Q) (2.9)

Figure 2.3: Structural congruence for the session π-calculus

[RSTNDCOM] x!⟨v⟩.P |x?(z).Q −→ P |Q[v/z]

[RCOM] (ν xy)(x!⟨v⟩.P |y?(z).Q) −→ (ν xy)(P |Q[v/z])

[RSEL] (ν xy)(x◁ ℓ j.P |y▷{ℓi : Pi}i∈I) −→ (ν xy)(P |Pj) j ∈ I

[RSTNDRES]
P −→ Q

(ν v)P −→ (ν v)Q
[RRES]

P −→ Q
(ν vw)P −→ (ν vw)Q

[RPAR]
P −→ P′

P |Q −→ P′ |Q
[RCONG]

P ≡ P′ P′ −→ Q′ Q ≡ Q′

P −→ Q

Figure 2.4: Semantics of the session π-calculus

not important: (ν x)(ν y)P ≡ (ν y)(ν x)P, and that one can extend the scope of the restriction to
another process in parallel if x is not a free variable in the other process: (ν x)P |Q ≡ (ν x)(P |Q).

The operational semantics is given in terms of the reduction relation defined by the rules
in Figure2.4. Rule [RSTNDCOM] models standard π-calculus communication: the sending process
on the left of | sends a value v on channel x, while the receiving process on the right receives
the value on the same channel and substitutes the placeholder z with it. Rule [RCOM] models
session communication: the sending process on the left of |sends value v on channel endpoint
x, while the receiving process on the right receives the value on endpoint y and substitutes the
placeholder z with it. Rule [RSEL] models choice: the selecting process on the left communicates
its choice ℓ j and continues as P; while the branching process on the right receives the label and
continues as the corresponding Pj. In both [RCOM] and [RSEL] the communicating processes have
prefixes that are co-variables according to the restriction (ν xy). Rules [RRES], [RSTNDRES], and
[RPAR] state that communication can happen under session restriction, channel restriction, and

CHAPTER 2. SESSION TYPES 12

parallel composition. The structural rule [RCONG] states that reduction is closed under structural
congruence.

Going back to our example, the complete client-server system is structured as follows. The
client creates a session channel with endpoints x : Client and y : Server and sends one end of it to
the server along a standard channel a of type #Server. The system is defined as follows:

server = a?(y).serverbody(y)

client = a!⟨y⟩.(ν xy)clientbody(x)

The system reduces by communication on a ([RSTNDCOM]) and scope extrusion (the structural
congruence axiom in eq. (2.6) that allows the scope of session restriction to be extended to
another process in parallel), resulting in a private connection between client and server.

(ν xy)(clientbody(x) |serverbody(y))

Assuming that the clientbody(x) process chooses plus the system then reduces as follows:

[RSEL] (ν xy)(clientbody(x) | serverbody(y)) −→

[RCOM] (ν xy)(x!⟨num1⟩.x!⟨num2⟩.x?(result).0 | y?(num1).y?(num2).y!⟨num1 +num2⟩.0) −→

[RCOM] (ν xy)(x!⟨num2⟩.x?(result).0 | y?(num2).y!⟨num1 +num2⟩.0) −→

[RCOM] (ν xy)(x?(result).0 | y!⟨num1 +num2⟩.0) −→

(ν xy)(0 | 0)

2.2 Types and Subtypes

Session Types, given in Figure 2.5, describe the expected usage of a channel. The syntax of
types is given by two syntactic categories: one for session types, S, and the other for standard
π-calculus types, T , in which we also include session types.

Looking at session types we have: !T.S and ?T.S which represent channel types for sending
and receiving a value of type T before proceeding according to type S. Selection ⊕{ℓi : Si}i∈I

and branching &{ℓi : Si}i∈I are sets of distinctly labelled session types which indicate internal
choice (only one of the labels will be chosen) and external choice (labels being offered for
selection). Type end represents a terminated session, types t and µt.S model recursion. Types T

include standard channel types, session types, ground types representing booleans and integers,
and recursive types. As in [133] we use un(T) and lin(T) qualifiers to distinguish between
unrestricted types which correspond to standard channel types and linear types which correspond
to session types.

Predicates un(T) and lin(T) (whether a type T is unrestricted or linear) are defined as follows:

• un(T) if and only if T = end, or T = B, or T = #T

CHAPTER 2. SESSION TYPES 13

Session types S ::= !T.S send
| ?T.S receive
| ⊕{ℓi : Si}i∈I selection
| &{ℓi : Si}i∈I branching
| end end
| t type variable
| µt.S recursive type

Ground types B ::= Int | Bool

Types T ::= #T channel type
| S session type
| t type variable
| µt.T recursive type
| B ground type

Figure 2.5: Syntax of session types

• lin(T) if and only if T = !S.U , or T =⊕{ℓi : Si}i∈I , or T = &{ℓi : Si}i∈I , or T = ?S.U .

end ≜ end B ≜ B

!S.T ≜ ?S.T ?S.T ≜ !S.T

⊕{ℓi : Si}i∈I ≜ &{ℓi : Si}i∈I &{ℓi : Si}i∈I ≜ ⊕{ℓi : Si}i∈I

t ≜ t µt.S ≜ µt.S

Figure 2.6: Type duality for session types

Type duality, defined in Figure 2.6 is standard, as in seminal works [71, 133]. Duality is
defined on session types only, undefined otherwise. The dual of the terminated channel type is
itself. The dual of a receive type is a send type and vice versa, and the dual of a branching type is
a selection type and vice versa. While this inductive definition of duality function is the most
common used in session type literature it only accounts for tail recursive session types. With a
tail recursive session type, the recursive type refers to itself at the end of the type, rather than
anywhere else. Independently, Bono and Padovani [17] and Bernardi and Hennessy [9] observe
that this duality definition is not adequate in the presence of non-tail-recursive types such as
µX.!X .end. To overcome this Bernardi and Hennessy [9], and Lindley and Morris [91] introduce
alternative more general definitions. In [62] Gay et al.survey definitions of session type duality
in the presence of recursion. They compare the definitions introduced in [9] and [91], give an
alternative streamlined formulation of these, and prove equivalence between them.

CHAPTER 2. SESSION TYPES 14

[SEND]
end ⩽ end
========= [SCHAN]

T ⩽ U U ⩽ T

#T ⩽ #U
=================

[SSND]
T ⩽ U V ⩽ W

!T.V ⩽ !U.W
================= [SRCV]

U ⩽ T V ⩽ W

?T.V ⩽ ?U.W
=================

[SBR]
i ∈ I Si ⩽ S′i

&{ℓi : Si}i∈I ⩽ &{ℓi : S′i}i∈I∪J
=========================== [SSEL]

i ∈ I Si ⩽ S′i

⊕{ℓi : Si}i∈I∪J ⩽ ⊕{ℓi : S′i}i∈I
===========================

[SµL]
S{µt.S/t} ⩽ S′

µt.S ⩽ S′
============== [SµR]

S ⩽ S′{µt.S′/t}

S ⩽ µt.S′
===============

Figure 2.7: Subtyping for session types.

Subtyping. Subtyping is a preorder relationship on types that allows the value of a subtype
to be used in place of the value of its supertype. If U is a subtype of T then a value of type U

is also a value of type T , and a variable of type U can always replace a variable of type T . The
operations available on values of type T are also available on values of type S.

We give the definition of subtyping for session types in the style of Gay and Hole [61]
in Figure 2.7. Note that the double line in the rules indicates that they should be interpreted
coinductively [116, § 21]. A subtyping judgement of the form U ⩽ T asserts that U is a subtype
of T and T is a supertype of U . A type construct is said to be covariant in an argument if it
preserves the direction of subtyping in that argument, contravariant if it inverses the direction of
subtyping, and invariant if it is both covariant and contravariant in that argument (allowing only
type equivalence). [SEND] relates terminated channel types. Rule [SCHAN] specifies invariance
in the message type. Rule [SSND] specifies covariance in the message type and in the continuation
type. Rule [SRCV] specifies contravariance in the message type and covariance in the continuation
type. Rules [SBR] and [SSEL] specify that branching is covariant, and selection contravariant, in
the set of labels. Intuitively, the subtyping relation says that a session type S is “smaller” than S′

when S is “less demanding” than S′ i.e., when S allows more internal choices, and imposes fewer
external choices, than S′. More internal choices are allowed because a subtype adds additional
behavior to the behavior defined by its supertype. Which means that a subtype can be more
specific and can provide more specialized behavior than its supertype. For example Server1 below
provides an additional behaviour for negative numbers. At the same time, subtyping imposes
fewer external choices because it allows a value of a subtype to be used in any context where a
value of its supertype is expected. [SµL] and [SµR] relate types up-to their unfolding.

For example an implementation that is written to work with a supertype will also work with
any of its subtypes, without having to be modified. For example a process implementing the type
Server1 below can be used in place of a process implementing Server. Server1 is a subtype for

CHAPTER 2. SESSION TYPES 15

the math server:

Server1 = &

plus : ?Int.?Int.!Int.end
eq : ?Int.?Int.!Bool.end
neg : ?Int.!Int.end

Since Server ⩽ Server1 it is safe for the new server, a process that also implements the neg

service, to communicate on channel y of type Server: this just means that the neg service is never
used.
Subtyping for session types was first introduced by Gay and Hole [61], and has been used in
other works by various authors [25–27, 59]. Padovani [108, 109, 111] has considered another
form of subtyping, called fair subtyping. Their approaches correspond to safe substitutability
of channels, rather than processes. A subtyping relation with the opposite direction has been
used by Honda, Yoshida, Mostrous and other authors [22, 43, 49, 94, 96]. Chen et al. [30–32]
have studied the preciseness of subtyping: the subtyping relation is sound and complete for safe
substitutability. Their approaches correspond to safe substitutability of processes. In [60], Gay
presents a thorough comparison the two definitions and shows how they can be unified. Here we
use the “channel oriented” order of Gay and Hole [61].

2.3 Typing

Definition 2.3.1 (Typing Contexts). Γ denotes a partial mapping from variables to types:

Γ ::= ∅ | Γ,x : T

Addition of a typed name to an environment, Γ+ x : T , is defined by:

x : T /∈ Γ

Γ+ x : T = Γ,x : T

un(T)

(Γ+ x : T)+ x : T = Γ,x : T

Typing judgements are inductively defined by the rules in Figure2.8. Typing judgements for
values have the form Γ⊢ v : S, stating that a value v has type S in the typing context Γ; and for
processes have the form Γ⊢P, stating that a process P uses channels as specified by the types in
Γ.

Rule [TVAR] types variables, [TVAL] values, and [TINACT] a terminated process. [TSUB] allows
process P typed under Γ,x : S to use a channel x requiring a less demanding type S′. [TPAR] types
the parallel composition of two processes, using context addition given in definition 2.3.1 to
ensure that linear variables are used either in Γ1 or in Γ2, but never in both. [TREP] types the
replication process under the assumption that context Γ is unrestricted. [TSTNDRES] states that the
restriction (ν x)P is well typed if P is well typed and variable x is of standard channel type #T .
[TRES] requires the two channel endpoints x,y to have dual types. [TRCV] states that receiving

CHAPTER 2. SESSION TYPES 16

[TVAR]
un(Γ)

Γ,x : S⊢ x : S
[TVAL]

un(Γ) v ∈ B
Γ⊢ v : B

[TINACT]
un(Γ)

Γ⊢0
[TSUB]

Γ,x : T ⊢P T ⩽ T ′

Γ,x : T ′⊢P

[TPAR]
Γ1 ⊢P Γ2 ⊢Q
Γ1 +Γ2 ⊢P |Q

[TREP]
un(Γ) Γ⊢P

Γ⊢!P

[TRES]
Γ,x : S,y : S⊢P

Γ⊢ (ν xy)P
[TSTNDRES]

Γ,x : #T ⊢P un(T)

Γ⊢ (ν x)P

[TRCV]
Γ,x : S,y : T ⊢P

Γ,x : ?T.S⊢ x?(y).P
[TSND]

Γ,x : S⊢P
(Γ,x : !T.S)+ y : T ⊢ x!⟨v⟩.P

[TSEL]
Γ,x : S j ⊢P j ∈ I

Γ,x : ⊕{ℓi : Si}i∈I ⊢ x◁ ℓ j.P
[TBR]

Γ,x : Si ⊢Pi i ∈ I
Γ,x : &{ℓi : Si}i∈I ⊢ x▷{ℓi : Pi}i∈I

Figure 2.8: Typing rules for the π-calculus with session types

on channel x is well typed if the type associated with it is of compatible send type and process
P is well-typed with the continuation session types. [TSND] states that sending on channel x is
well typed if the type associated with it is of compatible receive type and P is well-typed with
the continuation session types. [TSEL] states that selection on channel x is well typed if the type
associated with it is of compatible selection type and the continuations P are well-typed with the
continuation session type S j. [TBR] states that branching on channel x is well typed if the type
associated with it is of compatible branching type and the continuations Pi,∀i ∈ I are well-typed
with the continuation session types.

2.4 Main Results

In this section we present the main properties satisfied by the session type system presented. The
following lemmas and theorems are proven in [61].

Weakening allows introduction of new unrestricted channels in a typing context. It holds only
for unrestricted channels, for linear ones it is unsound since when a linear channel is in a typing
context it is used in the process it types. The weakening lemma is useful when we need to relax
the typing assumptions for a process and include new typing assumptions of variables not free in
the process.

Lemma 2.4.1 (Unrestricted Weakening). If Γ⊢P and T is not linear then Γ,x : T ⊢P.

CHAPTER 2. SESSION TYPES 17

As opposed to weakening, strengthening allows us to remove unrestricted channels from the
typing context when they are not among the free variables of the process being typed.

Lemma 2.4.2 (Strengthening for expressions). If Γ,x : S⊢ v : U and x /∈ fv(v) then un(S) and

Γ⊢ v : U.

Lemma 2.4.3 (Strengthening). If Γ,x : S⊢P and x /∈ fv(P) then un(S) and Γ⊢P.

Lemma 2.4.4 (Substitution). Let Γ,w : W ⊢P and Z ⩽ W. If Γ+ z : Z is defined then Γ+ z :
Z ⊢P[v/z].

Lemma 2.4.5 (Type Preservation under ≡ for session π-calculus). Let Γ⊢P and P ≡ P′, then

Γ⊢P′.

Theorem 2.4.6 (Subject Reduction). If Γ⊢P and P −→ Q then Γ⊢Q.

A redex (“reducible expression”) is a process of the form: x!⟨ṽ⟩.P |y?(z̃).Q or x◁ℓ j.P |y▷{ℓi :
Pi}i∈I with j ∈ I.

Theorem 2.4.7 (Type safety). A process is well-formed if for each of its structural congruent

processes (ν x̃y)(P |Q), the following conditions hold:

• if P and Q are processes prefixed at the same variable, then they are of the same nature

(input, output, branch, selection), and

• if P is prefixed in xi and Q is prefixed in yi where xi ∈ x̃, yi ∈ ỹ , then P |Q is a redex.

The subject reduction theorem guarantees that as P reduces, each subsequent process P′

is typable under the same environment, and the type safety theorem guarantees that P′ has no
immediate communication errors.

2.5 Implementations

Session types have inspired the design of several new programming languages. SePi [5, 57, 133]
is a concurrent, message-passing programming language based on session π-calculus, featuring
a simple form of refinement types. The language features synchronous, bi-directional channel-
based communication. Primitives are used for sending, receiving, branching, and selecting

messages. Channel interactions are statically verified against the session types describing the
type and order of messages exchanged, as well as the number of processes that may share a
channel. SILL [115, 131] is a functional programming language with a linear contextual monad
for session-typed message-passing concurrency. It is based on the Curry-Howard isomorphism
between intuitionistic linear logic and session-typed concurrency. Concurrent C0 [142] is a
type-safe programming language closely resembling C. It allows the creation of concurrent

CHAPTER 2. SESSION TYPES 18

processes and session typed communication channels. Links [33] is a functional programming
language designed for tierless web applications (the system generating code for both front and
back-end tiers) that offers native support for binary session types [56, 92].

Session types have also been implemented into many mainstream programming languages.
The Session Java (SJ) language [79] builds on earlier work [47, 48, 50] on session types in an
object-oriented setting to add binary session type channels to Java. SJ has been applied to a
range of situations including scientific computation [104], and has been extended to event-driven
programming [75]. Session primitives are represented as APIs, and Java syntax is extended with
communication statements to allow typechecking.

Neubauer and Thiemann [97] provide the first encoding of session-typed core calculus into
Haskell using type classes with functional dependencies. They avoid aliasing by automatically
threading the implicit channel through the computation. Pucella and Tov [121] enforce linear
channel usage by using a parameterised monad [4] indexed by type-level pre- and post-conditions
on session environments; they allow communication along multiple channels through an explicitly-
managed stack (representing session environments). Both lines of work feature first-order sessions
with branch/select and recursion, but without delegation. Imai et al. [83] extend Pucella-Tov’s
approach with delegation, type inference and a more user-friendly approach to handling multiple
channels, by replacing the aforementioned stack with a De Bruijn index encoding which is
handled implicitly at the type level. Lindley and Morris [90] follow Polakow’s [118] approach to
embedding of a linear λ -calculus in Haskell. They embed GV [63,91,139] (a session-typed linear
λ -calculus) in Haskell, allowing first-class channel endpoints. Orchard and Yoshida [107] encode
session-typed π-calculus into FPCF, a parallel variant of PCF [117] with a general, parameterised
effect system. They use this encoding together with an approach for embedding effect systems
in Haskell [106] to provide an implementation of session-typed channels in Concurrent Haskell.
All of these implementations leverage Haskell’s type system to provide static linearity checks,
however each comes with its own deficiencies. Recent work by Bernardy et al. [10] adds first-
class linear types to Haskell. So, it would be interesting to see a session type library for Haskell
using first-class linear types, rather than additional artefacts of embedding linearity.

Imai et al. [82] propose session-ocaml, a library for session-typed programming in OCaml.
They use a parameterised monad, and polarities, which view a session type from the point of the
view of a client or a server. The authors additionally make use of lenses to more cleanly manipulate
the stack of session channels. Padovani [113] describes FuSe, a lightweight implementation of
binary session types in OCaml, that verifies message ordering statically and linearity violations
dynamically. Although runtime checking of linearity results in fewer static guarantees, it results
in a particularly clean library design and implementation, in particular allowing first-class
manipulation of channel endpoints. Padovani [112] builds upon the work of Thiemann and
Vasconcelos [130] by being the first to implement context-free session types, in the setting of the
FuSe. Padovani reformulates context-free sessions to make use of resumptions to implement the

CHAPTER 2. SESSION TYPES 19

sequencing required by context-free session types. To safely implement resumptions, session
types are ascribed with identities. An advantage of Padovani’s approach is that type equivalence
is no longer needed in the type system of terms, but only to reason about the metatheory, at the
cost of additional syntactic markers.

Chapter 3

Multiparty Session Types

3.1 Introduction

Multiparty session types, introduced by Honda et al. [72, 73] and Bettini et al. [11], generalise
binary session types by allowing a top-down description of the interactions between multiple
participants in a protocol.

The multiparty session types methodology is as follows:

• the protocol is specified as a global type, G, that gives a global view of the interactions
between all participants, or roles

• the global type G is projected to each role to obtain a (local) session type

• the session types are assigned to communication channels, used by implementing processes,
which can then be typechecked for conformance

Figure 3.1: Two-buyer Protocol

20

CHAPTER 3. MULTIPARTY SESSION TYPES 21

G = b1→s: title(Str).s→b1: quote(Int).s→b2: quote(Int).µt.b1→b2: split(Int).

b2→b1:

ok.b2→s: ok.b1→s: buy(Int).b2→s: buy(Int).end,
no.b2→s: no.t,
quit.b2→s: quit.end

Figure 3.2: TwoBuyer Global Type

Sb1 = s⊕title(Str).s"e(Int).µt.b2⊕split(Int).b2&

ok.s⊕buy(Int).end
no.s⊕no.t
quit.end

Sb2 = s"e(Int).µt.b1&split(Int).b1 ⊕

ok.s⊕buy(Int).end
no.s⊕no.t
quit.s⊕quit.end

Ss = b1&title(Str).b1⊕quote(Int).b2⊕quote(Int).

µt.b2&

ok.b1&buy(Int).b2&buy(Int).end
no.t
quit.end

Figure 3.3: TwoBuyer Session Types

We illustrate the concepts of multiparty session types using a canonical example from the
literature, namely the two-buyer protocol, intended to be representative of financial protocols.

The two-buyer protocol describes the scenario in Figure3.1. We show the full global type for
this example in Figure3.2.

1. Buyer1 (b1) requests the price of a book title from the Seller (s): b1→s: title(Str)

2. The Seller sends the quote to Buyer1: s→b1: quote(Int), and to Buyer2:
s→b2: quote(Int)

3. Buyer1 sends Buyer2 the amount that Buyer2 should pay: b1→b2: split(Int)

4. Buyer2 can choose to:

• Accept the offer, at which point Buyer1 buys the item:
b2&ok.b2→s: ok.b1→s: buy(Int).b2→s: buy(Int).end

• Reject the offer, and await another offer from Buyer 1: b2&no.b2→s: no.t

• End the protocol: b2&quit.b2→s: quit.end

The projections of G describe the local actions that programs must implement to play the
roles in G. The types shown in Figure3.3, Sb1 ,Sb2,Ss are session types obtained by projecting G

CHAPTER 3. MULTIPARTY SESSION TYPES 22

onto the three roles b1,b2,s. Sb1 captures only the communication behaviour involving role b1:
it sends (⊕) a title to s, receives (&) a quote back, then asks b2 to split the price, to which
b2 can reply with either: ok in which case they buy the item; no in which case b1 recursively
retries proposing a different split; or quit in which case the order is cancelled. The types for
Buyer2, Sb2 , and for Seller, Ss follow the same intuition. In multiparty session type systems these
types are assigned to channels, and the endpoint programs that use them are checked for correct
usage, i.e. the program implementing b1 is checked against Sb1 . Endpoint programs are in turn
formalised as processes in the π-calculus extended with multiparty session primitives.

Typing ensures that processes behave as specified, i.e. they interact according to the global
type G. This is typically achieved by imposing well-formedness conditions to global types,
and consistency restrictions when processes are type-checked. Recent work by Scalas and
Yoshida [125] identifies the limitations on the expressiveness of previous multiparty session typing
systems and in many cases flawed subject reduction proofs, due to a conservative requirement of
consistency. Scalas and Yoshida propose a more general, expressive, and simpler system based
on generic type systems for the π-calculus [81]. The authors define run-time safety properties
such as liveness or deadlock freedom, and show how protocol conformance can be checked
via a translation into formulae which can be checked by the mCRL2 [66] model checker. The
system allows more expressive protocols to be described and checked against implementations, a
significant advantage over both classic multiparty session type systems and model checking on
their own.

We now describe multiparty session π-calculus, its types, and typing rules. Our formulation
is based on Coppo et al. [34] and Scalas et al. [122]; and includes subtyping [49]. We present the
type safety result in this setting, and then present the safety invariant introduced by Scalas and
Yoshida [125].

We use the following conventions:

• Derivations use single lines for inductive rules and double lines for coinductive rules.

• Recursive types µt.T are always closed, i.e. without free type variables, and guarded
which ensures that they are contractive: in µt.T we have T ̸= t ′,∀t ′; so µt1.. . .µtn.t1 is
not a type.

• We define the unfolding of a recursive types as: unf(µt.T) = unf(T{µt.T/t}), and
unf(T) = T if T ̸= µt.T ′.

• Type equality is syntactic: µt.T is not equal to unf(µt.T).

• We write P −→ Q for process reductions, −→∗ for the reflexive and transitive closure of
−→ , and P ̸−→ if and only if there is no Q such that P −→ Q.

• For readability, we use brown for global types, blue for local session types, and green for
partial session types.

CHAPTER 3. MULTIPARTY SESSION TYPES 23

P ::= 0 inaction
| P |Q parallel composition
| (ν s)P restriction
| c[p]⊕⟨l(v)⟩.P select
| c[p]&i∈I{li(xi).Pi} branch
| def D in P recursion
| X⟨x̃⟩ process call

D ::= X(x̃) = P process declaration

c ::= x variable
| s[p] channel with role p

v ::= c channel
| true | false booleans
| 0 | 1 | ... base value

Figure 3.4: Multiparty session π-calculus

3.2 Syntax and Semantics

The syntax of the π−calculus with multiparty session types is given in Figure3.4. A channel
c can be either a variable, x, or a channel with a role s[p], i.e., a multiparty communication
endpoint whose user plays role p in the session s. Values v can be variables, channels with roles,
or base values. The inaction 0 represents a terminated process. The parallel composition P |Q
represents two processes that can execute concurrently, and potentially communicate. The session
restriction (ν s)P declares a new session s with scope limited to process P. Process c[p]⊕⟨l(v)⟩.P
performs a selection (internal choice) towards role p, using the channel c: the labelled value
l(v) is sent, and the execution continues as process P. Dually, process c[p]&i∈I{li(xi).Pi} uses
channels c to wait for a branching (external choice) from role p: if the labelled value lk(v) is
received (for some k ∈ I), then the execution continues as Pk (with xk holding value v). Note
that for all i ∈ I, variable xi is bound with scope Pi. In both branching and selection, the labels li
(i ∈ I) are all different and their order is irrelevant. Process definition def D in P and process
call X⟨x̃⟩ model recursion, with D being a process declaration X(x̃) = P: the call invokes X by
expanding it into P, and replacing its formal parameters with their values.

While this simplified syntax does not have dedicated input/output prefixes, they can be
encoded using singleton & (with one branch) and ⊕ types.

The processes that implement the roles described by the types in Figure3.3 are defined below.
A message in session s from role p to role q has the prefix s[p][q], where s[p] is represented by
c in the grammar.

CHAPTER 3. MULTIPARTY SESSION TYPES 24

P |0 ≡ P (3.1)
P |Q ≡ Q |P (3.2)

(P |Q) |R ≡ P |(Q |R) (3.3)

(ν s)0 ≡ 0 (3.4)
(ν s)(ν s′)P ≡ (ν s′)(ν s)P (3.5)
(ν s)P |Q ≡ (ν s)(P |Q) if s ̸∈ fc(Q) (3.6)

def D in 0 ≡ 0 (3.7)
def D in (ν s)P ≡ (ν s)(def D in P) if s ̸∈ fc(P) (3.8)
def D in (P |Q)≡ (def D in P) |Q if dpv(D)∩ fpv(Q) =∅ (3.9)

def D in def D′ in P ≡ def D′ in def D in P (3.10)
if (dpv(D)∪ fpv(D))∩dpv(D′) = (dpv(D′)∪ fpv(D′))∩dpv(D) =∅

Figure 3.5: Structural congruence for the π-calculus with multiparty sessions

Buyer1 = s[b1][s]⊕⟨title(name)⟩.s[b1][s]&{quote(price)}.def Loop1(x) =

x[b2]⊕⟨split(split)⟩.x[b2]&

ok().x[s]⊕⟨buy(share)⟩.0
no().Loop1(x)

quit().0

 in Loop1(s[b1])

Buyer2 = s[b2][s]&{quote(price)}.def Loop2(x) = x[b1]&{split(split)}.

x[b1]⊕

ok().x[s]⊕⟨ok()⟩.x[s]⊕⟨buy(share)⟩.0
no().x[s]⊕⟨no()⟩.Loop2(x)

quit().x[s]⊕⟨quit()⟩.0

 in Loop2(s[b2])

Seller = s[s][b1]&{title(name)}.s[s][b1]⊕⟨quote(price)⟩.s[s][b2]⊕⟨quote(price)⟩.

def Loops(x) = x[b2]&

ok().x[b1]&{buy(share)}.x[b2]&{buy(share)}.0
no().Loops(x)

quit().0

 in Loops(s[s])

Before presenting the operational semantics, we introduce the notion of structural congru-
ence ≡ which is the smallest congruence relation satisfying the axioms in Figure3.5.

The definition uses the concepts of free channels of a process, fc(P); free process variables
of a process, fpv(P); and defined process variables of a process declaration, dpv(D). We write
“s /∈ fc(P) ” to mean that there does not exist a p such that s[p] ∈ fc(P). We use fv(D) to denote
the set of free variables in D. We use dpv(D) to denote the set of process variables declared in D,
and fpv(P) for the set of process variables which occur free in P.

The semantics of the system is given in terms of the reduction relation defined by the

CHAPTER 3. MULTIPARTY SESSION TYPES 25

[RCOM]
j ∈ I and fv(v) =∅

s[p][q]&i∈I{li(xi).Pi}|s[q][p]⊕⟨l j(v)⟩.P −→ Pj{v/x j}|P

[RCALL]
x̃ = x1, . . . ,xn ṽ = v1, . . . ,vn fv(ṽ) =∅

def X⟨x̃⟩= P in (X⟨x̃⟩ |Q) −→ def X⟨x̃⟩= P in (P{ṽ/x̃}|Q)

[RRES]
P −→ Q

(ν s)P −→ (ν s)Q
[RPAR]

P −→ Q
P |R −→ Q |R

[RDEF]
P −→ Q

def D in P −→ def D in Q
[RSTRUCT]

P ≡ P′ P −→ Q Q ≡ Q′

P′ −→ Q′

Figure 3.6: Reduction for the π-calculus with multiparty sessions

rules in Figure3.6. Rule [RCOM] models communication: it says that the parallel composition
of a branch and a select process, both operating on the same session s as roles p and q, via s[p]
and s[q], and targeting each other (i.e., s[p] is used to branch from q, and s[q] is used to select
towards p) reduces to the corresponding continuations, with a value substitution on the receiver
side. [RCALL] says that a process call X⟨x̃⟩ in the scope of def D in P . . . reduces by expanding
X⟨x̃⟩ into P, and replacing the formal parameters, x̃, with the actual ones, ṽ. The remaining rules
are standard: reduction can happen under parallel composition, restriction and process definition.
By [RSTRUCT], reduction is closed under structural congruence.

3.3 Types and Subtypes

The general methodology of multiparty session types is that system design begins with a global

type, which specifies all of the communication among various roles. Given a global type G and a
role p, projection yields a session type or local type G↾p that describes all of the communication
involving p. This local type can be further projected for another role q, to give a partial session

type that describes communication between p and q.

Global types are given in Figure3.7. Type p→q: {li(Ui).Gi}i∈I states that role p sends to role q
one of the pairwise distinct labels li for i ∈ I, together with a payload Ui. If the chosen label is
l j, then the interaction proceeds as G j. Type µt.G and type variable t model guarded recursion.
Type end states the termination of a protocol. We omit the braces {...} from interactions when I

is a singleton, for example a → b : {li(Ui).Gi}i∈{1} is written as a → b : l1(U1).G1 .

Local (session) types are given in Figure3.7 and describe the expected usage of a channel in a
communication protocol involving two or more roles. Local types model structured sequences of
input and output actions and specify the source and target of each interaction.
The branching type p &i∈I?li (Ui) .Si describes a channel that can receive a label li from role

CHAPTER 3. MULTIPARTY SESSION TYPES 26

Local session type S ::= end terminated session
| p ⊕i∈I!li(Ui).Si selection towards role p
| p &i∈I?li (Ui) .Si branching from role p
| t type variable
| µt.S recursive type

Global type G ::= p→q: {li(Ui).Gi}i∈I interaction
| t type variable
| µt.G recursive type
| end termination

Partial session type H ::= end terminated session
| ⊕i∈I !li(Ui).Hi selection
| &i∈I ?li(Ui).Hi branching
| t type variable
| µ t.H recursive type

Ground type B ::= Int | Bool

Payload type U ::= B | S closed ground type, session type

Environment Γ ::= ∅ | Γ,x : U | Γ,s[p] : S
∆ ::= ∅ | ∆,X : Ũ process names

All branch and select types have the conditions I ̸= /0 and Ui closed.

Figure 3.7: Types and environments for the π-calculus with multiparty sessions

CHAPTER 3. MULTIPARTY SESSION TYPES 27

p (for some i ∈ I, chosen by p), together with a payload of type Ui; then, the channel must be
used as Si. Selection p ⊕i∈I!li(Ui).Si, describes a channel that can choose a label li (for any
i ∈ I), and send it to p together with a payload of type Ui; then, the channel must be used as
Si. The labels of branch/select types are all distinct and their order is irrelevant. We omit &/⊕
when I is a singleton: p!l1(Int).S1 stands for p ⊕i∈1 !li(Int).Si. The recursive type µt.S and
type variable t model guarded recursion. end is the type of a terminated channel. Base types
B,B′, . . . can be types like Bool, Int, etc Payload types U,Ui, . . . are either base types, or closed

session types.
The relationship between global types and session types is formalised by the notion of

projection.

Definition 3.3.1. The projection of G onto a role q, written G↾q, is:

end↾q ≜ end t↾q ≜ t (µt.G)↾q ≜

µt.(G↾q) if G↾q ̸= t′ (∀t′)

end otherwise

(p→p′: {li(Ui).Gi}i∈I)↾q ≜

p′ ⊕i∈I !li(Ui).(Gi ↾q) if q = p,

p &i∈I ?li(Ui).(Gi ↾q) if q = p′,
d

i∈I(Gi ↾q) if p ̸= q ̸= p′

Where the merge operator for session types,
d

, is defined by:
end ⊓ end ≜ end t ⊓ t ≜ t µt.S ⊓ µt.S′ ≜ µt.(S⊓S′)

p &i∈I ?li(Ui).Si ⊓ p & j∈J ?l j(U j).S′j ≜ p &k∈I∩J ?lk(Uk).(Sk ⊓S′k) & p & j∈I\J ?li(Ui).Si

& p & j∈J\I ?l j(U j).S′j

p ⊕i∈I !li(Ui).Si ⊓ p ⊕i∈I !li(Ui).Si ≜ p ⊕i∈I !li(Ui).Si

Projecting end or a type variable t onto any role does not change it. Projecting a recursive
type µt.G onto q means projecting G onto q. However, if G does not involve q then G↾q is a
type variable, t′, and it must be replaced by end to avoid introducing an unguarded recursive
type. Projecting an interaction between p and p′ onto either p or p′ produces a select or a branch.
Projecting onto a different role q ignores the interaction and combines the projections of the
continuations using the merge operator.

The merge operator, ⊓, introduced in [46, 144], allows more global types to have defined
projections, which in turn allows more processes to be typed. Different external choices from
the same role p are integrated by merging the continuation types following a common message
label, and including the branches with different labels. Merging for internal choices is undefined
unless the interactions are identical. This excludes meaningless types that result when a sender p
is unaware of which branch has been chosen by other roles in a previous interaction.

Definition 3.3.2. For a session type S, roles(S) denotes the set of roles occurring in S. We write
p ∈ S for p ∈ roles(S), and p ∈ S\q for p ∈ roles(S)\{q}.

CHAPTER 3. MULTIPARTY SESSION TYPES 28

Partial session types Figure3.7 have the same cases as local types, without role annotations.
Partial types have a notion of duality which exchanges branch and select but preserves payload
types.

Definition 3.3.3. H is the dual of H, defined by:

⊕i∈I!li(U i).Hi ≜ &i∈I ?li(Ui).Hi &i∈I?li (U i) .Hi ≜ ⊕i∈I !li(Ui).Hi

end ≜ end t ≜ t µ t.H ≜ µ t.H

Similarly to the projection of global types to local types, a local type can be projected onto
a role q to give a partial type. This yields a partial type that only describes the communica-
tions in S that involve q. The definition follows the same principles as the previous definition
(cf. Definition 3.3.1).

Definition 3.3.4. S↾q is the partial projection of S onto q:

end↾q ≜ end t↾q ≜ t (µt.S)↾q ≜

µ t.(S↾q) if S↾q ̸= t′ (∀t′)

end otherwise

(p ⊕i∈I!li(Ui).Si)↾q ≜

⊕i∈I !li(Ui).(Si ↾q) if q = p,
d

i∈I(Si ↾q) if p ̸= q

(p &i∈I?li (Ui) .Si)↾q ≜

 &i∈I ?li(Ui).Si ↾q if q = p,
d

i∈I(Si ↾q) if p ̸= q
Where the merge operator for partial session types,

d
, is defined by:

end⊓end ≜ end t⊓t ≜ t µ t.H ⊓ µ t.H ′ ≜ µ t.(H ⊓H ′)

&i∈I ?li(Ui).Hi ⊓ &i∈I ?li(Ui).H ′
i ≜ &i∈I ?li(Ui).(Hi ⊓H ′

i)

⊕i∈I !li(Ui).Hi ⊓ ⊕ j∈J !l j(U j).H ′
j ≜(

⊕k∈I∩J !lk(Uk).(Hk ⊓H ′
k)
)
⊕

(
⊕i∈I\J !li(Ui).Hi

)
⊕

(
⊕ j∈J\I !l j(U j).H ′

j
)

Unlike session type merging, ⊓ can combine different internal choices, but not external
choices because that could violate type safety. Different internal choices can depend on the out-
come of previous interactions with other roles, since the dependency can be safely approximated
as an internal choice. Different external choices, however cannot capture this dependency.

Definition 3.3.5 (Subtyping). Subtyping on session types ⩽ is the largest relation such that:

(i) if S⩽S′, then ∀p ∈ (roles(S)∪roles(S′)) S↾p⩽S′ ↾p, and

(ii) is closed backwards under the coinductive rules in Figure3.8.

Subtyping on partial session types ⩽ is defined coinductively by the rules in Figure3.9.

CHAPTER 3. MULTIPARTY SESSION TYPES 29

[SBR]
∀i ∈ I Ui⩽U ′

i Si⩽S′i

p &i∈I?li (Ui) .Si ⩽ p &i∈I∪J ?li(U ′
i).S

′
i

================================== [SSEL]
∀i ∈ I U ′

i ⩽Ui Si⩽S′i

p ⊕i∈I∪J !li(Ui).Si⩽p ⊕i∈I !li(U ′
i).S

′
i

================================

[SB]
B ⩽ B′

B⩽B′
====== [SEND]

end⩽end
======== [SµL]

S{µt.S/t}⩽S′

µt.S⩽S′
============= [SµR]

S⩽S′{µt.S′/t}

S⩽µt.S′
==============

Figure 3.8: Subtyping for local session types

[SPARBR]
∀i ∈ I Ui⩽U ′

i Hi⩽Hi
′

&i∈I?li (U i) .Hi⩽ &i∈I∪J ?li(U ′
i).Hi

′
================================ [SPARSEL]

∀i ∈ I U ′
i ⩽Ui Hi⩽Hi

′

⊕i∈I∪J !li(Ui).Hi⩽ ⊕i∈I !li(U ′
i).H

′
i

===============================

[SPAREND]
end⩽end
======== [SPARµL]

H{µ t.H/t}⩽H ′

µ t.H⩽H ′
=============== [SPARµR]

H⩽H ′{µ t.H ′/t}

H⩽µ t.H ′
================

Figure 3.9: Subtyping for partial session types

The first clause of the definition (i) links local and partial subtyping, and ensures that if two types
are related, then their partial projections exist. This clause is used later in defining consistency
in Definition 3.4.2. In the second clause (ii) rules [SBR], [SSEL] define subtyping on branching
and selection types respectively. [SBR] is covariant (preserves the ordering of types) both in the
continuation types: Si⩽S′i and in the number of branches offered Ui⩽U ′

i . [SSEL] is covariant in
the continuation types: Si⩽S′i and contravariant (reverses the ordering of types) in the number of
choices: U ′

i ⩽Ui.
[SB] relates base types, if they are related by ⩽ . [SEND] relates terminated channel types.

[SµL] and [SµR] are standard under coinduction [116, § 21], relating types up-to their unfolding.

3.4 Typing

Definition 3.4.1 (Typing Contexts). ∆ denotes a partial mapping from process variables to n-tuples
of types, and Γ denotes a partial mapping from channels to types, both defined in Figure3.7.

The composition Γ1,Γ2 is defined if and only if dom(Γ1)∩dom(Γ2) =∅.
We write s /∈ Γ if and only if ∀p : s[p] /∈ dom(Γ), when session s does not occur in Γ.
We write dom(Γ) = s if and only if ∀c ∈ dom(Γ) there is p such that c= s[p], when Γ only

contains session s.
We write Γ ⩽ Γ′ if and only if dom(Γ) = dom(Γ′) and ∀c ∈ dom(Γ) : Γ(c) ⩽ Γ′(c).
Similar to binary session types, we say that Γ is unrestricted, un(Γ), if and only if for all

c ∈ dom(Γ), Γ(c) is either a base type or end.
The typing contexts composition ◦ is the commutative operator with ∅ as neutral element:

CHAPTER 3. MULTIPARTY SESSION TYPES 30

[TVAR]
un(Γ)

Γ,c : S⊢c : S
[TVAL]

un(Γ) v ∈ B
Γ⊢ v : B

[TINACT]
un(Γ)

∆;Γ⊢0

[TPAR]
∆;Γ1 ⊢P ∆;Γ2 ⊢Q

∆;Γ1 ◦Γ2 ⊢P |Q
[TSUB]

∆;Γ,c : U ⊢P U ′⩽U
∆;Γ,c : U ′⊢P

[TRES]
∆;Γ,Γ′⊢P Γ

′ = {s[p] : Sp}p∈I complete
∆;Γ⊢ (ν s : Γ

′)P

[TSEL]
Γ1 ⊢ v : U j ∆;Γ2,c : S j ⊢P j ∈ I

∆;Γ1 ◦Γ2,c : p ⊕i∈I!li(Ui).Si ⊢c[p]⊕⟨l j(v)⟩.P

[TBR]
∆;Γ,xi : Ui,c : Si ⊢Pi ∀i ∈ I

∆;Γ,c : p &i∈I?li (Ui) .Si ⊢c[p]&i∈I{li(xi).Pi}

[TDEF]
∆,X : Ũ ; x̃ : Ũ ⊢P ∆,X : Ũ ;Γ⊢Q

∆;Γ⊢def X⟨x̃ : Ũ⟩= P in Q

[TCALL]
∀i ∈ {1..n} Γ⊢ vi : Ui un(Γ)

∆,X : U1, . . . ,Un;Γ⊢X⟨v1, . . . ,vn⟩

Figure 3.10: Typing rules for the π-calculus with multiparty sessions

Γ1,c : U ◦ Γ2,ci : Ui ≜ (Γ1 ◦Γ2),c : U,ci : Ui (if dom(Γ2) ̸∋ c ̸= ci ̸∈ dom(Γ1))

Γ1,x : B ◦ Γ2,x : B ≜ (Γ1 ◦Γ2),x : B

Definition 3.4.2 (Completeness and consistency).
Γ is complete if and only if for all s[p] : Sp ∈ Γ, q ∈ Sp implies s[q] : Sq ∈ dom(Γ).

Γ is consistent if and only if for all s[p] : Sp,s[q] : Sq ∈ Γ, with p ̸= q we have Sp ↾q⩽Sq ↾p.

Completeness means that if a channel is in Γ, then Γ also contains the other endpoints of the
channel. In this case, there is a self-contained collection of channels that can communicate. Con-
sistency means that the opposite endpoints of every channel have dual partial types. Consistency
of the session typing context Γ is necessary to prove subject reduction. An important note is that
the consistency definition Definition 3.4.2, introduced by Scalas et al.in [122], uses subtyping ⩽

rather than syntactic type equality = to relate dual partial projections, and thus allows subject
reduction to hold. It is a weaker definition than the one usually found in the literature, and fixes a
long-standing mistake in subject reduction proofs appearing in [45, 46, 145].

Definition 3.4.3 (Typing judgements). Typing judgements are inductively defined by the rules
in Figure3.10. Typing judgements have the form: ∆;Γ⊢P with Γ consistent, and ∀c : S ∈ Γ,S↾p
is defined ∀p ∈ S. ∆ is omitted when empty.

CHAPTER 3. MULTIPARTY SESSION TYPES 31

[TVAR] says that a channel has the type assumed in the session typing context. [TVAL]

relates base values to their type. [TINACT] states that the terminated process is well typed in any
unrestricted typing context, that is when all channels in Γ have end type. [TPAR] states that the
parallel composition of P and Q is well typed under the composition of the corresponding typing
contexts. [TSUB] is a standard subsumption rule using ⩽ (Definition 3.3.5). [TRES] requires the
restricted environment Γ′ to be complete (Definition 3.4.2) and the open process P to be well
typed under Γ,Γ′. [TSEL] (resp. [TBR]) states that the selection (resp. branching) on channel c[p]
is well typed if the channel has compatible select(resp. branching) type and the continuations
Pi,∀i ∈ I are well-typed with the continuation session types. By [TDEF] def X⟨x̃ : Ũ⟩ = P in Q

is well-typed if P uses the arguments x̃ according to Ũ , and if X : Ũ when typing both P and Q.
By [TCALL] X⟨v1, . . . ,vn⟩ is well-typed if the types of ṽ match those of the parameters of X , and
if Γ is unrestricted. This last assumption ensures that channels requiring more inputs/outputs
cannot be forgotten, thus preserving linearity. Together, rules [TDEF] and [TCALL] allow us to
model recursive processes.

3.5 Main Results

In this section we present the main properties satisfied by the session type system presented. The
following lemmas and theorems are proven in [122].

Definition 3.5.1 (Typing context reduction). The reduction Γ → Γ′ is:

s[p] : Sp, s[q] : Sq → s[p] : Sk, s[q] : S′k if

{
Sp = q ⊕i∈I !li(Ui).Si k ∈ I

unf(Sq) = p &i∈I∪J ?li(U ′
i).S

′
i Uk ⩽ U ′

k

Γ, c : U → Γ′, c : U ′ if Γ → Γ′ and U ⩽ U ′

Definition 3.5.1 accommodates subtyping (hence, uses ⩽) and iso-recursive type equality,
hence, unfolds types explicitly.

Theorem 3.5.1 (Subject reduction). If ∆;Γ⊢P and P −→ P′, then ∃Γ′: Γ −→∗ Γ′ and ∆;Γ′⊢P′.

Theorem 3.5.2 (Deadlock freedom). Let ∅ ·∅⊢P, where P ≡ (ν s : G)
∣∣
i∈IPi and each Pi only

interacts on s[pi]. Then, P is deadlock-free: i.e., P −→∗ P′ ̸→ implies P′ ≡ 0.

CHAPTER 3. MULTIPARTY SESSION TYPES 32

3.6 Implementations

At the heart of many implementations into mainstream programming languages lies Scribble [69,
146], a protocol description language, based on the theory of multiparty session types. A protocol
in Scribble specifies the interactions between each participant in the system in a top-down manner.
The Scribble tool first verifies that this global protocol is well-formed and thus describes a
safe protocol; then projects the global protocol into local protocols for each role. Originally
verification was achieved using fairly conservative syntactic checks, however recent work [78]
takes a more semantic approach through the use of 1-bounded model checking, thus being less
restrictive with the interactions that can be represented.

Once the global protocol has been found to be well-formed, it can be projected to a set of
local protocols. A local Scribble protocol is generated for each role declared in the definition of
the global protocol. Local protocols correspond to local session types, they describe interactions
from the viewpoint of a single entity. They can be used directly by a type checker, or via runtime
verification techniques to verify that an endpoint code implementation complies to the interactions
prescribed by the specification.

Static Checking. One of the earliest implementations of statically-checked multiparty
session types is Multiparty Session C [103], which implements multiparty session types in C
via a lightweight runtime system and a compiler plugin. Multiparty Session C concentrates on
bringing the benefits of multiparty session types to the domain of high-performance computing.
Later work by Ng et al. [102] uses Scribble to generate MPI backbone code, reducing the amount
of boilerplate a developer of HPC applications must write, and guaranteeing deadlock-freedom.

Hu and Yoshida [77] describe an approach called endpoint API generation, where local types
guide the generation of state channel objects for each role. State channels guide a developer
in following the protocol through the use of an object-oriented call-chaining API. Linearity is
enforced dynamically through a simple run-time check, ensuring that each state channel object is
used only once.

Typestate [127] is a related concept to session types, as shown in work by Gay et al. [64].
This relation is exploited in the work of Kouzapas et al. [85, 86] to define a typestate system for
Java based on multiparty session types. The work describes the design and implementation of two
tools, Mungo and StMungo. Mungo extends Java with typestate definitions, by allowing classes to
be associated with a definition of the permitted sequences of method calls. The second, StMungo
(“Scribble-to-Mungo”) translates from Scribble local protocols into typestate specifications and
Java program skeletons, which can be further implemented, and checked by Mungo to ensure
that the implementation still follows the protocol.

Type providers [114] allow statically-typed access to unstructured and untyped external data
sources such as CSV roles and SQL schemas via compile-time metaprogramming. Neykova et

al. [98] leverage the work on endpoint API generation to define a session type provider, extending

CHAPTER 3. MULTIPARTY SESSION TYPES 33

type providers to the domain of communication-centric software and introducing interaction
refinements: predicates on message payloads which are enforced by use of an SMT solver.
Scalas et al. [122] extend the continuation-passing translation from binary session types into the
linear π-calculus introduced by Kobayashi [84] and later extended by Dardha et al. [40] to the
multiparty setting. Their approach lends itself to an implementation of multiparty session types
in Scala following previous work on lchannels [124], in particular being the first work to support
distributed delegation in the multiparty setting.

Runtime Monitoring. An alternative approach to checking conformance to protocols stati-
cally is to verify conformance at run-time. Deniélou and Yoshida [45] describe deep connections
between multiparty session types and communicating finite-state automata [18], identifying a
class of communicating finite-state automata called multiparty session automata, which enjoy
safety properties such as deadlock-freedom.

Multiparty session automata can be used as monitors to dynamically enforce compliance with
a session at run-time. Chen et al. [29] and Bocchi et al. [15] describe the theory of run-time
monitoring of communication against session types. The formalism consists of an unmonitored
semantics; a labelled transition system semantics of monitors; and a monitored semantics where
actions are predicated on labels emitted by monitor reduction. The key results are of safety and
transparency: safety means that the processes behave in accordance with the global specification,
and transparency means that a monitored network behaves exactly the same as an equivalent
unmonitored network conforming to the specification. SPY [101] is the first implementation
of multiparty session types in a dynamically-checked programming language, implementing a
Python API for session programming where communication safety is guaranteed through runtime
monitors generated from Scribble specifications. Demangeon et al. [76] extend this work with an
interruptible construct, allowing blocks to be interrupted by incoming messages.

Neykova and Yoshida [99] are the first to integrate multiparty session types and the actor
model via dynamic monitoring. In the conceptual framework proposed by the authors, each actor
is an entity which may take part in multiple sessions, and where a message received in one session
may trigger a message to be sent in another session. The framework is implemented in Python,
and communication between actors is mediated via monitors derived from Scribble specifications.
Subsequent work [55] implements an extended version of Neykova and Yoshida’s conceptual
framework in Erlang, motivating the use of subsessions [44] to allow parts of a protocol to be
repeated with new participants. Neykova and Yoshida [100] investigate failure recovery strategies
in Erlang, using information gained from protocols to compute and revert to safe states when a
failure occurs.

Part II

Resource Sharing via Capability-Based
Multiparty Session Types

34

35

It is standard for multiparty session type systems to use access control based on linear or affine

types. While useful in offering strong guarantees of communication safety and session fidelity,
linearity and affinity run into the well-known problem of inflexible programming, excluding
scenarios that make use of shared channels or need to store channels in shared data structures.

In this part, we present capability-based resource sharing for multiparty session types. In
this setting, channels are split into two entities, the channel itself and the capability of using it.
This gives rise to a more flexible session type system, which allows channel references to be
shared and stored in persistent data structures. We prove that the resulting language satisfies type
safety, we illustrate our type system through a producer-consumer case study, and conclude by
discussing related work and future directions.

Chapter 4

Resource Sharing via Capability-Based
Multiparty Session Types

4.1 Introduction
Session type systems must control aliasing when it comes to the endpoints of communication
channels, to avoid race conditions. Aliasing happens when multiple channel references point
to the same communication channel. This can cause issues because the type of the channel
determines the type of messages that can be sent or received, and if two or more channels have
different types, it can lead to errors or unexpected behaviour. For examples, if two processes P

and Q both think they are running the client side of a protocol with the same server S, then a
message sent by P advances the session state without Q’s knowledge, which interferes with Q’s
attempt to run the protocol.

In order to guarantee unique ownership of channel endpoints and eliminate aliasing, most
session type systems use strict linear typing. For more flexibility, some others use affine typing,
which allows channels to be discarded, but they still forbid aliasing. It is possible to allow a
session-typed channel to become shareable in the special case in which the session type reaches a
point which is essentially stateless. However, in such systems, channels are linearly typed for the
most interesting parts of their lifetimes—we discuss more about these possibilities in ??.

To give a more flexible approach to resource sharing and access control, we propose a system
of multiparty session types that includes techniques from the Capability Calculus [37], and from
Walker et al.’s work on alias types [140]. The key idea is to split a communication channel into
two entities: (1) the channel itself, and (2) its usage capability. Both entities are first-class and
can be referred to separately. Channels can now be shared, or stored in shared data structures, and
aliasing is allowed. However, in order to guarantee communication safety and session fidelity,
i.e., type safety, capabilities are used linearly so that only one alias can be used at one time.

This approach has several benefits, and improves on the state of the art:

i) it is now possible for a system to have a communication structure defined by shared

36

CHAPTER 4. CAPABILITY-BASED MULTIPARTY SESSION TYPES 37

B

b
P q Cq

s

B

b

P
p

q
C

c

q

s1

s

(a) (b)
Figure 4.1: Producer-consumer system: Producer—P and Consumer—C sharing access to
Buffer—B by implementing the same role q.

(a) P and C communicate with B in session s; (b) P and C exchange the capability to use channel s[q] in
session s1 and then use it to communicate with B in session s

channels, with the capabilities being transferred from process to process as required;

ii) a capability can be implemented as a simple token, whereas delegation of channels requires
a relatively complex implementation, thus making linearity of capabilities more lightweight
than linearity of channels.

Example 1 (Producer-Consumer). Producer P and consumer C communicate via buffer B in

session s, given in fig. 4.1 (a). P and C implement role q, and B implements role b. Shared access
to buffer B is captured by the fact that both P and C implement the same role q and use the same

channel s[q] to communicate with B.

Following multiparty session type theory, we start by defining a global type, describing

communications among all participants:

G0 = q→b: add(Int). q→b: req(). b→q: snd(Int). G0

In G0, protocol proceeds as follows: P (playing q) sends an add message to B (playing b), to add

data. In sequence, C (playing q) sends a req message to B, asking for data. B replies with a snd

message, sending data to C (playing q), and the protocol repeats as G0. Projecting the global

protocol to each role gives us a local session type. In particular, for B, implementing role b, we

obtain:

Sb = q?add(Int). q?req(). q!snd(Int). Sb

where the q annotations show the other role participating in each interaction. For the shared

access by P and C (role q), we obtain:

Sq = b!add(Int). S′q S′q = b!req(). b?snd(Int). Sq

Finally, the definitions of processes are as follows—we will detail the syntax in Section4.2.

P⟨v⟩ = s[q][b]⊕⟨add(v)⟩.P⟨v+1⟩
C⟨⟩ = s[q][b]⊕⟨req()⟩.s[b][q]&{snd(i)}.C⟨⟩
B⟨⟩ = s[q][b]&{add(x)}.s[q][b]&{req()}.s[b][q]⊕⟨snd(x)⟩.B⟨⟩

CHAPTER 4. CAPABILITY-BASED MULTIPARTY SESSION TYPES 38

The system of processes above is not typable using standard multiparty session type systems

because role q is shared by P and C, thus violating linearity of channel s[q]. To solve this issue

while allowing sharing and aliasing, instead of associating a channel c with a session type S, we

separately associate c with a tracked type tr(ρ), and S with capability ρ , {ρ 7→S}. The capability

can be passed between P and C as they take turns in using the channel by sending a message

turn(tr(ρq)) containing the capability for using the channel, as illustrated in Figure4.1 (b). As

a first attempt, we now define the following global type, getting us closer to our framework.

G1 = q→b: add(Int). p→c: turn(tr(ρq)). q→b: req().
b→q: snd(Int). c→p: turn(tr(ρq)).G1

However, a type such as tr(ρq) is usually too specific because it refers to the capability of a

particular channel. It is preferable to be able to give definitions that abstract away from specific

channels. We therefore introduce existential types, in the style of [140], which package a channel

with its capability, in the form ∃[ρ|{ρ 7→S}].tr(ρ).
With the existential types in place, we can define our global type G in the following way. It

now includes an extra initial message from P to C containing the channel used with the buffer.

The session types Sq and S′q are the same as before. We show the interaction in Figure4.2.

G = p→c: buff(∃[ρq|{ρq 7→S′q}].tr(ρq)).µt.q→b: add(Int).p→c: turn({ρq 7→S′q}).
q→b: req().b→q: snd(Int).c→p: turn({ρq 7→Sq}).t

In Chapter5 we complete this example by showing the projections to a local type for each role,

and the definitions of processes that implement each role.

Producer Queue Consumer

buff

add

turn

req

snd

turn

Figure 4.2: Producer-consumer Protocol

4.2 Syntax and Semantics

A message in session s from role p to role q has the prefix s[p][q], where s[p] is represented by c

in the grammar. The select and branch operations come in two forms. The first form is standard,

CHAPTER 4. CAPABILITY-BASED MULTIPARTY SESSION TYPES 39

P ::= 0 inaction
| P |Q parallel composition
| (ν s)P restriction
| c[p]⊕⟨l(v)⟩.P select
| c[p]&i∈I{li(xi).Pi} branch
| c[p]⊕⟨l(pack(ρ,s[q]))⟩.P select pack
| c[p]&i∈I{li(pack(ρi,si[q])).Pi} branch pack
| def D in P recursion
| X⟨x̃⟩ process call

D ::= X⟨x̃⟩= P process declaration

c ::= x variable
| s[p] channel with role p

v ::= c channel
| ρ capability
| true | false | 0 | 1 | ... base value

Figure 4.3: Multiparty session π-calculus with capabilities

and the second form handles packages, which are the novel feature of our type system. A package
consists of a capability ρ and a channel of type tr(ρ). We will see in Section4.3 in the typing
rules, the capability is existentially quantified. This enables a channel to be delegated, with the
information that it is linked to some capability, which will be transmitted in a second message.

We define a reduction-based operational semantics by the rules in Figure4.4. Rule [RCOM]

is a standard communication between roles p and q. Rule [RCOMP] is communication of an
existential package. Rule [RCALL] defines a standard approach to handling process definitions.
The rest are standard contextual rules.

4.3 Types and Subtypes

Global types are given in Figure 4.5. To the global types introduced in Section 3.3 we add a
new interaction type, pack interaction, p→q: {li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Gi}i∈I . Pack interaction
states that role p sends to role q one of the (pairwise distinct) labels li for i ∈ I, together with a
package payload ∃[ρi|{ρi 7→Ui}].tr(ρi) representing a channel with its capability. If the chosen
label is l j, then the interaction proceeds as G j, with the capability ρ j being bound in G j.

Local (session) types are given in Figure 4.5. To the types introduced in Section 3.3 we add
two new types, pack select and pack branch. They act in a similar manner to the classic
select and branch types, but bind the capability ρi for the continuation type Si. Pack branch
p &i∈I ?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si describes a channel that can receive a label li from role p (for

CHAPTER 4. CAPABILITY-BASED MULTIPARTY SESSION TYPES 40

[RCOM]
j ∈ I and fv(v) =∅

s[p][q]&i∈I{li(xi).Pi}|s[q][p]⊕⟨l j(v)⟩.P −→ Pj{v/x j}|P

[RCOMP]
j ∈ I

s[p][q]&i∈I{li(pack(ρi,vi)).Pi}|s[q][p]⊕⟨l j(pack(ρ,v))⟩.P −→ Pj{v/vi}|P

[RCALL]
x̃ = x1, . . . ,xn ṽ = v1, . . . ,vn fv(ṽ) =∅

def X⟨x̃⟩= P in (X⟨x̃⟩ |Q) −→ def X⟨x̃⟩= P in (P{ṽ/x̃}|Q)

[RRES]
P −→ Q

(ν s)P −→ (ν s)Q
[RPAR]

P −→ Q
P |R −→ Q |R

[RDEF]
P −→ Q

def D in P −→ def D in Q

Figure 4.4: Reduction (processes)

some i ∈ I, chosen by p), together with a payload of type ∃[ρi|{ρi 7→Ui}].tr(ρi), and then bind
the capability ρi for the continuation type Si. Pack select p ⊕i∈I !li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si,
describes a channel that can choose a label li (for any i ∈ I), and send it to p together with a
payload of type ∃[ρi|{ρi 7→Ui}].tr(ρi); and then bind the capability ρi for the continuation type
Si.

The relationship between global types and session types is formalised by the notion of
projection. We extend the definition given in Definition 3.3.1 for the pack interaction type added.

Definition 4.3.1. The projection of G onto a role q, written G↾q, is:

end↾q ≜ end t↾q ≜ t (µt.G)↾q ≜

µt.(G↾q) if G↾q ̸= t′ (∀t′)

end otherwise

(p→p′: {li(Ui).Gi}i∈I)↾q ≜

p′ ⊕i∈I !li(Ui).(Gi ↾q) if q = p,

p &i∈I ?li(Ui).(Gi ↾q) if q = p′,
d

i∈I(Gi ↾q) if p ̸= q ̸= p′

(p→p′: {li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Gi}i∈I)↾q ≜
p′ ⊕i∈I !li(∃[ρi|{ρi 7→Ui}].tr(ρi)).(Gi ↾q) if q = p,

p &i∈I ?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).(Gi ↾q) if q = p′,
d

i∈I(Gi ↾q) if p ̸= q ̸= p′

Where the merge operator for session types,
d

, is defined by:

CHAPTER 4. CAPABILITY-BASED MULTIPARTY SESSION TYPES 41

Global type G ::= end termination
| p→q: {li(Ui).Gi}i∈I interaction
| p→q: {li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Gi}i∈I pack interaction
| t type variable
| µt.G recursive type

Local session type S ::= end terminated session
| p ⊕i∈I!li(Ui).Si selection towards role p
| p &i∈I?li (Ui) .Si branching from role p
| p ⊕i∈I !li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si pack selection to role p
| p &i∈I ?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si pack branching from role p
| t type variable
| µt.S recursive type

Partial session type H ::= end terminated session
| ⊕i∈I !li(Ui).Hi selection
| &i∈I ?li(Ui).Hi branching
| ⊕i∈I !li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Hi pack selection
| &i∈I ?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Hi pack branching
| t type variable
| µ t.H recursive type

Capabilities C ::= ∅ | C⊗{ρ 7→S}

Ground type B ::= Int | Bool

Payload type U ::= B ground type
| tr(ρ) tracked type
| {ρ 7→S} capability type
| S closed session type

Environment Γ ::= ∅ | Γ,x : U | Γ,s[p] : tr(ρ)
∆ ::= ∅ | ∆,X : Ũ process names

All branch and select types have the conditions I ̸= /0 and Ui closed.

Figure 4.5: Types, capabilities, environments

CHAPTER 4. CAPABILITY-BASED MULTIPARTY SESSION TYPES 42

end ⊓ end ≜ end t ⊓ t ≜ t µt.S ⊓ µt.S′ ≜ µt.(S⊓S′)

p &i∈I ?li(Ui).Si ⊓ p & j∈J ?l j(U j).S′j ≜

p &k∈I∩J ?lk(Uk).(Sk ⊓S′k) & p & j∈I\J ?li(Ui).Si & p & j∈J\I ?l j(U j).S′j

p ⊕i∈I !li(Ui).Si ⊓ p ⊕i∈I !li(Ui).Si ≜ p ⊕i∈I !li(Ui).Si

p &i∈I ?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si ⊓ p & j∈J ?l j(∃[ρ j|{ρ j 7→U j}].tr(ρ j)).S′j ≜

p &k∈I∩J ?lk(∃[ρk|{ρk 7→Uk}].tr(ρk)).(Sk⊓S′k) & p & j∈I\J ?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si

& p & j∈J\I ?l j(∃[ρ j|{ρ j 7→U j}].tr(ρ j)).S′j

p ⊕i∈I !li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si ⊓ p ⊕i∈I !li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si ≜

p ⊕i∈I !li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si

Projecting a pack interaction between p and p′ onto either p or p′ produces a pack select or a
pack branch. Projecting onto a different role q ignores the pack interaction and combines the
projections of the continuations using the merge operator.

Definition 4.3.2. For a session type S, roles(S) denotes the set of roles occurring in S. We write
p ∈ S for p ∈ roles(S), and p ∈ S\q for p ∈ roles(S)\{q}.

Partial session types defined in Figure4.5 have the same cases as local types: terminated session,
selection and branching, pack selection and pack branching, type variable and recursive type,
but without role annotations. Similar to global and local types, partial types also have a notion
of duality. As before the dual of branching is selection, and the dual of pack branching is pack
selection, while the payload types are preserved. The duals for termination, type variable and
recursive type are themselves.

Definition 4.3.3. H is the dual of H, defined by:

⊕i∈I!li(U i).Hi ≜ &i∈I ?li(Ui).Hi &i∈I?li (U i) .Hi ≜ ⊕i∈I !li(Ui).Hi

⊕i∈I !li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Hi ≜ &i∈I ?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Hi

&i∈I ?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Hi ≜ ⊕i∈I !li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Hi

end ≜ end t ≜ t µ t.H ≜ µ t.H

Similar to the projection of global types to local types, a local type can be projected onto a
role q giving a partial type. The resulting partial type describes only the communications in S

that involve role q. This definition follows the same principles as the previous Definition 4.3.1.

Definition 4.3.4. S↾q is the partial projection of S onto q:

CHAPTER 4. CAPABILITY-BASED MULTIPARTY SESSION TYPES 43

end↾q ≜ end t↾q ≜ t (µt.S)↾q ≜

µ t.(S↾q) if S↾q ̸= t′ (∀t′)

end otherwise

(p ⊕i∈I!li(Ui).Si)↾q ≜

⊕i∈I !li(Ui).(Si ↾q) if q = p,
d

i∈I(Si ↾q) if p ̸= q

(p &i∈I?li (Ui) .Si)↾q ≜

 &i∈I ?li(Ui).Si ↾q if q = p,
d

i∈I(Si ↾q) if p ̸= q

(p ⊕i∈I !li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si)↾q ≜⊕i∈I !li(∃[ρi|{ρi 7→Ui}].tr(ρi)).(Si ↾q) if q = p,
d

i∈I(Si ↾q) if p ̸= q

(p &i∈I ?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si)↾q ≜ &i∈I ?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si ↾q if q = p,
d

i∈I(Si ↾q) if p ̸= q
Where the merge operator for partial session types,

d
, is defined by:

end⊓end ≜ end t⊓t ≜ t µ t.H ⊓ µ t.H ′ ≜ µ t.(H ⊓H ′)

&i∈I ?li(Ui).Hi ⊓ &i∈I ?li(Ui).H ′
i ≜ &i∈I ?li(Ui).(Hi ⊓H ′

i)

⊕i∈I !li(Ui).Hi ⊓ ⊕ j∈J !l j(U j).H ′
j ≜(

⊕k∈I∩J !lk(Uk).(Hk ⊓H ′
k)
)
⊕

(
⊕i∈I\J !li(Ui).Hi

)
⊕

(
⊕ j∈J\I !l j(U j).H ′

j
)

&i∈I ?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Hi ⊓ &i∈I ?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).H ′
i ≜

&i∈I ?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).(Hi ⊓H ′
i)

⊕i∈I !li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Hi ⊓ ⊕ j∈J !l j(∃[ρ j|{ρ j 7→U j}].tr(ρ j)).H ′
j ≜(

⊕k∈I∩J !lk(∃[ρk|{ρk 7→Uk}].tr(ρk)).(Hk ⊓H ′
k)
)
⊕
(
⊕i∈I\J !li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Hi

)
⊕
(
⊕ j∈J\I !l j(∃[ρ j|{ρ j 7→U j}].tr(ρ j)).H ′

j
)

Example 2 (Projections of Global and Local Types). Consider the global type G of the producer-

consumer example from the introduction.

G = p→c: buff(∃[ρq|{ρq 7→S′q}].tr(ρq)).µt.q→b: add(Int).p→c: turn({ρq 7→S′q}).

q→b: req(Str).b→q: snd(Int).c→p: turn({ρq 7→Sq}).t

It captures the interaction between the producer and consumer entities through roles p, c, and

between producer, consumer and buffer through roles q (shared between producer and consumer)

CHAPTER 4. CAPABILITY-BASED MULTIPARTY SESSION TYPES 44

[SBR]
∀i ∈ I Ui⩽U ′

i Si⩽S′i

p &i∈I?li (Ui) .Si ⩽ p &i∈I∪J ?li(U ′
i).S

′
i

==================================

[SSEL]
∀i ∈ I U ′

i ⩽Ui Si⩽S′i

p ⊕i∈I∪J !li(Ui).Si⩽p ⊕i∈I !li(U ′
i).S

′
i

================================

[SBRP]
∀i ∈ I Ui⩽U ′

i Si⩽S′i

p &i∈I ?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si ⩽ p &i∈I∪J ?li(∃[ρi|{ρi 7→U ′
i }].tr(ρi)).S′i

==

[SSELP]
∀i ∈ I U ′

i ⩽Ui Si⩽S′i

p ⊕i∈I∪J !li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si⩽p ⊕i∈I !li(∃[ρi|{ρi 7→U ′
i }].tr(ρi)).S′i

===

[SB]
B ⩽ B′

B⩽B′
====== [SEND]

end⩽end
======== [SµL]

S{µt.S/t}⩽S′

µt.S⩽S′
============= [SµR]

S⩽S′{µt.S′/t}

S⩽µt.S′
==============

Figure 4.6: Subtyping for local session types.

and b. Projecting onto p gives the session type z

S = G↾p = c!buff(∃[ρq|{ρq 7→S′q}].tr(ρq)).µt.c!turn({ρq 7→S′q}).c?turn({ρq 7→Sq}).t

and further projecting onto c gives the partial session type:

H = S↾c = !buff(∃[ρq|{ρq 7→S′q}].tr(ρq)).µ t.!turn({ρq 7→S′q}).?turn({ρq 7→Sq}).t

Definition 4.3.5 (Subtyping). Subtyping on session types ⩽ is the largest relation such that: (i) if
S⩽S′, then ∀p ∈ (roles(S)∪roles(S′)) S↾p⩽S′ ↾p, and (ii) is closed backwards under the
coinductive rules in Figure4.6. Subtyping on partial session types ⩽ is defined coinductively
by the rules in Figure4.7.

Capabilities In our type system linearity is enforced via capabilities, rather than via environment
splitting as in most session type systems. Each process has a capability set C associated with it,
allowing it to communicate on the associated channels. The tracked type tr(ρ) is a singleton type
associating a channel to capability ρ and to no other, which in turn maps to the channel’s session
type {ρ 7→S}. Hence two variables with the same capability ρ are aliases for the same channel.
Individual capabilities are joined together using the⊗ operator: C = {ρ1 7→S1}⊗. . .⊗{ρn 7→Sn}.
The ordering is insignificant. The type system maintains the invariant that ρ1, . . . ,ρn are distinct.

Definition 4.3.6 (Terminated capabilities). A capability set C is terminated if for every ρ ∈
dom(C), C(ρ) = end.

CHAPTER 4. CAPABILITY-BASED MULTIPARTY SESSION TYPES 45

[SPARBR]
∀i ∈ I Ui⩽U ′

i Hi⩽Hi
′

&i∈I?li (U i) .Hi⩽ &i∈I∪J ?li(U ′
i).Hi

′
================================

[SPARSEL]
∀i ∈ I U ′

i ⩽Ui Hi⩽Hi
′

⊕i∈I∪J !li(Ui).Hi⩽ ⊕i∈I !li(U ′
i).H

′
i

[SPARBRP]
∀i ∈ I Ui⩽U ′

i Hi⩽Hi
′

&i∈I ?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).H⩽ &i∈I∪J ?li(∃[ρi|{ρi 7→U ′
i }].tr(ρi)).H ′

i

==

[SPARSELP]
∀i ∈ I U ′

i ⩽Ui Hi⩽Hi
′

⊕i∈I∪J !li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Hi⩽ ⊕i∈I !li(∃[ρi|{ρi 7→U ′
i }].tr(ρi)).H ′

i

===

[SPAREND]
end⩽end
======== [SPARµL]

H{µ t.H/t}⩽H ′

µ t.H⩽H ′ [SPARµR]
H⩽H ′{µ t.H ′/t}

H⩽µ t.H ′

Figure 4.7: Subtyping for partial session types.

Definition 4.3.7 (Substitution of capabilities).

{ρ 7→S}[ρ ′/ρ2] = {ρ 7→S} {ρ 7→S}[ρ ′/ρ] = {ρ ′ 7→S}

∅[ρ ′/ρ] = ∅ (C1⊗C2)[ρ
′/ρ] = C1[ρ

′/ρ]⊗C2[ρ
′/ρ]

4.4 Typing

Definition 4.4.1. Typing judgements are inductively defined by the rules in Figure 4.8, and
have the form: Γ⊢ v : T ;C for values, or ∆;Γ⊢P;C for processes (with (Γ,C) consistent, and
∀(c : tr(ρ) ∈ Γ;{ρ 7→S} ∈C),S↾p is defined ∀p ∈ S).

Γ is an environment of typed variables and channels together with their capability typing. ∆,
defined in Figure4.5 is an environment of typed process names, used in rules [TDEF] and [TCALL]

for recursive process definitions and calls. If a channel s[p] is in Γ, with type tr(ρ), then Γ also
contains ρ : {ρ 7→S} for some session type S. The capability ρ might, or might not, be in C, to
show whether or not the channel can be used. If ρ is in C, then it occurs with the same session
type: {ρ 7→S}. Rule [TCAP] takes the type for a capability ρ from the capability set. [TVAR] and
[TVAL] are standard.

[TINACT] has a standard condition that all session types have reached end, expressed as the
capability set being terminated. [TPAR] combines the capability sets in a parallel composition.
[TSUB] is a standard subsumption rule using ⩽ (Definition 4.3.5), the difference being the type
in the capability set. [TSEL] states that selection on channel c[p] is well typed if the capability
associated with it is of compatible selection type and the continuation P is well-typed with
the continuation session type. [TBR] states that branching on channel c[p] is well typed if the

CHAPTER 4. CAPABILITY-BASED MULTIPARTY SESSION TYPES 46

capability associated with it is of compatible branching type and the continuations Pi,∀i ∈ I are
well-typed with the continuation session types. [TSELP] is similar to [TSEL], with the notable
difference that an existential package is created for the channel being sent, containing the channel
and its abstracted capability. Note that the actual capability to use the endpoint remains with
process P. [TBRP] is similar to [TBR], with the difference that it unpackages the channel received
and binds its capability type in the continuation session type (used to identify the correct capability
when received later). [TRES] requires the restricted environment Γ′ and the associated capability
set C′ to be complete (Definition 4.5.1). [TDEF] takes account of capability sets as well as
parameters, and [TCALL] similarly requires capability sets. The parameters of a defined process
include any necessary capabilities, which then also appear in the corresponding Ci, because not
all capabilities associated with the channel parameters need to be present when the call is made.

4.5 Main Results

4.5.1 Subject Reduction

There are two important concepts relating the environment Γ and the capability set C: complete-

ness and consistency, used in our type system.
Completeness means that if a channel is in Γ and its capability is in C, then Γ also contains

the other endpoints of the channel and C contains the corresponding capability. In this case, there
is a self-contained collection of channels that can be used to communicate. Consistency means
that the opposite endpoints of every channel have dual partial types.

Definition 4.5.1 (Completeness and consistency).
(Γ,C) is complete if and only if for all s[p] : tr(ρp) with ρp : {ρp 7→Sp} ∈Γ and {ρp 7→Sp} ∈

C, q ∈ Sp implies s[q] : tr(ρq),ρq : {ρq 7→Sq} ∈ Γ and {ρq 7→Sq} ∈C.
(Γ,C) is consistent if and only if for all s[p] : tr(ρp),s[q] : tr(ρq),ρp : {ρp 7→Sp},ρq :

{ρq 7→Sq} ∈ Γ we have Sp ↾q⩽Sq ↾p.

Following standard practice in the multiparty session type literature, we show type safety
and hence communication safety by proving subject reduction Theorem 4.5.2. In the usual way,
session types evolve during reduction — in our system, this is seen in both the Γ environment
and the capability set C.

CHAPTER 4. CAPABILITY-BASED MULTIPARTY SESSION TYPES 47

Definition 4.5.2 (Typing context reduction). The reduction (Γ; C) −→ (Γ′; C′) is:

(s[p] :tr(ρp), s[q] :tr(ρq),ρp :{ρp 7→Sp},ρq :{ρq 7→Sq};{ρp 7→ Sp,ρq 7→ Sq}) −→

(s[p] :tr(ρp), s[q] :tr(ρq),ρp :{ρp 7→Sk},ρq :{ρq 7→S′k};{ρp 7→ Sk,ρq 7→ S′k})

if

{
unf(Sp) = q ⊕i∈I!li(Ui).Si k ∈ I

unf(Sq) = p &i∈I∪J ?li(U ′
i).S

′
i Uk ⩽ U ′

k

or if

{
unf(Sp) = q ⊕i∈I!li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si k ∈ I

unf(Sq) = p &i∈I∪J ?li(∃[ρi|{ρi 7→U ′
i }].tr(ρi)).S′i Uk ⩽ U ′

k

(Γ,c :tr(ρ),ρ :{ρ 7→U}; C⊗{ρ 7→U})−→ (Γ′,c :tr(ρ),ρ :{ρ 7→U ′}; C′⊗{ρ 7→U ′})

if (Γ; C)−→ (Γ′; C′) and U ⩽ U ′

Following [122] our Definition 4.5.2 also accommodates subtyping (⩽) and iso-recursive
type equivalence (hence, unfolds types explicitly). We define −→∗ as the reflexive and transitive
closure of −→ .

Before giving the subject reduction theorem, we show several properties needed for proving
the theorem.

Lemma 4.5.1. If (Γ; C) −→ (Γ′; C′) and (Γ; C) is consistent (resp. complete), then so is

(Γ′; C′).

Proof Sketch. By induction on (Γ; C) −→ (Γ′;C′), as per Definition 4.5.2. The full proof can
be found in the appendix Lemma A.1.

Corollary 4.5.1. If (Γ1,Γ2;C1⊗C2) is consistent and (Γ1;C1)−→∗ (Γ′
1;C′

1), then (Γ′
1,Γ2;C′

1⊗
C2) is consistent.

Proof Sketch. By induction on the reduction, and induction on the size of (Γ2;C2). The full proof
can be found in the appendix A.1.

Proposition 4.5.1 (Weakening). For any multiparty session process P with ∆;Γ⊢P; C:

1. if ∆ and ∆′ are disjoint, then ∆,∆′;Γ⊢P; C.

2. if Γ and Γ′ are disjoint, then ∆;Γ,Γ′⊢P; C.

Proof Sketch. By induction on typing derivations, with a case analysis on the last rule applied.
The full proof can be found in the appendix SectionA.1.

Proposition 4.5.2 (Strengthening). For any multiparty session process P:

1. if ∆,∆′;Γ⊢P; C and ∆′ /∈ fpv(P) then ∆;Γ⊢P; C.

CHAPTER 4. CAPABILITY-BASED MULTIPARTY SESSION TYPES 48

2. if ∆;Γ,Γ′⊢P; C and Γ′ /∈ fv(P) and Γ′ /∈C, then ∆;Γ⊢P; C.

Proof Sketch. By induction on typing derivations, with a case analysis on the last rule applied.
The full proof can be found in the appendix A.1.

Proposition 4.5.3. For all multiparty session processes P,P′ if ∆;Γ⊢P; C and P ≡ P′, then

∆;Γ⊢P′; C.

Proof Sketch. By induction on the structural congruence. The full proof can be found in the
appendix A.1.

Definition 4.5.3 (Substitution of Capabilities). Is defined as:

{ρ 7→S}[ρ ′/ρ2] = {ρ 7→S} {ρ 7→S}[ρ ′/ρ] = {ρ
′ 7→S}

∅[ρ ′/ρ] =∅ (C1⊗C2)[ρ
′/ρ] =C1[ρ

′/ρ]⊗C2[ρ
′/ρ]

Lemma 4.5.1 (Substitution). 1. If ∆;Γ,x : U ⊢P; C and Γ′⊢v : U ;∅ then ∆;Γ,Γ′⊢P{v/x};C.

2. If ∆;Γ,ρ : {ρ 7→S}⊢P; C⊗{ρ 7→S}, Γ′⊢ρ ′ : {ρ ′ 7→S};{ρ ′ 7→S} and (Γ,Γ′; C⊗{ρ ′ 7→S})
consistent, then ∆;Γ,Γ′⊢P{ρ ′/ρ}; C⊗{ρ ′ 7→S}.

3. If ∆;Γ,c : tr(ρ),ρ : {ρ 7→S} ⊢ P; C, and c′ : tr(ρ ′),ρ ′ : {ρ ′ 7→S} ∈ Γ′;{ρ ′ 7→S} and

(Γ,Γ′; C) consistent, then ∆;Γ,Γ′⊢P{ρ ′/ρ}; C.

Proof Sketch. By induction on the derivation of ∆;Γ,x : U ⊢P; C and ∆;Γ,ρ : {ρ 7→S}⊢P; C⊗
{ρ 7→S}, with a case analysis on the last rule applied. The full proof can be found in the
appendix A.1.

Definition 4.5.4. For all pairs of multiparty session typing contexts and capability collections
(Γ; C), (Γ′; C′), the relation C ⩽ C′ holds if and only if dom(Γ) = dom(Γ′), dom(C) = dom(C′)

and ∀c : tr(ρ),ρ : {ρ 7→U} ∈ dom(Γ) then C(ρ) ⩽ C′(ρ). The following rule is defined,
corresponding to 0 or more consecutive applications of [TSUB]:

∆;Γ⊢P; C C′ ⩽ C

∆;Γ⊢P; C1
[TMSUB]

Proposition 4.5.1. If ∆;Γ⊢P |Q; C then there exist C1,C2,C′
1,C

′
2 such that C =C1⊗C2, C1 ⩽ C′

1,

CHAPTER 4. CAPABILITY-BASED MULTIPARTY SESSION TYPES 49

C2 ⩽ C′
2, ∆;Γ⊢P; C′

1, ∆;Γ⊢Q; C′
2. Moreover:

[TPAR]

[TMSUB]
∆;Γ⊢P; C′

1 C1 ⩽ C′
1

∆;Γ⊢P; C1
[TMSUB]

∆;Γ⊢Q; C′
2 C2 ⩽ C′

2

∆;Γ⊢Q; C2

∆;Γ⊢P |Q; C1⊗C2

if and only if

[TMSUB]
C1⊗C2 ⩽ C′

1⊗C′
2

[TPAR]
∆;Γ⊢P; C′

1 ∆;Γ⊢Q; C′
2

∆;Γ⊢P |Q; C′
1⊗C′

2

∆;Γ⊢P |Q; C1⊗C2

if and only if

[TMSUB]

[TPAR]
∆;Γ⊢P; C′

1

[TMSUB]
∆;Γ⊢Q; C′

2 C2 ⩽ C′
2

∆;Γ⊢Q; C2

∆;Γ⊢P |Q; C′
1⊗C2 C1⊗C2 ⩽ C′

1⊗C2

∆;Γ⊢P |Q; C1⊗C2

if and only if

[TMSUB]

[TPAR]

[TMSUB]
∆;Γ⊢P; C′

1 C1 ⩽ C′
1

∆;Γ⊢P; C1 ∆;Γ⊢Q; C′
2

∆;Γ⊢P |Q; C1⊗C′
2 C1⊗C2 ⩽ C1⊗C′

2

∆;Γ⊢P |Q; C1⊗C2

Proof. The first part of the statement is proven by inversion of [TPAR], by Definition 4.5.4 and
adding a possibly empty instance of [TMSUB], as in the last case in the “moreover” statement. The
if and only if relations among the typing derivations are straightforward: the hypotheses of one
derivation imply all the others, and if one hypothesis is falsified, none of the derivations hold.

Proposition 4.5.2. If ∆;Γ1 ⊢ (ν s : Γ2)P; C1 then there exist Γ′
1,Γ

′
2,C

′
1,C

′
2 such that:

CHAPTER 4. CAPABILITY-BASED MULTIPARTY SESSION TYPES 50

(Γ1; C1) ⩽ (Γ′
1; C′

1), (Γ2; C2)⩽Γ′
2; C′

2 and ∆;Γ1,Γ2 ⊢P; C′
1⊗C′

2. Moreover:

[TRES]

[TMSUB]
∆;Γ1,Γ2 ⊢P; C′

1⊗C′
2 C1⊗C2 ⩽ C′

1⊗C′
2

∆;Γ1,Γ2 ⊢P; C1⊗C2

∆;Γ1 ⊢ (ν s : Γ2)P; C1

if and only if

[TMSUB]

[TRES]

[TMSUB]
∆;Γ1,Γ2 ⊢P; C′

1⊗C′
2 C2 ⩽ C′

2

∆;Γ1,Γ2 ⊢P; C′
1⊗C2

∆;Γ1 ⊢ (ν s : Γ2)P; C′
1 C1 ⩽ C′

1

∆;Γ1 ⊢ (ν s : Γ2)P; C1

Proof. The first part of the statement is by inversion of [TRES], by Definition 4.5.4 and adding
a possibly empty instance of [TMSUB], like in the first case in the “moreover” statement. The
if and only if relations among the typing derivations are straightforward: the hypotheses of
one derivation implies the other, and when one hypothesis is falsified, none of the derivations
hold.

Proposition 4.5.3 (Subtyping normalisation). If ∆;Γ⊢P; C then there exists a derivation that

proves the judgement by only applying rule [TMSUB] on the conclusions of [TBR], [TSEL], [TBRP],

[TSELP], and [TCALL].

Proof Sketch. Assume that we have a derivation D concluding ∆,Γ⊢P; C, that does not match the
thesis: if it is just an instance of [TBR], [TSEL], [TBRP], [TSELP], or [TCALL], we conclude by adding
a empty instance of [TMSUB]. Otherwise, D must have one of the shapes in Proposition 4.5.1
or Proposition 4.5.2, and we can apply [TMSUB] towards the leafs of the derivation tree, where
[TBR], [TSEL], [TBRP], [TSELP], and [TCALL] occur, by recursively rewriting it in the first form of
the statements.

Theorem 4.5.2 (Subject reduction). If ∆;Γ⊢P; Cand P −→ P′, then there exist Γ′ and C′ such

that ∆;Γ′⊢P′; C′ and (Γ; C)−→∗ (Γ′; C′).

Proof. By induction on the reduction of P −→ P′, with an analysis of the derivation of ∆;Γ⊢P; C.

• case [RCOM]

We have: P= s[p][q]&i∈I{li(xi).Qi}|s[q][p]⊕⟨l j(v)⟩.Q −→ Q j{v/x j}|Q= P′, where if j ∈ I

and fv(v) =∅, and C =C1⊗{ρp 7→p &i∈I?li (Ui) .Si}⊗C2⊗{ρq 7→q ⊕ j∈I!l j(U).S}.

We distinguish two cases based on whether the payload communicated has a capability attached
or not.

CHAPTER 4. CAPABILITY-BASED MULTIPARTY SESSION TYPES 51

In the first case, the payload has no capability attached. We provide the derivation for P,
allowing (possibly empty) instances of [TMSUB] as per Proposition 4.5.3:

C1⩽C′
1

∆;Γ,xi : U ′
i ⊢Qi; C′⋄

1 ⊗{ρp 7→S′i} s[p] : tr(ρp),ρp : {ρp 7→S′i} ∈ Γ

∆;Γ⊢s[p][q]&i∈I{li(xi).Qi}; C′⋄
1 ⊗{ρp 7→p &i∈I?li

(
U ′

i
)
.S′i}

[TBR]

∆;Γ⊢s[p][q]&i∈I{li(xi).Qi}; C1⊗{ρp 7→p &i∈I?li (Ui) .Si}
[TMSUB]

····················

C2⩽C′
2

s[q] :tr(ρq),ρq :{ρq 7→S′} ∈ Γ ∆;Γ⊢Q; C′⋄
2 ⊗{ρq 7→S′}

v ∈U ′

Γ⊢ v :U ′;∅
[TVAL]

∆;Γ⊢s[q][p]⊕⟨l j(v)⟩.Q; C′⋄
2 ⊗{ρq 7→q ⊕ j∈I!l j(U ′).S′}

[TSEL]

∆;Γ⊢s[q][p]⊕⟨l j(v)⟩.Q; C2

[TMSUB]

∆;Γ⊢s[p][q]&i∈I{li(xi).Qi}|s[q][p]⊕⟨l j(v)⟩.Q; C
[TPAR]

(4.1)

C =C1⊗C2 (4.2)

C1 =C⋄
1⊗{ρp 7→Sp} , where Sp = p &i∈I?li (Ui) .Si (4.3)

C2 =C⋄
2⊗{ρq 7→Sq} , where Sq = q ⊕ j∈I!l j(U).S (4.4)

C′
1 =C′⋄

1 ⊗{ρp 7→S′p} , where S′p = p &i∈I?li
(
U ′

i
)
.S′i (4.5)

C′
2 =C′⋄

2 ⊗{ρq 7→S′q} , where S′q = q ⊕ j∈I!l j(U ′).S′ (4.6)

From the consistency of (Γ; C) = (Γ; C1⊗C2), and since C1 ⩽ C′
1 and C2 ⩽ C′

2 we also have:

U ′ ⩽ U ′
i (4.7)

Before proceeding, we prove (Γ; C) −→ (Γ; C′), and therefore, (Γ; C)−→∗ (Γ; C′):

We observe that:

(s[p] : tr(ρp),s[q] : tr(ρq);{ρp 7→ Sp,ρq 7→ Sq}) −→

(s[p] : tr(ρp),s[q] : tr(ρq);{ρp 7→ S′j,ρq 7→ S′}) (4.8)

since (Γ;C) is consistent by hypothesis, and therefore unf(Sp ↾q) and unf(Sq ↾p) have at least
l j in common, with compatible payload types as per Definition 4.5.2.

Then we can prove the following statement:

(Γ; C⋄
1⊗C⋄

2⊗{ρp 7→ Sp,ρq 7→ Sq}) −→ (Γ; C′⋄
1 ⊗C′⋄

2 ⊗{ρp 7→ S′j,ρq 7→ S′}) (4.9)

by induction on the size of C⋄
1⊗C⋄

2⊗{ρp 7→ Sp,ρq 7→ Sq}. The base case is given above, while
for the inductive case we apply the induction hypothesis use the subtyping relations between
the capability sets to conclude by the inductive rule of Definition 4.5.2.

CHAPTER 4. CAPABILITY-BASED MULTIPARTY SESSION TYPES 52

We can now continue proving the main statement, observing:

(Γ; C′) is consistent by (4.9) and Lemma 4.5.1 (4.10)

∆;Γ,x j : U ′
j ⊢Q j; C′⋄

1 ⊗{ρp 7→S′j} (j ∈ I) from (4.1), premise of [TBR] (4.11)

∆;Γ,x j : U ′⊢Q j; C′⋄
1 ⊗{ρp 7→S′j} from (4.11), (4.7), and [TSUB] (4.12)

Γ⊢ v : U ′ from (4.1), premise of [TSEL] (4.13)

(Γ; C′⋄
1 ⊗{ρp 7→S′j}) is consistent from the above (4.14)

∆;Γ⊢Q j{v/x j}; C′⋄
1 ⊗{ρp 7→S′j} from the above and Lemma 4.5.1 (4.15)

Therefore we conclude by:

∆;Γ⊢Q j{v/x j}; C′⋄
1 ⊗{ρp 7→S′j} ∆;Γ⊢Q; C′⋄

2 ⊗{ρq 7→S′}

∆;Γ⊢Q j{v/x j}|Q; C′
[TPAR]

Second case, the payload has a capability attached, which means that the payload in itself must
be a capability.

By inversion of [TPAR] and [TBR]/[TSEL], allowing (possibly empty) instances of [TMSUB] as
per Proposition 4.5.3, there exist C1,C2 such that C =C1⊗C2, and C′

1,C
′
2 such that:

[TBR]

∆;Γ,ρi : {ρi 7→U ′
i }⊢Qi; C′⋄

1 ⊗{ρp 7→ S′i,ρi 7→U ′
i }

s[p] : tr(ρp),ρp : {ρp 7→S′i} ∈ Γ

∆;Γ⊢s[p][q]&i∈I{li(ρi).Qi}; C′⋄
1 ⊗{ρp 7→ p &i∈I?li({ρi 7→U ′

i }).S′i} C1⩽C′
1

∆;Γ⊢s[p][q]&i∈I{li(ρi).Qi}; C1

[TMSUB]

·························

s[q] : tr(ρq),ρq : {ρq 7→S′} ∈ Γ

∆;Γ⊢Q; C′⋄
2 ⊗{ρq 7→S′} Γ⊢ρ : {ρ 7→U ′};{ρ 7→U ′}

[TCAP]

∆;Γ⊢s[q][p]⊕⟨l j(v)⟩.Q; C′⋄
2 ⊗{ρq 7→ q ⊕ j∈I!l j({ρ 7→U ′}).S′}⊗{ρ 7→U ′}

[TSEL]

····· C2⩽C′
2

∆;Γ⊢s[q][p]⊕⟨l j(v)⟩.Q;C2

[TMSUB]

∆;Γ⊢s[p][q]&i∈I{li(ρi).Qi}|s[q][p]⊕⟨l j(v)⟩.Q;C
[TPAR]

(4.16)

CHAPTER 4. CAPABILITY-BASED MULTIPARTY SESSION TYPES 53

C =C1⊗C2 (4.17)

C1 =C⋄
1⊗{ρp 7→Sp} where Sp = p &i∈I?li (Ui) .Si (4.18)

C2 =C⋄
2⊗{ρq 7→Sq}⊗{ρ 7→U} where Sq = q ⊕ j∈I!l j(U).S (4.19)

C′
1 =C′⋄

1 ⊗{ρp 7→S′p} where S′p = p &i∈I?li
(
U ′

i
)
.S′i (4.20)

C′
2 =C′⋄

2 ⊗{ρq 7→S′q}⊗{ρ 7→U ′} where S′q = q ⊕ j∈I!l j(U ′).S′ (4.21)

From the consistency of (Γ; C) = (Γ; C1⊗C2), and since C1 ⩽ C′
1 and C2 ⩽ C′

2 we also have:
U ′ ⩽ U ′

i .

Before proceeding, we prove (Γ; C) −→ (Γ; C′), and therefore, (Γ; C)−→∗ (Γ; C′):

We observe that:

(s[p] : tr(ρp),s[q] : tr(ρq);{ρp 7→ Sp,ρq 7→ Sq}) −→

(s[p] : tr(ρp),s[q] : tr(ρq);{ρp 7→ S′j,ρq 7→ S′}) (4.22)

since (Γ; C) is consistent by hypothesis, and therefore unf(Sp ↾q) and unf(Sq ↾p) have at least
l j in common, with compatible payload types as per Definition 4.5.2.

Then we can prove the following statement:

(Γ; C⋄
1⊗C⋄

2⊗{ρp 7→ Sp,ρq 7→ Sq,ρ 7→U}) −→ (Γ; C′⋄
1 ⊗C′⋄

2 ⊗{ρp 7→ S′j,ρq 7→ S′,ρ 7→U ′})
(4.23)

by induction on the size of C1⊗C2. The base case is given above, while for the inductive case
we apply the induction hypothesis use the subtyping relations between the capability sets to
conclude by the inductive rule of Definition 4.5.2.

We can now continue proving the main statement, observing:

(Γ;C′) is consistent by 4.5.1 (4.24)

∆;Γ,ρ j : {ρ j 7→U ′
j}⊢Q j;C′⋄

1 ⊗{ρp 7→ S′j,ρ j 7→U ′
j} (j ∈ I) premise of [TBR] (4.25)

∆;Γ,ρ j : {ρ j 7→U ′
j}⊢Q j;C′⋄

1 ⊗{ρp 7→ S′j,ρ j 7→U ′} (j ∈ I) premise of [TSUB] (4.26)

Γ⊢ρ : {ρ 7→U ′};{ρ 7→U ′} premise of [TSEL] (4.27)

(Γ,C′⋄
1 ⊗{ρp 7→ S′j,ρ 7→U ′}) is consistent the above and 4.5.1 (4.28)

∆;Γ⊢Q j{v/ρ j};C′⋄
1 ⊗{ρp 7→ S′j,ρ 7→U ′} the above and 4.5.1 (4.29)

Therefore we conclude by:

∆;Γ⊢Q j{v/ρ j};C′⋄
1 ⊗{ρp 7→ S′j,ρ 7→U ′} ∆;Γ⊢Q; C′⋄

2 ⊗{ρq 7→S′}

∆;Γ⊢Q j{v/x j}|Q; C′
[TPAR]

CHAPTER 4. CAPABILITY-BASED MULTIPARTY SESSION TYPES 54

• case [RCOMP]

We have: P= s[p][q]&i∈I{li(pack(ρi,vi)).Qi}|s[q][p]⊕⟨l j(pack(ρ,v))⟩.Q −→ Q j{v/v j}|Q=

P′, where: if j ∈ I and fv(v) =∅.

[TBRP]

∆;Γ,vi : tr(ρ i),ρi : {ρi 7→U ′
i }⊢Qi; C′⋄

1 ⊗{ρp 7→S′i} s[p] ∈ Γ

∆;Γ⊢s[p][q] &i∈I ?li(pack(ρi,vi)).Qi; C′⋄
1 ⊗{ρp 7→Sp} C1 ⩽ C′

1

∆;Γ⊢s[p][q] &i∈I ?li(pack(ρi,vi)).Qi; C1
[TMSUB]

·························

v : tr(ρ),ρ : {ρ 7→U} ∈ Γ

Γ⊢ v : tr(ρ);∅
[TVAR]

s[q] : tr(ρq) ∈ Γ

∆;Γ⊢Q; C′⋄
2 ⊗{ρq 7→S′}⊗{ρ 7→U ′} j ∈ I

∆;Γ⊢s[q][p]⊕⟨l j(pack(ρ,v))⟩.Q; C′⋄
2 ⊗{ρq 7→Sq}⊗{ρ 7→U ′}

[TSELP]

··· C2 ⩽ C′
2

∆;Γ⊢s[q][p]⊕⟨l j(pack(ρ,v))⟩.Q; C2
[TMSUB]

∆;Γ⊢s[p][q] &i∈I ?li(pack(ρi,vi)).Qi |s[q][p]⊕⟨l j(pack(ρ,v))⟩.Q; C1⊗C2
[TPAR]

C = C1⊗C2

C1 = C⋄
1⊗{ρp 7→Sp} where Sp = p &i∈I?li (∃[ρi|{ρi 7→Ui}].tr(ρi)) .Si

C2 = C⋄
2⊗{ρ 7→U}⊗{ρq 7→Sq} where Sq = q ⊕ j∈I!l j(∃[ρ|{ρ 7→U}].tr(ρ)).S

C′
1 = C′⋄

1 ⊗{ρp 7→S′p} where S′p = p &i∈I?li (U ′
i) .S

′
i

C′
2 = C′⋄

2 ⊗{ρ 7→U ′}⊗{ρq 7→S′q} where S′q = q ⊕ j∈I!l j(∃[ρ|{ρ 7→U ′}].tr(ρ)).S′

From the consistency of (Γ; C) = (Γ; C1⊗C2), and since C1 ⩽ C′
1 and C2 ⩽ C′

2 we also have:
U ⩽ U ′

j.

Before proceeding, we prove (Γ; C) −→ (Γ; C′), and therefore, (Γ; C)−→∗ (Γ; C′):

We observe that:

(s[p] : tr(ρp),s[q] : tr(ρq);{ρp 7→ Sp,ρq 7→ Sq}) −→

(s[p] : tr(ρp),s[q] : tr(ρq);{ρp 7→ S′j,ρq 7→ S′})

since (Γ; C) is consistent by hypothesis, and therefore unf(Sp ↾q) and unf(Sq ↾p) have at least
l j in common, with compatible payload types as per Definition 4.5.2.

Then we can prove the following statement:

(Γ; C⋄
1⊗C⋄

2⊗{ρp 7→ Sp,ρq 7→ Sq,ρ 7→U}) −→ (Γ; C′⋄
1 ⊗C′⋄

2 ⊗{ρp 7→ S′j,ρq 7→ S′,ρ 7→U})

CHAPTER 4. CAPABILITY-BASED MULTIPARTY SESSION TYPES 55

by induction on the size of C1⊗C2. The base case is given above, while for the inductive case
we apply the induction hypothesis use the subtyping relations between the capability sets to
conclude by the inductive rule of Definition 4.5.2.

We can now continue proving the main statement, observing:

(Γ; C′) is consistent by 4.5.1 (4.30)

∆;Γ,v j : tr(ρ j),ρ j : {ρ j 7→U ′
j}⊢Q j;C′⋄

1 ⊗{ρp 7→S′j} (j ∈ I) premise of [TBR] (4.31)

Γ⊢ v : tr(ρ);∅ premise of [TSEL] (4.32)

(Γ,C′⋄
1 ⊗{ρp 7→S′j}) is consistent the above and 4.5.1 (4.33)

∆;Γ⊢Q j{v/v j};C′⋄
1 ⊗{ρp 7→S′j} the above and 4.5.1 (4.34)

Therefore we conclude by:

∆;Γ⊢Q j{v/v j};C′⋄
1 ⊗{ρp 7→S′j} ∆;Γ⊢Q; C′⋄

2 ⊗{ρq 7→S′}⊗{ρ 7→U ′}

∆;Γ⊢Q j{v/v j}|Q; C′
[TPAR]

• case [RCALL]

We have: P = def X⟨x̃⟩= QX in (X⟨ṽ⟩ |Q) −→ def X⟨x̃⟩= QX in (QX{ṽ/x̃}|Q) = P′.

∆,X : Ũ ; x̃ : Ũ ⊢QX ;C̃

[TCALL]

∀i ∈ {1..n} Γ⊢ vi : Ui; C′
i

∆,X : Ũ ;Γ⊢X⟨ṽ⟩; C′
X =C′

1⊗...⊗C′
n CX ⩽ C′

X

∆,X : Ũ ;Γ⊢X⟨ṽ⟩; CX
[TMSUB]

∆,X : Ũ ;Γ⊢Q; CQ

∆,X : Ũ ;Γ⊢ (X⟨ṽ⟩ |Q); C
[TPAR]

····
∆;Γ⊢def X⟨x̃⟩= QX in (X⟨ṽ⟩ |Q); C

[TDEF]

Observe that from ∆,X : Ũ ; x̃ : Ũ ⊢QX ;C̃, by applying Lemma 4.5.1 n times (each time obtaining
a consistent context) we obtain ∆,X : Ũ ;Γ⊢QX{ṽ/x̃}; C′

X . By applying [TMSUB] we obtain
∆,X : Ũ ;Γ⊢QX{ṽ/x̃}; CX .

∆,X : Ũ ; x̃ : Ũ ⊢QX ;C̃

∆,X : Ũ ;Γ⊢QX{ṽ/x̃}; CX ∆,X : Ũ ;Γ⊢Q; CQ

∆,X : Ũ ;Γ⊢QX{ṽ/x̃}|Q; C
[TPAR]

∆;Γ⊢def X⟨x̃⟩= QX in (QX{ṽ/x̃}|Q); C
[TDEF]

• case [RRES] A key case is [RRES], which requires preservation of the condition in [TRES]

CHAPTER 4. CAPABILITY-BASED MULTIPARTY SESSION TYPES 56

that (Γ,C) is consistent. This is because a communication reduction consumes matching
prefixes from a pair of dual partial session types, which therefore remain dual. We have
P = (ν s : Γ′)Q −→ (ν s)R = P′, with Q −→ R (from the rule premise).

[TRES]

∆;Γ,Γ′⊢Q; C⊗C1 (Γ′ = {s[p] : tr(ρp),ρp : {ρp 7→Sp}}p∈I,C1 =⊗p∈I{ρp 7→Sp})

∆;Γ⊢ (ν s : Γ
′)Q; C

By the induction hypothesis, ∆;Γ,Γ′⊢R; C2 and (Γ,Γ′,C⊗C1)−→∗ (Γ,Γ′,C2).

By Proposition A.1.4 we know that dom(C2) = dom(C⊗C1) = dom(C⊗p∈I{ρp 7→Sp}).

So we can rewrite C2 as C′⊗C′
1, where dom(C′) = dom(C), dom(C′

1) = dom(C1), and C′
1 =

⊗p∈I{ρp 7→S′p}.

The reduction (Γ,Γ′,C⊗C1)−→∗ (Γ,Γ′,C2) then becomes: (Γ,Γ′,C⊗C1)−→∗ (Γ,Γ′,C′⊗C′
1).

By Definition 4.5.2 (Γ,Γ′,C′⊗C′
1) is consistent, and therefore by Corollary 4.5.1 (Γ′,C′) is

consistent. Hence:

[TRES]

∆;Γ,Γ′⊢R; C′⊗C′
1 (Γ′ = {s[p] : tr(ρp),ρp : {ρp 7→Sp}}p∈I,C′

1 =⊗p∈I{ρp 7→S′p})

∆;Γ⊢ (ν s : Γ
′)R; C′

• case [RPAR]

We have P = Q |R −→ Q′ |R = P′, with Q −→ Q′ from the rule premise.

[TPAR]
∆;Γ⊢Q; C1 ∆;Γ⊢R; C2

∆;Γ⊢Q |R; C =C1⊗C2

By the induction hypothesis ∆;Γ⊢Q′; C3, and (Γ,C1)−→∗ (Γ,C3).

[TPAR]
∆;Γ⊢Q′; C3 ∆;Γ⊢R; C2

∆;Γ⊢Q′ |R; C3⊗C2 =C′

By Corollary 4.5.1 (Γ,C1⊗C2) −→∗ (Γ,C3⊗C2), which is to say (Γ,C) −→∗ (Γ,C′) as re-
quired.

CHAPTER 4. CAPABILITY-BASED MULTIPARTY SESSION TYPES 57

• case [RDEF]

We have P = def X⟨x̃ : Ũ⟩= QX in Q −→ def X⟨x̃ : Ũ⟩= QX in Q′ = P′ from the rule premise.

∆,X : Ũ ; x̃ : Ũ ⊢QX ;C̃ ∆,X : Ũ ;Γ⊢Q; C

∆;Γ⊢def X⟨x̃ : Ũ⟩= QX in Q; C
[TDEF]

By the induction hypothesis, ∆,X : Ũ ;Γ⊢Q′; C′ and (Γ,C)−→∗ (Γ,C′), and we conclude by:

∆,X : Ũ ; x̃ : Ũ ⊢QX ;C̃ ∆,X : Ũ ;Γ⊢Q′; C′

∆;Γ⊢def X⟨x̃ : Ũ⟩= QX in Q′; C′
[TDEF]

• case [RCONG]

We have P ≡ Q, P′ ≡ Q′, and Q −→ Q′ from the rule premise. By Proposition 4.5.3 ∆;Γ⊢Q; C.
By the induction hypothesis ∆;Γ⊢Q′; C′ and (Γ,C) −→∗ (Γ,C′). By Proposition 4.5.3 we
conclude ∆;Γ⊢P′; C′.

4.5.2 Deadlock Freedom

We show that a typed ensemble of processes interacting on a single session typed by global type
G is deadlock-free.

We write the projected typing context of global type G as ΓG = {s[pi] : Si}i∈I where for all
iinI Si is the projection of G onto pi.

Theorem 4.5.3 (Deadlock Freedom). Let ∅;∅ ⊢ P;∅ with P ≡ (ν s : ΓG)|i∈IPi and each Pi

interacts only on s[pi]. Then P −→∗ P′ ↛ implies P′ ≡ 0.

Proof. By inversion on [TRES] we obtain ∅;ΓG ⊢P;CG. From Theorem 4.5.2 we know that if
P −→∗ P′ ↛ then there is (Γ′

G,C′
G) such that (ΓG,C) −→ (Γ′

G,C′
G) ↛. Then from Def-

inition 3.5.1 if (Γ′
G,C′

G) ↛ then (Γ′
G(s[pi]),C′

G(ρ i)) = (s[pi] : tr(ρi),ρi : {ρi 7→end};ρi :
{ρi 7→end}). Then from [TINACT] P′ ≡ 0.

CHAPTER 4. CAPABILITY-BASED MULTIPARTY SESSION TYPES 58

[TCAP]

Γ⊢ρ : {ρ 7→S};{ρ 7→S}

[TVAR]

c : tr(ρ),ρ : {ρ 7→S} ∈ Γ

Γ⊢c : tr(ρ);∅

[TVAL]

v ∈ B
Γ⊢ v : B;∅

[TINACT]

C terminated
∆;Γ⊢0;C

[TPAR]

∆;Γ⊢P;C1 ∆;Γ⊢Q;C2

∆;Γ⊢P |Q;C1⊗C2

[TSUB]

∆;Γ⊢P;C⊗{ρ 7→U} U ′⩽U
∆;Γ⊢P;C⊗{ρ 7→U ′}

[TSEL]

Γ⊢ v : U ;C ∆;Γ⊢P;C′⊗{ρ 7→S j} c : tr(ρ),ρ : {ρ 7→S j} ∈ Γ j ∈ I
∆;Γ⊢c[p]⊕⟨l j(v)⟩.P;C⊗C′⊗{ρ 7→ p ⊕i∈I!li(Ui).Si}

[TBR]

∆;Γ,xi : Ui ⊢Pi;C⊗Ci⊗{ρ 7→Si} c : tr(ρ),ρ : {ρ 7→Si} ∈ Γ ∀i ∈ I
∆;Γ⊢c[p]&i∈I{li(xi).Pi};C⊗{ρ 7→p &i∈I?li (Ui) .Si}

[TSELP]

Γ⊢ v : tr(ρ ′);∅ ∆;Γ⊢P;C⊗{ρ 7→ S j,ρ
′ 7→U} c : tr(ρ),ρ : {ρ 7→S j} ∈ Γ j ∈ I

∆;Γ⊢c[p]⊕⟨l j(pack(ρ
′,v))⟩.P;C⊗{ρ 7→ p ⊕i∈I!li(∃[ρ ′|{ρ

′ 7→U}].tr(ρ ′)).Si,ρ
′ 7→U}

[TBRP]

∆;Γ,vi : tr(ρ i),ρi : {ρi 7→Ui}⊢Pi;C⊗{ρ 7→Si} ∀i ∈ I c : tr(ρ),ρ : {ρ 7→Si} ∈ Γ

∆;Γ⊢c[p]&i∈I{li(pack(ρi,vi)).Pi};C⊗{ρ 7→p &i∈I?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si}

[TRES]

∆;Γ,Γ′⊢P;C⊗C′

(Γ′ = {s[p] : tr(ρp),ρp : {ρp 7→Sp}}p∈I,C′ =⊗p∈I{ρp 7→Sp}) complete
∆;Γ⊢ (ν s : Γ

′)P;C

[TDEF]

∆,X : Ũ ; x̃ : Ũ ⊢P;C̃ ∆,X : Ũ ;Γ⊢Q;C
∆;Γ⊢def X⟨x̃ : Ũ⟩= P;C̃ in Q;C

[TCALL]

∀i ∈ {1..n} Γ⊢ vi : Ui;Ci

∆,X : U1, . . . ,Un;Γ⊢X⟨v1, . . . ,vn⟩;C1⊗. . .⊗Cn

Figure 4.8: Typing rules

Chapter 5

Case Study

5.1 Producer-Consumer Expanded

The producer-consumer pattern is commonly used in concurrent programming, where multiple
threads or processes collaborate to achieve a common goal. It is often used in message queuing
systems and event-driven architectures. It is also used in multi-threaded programming to manage
the flow of data between threads, to avoid issues such as race conditions and deadlocks. We
expand on the producer-consumer scenario from Section4.1 by discussing the process definitions
and showing the typing derivation. To lighten the notation, we present a set of mutually recursive
definitions, instead of using the formal syntax of def . . . in.

Recall that the example consists of three processes: the producer, the consumer, and a one-
place buffer (Figure 4.1). The producer and the consumer communicate with the buffer on a
single shared channel. Each of the two must wait to receive the capability to communicate on the
channel before doing so.

The buffer B is parameterised by channel x and by the capability for it, ρx, and alternately
responds to add and req messages. At the end of the definition, {ρx 7→Sb} shows the held
capability and its session type.

B⟨x :tr(ρx),ρx :{ρx 7→Sb}⟩=x[q]&add(i).x[q]&req(r).x[p]⊕snd(i).B⟨x,ρx⟩;{ρx 7→Sb}

The producer is represented by two process definitions: Prd and P. Prd is a recursive process
with several parameters. Channels x and y are used to communicate with the consumer and
the buffer, respectively. Their capabilities are ρx and ρy. Finally, i is the value to be sent to
the buffer. The producer sends a value to the buffer (add(i)), transfers the capability for the
shared channel y (turn(ρy)) and receives it back from the consumer. Process P is the entry point
for the producer. It has the same parameters as Prd, except for i. The only action of P is to
send the consumer a shared reference to the channel used for communication with the buffer

59

CHAPTER 5. CASE STUDY 60

—x[c]⊕buff(pack(ρy,y[b])).

Prd⟨x : tr(ρx),y : tr(ρy), i : Int,ρx : {ρx 7→S′p},ρy : {ρy 7→Sq}⟩= y[b]⊕add(i).

x[c]⊕ turn(ρy). x[c]&turn(ρy). Prd⟨x,y, i+1,ρx,ρy⟩;{ρx 7→S′p}⊗{ρy 7→Sq}

P⟨x : tr(ρx),y : tr(ρy),ρx : {ρx 7→Sp},ρy : {ρy 7→Sq}⟩=

x[c]⊕buff(pack(ρy,y[b])). Prd⟨x,y,0,ρx,ρy⟩;{ρx 7→Sp}⊗{ρy 7→Sq}

In a similar way, the consumer is represented by Cons and C. The parameters, however, are
different. C has x and its capability ρx, for communication with the producer, but it does not
have y or ρy for communication with the buffer. It receives y from the producer, as part of
pack(ρy,y[b]), and y is passed as a parameter to Cons. The capability ρy is not a parameter of
Cons, but it is received in a turn message from the producer.

Cons⟨x : tr(ρx),y : tr(ρy),ρx : {ρx 7→S′c}⟩= x[p]&turn(ρy). y[b]⊕ req(r).

y[b]&snd(i). x[p]⊕ turn(ρy). Cons⟨x,y,ρx⟩;{ρx 7→S′c}

C⟨x : tr(ρx),ρx : {ρx 7→Sc}⟩= x[p]&buff(pack(ρy,y[b])). Cons⟨x,y,ρx⟩;{ρx 7→Sc}

The complete system consists of the producer, the consumer, and the buffer in parallel, with
sessions s1 (roles p and c) and s2 (roles q and b) scoped to construct a closed process.

(ν s1)((ν s2)(P⟨s1[p],s2[q],ρp,ρq⟩ | B⟨s2[b],ρb⟩) | C⟨s1[c],ρc⟩

The session types involved in these processes are projections of the global type G (Section4.3).
They specify how each role is expected to use its channel endpoint. The roles are b for the buffer,
q for the combined role of the producer and the consumer as they interact with the buffer, p for
the producer, and c for the consumer.

Sb = G↾b = µt.q?add(Int).q?req(Str).q!snd(Int).t

Sq = G↾q = µt.b!add(Int).b!req(Str).b?snd(Int).t

Sp = G↾p=c!buff(∃[ρq|{ρq 7→S′q}].tr(ρq)).µt.c!turn({ρq 7→S′q}).c?turn({ρq 7→Sq}).t

Sc = G↾c=p?buff(∃[ρq|{ρq 7→S′q}].tr(ρq)).µt.p?turn({ρq 7→S′q}).p!turn({ρq 7→Sq}).t

These types occur in the capabilities associated with each process. For example process
P⟨s1[p],s2[q],ρp,ρq⟩ has {ρq 7→Sq}⊗{ρp 7→Sp}, process B⟨s2[b],ρb⟩ has {ρb 7→Sb}, and pro-
cess C⟨s1[c],ρc⟩ has {ρc 7→Sc}.

To illustrate the typing rules, we show the typing derivation for the producer, i.e. processes

CHAPTER 5. CASE STUDY 61

Γ⊢x : tr(ρx),y : tr(ρy), i : Int,ρx : {ρx 7→S′p},ρy : {ρy 7→Sq};{ρx 7→ S′p,ρy 7→ Sq}
∆;Γ⊢Prd⟨x,y, i+1,ρx,ρy⟩;{ρx 7→ S′p,ρy 7→ Sq}

[TCALL]

∆;Γ⊢x[c]&turn(ρy).Prd⟨x,y, i+1,ρx,ρy⟩;{ρx 7→ c?turn({ρq 7→Sq}).S′p}
[TBR]

·········

[TCAP]

Γ⊢ρq :{ρq 7→S′q};{ρq 7→S′q} x : tr(ρx),ρx : {ρx 7→c?turn({ρq 7→Sq}).S′p} ∈ Γ

∆;Γ⊢x[c]⊕ turn(ρq).x[c]&turn(ρy).Prd⟨x,y, i+1,ρx,ρy⟩;{ρx 7→ S′p,ρy 7→ S′q}
[TSEL]

·········

[TVAL]
i ∈ Int

Γ⊢ i : Int;∅ y : tr(ρy),ρy : {ρy 7→S′q} ∈ Γ

∆;Γ⊢y[b]⊕add(i).x[c]⊕ turn(ρq).x[c]&turn(ρq).Prd⟨x,y, i+1,ρx,ρy⟩;{ρx 7→ S′p,ρy 7→ Sq}
[TSEL]

Typing Derivation for Prd

Γ⊢x : tr(ρx),y : tr(ρy),ρx : {ρx 7→S′p},ρy : {ρy 7→Sq};{ρx 7→ S′p,ρy 7→ Sq}
∆;Γ⊢Prd⟨x,y, i,ρp,ρq⟩;{ρx 7→ S′p,ρy 7→ Sq}

[TCALL]

·········

[TVAR]
y : tr(ρy),ρy : {ρy 7→Sq}

Γ⊢y : tr(ρy);∅ x,ρx : {ρx 7→Sp} ∈ Γ

∆;Γ⊢x[c]⊕buff(pack(ρq,y[b])).Prd⟨x,y, i,ρx,ρy⟩;{ρy 7→p!buff(∃[ρy|{ρy 7→Sq}].tr(ρy)).S′p,ρy 7→Sq}
[TSELP]

Typing Derivation for P

Figure 5.1: Typing Derivation for Producer

Prd and P in Figure5.1. The derivations use the following type and context definitions.

S′p = µt.c!turn({ρq 7→S′q}).c?turn({ρq 7→Sq}).t

S′q = b!req(Str).b?snd(Int).Sq

∆ = Prd : (tr(ρp),tr(ρq),Int,{ρp 7→Sp},{ρq 7→Sq})

Γ = x : tr(ρp),y : tr(ρq), i : Int,ρp : {ρp 7→Sp},ρq : {ρq 7→Sq}

We show the typing derivation for the producer, i.e. processes Cons and C in Figure5.2. The
derivations use the following type and context definitions.

∆ = C : (tr(ρx),{ρx 7→S}),Cons : (tr(ρx),tr(ρy),{ρx 7→S})
Γ′ = Γ,y : tr(ρy),ρy : {ρy 7→S′q}

S′c = µt.p?turn({ρy 7→S′q}).p!turn({ρy 7→Sq}).t
Finally we show the typing derivation for the buffer, B (Figure5.3).

5.2 One Producer Two Consumers

Scenarios with multiple producers/consumers can be represented in a similar way, the capabilities
acting as a form of lock for the resource being shared. We extend our example with a second

CHAPTER 5. CASE STUDY 62

[TVAL]
r ∈ Str

Γ
′ ⊢ r : Str;∅ y,ρy : {ρy 7→Sq} ∈ Γ

′

[TCAP]

Γ
′, i : Int⊢ρy;{ρy 7→Sq} x : tr(ρx),ρx : {ρx 7→Sc} ∈ Γ

′

Γ
′, i : Int⊢ x : tr(ρx),y : tr(ρy),ρx : {ρx 7→Sc};{ρx 7→Sc}

∆;Γ
′, i : Int⊢Cons⟨x,y,ρx⟩;{ρx 7→ p!turn({ρy 7→Sq}).Sc}

[TCALL]

····
∆;Γ

′, i : Int⊢x[p]⊕ turn(ρy).Cons⟨x,y,ρx⟩;{ρx 7→ p!turn({ρy 7→Sq}).Sc,ρy 7→ Sq}
[TSEL]

∆;Γ
′ ⊢y[q]&snd(i).x[p]⊕ turn(ρy).Cons⟨x,y,ρx⟩;{ρx 7→ p!turn({ρy 7→Sq}).Sc,ρy 7→ b?snd(Int).Sq}

[TBR]

···········
∆;Γ

′ ⊢y[b]⊕ req(r).y[b]&snd(i).x[p]⊕ turn(ρy).Cons⟨x,y,ρx⟩;{ρx 7→p!turn({ρy 7→Sq}).Sc}⊗
{ρy 7→b!req(Str).b?snd(Int).Sq}

[TSEL]

∆,Γ⊢x[p]&turn(ρy).y[b]⊕ req(r).y[b]&snd(i).x[p]⊕ turn(ρy).Cons⟨x,y,ρx⟩;{ρx 7→S′c}
[TBR]

Typing Derivation for Cons

[TCALL]
∆;Γ,y : tr(ρy),ρy : {ρy 7→S′q}⊢ x : tr(ρx),y : tr(ρy),ρx : {ρx 7→S′c};{ρx 7→S′c}

∆;Γ,y : tr(ρy),ρy : {ρy 7→S′q}⊢Cons⟨x,y,ρx⟩;{ρx 7→S′c}
······ x : tr(ρx),ρx : {ρx 7→S′c} ∈ Γ

∆;Γ⊢x[p]⊕⟨buff(pack(ρy,y))⟩.Cons⟨x,y,ρx⟩;{ρx 7→c?l(∃[ρy|{ρy 7→S′q}].tr(ρy)).S′c}
[TBRP]

Typing Derivation for C

Figure 5.2: Typing Derivation for Consumer

consumer. The producer and the two consumers communicate with the buffer via a single shared
channel. Each of the three must wait to receive the capability to communicate on the channel
before doing so.

G = p→c1: buff(∃[ρq|{ρq 7→S′q}].tr(ρq)).p→c2: buff(∃[ρq|{ρq 7→S′q}].tr(ρq)).

µt.q→b: add(Int).p→c1: turn({ρq 7→S′q}).q→b: req(Str).b→q: snd(Int).

c1→p: turn({ρq 7→Sq}).q→b: add(Int).p→c2: turn({ρq 7→S′q}).q→b: req(Str).

b→q: snd(Int).c2→p: turn({ρq 7→Sq}).t

It captures the interaction between the producer and consumer entities through roles p, c1, c2

and between producer, the two consumers and buffer through roles q (shared between producer
and the two consumers) and b. Projecting onto each of the roles gives the session types:

CHAPTER 5. CASE STUDY 63

x : tr(ρx),{ρx 7→Sb} ∈ Γ, i : Int,r : Str
Γ, i : Int,r : Str⊢x : tr(ρx);{ρx 7→Sb}

[TVAR]

∆;Γ,x : tr(ρx), i : Int,r : Str⊢B⟨x⟩;{ρx 7→Sb}
[TCALL]

······

[TVAL]

Γ, i : Int,r : Str⊢ i;∅ x ∈ Γ,x : tr(ρx), i : Int,r : Str
∆;Γ,x : tr(ρx), i : Int,r : Str⊢x[p]⊕snd(i).B⟨x,ρx⟩;{ρx 7→q!snd(Int).Sb}

[TSEL]

···· x : tr(ρx),ρx : {ρx 7→q!snd(Int).Sb} ∈ Γ

∆;Γ, i : Int⊢x[q]&req(r).x[p]⊕snd(i).B⟨x,ρx⟩;{ρx 7→q?req(Str).q!snd(Int).Sb}
[TBR]

······ x : tr(ρx),{ρx 7→q?req(Str).q!snd(Int).Sb} ∈ Γ

∆;Γ⊢x[q]&add(i).x[q]&req(r).x[p]⊕snd(i).B⟨x,ρx⟩;{ρx 7→q?add(Int).q?req(Str).q!snd(Int).Sb}
[TBR]

Figure 5.3: Typing Derivation for B

Sb = G↾b = µt.q?add(Int).q?req(Str).q!snd(Int).q?add(Int).q?req(Str).q!snd(Int).t

Sq = G↾q = µt.b!add(Int).b!req(Str).b?snd(Int).b!add(Int).b!req(Str).b?snd(Int).t

Sp = G↾p=c1!buff(∃[ρq|{ρq 7→S′q}].tr(ρq)).c2!buff(∃[ρq|{ρq 7→S′q}].tr(ρq)).

µt.c1!turn({ρq 7→S′q}).c1?turn({ρq 7→Sq}).c2!turn({ρq 7→S′q}).c2?turn({ρq 7→Sq}).t

Sc1 = G↾c1=p?buff(∃[ρq|{ρq 7→S′q}].tr(ρq)).µt.p?turn({ρq 7→S′q}).p!turn({ρq 7→Sq}).t

Sc2 = G↾c2=p?buff(∃[ρq|{ρq 7→S′q}].tr(ρq)).µt.p?turn({ρq 7→S′q}).p!turn({ρq 7→Sq}).t

The buffer process then becomes:

B⟨x :tr(ρx),ρx :{ρx 7→Sb}⟩= x[q]&add(i).x[q]&req(r).x[p]⊕snd(i).

x[q]&add(i).x[q]&req(r).x[p]⊕snd(i).B⟨x,ρx⟩;{ρx 7→Sb}

As before, the buffer B is parameterised by channel x and by the capability for it, ρx, and
alternately responds to add and req messages. At the end of the definition, {ρx 7→Sb} shows the
held capability and its session type.

As previously, the producer is represented by two process definitions: Prd and P. The
difference being that it now communicates with a second consumer.

Prd⟨x : tr(ρx),y : tr(ρy), i : Int,ρx : {ρx 7→S′p},ρy : {ρy 7→Sq}⟩= y[b]⊕add(i).

x[c1]⊕ turn(ρy). x[c1]&turn(ρy). y[b]⊕add(i). x[c2]⊕ turn(ρy). x[c2]&turn(ρy).

Prd⟨x,y, i+1,ρx,ρy⟩;{ρx 7→S′p}⊗{ρy 7→Sq}

P⟨x : tr(ρx),y : tr(ρy),ρx : {ρx 7→Sp},ρy : {ρy 7→Sq}⟩= x[c1]⊕buff(pack(ρy,y[b])).

x[c2]⊕buff(pack(ρy,y[b])). Prd⟨x,y,0,ρx,ρy⟩;{ρx 7→Sp}⊗{ρy 7→Sq}

CHAPTER 5. CASE STUDY 64

Each consumer is represented as before. We show only the definition for one of them, C1.

Cons1⟨x : tr(ρx),y : tr(ρy),ρx : {ρx 7→S′c}⟩= x[p]&turn(ρy). y[b]⊕ req(r).

y[b]&snd(i). x[p]⊕ turn(ρy). Cons1⟨x,y,ρx⟩;{ρx 7→S′c1
}

C1⟨x : tr(ρx),ρx : {ρx 7→Sc1}⟩= x[p]&buff(pack(ρy,y[b])). Cons1⟨x,y,ρx⟩;{ρx 7→Sc1}

The complete system consists of the producer, the two consumers, and the buffer in parallel,
with sessions s1 (roles p, c1, and c2 and s2 (roles q and b) scoped to construct a closed process.

(ν s1)((ν s2)(P⟨s1[p],s2[q],ρp,ρq⟩ | B⟨s2[b],ρb⟩) | C⟨s1[c1],ρc1⟩ | C⟨s1[c2],ρc2⟩

Chapter 6

Discussion

Since session types were first introduced, channel endpoints are usually treated as linear resources,
meaning that they can be used only once and must be consumed after use. This approach ensures
that each role in a protocol can be implemented by a unique agent, as each agent will hold a
distinct channel endpoint that corresponds to its role. This treatment of channel endpoints as
linear resources is reinforced by several connections between session types and other linear
type theories: the encodings of binary session types and multiparty session types into linear
π-calculus types [39, 122]; the Curry-Howard correspondence between binary session types and
linear logic [20, 139]; the connection between multiparty session types and linear logic [23, 24].

Some session type systems go beyond the traditional linear typing discipline and allow for
more flexible usage of session channels. Vasconcelos [133] allows a session type to become
non-linear, and shareable, when it reaches a state that is invariant with every subsequent message.
Mostrous and Vasconcelos [95] define affine session types, in which each endpoint must be used
at most once and can be discarded with an explicit operator. In Fowler et al.’s [56] implementation
of session types for the Links web programming language, affine typing allows sessions to be
cancelled when exceptions (including dropped connections) occur. Caires and Pérez [19] use
monadic types to describe cancellation (i.e. affine sessions) and non-determinism. Pruiksma and
Pfenning [120] use adjoint logic to describe session cancellation and other behaviours including
multicast and replication.

When a data structure contains a linear value, the linearity of that value spreads to the entire
data structure. Consumption of the linear value requires the entire data structure to be consumed
as well. For example, consider a data structure that contains a linear channel endpoint. Since the
channel endpoint is linear, it can be used only once and must be consumed after use. Therefore,
the entire data structure must also be consumed after the channel endpoint is used. This means
that the data structure itself must also be linear, since it is consumed along with the linear channel
endpoint. In the standard π-calculus exceptions to this spreading nature of linearity have been
studied by Kobayashi in his work on deadlock-freedom and by Padovani [110], who extends the
linear π-calculus with composite regular types in such a way that data containing linear values

65

CHAPTER 6. DISCUSSION 66

can be shared among several processes. However, this sharing can occur only if there is no
overlapping access to such values, which differs from our work where we have full sharing of
values. On the other hand, we work directly with (multiparty) session types, whereas Padovani
works with linear π-calculus and obtains his results via the encoding of session types into linear
π-types [39].

Session types are related to the concept of typestate [127], especially in the work of Kouzapas
et al. [85, 86] which defines a typestate system for Java based on multiparty session types.
Typestate systems require linear typing or some other form of alias control, to avoid conflicting
state changes via multiple references. Approaches include the permission-based systems used in
the Plural and Plaid languages [13,128] and the fine-grained approach of Militão et al. [93]. Crafa
and Padovani [36] develop a “chemical” approach to concurrent typestate oriented programming,
allowing objects to be accessed and modified concurrently by several processes, each potentially
changing only part of their state. Our approach is partly inspired by Fähndrich and DeLine’s
“adoption and focus” system [53], in which a shared stateful resource (in our case, a session
channel) is separated from the linear key (capability, in our system) that enables it to be used. In
this way the state changes of channels follow the standard session operations, channels can be
shared (for example, stored in shared data structures), and access can be controlled by passing
the capability around the system.

The work by Balzer et al. [6, 7] is the closest to this one. It supports sharing of binary session
channels by allowing locks to be acquired and released at points that are explicitly specified
in the session type. Our approach with multiparty sessions is not based on locks, so it doesn’t
require runtime mechanisms for managing blocked processes and notifying them when locks are
released.

We have presented a new system of multiparty session types with capabilities, which allows
sharing of resources in a way that generalises the strictly linear or affine access control typical of
session type systems. The key technical idea is to separate a channel from the capability of using
the channel. This allows channels to be shared, while capabilities are linearly controlled. We
use a form of existential typing to maintain the link between a channel and its capability, while
both are transmitted in messages. This allows the system to ensure that only parties that have
the appropriate capability can use a given channel, while still allowing for sharing of channels
among multiple parties. We have proved communication safety, formulated as a subject reduction
theorem (Theorem 4.5.2).

Part III

Typechecking Java Protocols with
[St]Mungo

67

Chapter 7

[St]Mungo toolchain: An overview

7.1 Introduction

In this chapter we introduce the [St]Mungo, a toolchain based on the relation between session
types and typestates.

Typestates [127] define sequences of operations that are permitted for an entity in a particular
state. The type of an entity is associated with a partially ordered set of typestates. When the
entity’s state changes, its typestate may change as well. Operations on entities are correct if the
resulting typestate is reachable by a typestate transition from the previous typestate (following
the order). Typestates can be used to restrict valid parameters, return values, field values and
thus provide guarantees on an entity’s behaviour. Typestates can be modelled using finite-state
machines, so in statically typed languages we can check at compile time whether all possible
sequences of operations are valid with respect to the correct use of the entity.

Since their introduction [127], there have been several projects to add typestate to practical
languages. Vault [41, 53] is an extension of C, and Fugue [42] applies similar ideas to C#. Plu-
ral [14] is based on Java and has been used to study access control systems [12] and transactional
memory [8], and to evaluate the effectiveness of typestate in Java APIs [14]. Sing# [51] is
an extension of C# which was used to implement Singularity, an operating system based on
message-passing. It incorporates typestate-like contracts, which are a form of session type, to
specify protocols. Bono et al. [21] have formalised a core calculus based on Sing# and proved
type safety. Aldrich et al. [1, 128] propose a new paradigm of typestate-oriented programming,
implemented in the Plaid language. Instead of class definitions, a program consists of state
definitions containing methods that cause transitions to other states. Transitions are specified
in a similar way to Plural’s pre- and post-conditions. Like classes, states are organised into an
inheritance hierarchy. Recent work [58, 143] uses gradual typing to integrate static and dynamic
typestate checking. Bodden and Hendren [16] developed the Clara framework, which combines
static typestate analysis with runtime monitoring. The monitoring is based on the trace matches
approach [2], using regular expressions to define allowed sequences of method calls. The static

68

CHAPTER 7. [ST]MUNGO TOOLCHAIN: AN OVERVIEW 69

Scribble [St]Mungo Mungo
local protocols

typestate specification
Java skeleton implementation

specification/projection
of global protocols

specification/verification of typestate
& Java implementation

Figure 7.1: [St]Mungo toolchain workflow

analysis attempts to remove the need for runtime monitoring, but if this is not possible, the
runtime monitor is optimised.

In [64] Gay et al.use the concept of typestates to integrate binary session types and object-
oriented programming. They define a translation from the session type of a communication
channel endpoint into a typestate specification that constrains the use of send and receive methods
on an object representing the channel endpoint.

Kouzapas et al. [85, 86] have extended this work to define a typestate system for Java
based on multiparty session types, implemented as the [St]Mungo toolchain. Mungo is a front-
end typechecking tool, that extends Java with typestate definitions, by allowing classes to be
associated with a definition of the permitted sequences of method calls. Typestate specifications
however cannot represent the notion of duality of session types, so the notion of consistency
from multiparty session type theory does not translate. Compatibility between roles depends on
the assumption that their typestate specifications are derived from a single global session type.
The second tool introduced by Kouzapas et al., StMungo (“Scribble-to-Mungo”) translates from
Scribble local protocols into typestate specifications and Java program skeletons. These local
protocols are projected from a global protocol after being validated by the Scribble tools. This two
tool approach ensures compatibility between roles, as well as allowing the full implementation to
be checked statically for any errors.

7.2 StMungo

The StMungo tool [38, 85, 86, 137] is a Java-based transpiler implemented using the ANTLR
v4.5 framework [3]. StMungo acts as a bridge between multiparty session types and typestate
specifications. In particular it is the link between the Scribble specification language [70, 126]
and the Mungo tool Section7.3. StMungo is the first tool to provide a practical embedding of
Scribble multiparty session types into an object-oriented language with typestates.

In order to better understand the StMungo tool, we need to describe both the Scribble language
and the typestate specifications. Let’s start with Scribble.

The Scribble specification language is an implementation of multiparty session types (MPST)
[72, 126]. Participants in a distributed system communicate among each other by sending and
receiving messages and following a predefined communication protocol. Such a protocol is given

CHAPTER 7. [ST]MUNGO TOOLCHAIN: AN OVERVIEW 70

as a global protocol (or global type) in Scribble. The Scribble tools can perform validation and
projection of a global protocol. First, we must check if the specified global protocol is valid,
meaning if it is correct with respect to transmitted data; there are no deadlocks within the global
protocol; there are no un-notified participants for example, regarding session termination, and
so on. These checks follow the MPST theory [72]. Once a global protocol is validated, with
Scribble tools we can project it into local protocols (or local types) for each participant in the
system.

Let us illustrate the notions of global and local protocols using the two-buyer example,
from Chapter3 Figure3.1.

1 module examples.twobuyer.TwoBuyer;

2 type <java> "java.lang.String" from "java.lang.String" as Str;

3 type <java> "java.lang.Integer" from "java.lang.Integer" as Int;

4 global protocol TwoBuyer(role Buyer1, role Buyer2, role Seller) {

5 title(Str) from Buyer1 to Seller;

6 quote(Int) from Seller to Buyer1;

7 quote(Int) from Seller to Buyer2;

8 rec Negotiate{

9 split(Int) from Buyer1 to Buyer2;

10 choice at Buyer2 {

11 ok() from Buyer2 to Buyer1;

12 ok() from Buyer2 to Seller;

13 transfer(Int) from Buyer1 to Seller;

14 transfer(Int) from Buyer2 to Seller;

15 shipping(Str) from Seller to Buyer1;

16 shipping(Str) from Seller to Buyer2; }

17 or {

18 no() from Buyer2 to Buyer1;

19 stillnegotiating() from Buyer2 to Seller;

20 continue Negotiate; }

21 or {

22 quit() from Buyer2 to Buyer1;

23 quit() from Buyer2 to Seller;}}}

Listing 7.1: TwoBuyer Global Protocol in Scribble

The global protocol for the two-buyer protocol specified in Scribble is given in Listing 7.1.
Line 1 contains the module declaration, made up of an optional package prefix i.e., examples.
twobuyer, and the name of the file containing the module, TwoBuyer. Line 3 contains a payload
type declaration type <java>..., which gives an alias (Str) to a data type (String) from an
external language java which can be used in the payload of a message signature. A module
can contain zero or more global protocol declarations, consisting of a protocol signature (line
4), message passing (line 5), choices (line 10), and recursion (line 8). A message signature,
title(Str) from Buyer1 to Seller, consists of an operator name which acts as a message
identifier i.e. title and zero or more payload types, in this case a single Str.

A choice (e.g., choice at Buyer2) states the subject role, Buyer2, for which selecting one
of the cases, separated by or, is a mutually exclusive internal choice. A do statament enacts the

CHAPTER 7. [ST]MUNGO TOOLCHAIN: AN OVERVIEW 71

specified protocol, and can be used for recursive definitions.
Using the Scribble tools, we can project the TwoBuyer global protocol onto local protocols

for the buyers Buyer1 and Buyer2, and the seller Seller.
The local protocol for Buyer1, given in Listing 7.2, describes the behaviour of this role. The

_Buyer1 in the protocol name indicates that Buyer1 is the local endpoint.
1 ...

2 local protocol TwoBuyer_Buyer1(self Buyer1, role Buyer2, role Seller){

3 title(Str) to Seller;

4 quote(Int) from Seller;

5 rec Negotiate {

6 split(Int) to Buyer2;

7 choice at Buyer2 {

8 ok() from Buyer2;

9 transfer(Int) to Seller;

10 shipping(Str) from Seller; }

11 or {

12 no() from Buyer2;

13 continue Negotiate; }

14 or { quit() from Buyer2;}}}

Listing 7.2: TwoBuyer Buyer1 Protocol – obtained by using Scribble to project the global
protocol onto role Buyer1

The StMungo tool takes as input a Scribble local protocol for a role and translates it into a
typestate specification for a Java API skeleton. This translation is based on the principle that each
role in the multiparty session communication following its local protocol, can be abstracted
as a Java class following its typestate specification. A typestate is a state machine defining the
permitted sequence of method calls of a Java object, thus defining the object’s protocol.

Running StMungo on the Buyer1 protocol Listing 7.2 produces the following files:

1. Buyer1Protocol.protocol: the typestate specification representing the Buyer1’s local
protocol. The send and receive operations are translated as Java methods (Listing 7.3 below
in this section).

2. Buyer1Role.java: the Java API implementing Buyer1. This class implements the types-
tate Buyer1Protocol over Java sockets (Listing 7.4, Section7.3).

3. Buyer1Main.java: this can be an optional file. It gives a minimum logic of the client
CRole and provides a main() method (Listing 7.5 in Section7.3).

The typestate specification Buyer1Protocol.protocol for Buyer1 is given in Listing 7.3.

CHAPTER 7. [ST]MUNGO TOOLCHAIN: AN OVERVIEW 72

State1

State2

State3

State8

State4 State7

end

State0

void send_titleStrToSeller(String)

Integer receive_quoteIntFromSeller()

void send_splitIntToBuyer2(Integer)

Buyer1Choice1 receive_Buyer1Choice1LabelFromBuyer2()

OKNO

void receive_noFromBuyer2()

State5

State6

void receive_okFromBuyer2()

void send_transferIntToSeller(Integer)

String receive_shippingStrFromSeller()

QUIT

void receive_quitFromBuyer2()

Figure 7.2: State Machine for Buyer1Protocol

1 typestate Buyer1Protocol {

2 State0 = {void send_titleStrToSeller(String): State1}

3 State1 = {Integer receive_quoteIntFromSeller(): State2}

4 State2 = {void send_splitIntToBuyer2(Integer): State3}

5 State3 = {Buyer1Choice1 receive_Buyer1Choice1LabelFromBuyer2():

6 <OK: State4, NO: State7, QUIT: State8>}

7 State4 = {void receive_okFromBuyer2(): State5}

8 State5 = {void send_transferIntToSeller(Integer): State6}

9 State6 = {String receive_shippingStrFromSeller(): end}

10 State7 = {void receive_noFromBuyer2(): State2}

11 State8 = {void receive_quitFromBuyer2(): end}}

Listing 7.3: Buyer1 typestate

A typestate is a state machine (Figure7.2) with states labelled State0 (initial state), State1,

CHAPTER 7. [ST]MUNGO TOOLCHAIN: AN OVERVIEW 73

State2 . . . Each state offers a set of methods that must be a subset of the methods defined by the
class; each method specifies a transition to a successor state, such that when called at runtime
allows the object to change state as specified by its typestate.

The send and receive operations given in the local protocols for Buyer1 are translated as
typestate methods in Buyer1Protocol.protocol. For example, the message title(Str) to

Seller (line 4, Listing 7.2) where Buyer1 sends a title message of type Str to the Seller, is
translated as a method call (line 2 in Listing 8.3). For each choice there is an enumerated type,
named according to the numerical position of the choice in the sequence of choices within the
local protocol. The values of the enumerated type are the names of the first message in each
branch of the choice. For the choice in TwoBuyerLoop_Buyer1 we have the following definition.

1 enum Buyer1Choice1 { OK, NO, QUIT; }

For each role involved in the choice there wll be an enumerated type with the same set of
values, but the names of the types are not the same for every role.

We will comment on the other two files Buyer1Role.java and Buyer1Main.java in Sec-
tion7.3.

To improve the translation of the Scribble language to typestates some extensions have been
implemented by the author:

• translation of messages with no payload, i.e. message_operator()

• translation of messages with multiple payload, i.e.
message_operator(payload_type1,..., payload_typen)

• translation of messages without a message signature, i.e.
(payload_type1,..., payload_typen)

• translation of messages with annotated payloads, i.e.
message_operator(annotation : payload_type)

• translation of special cases of recursions nested in choice structures. A simple example of
a problematic Scribble specification is:

1 global protocol ProtocolName(role S, role C) {

2 choice at C { rcpt(String) from C to S; }

3 or { msg(String) from C to S;

4 rec loop { subject(String) from C to S;

5 continue loop; }}}

• translation of special cases of nested choice inside a recursion. A simple example of a
problematic Scribble specification is:

1 global protocol ProtocolName(role S, role C) {

2 command(String) from C to S;

CHAPTER 7. [ST]MUNGO TOOLCHAIN: AN OVERVIEW 74

3 rec loop{ choice at S {

4 ok(String) from S to C;

5 choice at S { end(String) from S to C;}

6 or { sum(String) from S to C;}

7 message(String) from S to C; }

8 or { error(String) from S to C; }

9 continue loop; }}

• translation of the do statement, a construct that instructs the specified roles to perform the
interactions of the specified protocol inline with the current protocol,
i.e. do ProtocolName(role1,..., rolen)

7.3 Mungo

The Mungo tool [38, 85, 86, 137] is a Java front-end tool used to statically typecheck typestate
specifications for Java classes. The tool is implemented in Java using the ExtendJ framework [67,
105], a meta-compiler based on reference attribute grammars.

Mungo extends a Java class with a typestate specification, which is saved in a separate file
(such as Buyer1Protocol.protocol in Section 7.2) and is attached to a Java class using the
annotation @Typestate("ProtocolName"), where "ProtocolName" names the file where the
typestate is defined. The typestate inference algorithm given by the formalisation of the Mungo
tool in [85, 86] constructs the sequences of methods called on all objects associated with a
typestate, and then checks if the inferred typestate is a subtype of the object’s declared typestate.

Source files are typechecked in two phases: first, according to the standard Java type system,
and then to the typestate type system via Mungo. The source files can then be compiled using
standard javac and executed in the standard Java runtime environment.

The typestate specification generated from StMungo together with the Mungo typechecker
can guide the user in the design and development of distributed multiparty communication-based
systems with guarantees of communication safety and soundness.

We will now describe the use of Mungo via the TwoBuyer running example, and in particular
we will do so by commenting on the last two files Buyer1Role.java and Buyer1Main.java

generated by StMungo for the Buyer1 role.
The outline for Buyer1 is given by Listing 7.4 annotated by the typestate Buyer1Protocol,

defined in Listing 7.3. Lines 3–9 define Buyer1’s constructor where the connection phase over
Java sockets takes place. The rest of Buyer1Role contains a minimal implementation of the
methods specified in the typestate Buyer1Protocol. The methods for sending and receiving
messages contain basic formatting and parsing, which can be further improved by the programmer.
When instantiated it establishes socket connections to the other roles in the session (Buyer2Role
and SellerRole).

CHAPTER 7. [ST]MUNGO TOOLCHAIN: AN OVERVIEW 75

1 @Typestate("Buyer1Protocol")

2 public class Buyer1Role{

3 public Buyer1Role() {...//Bind the sockets and accept a client

connection

4 try { // Create the read and write streams

5 socketSellerIn = new BufferedReader(..);

6 socketSellerOut = new PrintWriter(..);

7 }catch (IOException e) {

8 System.out.println("Read failed"); System.exit(-1);}}

9 public void send_titleStrToSeller(String payload) {

10 this.socketSellerOut.println(payload);}

11 public Integer receive_quoteIntFromSeller() {

12 String line = "";

13 try { line = this.socketSellerIn.readLine();}

14 catch(IOException e) {

15 System.out.println("Input/Output error. "); System.exit(-1);}

16 return Integer.parseInt(line);}

17 public void send_splitIntToBuyer2(Integer payload) {

18 this.socketBuyer2Out.println(payload0);}

19 public Buyer1Choice1 receive_Buyer1Choice1LabelFromBuyer2() {

20 String stringLabelBuyer1Choice1 = "";

21 try { stringLabelBuyer1Choice1 = this.socketBuyer2In.readLine();}

22 catch(IOException e) {

23 System.out.println("Input/Output error, unable to get label.");

24 System.exit(-1);}

25 switch(stringLabelBuyer1Choice1) {

26 case "OK":

27 return Buyer1Choice1.OK;

28 case "NO":

29 return Buyer1Choice1.NO;

30 case "QUIT":

31 default:

32 return Buyer1Choice1.QUIT;}}

33 ... // Define all other methods in Buyer1Protocol}

Listing 7.4: Buyer1 Role

Let’s move now onto the Buyer1Main.java given in Listing 7.5. Buyer1Main.java contains
a minimal implementation of the client endpoint using the Buyer1Role class to communicate
with the server endpoint. Below we give the main method, omitting any auxiliary methods
generated by StMungo.

CHAPTER 7. [ST]MUNGO TOOLCHAIN: AN OVERVIEW 76

1 public static void main(String[] args) {

2 Buyer1Role currentBuyer1 = new Buyer1Role();

3 BufferedReader readerBuyer1 = new BufferedReader(..);

4 currentBuyer1.send_titleStrToSeller(safeRead(readerBuyer1));

5 System.out.println("Received"+currentBuyer1.receive_quoteIntFromSeller

());

6

7 _Negotiate: do{

8 Integer payload5 = Integer.parseInt(safeRead(readerBuyer1));

9 currentBuyer1.send_splitIntToBuyer2(payload5);

10 switch(currentBuyer1.receive_Buyer1Choice1LabelFromBuyer2()) {

11 case OK:

12 currentBuyer1.receive_okFromBuyer2();

13 currentBuyer1.send_transferIntToSeller(Integer.parseInt(safeRead(

readerBuyer1)));

14 String payload10 = currentBuyer1.receive_shippingStrFromSeller();

15 break _Negotiate;

16 case NO:

17 currentBuyer1.receive_noFromBuyer2();

18 continue _Negotiate;

19 case QUIT:

20 currentBuyer1.receive_quitFromBuyer2();

21 break _Negotiate;}} while(true);}

Listing 7.5: Buyer1 Main

To ensure that methods of the protocol are called in a valid sequence and that all pos-
sible responses are handled, the Buyer1Main implementation is checked by computing the
sequences of method calls that are made on the currentBuyer1 object, inferring the minimal
typestate specification that allows them, and then comparing it with the specification declared in
Buyer1Protocol.

The following work has been undertaken on the Mungo tool by the author:

• the tool has been moved from the Java 1.4 compiler to the Java 1.8 compiler and adapted to
work with the new framework. The codebase of the tool has been updated to use Java 1.8
language features and APIs. This required changes to the syntax and structure of the code,
as well as rewriting parts of it to take advantage of new features. Finally it has been tested
to ensure that it works correctly with the new compiler.

• synchronised statements, the conditional operator ?:, inner and anonymous classes, and
static initialisers. Mungo was extended to allow synchronised statements and the condi-
tional operator ?: to be used on an object with a typestate specification as long as the
behaviour of the object is consistent with the specification. Mungo’s typechecking was
extended to analyse the correctness and safety of transitions caused by operations of inner
classes, as well as checking the interactions between the inner and the outer class.

CHAPTER 7. [ST]MUNGO TOOLCHAIN: AN OVERVIEW 77

• the tool has been extended to support the full use of language for classes without typestate
definition.

• a special typestate annotation has been implemented, through which typestate specifications
are associated with Java classes, without any change to the language itself. This required
changes to Mungo and the research compiler used by Mungo to to add an annotation which
allows typestate specifications to be associated with Java classes. The file name specified in
the annotation is resolved relative to the location of the class file. The typechecker ensures
that instances of that class will follow the specified protocol. This allows the programs to
be used both with the Mungo tool and with a regular Java compiler, where the annotation
and typestate specification will be ignored.

• inheritance between protocols. Inheritance between protocols (or subtyping) allows a
protocol to inherit the behaviour of another protocol and extend or modify it as needed.
This is useful for creating a hierarchy of protocols, where a more general protocol is defined
at a higher level and more specific protocols are defined at lower levels. The subtype of
the typestate may add new operations that are only valid in a certain state, or remove
operations that are not valid in it. Subtypes may also override methods from their supertype
to implement different behaviour for the same operation. Mungo was extended to account
for inheritance between protocols using the typical Java keyword extends followed by
the name of the supertype, and allow object of the subtype typestate to be used in place
of objects of its supertype. Finally, the typechecker was extended to analyse the resulting
typestate state machine to ensure that the sequence of operations is correct and safe.

Chapter 8

Real-World Case Studies

8.1 Introduction

In this chapter we present three real world case studies to show the applicability of the [St]Mungo
toolchain to typecheck protocols. In the following sections we highlight the benefits and some of
the difficulties of representing these.

The first two case studies presented, HTTP and FTP, represent common internet protocols.
A long standing aim of session types is to represent internet protocols, and instances of these
protocols often appear as examples in the literature from the very first papers [71]. Internet
protocols are prone to certain errors that can be excluded by specifying and constraining the
communication behaviour using session type systems.

These errors tends to fall into the following categories:

• communication mismatches: when the message sent is not one expected by the receiver.

• deadlock: when some set of participants are all blocked on mutually dependent input
actions.

• orphan messages: when the receiver terminates without reading an incoming message.

The final case-study presented in this chapter is basic Paxos, a protocol for solving consensus
in a network of unreliable agents. Consensus is the process of agreeing on one result among
a group of participants. The different setting of this protocol pushes the boundaries of what
session types can represent and offers insight into what is needed to enhance the specifying and
verification power of session types.

With each of the case studies we demonstrate some of the strengths of the toolchain, and
disscuss improvements that would lead to a more fine grained representation of the protocols,
and in some cases better interoperability with existing implementations.

The full implementation of these examples can be found in the mungo tools repository at
https://bitbucket.org/abcd-glasgow/mungo-tools/src/master/.

78

https://bitbucket.org/abcd-glasgow/mungo-tools/src/master/

CHAPTER 8. REAL-WORLD CASE STUDIES 79

8.2 HTTP

HTTP (HyperText Transfer Protocol) [54] is the underlying data protocol used by the World
Wide Web defining how messages are formatted and transmitted, and what actions servers and
clients may take in response to various methods, such as GET, PUT or POST. An HTTP session is a
sequence of network request-response transactions, initiated by the client sending a request over
a TCP connection to a particular port of a server. Upon receiving the request, the server listening
on that port sends back a message containing a status line, such as “HTTP/1.1 200 OK”, and
aditional information. The structure of the request and response messages exchanged is rich and
complex, involving branching, recursion or optional headers, lending itself to be further specified
through session types. Hence, we represent the HTTP global protocol in the style of Hu [74]
where some of the data structure is moved onto protocol structure. A monolithic HTTP request is
broken down into several smaller messages: sending request line – GET / HTTP/1.1, followed
by sending zero or more header-fields – Host: www.google.co.uk or Accept: text/html,

application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 and terminated by a sending
new-line. A response is similarly broken down into: a status line HTTP/1.1 200 OK, followed
by zero or more header-fields – Date: Sun, 24 May 2019 10:04:36 GMT or Server: Apache

and terminated by a new-line. This fine grained representation of the protocol is made possible
by the messages being broken down via TCP bit streams, in a manner that is transparent to both
parties involved.

In this section, we apply the [St]Mungo toolset to the GET method of HTTP/1.1 [54]. We
represent a minimal number of message fields required for interoperability with existing real-
world servers.

A snippet of the global protocol specifing HTTP in Scribble is given in Listing 8.1. The
client’s request to the server is represented between lines 4 and 12, starting with a message
requesting the resouce, request(str) from C to S. Within the recursion rec X the client can
choose as many header fields as needed, ending by sending the body message. The server’s
response is specified between line 14 and line 24, starting with the status line made up of httpv
and a choice of status, followed by zero or more header-fields such as date or server and
terminated by a new-line.

CHAPTER 8. REAL-WORLD CASE STUDIES 80

1 ...

2 global protocol Http(role C, role S){

3 request(str) from C to S; //GET / HTTP/1.1

4 rec X{ choice at C { host(str) from C to S;//Host: www.google.co.uk

5 continue X;}

6 or { userA(str) from C to S;//User-Agent:...

7 continue X;}

8 or { acceptT(str) from C to S;//Accept: text/html...

9 continue X;}

10 or { ... //other header fields

11 body(str) from C to S;}}

12 //Response

13 httpv(str) from S to C;//HTTP/1.1

14 choice at S { 200(str) from S to C; } //200 OK

15 or { 404(str) from S to C; } //404 Bad Request

16 rec Y{ choice at S { date(str) from S to C;//Date: ...

17 continue Y;}

18 or { server(str) from S to C;//Server:...

19 continue Y;}

20 or { strictTS(str) from S to C;//Strict-Transport-Security

21 continue Y;}

22 or { ...//other header fields

23 body(str) from S to C;}}}

Listing 8.1: HTTP Global Protocol in Scribble

Using the Scribble tools, we can project the HTTP global protocol onto local protocols for
the server S and the client C.

The local protocol for the HTTP client C, an extract of which is given in Listing 8.2, describes
the behaviour of this role. The _C in the protocol name indicates that C is the local endpoint.

1 ...

2 local protocol Http_C(role C, role S) {

3 request(str) to S;

4 rec X { choice at C { host(str) to S; continue X; }

5 or { userA(str) to S; continue X; }

6 or { acceptT(str) to S; continue X; }

7 or { ...//other header fields

8 body(str) to S;}}

9 httpv(str) from S;

10 choice at S { 200(str) from S; }

11 or { 404(str) from S; }

12 rec Y { choice at S { date(str) from S; continue Y; }

13 or { server(str) from S; continue Y; }

14 or { strictTS(str) from S; continue Y; }

15 or { ...//other header fields

16 body(str) from S; }}}

Listing 8.2: HTTP Client Protocol – obtained by using Scribble to project the global protocol
onto role C

The client will send a request line request (line), followed by zero or more header-fields —
host, or userA and so on. It will expect to receive a response with a status line containing the

CHAPTER 8. REAL-WORLD CASE STUDIES 81

HTTP version — httpv (line 18) followed by the status of the request, either — 200 for a found
resource, or — 404 for a bad request; and any additional information the server may send.

Running StMungo on the HTTP client protocol Listing 8.2 produces the following files,
where C at the beginning of each file name stands for client.

1. CProtocol.protocol: the typestate specification representing the HTTP client’s local
protocol. The send and receive operations are translated as Java methods (Listing 8.3 below
in this section).

2. CRole.java: the Java API implementing the HTTP client. This class implements the
typestate CProtocol over Java sockets (Listing 8.4, Section7.3).

3. CMain.java: this can be an optional file. It gives a minimum logic of the client CRole and
provides a main() method (Listing 8.5, Section7.3).

An excerpt of the typestate specification CProtocol.protocol for the HTTP client is given
in Listing 8.3.

1 typestate CProtocol {

2 State0 = { void send_requestStrToS(String): State1 }

3 State1 = { void send_HOSTToS(): State2,

4 void send_USERAToS(): State3,

5 void send_ACCEPTTToS(): State4,

6 ... //send other labels

7 void send_BODYToS(): State11 }

8 State2 = { void send_hostStrToS(String): State1 }

9 State3 = { void send_userAStrToS(String): State1 }

10 State4 = { void send_acceptTStrToS(String): State1 }

11 ... //send other main messages

12 State11 = { void send_bodyStrToS(String): State12 }

13 State12 = { String receive_httpvStrFromS(): State13 }

14 State13 = { CChoice1 receive_CChoice1LabelFromS():

15 <_200: State14, _404: State15> }

16 State14 = { String receive_200StrFromS(): State16 }

17 State15 = { String receive_404StrFromS(): State16 }

18 State16 = { CChoice2 receive_CChoice2LabelFromS(): <DATE: State17,

19 SERVER: State18, STRICTTS: State19, ..., BODY: State34> }

20 State17 = { String receive_dateStrFromS(): State16 }

21 State18 = { String receive_serverStrFromS(): State16 }

22 State19 = { String receive_strictTSStrFromS(): State16 }

23 ...

24 State34 = { String receive_bodyStrFromS(): end } }

Listing 8.3: HTTP Client Typestate Specification

The send and receive operations given in the client’s local protocol are translated as types-
tate methods in CProtocol.protocol. For example, the message request(str) to S (line 4,
Listing 8.2) where the client sends a request message of type str to the server, is translated
as void send_requestStrToS(String) (line 2 in Listing 8.3). A visual representation of the

CHAPTER 8. REAL-WORLD CASE STUDIES 82

State1

State2

State2

void send_requestStrToS(String)

State3State11

void send_HOSTToS() void send_USERAToS()
void send_BODYToS()

...

State12

State13

State15State14

Choice2 receive_Choice2LabelFromS()

State16

State18State17

String receive_404StrFromS()

State28

end

DATE
BODY

void send_hostStrToS(String) void send_userAStrToS(String)

...

String receive_200StrFromS()

...

...

Choice1 receive_Choice1LabelFromS()

_200 _404

SERVER

String receive_BODYStrFromS()

String receive_serverStrFromS()String receive_dateStrFromS()

void send_bodyStrToS(String)

String receive_httpvStrFromS()

Figure 8.1: State Machine for CProtocol

CHAPTER 8. REAL-WORLD CASE STUDIES 83

typestate as a state machine is given in Figure8.1.

1 @Typestate("CProtocol")

2 public class CRole {

3 public CRole() { ...//Bind the sockets and accept a client connection

4 try { // Create the read and write streams

5 socketSIn = new BufferedReader(...);

6 socketSOut = new PrintWriter(...);}

7 catch (IOException e) {...}

8 }

9 public void send_requestStrToS(String payload){

10 this.socketSOut.println(payload);

11 }

12 ... // Define all other send methods in CProtocol

13 public String receive_httpvStrFromS()() {

14 String line = "";

15 try {line = this.socketSIn.readLine();}

16 catch (IOException e) {...}

17 return line;

18 }

19 public Choice1 receive_Choice1LabelFromS() {

20 try {stringLabelChoice1 = this.socketSIn.readLine();}

21 catch (IOException e) {...}

22 switch (stringLabelChoice1) {

23 case "200":

24 return Choice1._200;

25 case "404":

26 default:

27 return Choice1._404;

28 }}

29 public String receive_200StrFromS() {

30 String line = "";

31 try {line = this.socketSIn.readLine();}

32 catch (IOException e) {...}

33 return line;

34 }

35 public String receive_404StrFromS() {

36 String line = "";

37 try {line = this.socketSIn.readLine();}

38 catch (IOException e) {...}

39 return line;

40 } .../*Define all other receive methods in CProtocol*/}}}

41

Listing 8.4: HTTP Client API

The HTTP client API is given by Listing 8.4 annotated by the typestate CProtocol, defined

CHAPTER 8. REAL-WORLD CASE STUDIES 84

in Listing 8.3. Lines 3–9 define the client’s constructor where the connection phase over Java
sockets takes place. The rest of CRole contains a minimal implementation of the methods specified
in the typestate CProtocol. Line 9 defines the method for sending the initial, mandatory, request
line send_requestStrToS. Lines 13–34 define methods for receiving the first line in a response,
composed of the HTTP version — receive_httpvStrFrom and the status. The method in line
19 Choice1 receive_Choice1LabelFromS captures the status. This method returns a Choice1

type, which is an enumerated type defined as:

1 enum Choice1 {_200, _404;}

The values of the enumerated type are the names of the first message in each branch of the choice,
i.e. _200 or _404. Thus, the method receive_Choice1LabelFromS receives a message which
represents one of the two status codes, and it returns the corresponding enum value. All methods
for sending and receiving messages contain basic formatting and parsing, which can be further
improved by the programmer.

Let’s move now onto the CMain.java given in Listing 8.5. CMain.java contains a minimal
implementation of the client endpoint using the CRole class to communicate with the server
endpoint. Below we give the main method, omitting the auxiliary methods generated by StMungo.
The code is modified from the generated version by adding the request and host messages needed
to request the home page from www.google.co.uk.

CHAPTER 8. REAL-WORLD CASE STUDIES 85

1 public static void main(String[] args) {

2 CRole currentC = new CRole();

3 currentC.send_requestStrToS("GET / HTTP/1.1");

4 _X: do {

5 String sread = //input header choice

6 switch (sread) {

7 case ("HOST"):

8 currentC.send_HOSTToS();

9 currentC.send_hostStrToS("www.google.co.uk");

10 continue _X;

11 ... //other cases corresponding to header fields

12 case ("BODY"):

13 currentC.send_BODYToS();

14 currentC.send_bodyStrToS("/r/n");

15 break _X;

16 }} while (true);

17 currentC.receive_httpvStrFromS();

18 switch (currentC.receive_Choice1LabelFromS()) {

19 case _200:

20 currentC.receive_200StrFromS();

21 break;

22 case _404:

23 currentC.receive_404StrFromS();

24 break;}

25 _Y:do {

26 switch (currentC.receive_Choice2LabelFromS()) {

27 case DATE:

28 currentC.receive_dateStrFromS();

29 continue _Y;

30 ... //other cases corresponding to the header fields

31 case BODY:

32 currentC.receive_bodyStrFromS();

33 break _Y;}

34 } while (true);}

Listing 8.5: HTTP Client Implementation

In line 2 we create a new HTTP client, currentC, and proceed by showing the code for a
small correctly formatted request, with the initial, mandatory request line messages being sent
first (line 3); then among the recursive choice cases we show the code for sending the the host
field (lines 7–10), before concluding the request by an empty body (lines 12-15). Then currentC

will receive the response status line (lines 17–24) followed by recursive choice cases for the fields
to be received from the server (lines 25–33).

To ensure that methods of the protocol are called in a valid sequence and that all possible
responses are handled, the CMain implementation is checked by computing the sequences of
method calls that are made on the currentC object, inferring the minimal typestate specification

CHAPTER 8. REAL-WORLD CASE STUDIES 86

that allows them, and then comparing it with the specification declared in CProtocol. This
ensures that the client implementation follows the fine grained protocol structure specified.

The typestate and skeleton implementation allow the programmer to take advantage of the
safety properties offered by session types, and ensure the correctness of the request/response
messages while preserving protocol interoperability. The typestate specification can also act
as a form of documentation for the protocol, summarising several dozen RFC pages. This
implementation can be combined with one of the many Java libraries for HTTP, such as Apache
HttpComponents1, to make use of the functionality already provided by them.

1http://hc.apache.org

CHAPTER 8. REAL-WORLD CASE STUDIES 87

8.3 FTP

The File Transfer Protocol (FTP) [119] is a standard internet protocol used to transfer files
between a client and a server. FTP uses a basic command-reply mechanism. The client connects
to the server, and begins a synchronized conversation by sending a command, to which the
server will respond, signaling readiness for the next command. Server responses come in a
standardized format: a 3-digit response code followed by a message. The codes have the same
general meanings, though the exact message that follows may vary. The first digit of the response
code is the most important, as it is an indicator of the overall success or failure status of the
command. Generally response codes follow these rules: 1, or 2 if the command was successful, 3
if an additional action is required; or 4 or 5 if the command failed.

For example, if the client were to issue the USER command the server could reply with a
230 “User logged in, proceed” response, indicating that the authentication has been successful.
Alternatively, the server could reply with a 331 “User name okay, need password” prompting the
client for further input. The server might also reply with a 500-level command, such as 530 “Not
logged in” to indicate that authentication has been unsuccessful.

Once the client has successfully established a connection with the server and passed au-
thentication, it can then attempt to retrieve or upload a file. In a typical session where files are
transferred, FTP will use two separate connections: the control and data connections.

The control connection, typically established on port 21, is the primary connection and is
used for sending commands back and forth between the client and server. After establishing a
connection, the client can issue the retrieve command, RETR, to initiate the file transfer, followed
by the name of the file to be retrieved. If the file exists and if the client has rights to access the
file, the server will issue a reply indicating that everything is OK and that the file transfer will
now begin.

Using the established control connection, the client and server will create a separate data
connection, used only for transferring the requested data. Once the transfer is complete this
connection is closed by the party sending the information. For example if the client is retrieving
data from a server, the server will close the connection once all data has been transferred. If
the client is the one transferring data to the server, they will terminate the connection. Data
connections are opened on a port negotiated by the client and server prior to the command for
transferring data. During this negotiation phase, the client will issue either the PORT command
for the active mode or the PASV command, for the passive mode. For the active mode, the client
issues a PORT command to the server signaling that the client will provide an IP and port number
to open the data connection back to the client. For the passive mode, the client issues a PASV

command to indicate that the client will wait for the server to supply an IP and port number, after
which the client will create a data connection to the server. The ability to choose between active
and passive mode when establishing a data connections is useful for navigating firewalls. Once
the IP address and port number have been selected, the party that chose the IP address and port

CHAPTER 8. REAL-WORLD CASE STUDIES 88

will begin to listen on the address/port specified and wait for the other party to connect. When
the other party connects to the listening party, the data transfer begins. After the data has been
transferred, the party that has sent the data will close the Data Connection, signaling end-of-file
(EOF).

FTP was one of the first examples to be considered in session type literature, appearing
as a theoretical example in one of the seminal papers [71]. Although FTP use is no longer
common, it remains an interesting case study for session types, due to the interplay between the
control and data connections, with a new data connection being established whenever needed,
and disconnected after the transfer takes place.

We limit this case study to the minimum implementation as described in the RFC, made up
of the following commands: USER, QUIT, PORT, TYPE, MODE,STRU,RETR, STOR, NOOP, and to these
add PASV for the passive mode.

We first try to formalise FTP as a protocol between four processes, as described by the RFC,
User Protocol Interpreter (UPI), Server Protocol Interpreter (SPI), User Data Transfer Process
(UDTP), Server Data Transfer Process (SDTP). SDTP is a data transfer process, which in the
“active” mode, establishes the data connection with the “listening” data port. It sets up the
parameters for transfer and storage, and transfers data on command from its protocol interpreter,
SPI. In the “passive” mode it listens for rather than initiates a connection on the data port. SPI
is the server protocol interpreter “listening” for a connection from a UPI and then establishing
a control communication connection. It receives standard FTP commands from the UPI, sends
replies, and governs the SDTP. UDTP is the data transfer process “listening” on the data port for
a connection from a server-FTP process.

UPI is the the user protocol interpreter initiating the control connection from its port to the
server-FTP process, initiates FTP commands, and governs the UDTP if that process is part of the
file transfer.

In this setting, UDTP and SDTP are dynamically involved in the protocol, only in the com-
mands requiring a data connection. However, in standard MPST, and thus in the standard version
of the Scribble tools, a session cannot have dynamic or optional involvement of participants.
Furthermore, each involved participant must be present in all choice cases. MPST literature
uses work arounds: e.g., adding extra messages, decomposing into separate protocols, session
delegation. Instead, we use the Scribble tools as extended by Hu and Yoshida [78], in which
they extend multiparty session types with explicit connection actions to support protocols with
optional and dynamic participants. Protocol validation is done by a combination of syntactic
constraints and explicit error checking, using 1-bounded model checking.

We show an excerpt of the global protocol expressed in Scribble in Listing 8.6 and in
Listing 8.7.

In Listing 8.7 the protocol starts with the client’s UPI connecting to the server’s SPI and the
server authenticating the connection. Upon receiving the username, the server has the choice

CHAPTER 8. REAL-WORLD CASE STUDIES 89

to accept the username and request a password, to accept a special username (e.g. anonymous)
and continue in anonymous mode, or to send an error message to the client, if for example the
username does not exist. After the username has been accepted, the client is then required to send
a password, PASS(str) or to end the authorization, QUIT(). In the first branch of this choice, if
the password is accepted, the client has a choice of various commands. The two shown are PASV

and PORT for specifying a data connection mode before connecting the data transfer processes
and doing any data transfer by calling the commands subprotocol. In Listing 8.6 we show two
data commands, RETR and STOR, and highlight a problem with this represention. Due to the safety
requirement that every potentially incoming message in an input choice (i.e., either accept or
receive) must be directed from the same role, the highlighted lines cause an error. We can use
the usual workaround of adding extra messages between the two roles, SDTP and UDTP, to pass
the Scribble validation. However, this would break interoperability with other implementations.
Furthermore, if we want to extend this representation, this version of the Scribble tools can no
longer perform validation due to deep recursion and model checking.

CHAPTER 8. REAL-WORLD CASE STUDIES 90

1 ...

2 explicit global protocol FTP(role SPI, role UPI, role SDTP, role UDTP){

3 connect UPI to SPI;

4 _220(str) from SPI to UPI; //server ready

5 rec login{ USER(str) from UPI to SPI;

6 choice at SPI{

7 _331(str) from SPI to UPI;

8 choice at SPI{

9 _230(str) from SPI to UPI; //logged in

10 choice at UPI{

11 PASV() from UPI to SPI;

12 choice at SPI{ _227(str) from SPI to UPI;

13 connect SPI to SDTP;

14 connect UPI to UDTP;

15 do commands(SPI, UPI, SDTP, UDTP);

16 disconnect SPI and SDTP;

17 disconnect UPI and UDTP;}

18 or{...}} //SPI error messages

19 or{ PORT() from UPI to SPI;

20 choice at SPI{ _200(str) from SPI to UPI;

21 connect SPI to SDTP;

22 connect UPI to UDTP;

23 do commands(SPI, UPI, SDTP, UDTP);

24 disconnect SPI and SDTP;

25 disconnect UPI and UDTP;}

26 or{...}}//SPI error messages

27 or{... }} //other commands

28 or{ _530(str) from SPI to UPI; //Not logged in.

29 continue login; }}

30 or{ QUIT() from UPI to SPI;

31 _221(str) from SPI to UPI; //Good-bye

32 disconnect UPI and SPI;}}

33 or{ _530(str) from SPI to UPI; //Not logged in.

34 continue login;}}}

Listing 8.6: FTP Explicit Global Protocol

CHAPTER 8. REAL-WORLD CASE STUDIES 91

1 ...

2 aux global protocol commands(role SPI, role UPI, role SDTP, role UDTP){

3 choice at UPI{ RETR(str) from UPI to SPI;

4 choice at SPI{ _150(str) from SPI to UPI;

5 command(str) from SPI to SDTP;

6 command(str) from UPI to UDTP;

7 transfer(str) connect SDTP to UDTP;

8 disconnect UDTP and SDTP;

9 done() from SDTP to SPI;

10 _226(str) from SPI to UPI;

11 do dataCommands(SPI, UPI, SDTP, UDTP);

12 }or{ _421(str) from SPI to UPI;

13 quit() from SPI to SDTP;

14 quit() from UPI to UDTP;}

15 }or{ STOR(str) from UPI to SPI;

16 choice at SPI{ _150(str) from SPI to UPI;

17 command(str) from SPI to SDTP;

18 command(str) from UPI to UDTP;

19 transfer(str) connect UDTP to SDTP;

20 disconnect UDTP and SDTP;

21 done() from SDTP to SPI;

22 _226(str) from SPI to UPI;

23 do dataCommands(SPI, UPI, SDTP, UDTP);

24 }or{ _421(str) from SPI to UPI;

25 quit() from SPI to SDTP;

26 quit() from UPI to UDTP; }

27 }or{ QUIT() from UPI to SPI; _221(str) from SPI to UPI;

28 quit() from SPI to SDTP; quit() from UPI to UDTP; }

Listing 8.7: FTP Explicit Global Protocol

We abstract the four different roles from above to two, Client and Server, represent the
protocol in the standard version of Scribble, and perform syntactic based validation. We show
an extract of the protocol in Listing 8.6. We show part of the authentication, the commands for
the passive and active modes: PASV() and PORT(), and two data commands for retrieving and
storing a file: RETR(str) and STOR(str). The following implementation has been tested against
dlptest.com2 and Pure-FTPd3 on macOS.

2https://dlptest.com/ftp-test/
3https://www.pureftpd.org/project/pure-ftpd/

https://dlptest.com/ftp-test/
https://www.pureftpd.org/project/pure-ftpd/

CHAPTER 8. REAL-WORLD CASE STUDIES 92

1 global protocol FTP(role S, role C) {

2 _220(str) from S to C; //server ready

3 rec login {

4 choice at C {

5 USER(str) from C to S;

6 choice at S {

7 _331(str) from S to C; //Password required

8 choice at C {

9 PASS(str) from C to S;

10 _230(str) from S to C; //logged in

11 rec modes {

12 choice at C { //passive mode

13 PASV() from C to S;

14 choice at S {

15 _227(str) from S to C;

16 choice at C {

17 STOR(str) from C to S;

18 choice at S {

19 _150(str) from S to C;

20 transfer(str) from C to S;

21 _226(str) from S to C;

22 continue modes; }

23 or {...}}//error replies from S

24 or { RETR(str) from C to S;

25 choice at S {

26 _150(str) from S to C;

27 transfer(str) from C to S;

28 _226(str) from S to C;

29 continue modes; }

30 or {...}}}//error replies from S

31 or {...}}//error replies from S

32 or { PORT() from C to S; //active mode

33 choice at S { _200(str) from S to C;

34 ... } // client commands

35 or { ... }} //error replies from S

36 or {...} // other client commands }}

37 or { QUIT() from C to S;

38 _221(str) from S to C; }}

39 or {...}} // error replies from S

40 or {...} // other client commands

41 or { QUIT() from C to S;

42 _221(str) from S to C; }}}

Listing 8.8: FTP: Classic Global Protocol

Using the Scribble tools, we can project the FTP global protocol onto local protocols for the
server S and the client C.

The local protocol for the FTP client C, an extract of which is given in Listing 8.9, describes
the behaviour of this role. The _C in the protocol name indicates that C is the local endpoint.

We can now run StMungo on the FTP client protocol Listing 8.9 which produces the following
files, where C at the beginning of each file name stands for client.

CHAPTER 8. REAL-WORLD CASE STUDIES 93

1. CProtocol.protocol: the typestate specification representing the FTP client’s local
protocol. The send and receive operations are translated as Java methods (Listing 8.10).

2. CRole.java: the Java API implementing the FTP client. This class implements the
typestate CProtocol over Java sockets (Listing 8.11).

3. CMain.java: an optional file, that gives a minimum logic for the client CRole and provides
a main() method (Listing 8.12).

CHAPTER 8. REAL-WORLD CASE STUDIES 94

1 local protocol FTP_C(role S, role C) {

2 _220(str) from S; //server ready

3 rec login {

4 choice at C {

5 USER(str) to S;

6 choice at S {

7 _331(str) from S; //Password required

8 choice at C {

9 PASS(str) to S;

10 _230(str) from S; //logged in

11 rec modes {

12 choice at C { //passive mode

13 PASV() to S;

14 choice at S {

15 _227(str) from S;

16 choice at C {

17 STOR(str) to S;

18 choice at S {

19 _150(str) from S;

20 transfer(str) to S;

21 _226(str) from S;

22 continue modes; }

23 or {...}}//error replies from S

24 or { RETR(str) to S;

25 choice at S {

26 _150(str) from S;

27 transfer(str) to S;

28 _226(str) from S;

29 continue modes; }

30 or {...}}}//error replies from S

31 or {...}}//error replies from S

32 or { PORT() to S; //active mode

33 choice at S { _200(str) from S;

34 ... } // client commands

35 or { ... }} //error replies from S

36 or {...} // other client commands }}

37 or { QUIT() to S;

38 _221(str) from S; }}

39 or {...}} // error replies from S

40 or {...} // other client commands

41 or { QUIT() to S;

42 _221(str) from S; }}}

Listing 8.9: FTP: Client Local Protocol

CHAPTER 8. REAL-WORLD CASE STUDIES 95

1 typestate CProtocol {

2 State0 = { String receive_220StrFromS(): State1 }

3 State1 = { void send_USERToS(): State2,

4 void send_QUITToS(): State80 }

5 State2 = { void send_USERStrToS(String): State3 }

6 State3 = { CChoice1 receive_CChoice1LabelFromS(): <_331: State4, ... > }

7 State4 = { String receive_331StrFromS(): State5 }

8 State5 = { void send_PASSToS(): State6,

9 void send_QUITToS(): State76 }

10 State6 = { void send_PASSStrToS(String): State7 }

11 State7 = { String receive_230StrFromS(): State8 }

12 State8 = { void send_PASVToS(): State9,

13 void send_PORTToS(): State31,

14 void send_QUITToS(): State52,

15 // ... methods implementing other commands }

16 State9 = { void send_PASVToS(): State10 }

17 State10 = { CChoice2 receive_CChoice2LabelFromS(): <_227: State11, ... > }

18 State11 = { String receive_227StrFromS(): State12 }

19 State12 = { void send_STORToS(): State13,

20 void send_RETRToS(): State21 }

21 State13 = { void send_STORStrToS(String): State14 }

22 State14 = { CChoice3 receive_CChoice3LabelFromS(): <_150: State15, ... > }

23 State15 = { String receive_150StrFromS(): State16 }

24 State16 = { void send_transferStrToS(String): State17 }

25 State17 = { String receive_226StrFromS(): State8 }

26 ...

27 State21 = { void send_RETRStrToS(String): State22 }

28 State22 = { CChoice4 receive_CChoice4LabelFromS(): <_150: State23, ... >}

29 State23 = { String receive_150StrFromS(): State24 }

30 State24 = { void send_transferStrToS(String): State25 }

31 State25 = { String receive_226StrFromS(): State8 }

32 ...

33 State31 = { void send_PORTToS(): State32 }

34 State32 = { CChoice5 receive_CChoice5LabelFromS(): <_200: State33, ...>}

35 State33 = { String receive_200StrFromS(): State34 }

36 ...

37 State76 = { void send_QUITToS(): State77 }

38 ...

39 State80 = { void send_QUITToS(): State81 }

40 State81 = { String receive_221StrFromS(): end} }

Listing 8.10: FTP Client Typestate Specification

CHAPTER 8. REAL-WORLD CASE STUDIES 96

1 ...

2 @Typestate("CProtocol")

3 public class CRole{

4 public CRole() { ...//Bind the sockets and accept a connection

5 try { // Create the read and write streams

6 socketSIn = new BufferedReader(...);

7 socketSOut = new PrintWriter(...);}

8 catch (IOException e) {...}}

9 public String receive_220StrFromS() {

10 String line = "";

11 try { line = this.socketSIn.readLine(); }

12 catch(IOException e) {...}

13 return line;}

14 public void send_USERToS() { this.socketSOut.println("USER"); }

15 public void send_USERStrToS(String payload0) {

16 this.socketSOut.println(payload0); }

17 public CChoice1 receive_CChoice1LabelFromS() {

18 String stringLabelCChoice1 = "";

19 try { stringLabelCChoice1 = this.socketSIn.readLine(); }

20 catch(IOException e) {...}

21 switch(stringLabelCChoice1) {

22 case "_331":

23 return CChoice1._331;

24 ... }}

25 public String receive_331StrFromS() {

26 String line = "";

27 try { line = this.socketSIn.readLine(); }

28 catch(IOException e) {...}

29 return line; }

30 public void send_PASSToS() { this.socketSOut.print("PASS"); }

31 public void send_PASSStrToS(String payload0) { this.socketSOut.println(payload0);

}

32 public String receive_230StrFromS() {

33 String line = "";

34 try { line = this.socketSIn.readLine(); }

35 catch(IOException e) {...}

36 return line; }

37 public void send_PASVToS() { this.socketSOut.println("PASV"); }

38 public void send_PORTToS() { this.socketSOut.println("PORT"); }

39 ... }

Listing 8.11: FTP: Client Role

CHAPTER 8. REAL-WORLD CASE STUDIES 97

1 public static void main(String[] args) {

2 CRole currentC = new CRole();

3 System.out.println("Received: " + currentC.receive_220StrFromS());

4 _login: do{ String sread1 = safeRead(readerC); //input command

5 switch(sread1){

6 case "USER":

7 currentC.send_USERToS();

8 currentC.send_USERStrToS(safeRead(readerC));

9 switch(currentC.receive_CChoice1LabelFromS()) {

10 case _331:

11 System.out.println("Received:"+currentC.receive_331StrFromS());

12 String sread2 = safeRead(readerC); //input command

13 switch(sread2){

14 case "PASS":

15 currentC.send_PASSToS();

16 String payload7 = safeRead(readerC);

17 currentC.send_PASSStrToS(payload7);

18 System.out.println("Received: " + currentC.receive_230StrFromS());

19 _modes: do{ String sread3 = safeRead(readerC); //input command

20 switch(sread3){

21 case "PASV":

22 currentC.send_PASVToS();

23 switch(currentC.receive_CChoice2LabelFromS()) {

24 case _227:

25 System.out.println(currentC.receive_227StrFromS());

26 String sread4 = safeRead(readerC); //input command

27 switch(sread4){

28 case "STOR":

29 currentC.send_STORToS();

30 currentC.send_STORStrToS(safeRead(readerC));

31 switch(currentC.receive_CChoice3LabelFromS()) {

32 case _150:

33 System.out.println(currentC.receive_150StrFromS());

34 String payload18 = safeRead(readerC);

35 currentC.send_transferStrToS(payload18);

36 System.out.println(currentC.receive_226StrFromS());

37 continue _modes;

38 /* error cases */ } break _modes;

39 case "RETR":

40 currentC.send_RETRToS();

41 String payload28 = safeRead(readerC); //input filename

42 currentC.send_RETRStrToS(payload28);

43 switch(currentC.receive_CChoice4LabelFromS()) {

44 case _150:

45 String payload30 = currentC.receive_150StrFromS();

46 System.out.println("Received: " + payload30);

47 currentC.send_transferStrToS(safeRead(readerC));

48 String payload34 = currentC.receive_226StrFromS();

49 System.out.println("Received: " + payload34);

50 continue _modes;

51 /* error cases */} break _modes; } break _modes;

52 /* other FTP commands */ ... }while(true);}

Listing 8.12: FTP: Client Main

CHAPTER 8. REAL-WORLD CASE STUDIES 98

value

8.4 Paxos

Paxos is a family of protocols for reaching consensus in a network that operates under conditions
of unreliability. In this section we look at the basic Paxos protocol as described in [88, 89], and
forms the basis of many more advanced consensus protocols. It ensures that network agents can
agree on a single value in the presence of failures. Paxos is the first consensus algorithm that
has been formally proven to be correct. Coordination and consensus play an important role in
data center and cloud computing, particularly in leader election, group membership, resource
management, or consistent replication of nodes. Despite being widely used, Paxos is notoriously
difficult to understand, and real-world implementations have brought forth many problems that
are not taken into account by the theoretical model of Paxos [28].

This algorithm defines a peer-to-peer protocol for selecting a single value from the values that
are proposed and informs all participants what that is. It is based on a majority (or quorum) rule
to ensure that only one value is agreed upon. There is no concept of a dedicated leader in Paxos,
any node may propose a value and attempt to achieve resolution, at the same time as others,
which may result in overriding the efforts of other nodes. Despite this, the algorithm ensures
safety thgrough the use of ids for each proposed value, and the concept of a quorum. Eventually,
a majority of nodes will agree upon a proposed value, which will become the final chosen value.
The basic algorithm can be extended and generalised to obtain more complex protocols, such as
Multi-Paxos, an extension of the basic protocol for running efficiently with the same proposer for
multiple rounds.

A correct implementation of the protocol ensures that: only a value that has been proposed
for consensus is chosen; the nodes within the network agree on a single value; and that a node is
never wrongly informed that a value is chosen for consensus.

The Paxos setting assumes asynchronous non-Byzantine communication that operates under
the following assumptions: messages can take arbitrarily long to be delivered, can be duplicated,
but are not delivered corrupted; agents operate at an arbitrary speed, may stop operating and may
restart. However, it is assumed that agents maintain persistent storage that survives crashes.

Paxos agents implement three roles: i) a proposer agent proposes vs towards the network for
reaching consensus; ii) an acceptor accepts a value from those proposed, whereas a majority of
acceptors accepting the same value implies consensus and signifies protocol termination; and iii)
a learner discovers the chosen consensus value. Each Paxos node can act as any or all 3 roles.
The network agents act autonomously and propose values for consensus to the other agents within
the network. If eventually a majority of agents run for long enough without failing, consensus on
one of the proposed values is guaranteed.

A run of the protocol may proceed over several rounds. A successful round has two phases:

CHAPTER 8. REAL-WORLD CASE STUDIES 99

prepare during which a proposer checks with the acceptors whether any of them have already
received a proposal, if so it will propose an existing value, if not it will propose its own value;
and accept during which if a majority of acceptors agree to this value then that is our consensus.
The check during the prepare phase ensures that in the case where a value v has already been
chosen by a majority of acceptors, broadcasting a new proposal request with a higher proposal id
will result in choosing the already chosen consensus value v.

A session type representation of Paxos is used to check that implementations correctly follow
the protocol. Session types can also help to identify subtle interactions such as branching or
dropping sessions. Furthermore, a session type representation allows for the basic algorithm to
be easily extended while still providing formal guarantees.

Implementation via [St]Mungo

We first attempt to implement the protocol via Scribble and [St]Mungo. However, in trying to do
so, a few shortcomings have become apparent, such as representing broadcasting; representing
a quorum; expressing the dynamic aspects such as processes failing, or restarting and then
rejoining; or representing a collection of agents. We then limit this implementation to a minimal
Paxos setting: a proposer and three acceptors. More agents can be added similarly if needed,
however most consensus clusters tend to be rather small, three to five nodes. The resulting Java
implementation can be used to guide the programmer in implementing a full Paxos system.

We start by giving the Scribble global protocol for Paxos in Listing 8.13. The protocol starts
with the client, C, sending a request to the proposer, P, for a value, v, to be proposed. The
proposer then sends a prepare message carrying a unique ID. Each of the three acceptors has a
choice to either send a promise message that they will not accept any request with a smaller ID
than the current one, or send a reject message. The promise message also carries with it value
v, which can either be null, or carry the value that was previously agreed upon.

If the proposer receives promises from a majority of acceptors, it will send an acceptV

message to the acceptors, carrying two payloads, the proposal ID and the value v. Each acceptor
has a choice to either send an accepted message or to reject the value. If the proposer receives
accepted from a majority of acceptors, consensus has been reached, and the participants can be
notified. If not it will restart the protocol and attempt to propose its value with a higher ID.

CHAPTER 8. REAL-WORLD CASE STUDIES 100

1 global protocol Paxos(role P, role A1, role A2, role A3, role C) {

2 request(v) from C to P;

3 rec X{ //Prepare Phase

4 prepare(ID) from P to A1;

5 prepare(ID) from P to A2;

6 prepare(ID) from P to A3;

7 choice at A1{ promise(ID, v) from A1 to P; }

8 or{ reject() from A1 to P; }

9 choice at A2{ promise(ID, v) from A2 to P; }

10 or{ reject() from A2 to P; }

11 choice at A3{ promise(ID, v) from A3 to P; }

12 or{ reject() from A3 to P; }

13 //Accept Phase

14 choice at P{ acceptV(ID, v) from P to A1;

15 acceptV(ID, v) from P to A2;

16 acceptV(ID, v) from P to A3;

17 choice at A1{ accepted(ID, v) from A1 to P; }

18 or{ reject() from A1 to P; }

19 choice at A2{ accepted(ID, v) from A2 to P; }

20 or{ reject() from A2 to P; }

21 choice at A3{ accepted(ID, v) from A3 to P; }

22 or{ reject() from A3 to P; }

23 choice at P{ notify(v) from P to A1;

24 notify(v) from P to A2;

25 notify(v) from P to A3; }

26 or{ restart() from P to A1;

27 restart() from P to A2;

28 restart() from P to A3;

29 continue X; } }

30 or{ restart() from P to A1;

31 restart() from P to A2;

32 restart() from P to A3;

33 continue X; } }

34 response(v) from P to C; }

Listing 8.13: Paxos: Global Protocol

Using the Scribble tools we can obtain the local protocols for each of the roles. Here, we
show only the local protocol for the proposer, capturing the interactions of role P, in Listing 8.14.

CHAPTER 8. REAL-WORLD CASE STUDIES 101

1 local protocol Paxos_P(role P, role A1, role A2, role A3, role C) {

2 request(v) from C;

3 rec X {

4 prepare(ID) to A1;

5 prepare(ID) to A2;

6 prepare(ID) to A3;

7 choice at A1 { promise(ID, v) from A1; }

8 or { reject() from A1; }

9 choice at A2 { promise(ID, v) from A2;

10 or { reject() from A2; }

11 choice at A3 { promise(ID, v) from A3; }

12 or { reject() from A3; }

13 choice at P { acceptV(ID, v) to A1;

14 acceptV(ID, v) to A2;

15 acceptV(ID, v) to A3;

16 choice at A1 { accepted(ID, v) from A1; }

17 or { reject() from A1; }

18 choice at A2 { accepted(ID, v) from A2; }

19 or { reject() from A2; }

20 choice at A3 { accepted(ID, v) from A3; }

21 or { reject() from A3; }

22 choice at P { notify(v) to A1;

23 notify(v) to A2;

24 notify(v) to A3; }

25 or { restart() to A1;

26 restart() to A2;

27 restart() to A3;

28 continue X; }}

29 or { restart() to A1;

30 restart() to A2;

31 restart() to A3;

32 continue X; }}

33 response(v) to C; }

Listing 8.14: Paxos: Proposer Protocol

Using StMungo, we can obtain the typestate, and the corresponding APIs and a skeleton
implementation for each endpoint. We show the typestate for the proposer, P, is given in List-
ing 8.15. Once we extend it with the necessary logic for inspecting promises, or selecting a value,
this implementation allows us to run a very basic Paxos system, which can then be extended with
any additional functionality needed.

CHAPTER 8. REAL-WORLD CASE STUDIES 102

1 typestate PProtocol {

2 State0 = {String receive_requestvFromClient(): State1}

3 State1 = {void send_prepareIDToA1(String): State2}

4 State2 = {void send_prepareIDToA2(String): State3}

5 State3 = {void send_prepareIDToA3(String): State4}

6 State4 = {PChoice1 receive_PChoice1LabelFromA1():

7 <PROMISE: State5, REJECT: State7>}

8 State5 = {String receive_promiseIDFromA1(): State6}

9 State6 = {String receive_promisevFromA1(): State7}

10 State7 = {void receive_rejectFromA1(): State8}

11 State8 = {PChoice1 receive_PChoice1LabelFromA2():

12 <PROMISE: State9, REJECT: State11>}

13 State9 = {String receive_promiseIDFromA2(): State10 }

14 State10 = {String receive_promisevFromA2(): State11 }

15 State11 = {void receive_rejectFromA2(): State12}

16 State12 = {PChoice1 receive_PChoice1LabelFromA3():

17 <PROMISE: State13, REJECT: State15>}

18 State13 = {String receive_promiseIDFromA3(): State14}

19 State14 = {String receive_promisevFromA3(): State15}

20 State15 = {void receive_rejectFromA3(): State16}

21 State16 = {void send_ACCEPTVToA1(): State17, void send_RESTARTToA1():

State39}

22 State17 = {void send_acceptVIDvToA1(String,String): State18}

23 State19 = {void send_acceptVIDvToA3(String,String): State20}

24 State20 = {PChoice2 receive_PChoice2LabelFromA1():

25 <ACCEPTED: State21, REJECT: State23>}

26 State21 = {String receive_acceptedIDFromA1(): State22}

27 State22 = {String receive_acceptedvFromA1(): State23}

28 State23 = {void receive_rejectFromA1(): State24}

29 State24 = {PChoice2 receive_PChoice2LabelFromA2():

30 <ACCEPTED: State25, REJECT: State27>}

31 ...

32 State32 = {void send_NOTIFYToA1(): State33,

33 void send_RESTARTToA1(): State36}

34 State33 = {void send_notifyvToA1(String): State34}

35 State34 = {void send_notifyvToA2(String): State35}

36 State35 = {void send_notifyvToA3(String): State42}

37 State36 = {void send_restartToA1(): State37}

38 ...

39 State41 = {void send_restartToA3(): State1}

40 State42 = {void send_responsevToClient(String): end}}

Listing 8.15: Paxos: Proposer Typestate

In the next paragraphs we present a different approach at implementing the protocol, capturing
node failure, a dynamic number of agents, and concurrent proposals. We obtain this more
comprehensive representation of Paxos by using the session type system for unreliable broadcast

CHAPTER 8. REAL-WORLD CASE STUDIES 103

PaxosType = !prepare.?promise.⊕

accept : !(round,value).?(round,value).

⊕
{
restart : end,
chosen : end

}
restart : end

PaxosNodeidr,v = [Paxosidr,v]

Paxosidr,v = def

Proposer(x,y) def
= a!(s).s̆!⟨x⟩.s̆?({(ri,vi)}i∈I).

if |I|> M
2 then

s̆◁accept.s̆!⟨(x,v = choose({(ri,vi)}i∈I, id))⟩.
s̆?({(ri,vi)}i∈J). if |J|> M

2 then
s̆◁ chosen.Paxos⟨x,y⟩

else
s̆◁ restart.Paxos⟨x,y⟩

else
s̆◁ restart.Paxos⟨x,y⟩

Acceptor(x,y) def
= a?(s).s?(x′).

if (x′ > x) then

s!⟨x,y⟩.s▷

accept : s?(x′,y′).s!⟨x′,y′⟩.

s▷
{
chosen : Paxos⟨x′,y′⟩
restart : Paxos⟨x,y⟩,

}
restart : Paxos⟨x,y⟩

else
Paxos⟨x,y⟩

Paxos(x,y) def
= Proposer⟨x+1,y⟩+(Acceptor⟨x,y⟩ ⋄ Paxos(x,y))

in
Paxos⟨r,v⟩

Figure 8.2: Implementation of the Paxos consensus protocol

communication devised by Gutkovas, Kouzapas and Gay.

Implementation in the Unreliable Broadcast Session Communication System

We present an implementation of the Paxos consensus protocol using the unreliable broadcast
session communication system introduced by Kouzapas et al. [87]. Inspired by the practice of ad-
hoc and wireless sensor network, the semantics of the calculus have the necessary mechanisms to
support safe session interaction and recovery. The system ensures asynchronous, non-Byzantine
communication, that messages are not corrupted nor duplicated, and that agents may operate at
arbitrary speeds.

Prior to the example, we give a quick informal presentation of the syntax of the calculus. The

CHAPTER 8. REAL-WORLD CASE STUDIES 104

calculus defines the syntax for network nodes. Specifically, a network node,

N = [P | ∏i∈I si[c, m̃i]]

composes a binary session π-calculus process P with a finite parallel composition of session
buffer terms, ∏i∈I si[c, m̃i]. A buffer term, s[c, m̃], represents a first-in first-out message buffer
that interacts on session endpoint s. The buffer stores messages m̃ and keeps track of the session
endpoint state using integer counter c. Multiple network nodes can be composed in parallel
N1| . . . |Nn to form a network. The term, ∏ j∈J[Pj | ∏i∈I j si[c, m̃i]] is used to represent a parallel
composition of network nodes.

The main session communication operations include asynchronous broadcast and asyn-
chronous gather in the presence of link failure and message loss. The interaction within a
session name s is defined between an s̆-endpoint, uniquely used by a single network node, and a
s-endpoint shared by an arbitrary number of network nodes. The one to many correspondence
between endpoints gives rise to the broadcasting operation, where the s̆-endpoint broadcasts a
value towards the s-endpoints, and the gather operation, where the s̆-endpoint gathers messages
sent from the s-endpoints. The rest of the syntax of session types follows the syntax of standard
binary session types.

Figure 8.2 describes the implementation of the Paxos protocol in this framework. Similar to
the previous implementation, we assume for simplicity that a learner has the same implementation
as a proposer. The implementation assumes that expressions contain finite sets of integer tuples,
which we write as: {(ri,vi)i}i∈I .

The interaction for establishing a consensus value takes place within a single session involving
the network nodes. The communication behaviour of an acceptor is described by the session type
PaxosType, whereas that of a proposer is described by the dual type PaxosType.

A Paxos agent is described by network node PaxosNodeidr,v = [Paxosidr,v] where r is the number
of the current proposal id, v is the proposed value that corresponds to proposal id r, and id is a
unique node identity number. A Paxos agent non-deterministically behaves either as a proposer:
Proposer(x,y) or as an acceptor: Acceptor(x,y) ⋄ Paxos(x,y).

During the computation a Paxos agent may restart; to do this it terminates its current sessions
and proceeds to the initial Paxos network, Paxosx,y. Note that each time an initial Paxos agent
enters a new protocol run it establishes a new session.

If a Paxos agent decides to act as a proposer, it does so by increasing its current proposal
id and proceeding to process Proposer⟨r+1,v⟩. It then requests a new session and enters the
Prepare phase. All the Paxos agents that accept a session request act as acceptors. The proposer
then broadcasts towards the network a prepare message request, type prepare, that contains the
proposal id r.

All acceptors that receive the prepare message check whether the proposal id is greater
than the one they currently have. If it is not, they drop the session and restart the computation

CHAPTER 8. REAL-WORLD CASE STUDIES 105

proceeding to process Paxos⟨r,v⟩. Otherwise, they reply with a promise message, type promise,
not to respond to a prepare message with a lower round number. The promise message contains
the current proposal id and the current consensus value of the acceptor. If this is the first time the
acceptor is involved in a consensus round then the promise message will contain empty values
for the two payloads (ε,ε). Here we assume that for all proposal ids r it holds that r > ε .

After a majority of acceptors reply with a promise message, the protocol enters the Accept

phase. The proposer gathers all the promises as a set of messages, {(ri,vi)}i∈I , and then checks
whether the majority of acceptors have replied using condition |I| ≤ M

2 , with M being the number
of the nodes in the network. Note that in the Proposer agent we use the set notation {(ri,vi)}i∈I in
place of variable in an input process. If the check fails the proposer sends a restart label to all the
acceptors, and restarts its own computation by proceeding to process Paxos⟨r,v⟩. All acceptors
that receive label restart also restart their computation by proceeding to process Paxos⟨r,v⟩.

If the majority check is passed, the proposer selects a value to submit to the acceptors by
inspecting the promises received and choosing the value corresponding to the highest proposal
id received in a promise message. If no value is received then it will use its own value. This is
expressed bellow by:

vk = choose({(ri,vi)}i∈I, id) when ∀i ∈ I,rk ≥ ri and
id = choose({(ri,vi)}i∈I, id) when ∀i ∈ I,ri = ε

The proposer then broadcasts an accept message containing an accept label followed by a tuple
of the current proposal id and the chosen value. The acceptors reply with a message of type
(round, value), containing their current round number. These messages are gathered by the
proposer and checked for majority, in which case consensus has been reached and the acceptors
will be informed via label chosen. The proposer will then proceed to process Paxos⟨r,v⟩. All
acceptors that receive the chosen message update their proposal id and their consensus value, and
proceed to state Paxos⟨r,v⟩.

If lack of majority is detected, the proposer restarts all agents within the session via label
restart, and increments its proposal id for the next round.

Network node PaxosNoden,v can be typed using the following typing judgement:

a : PaxosType;∅⊢PaxosNodeidn,v

Shared channel a uses type PaxosType, thus all established sessions of the computation follow the
behaviour of the protocol as described by the PaxosType session type. Subsequently, a network
that describes a set of nodes that run the protocol is defined as:

N = ∏
i∈I

PaxosNodei
ε,ε

Network N is typed using typing judgement a : PaxosType;∅⊢N.
More complicated Paxos networks can be described. For example, we can allow a Paxos

CHAPTER 8. REAL-WORLD CASE STUDIES 106

agent that acts as an acceptor to establish multiple sessions with different proposers during an
execution and explicitly drop the session with the lowest proposal id:

Acceptor(x,y) def
= a?(s).s?(x′).Acc⟨s,x,x′,y⟩

Acc(w,x,x′,y) def
= if (x′ > x) then

w!⟨x,y⟩.
(AcceptPhase⟨w,x,y⟩

+ a?(s′).s?(x′′).
if (x′′ > x′)

Acc⟨s,x,x′′,y⟩
else
AcceptPhase⟨w,x,y⟩)

else
Paxos⟨x,y⟩

AcceptPhase(w,x,y) def
= w▷

{
accept : w?(x′,y′).Paxos⟨x′,y′⟩,
restart : Paxos⟨x,y⟩

}
The definition of the acceptor has the option, expressed as a non-deterministic choice +, to
establish a new session, i.e. enter a prepare phase with a different proposer, while in the accept
phase of another proposal. The proposal ids from the two sessions are compared, and based on
this the session with the lowest id will be dropped. The computation will proceed accordinbg to
the type of the session with the higher proposal id.

This representation ensures that the interaction takes place within a session as defined by
the session type. This lifts the burden from the programmer to check for deadlocks and type
mismatches, and leaves only the burden for implementing correctly the algorithmic logic.

Part IV

Conclusion

107

Chapter 9

Conclusion

Type-theoretic techniques can be used to address many of the issues that come with communica-
tion centred systems. These systems are designed around the idea of communication between
components, and they can be complex to design and implement due to the need to coordinate the
interactions between these components. Formally describing the communication between the
components of a system allows it to be verified by static typechecking. This provides lightweight
verification that can catch errors such as the interactions that occur do not follow the prescribed
protocol.

9.1 Research Questions Revisited

To summarise the work in this thesis we look back at the two research questions set within the
first chapter, in Section1.1.

9.2 Research Questions

Q1 What is the relationship between session types and linearity or affinity, and how can we check

resource sharing and aliasing to guarantee type safety?

Resource sharing and aliasing are two common sources of errors in concurrent programming
such as race conditions or unexpected behaviour. To ensure type safety session type systems
usually enforce linearity and affinity properties to prevent resource sharing and aliasing at
compile-time. We have presented a new system of multiparty session types with capabilities,
which allows sharing of resources in a way that generalises the strictly linear or affine
access control typical of session type systems. The key technical idea is to separate a
channel from the capability of using the channel. This allows channels to be shared, while
capabilities are linearly controlled. We use a form of existential typing to maintain the
link between a channel and its capability, while both are transmitted in messages. We have

108

CHAPTER 9. CONCLUSION 109

proved communication safety, formulated as a subject reduction theorem.

Q2 How can session types be adapted to support real-world case studies, and can we assess

if they are really beneficial? Session types can be adapted and extended to handle more
complex communication patterns and protocols. This involves developing and extending
session type tools to capture the requirements of specific applications and ensure that they
integrate well with the types already present in the language, in this case Java. Chapter7
has given an overview of the [St]Mungo toolchain, its usage and extensions made to it
to better support session types in practice. In Chapter8 we have presented several cases
studies showing how session types can be successfully used in practice.

9.3 Future Work

The area of session types has a huge scope for further research. We will discuss some potential
directions for the work presented in this thesis.

Multiparty session types with capabilities. In Part II we have considered multiparty session
types extended with capabilities to allow resource sharing. An area of future work is to prove
progress and deadlock-freedom properties for interleaving sessions along the lines of Coppo et

al. [35]. Another possibility is to apply our techniques to functional languages with session types
such as the one in [63].

Another interesting line of future work is to explore how this could be applied in the context
of CHERI (Capability Hardware Enhanced RISC Instructions) [141]. CHERI is a is a hybrid
capability architecture aimed at improving security in computer systems by using hardware
capabilities. Capabilities can be thought of as a type of token that represents a permission to
access a resource, and can be used to provide fine-grained access control to system resources. A
capability can specify access permissions such as read, write, execute, or a combination of these,
as well as other metadata such as the size of the memory block. By using capabilities, CHERI
can provide memory protection, prevent unauthorized access or modification of memory. For
example, if a capability only allows read access to a memory address, any attempt to write to that
address will be prevented. In addition, CHERI capabilities can enforce spatial memory safety,
preventing buffer overflows or other memory-related security vulnerabilities. The type system
presented in Part II could be extended based on hardware capabilities to provide enforceable
specifications for software running on CHERI hardware that would offer stronger guarantees its
behaviour.

Typestate Programming in Java. An area of future work is to evaluate the usability of the
[St]Mungo/Mungo toolchain and compare it to other available tools. New programming language
constructs are more often than not introduced without thorough exploration of their suitability for

CHAPTER 9. CONCLUSION 110

their intended purpose or practical application. While proving they solve the problem is a good
thing, it is equally important to evaluate their effectiveness and usability in real-world scenarios.

Session types have been developed for some time now with industry input, and a closer look
at their effect on software development is in order. Otherwise, we run the risk of developing
something that may not be quite suitable. An example of this can be seen in gradual typing,
another very active area of research, which is now having its practicality called into question [129].
By identifying which designs and implementations help or hinder programmers, we can improve
them to help developers use session type effectively.

Assessing the effectiveness of session types in real-world case studies requires evaluating their
impact on software development practices, as well as their ability to detect and prevent errors.
This can be achieved through empirical studies that measure the performance and productivity of
developers who use session types compared to those who do not. Additionally, long term industry
case studies can be used to assess the impact of session types on the reliability and robustness of
software systems.

There are different approaches to adding session types to existing languages that can be used
to assess the effectiveness of session types. In the case of Java, we have Session J [79], Mungo,
and Hu and Yoshida’s API generation [77]. However, there has not been a comparison of the
benefits of each approach for practical programming. Most papers on adding session types to
programming languages focus on the language, not on the associated development environment
or methodology. Hu’s API generation approach allows a standard Java IDE such as Eclipse to
inform the programmer about protocol errors. There are additional ways in which an IDE could
help programmers, for example by showing a transition diagram or the complete session type. By
evaluating the impact of session types on software development practices and the reliability of
software systems, we can gain a better understanding of their value in real-world settings.

Appendix A

Proofs for Resource Sharing via
Capability-Based Multiparty Session Types

A.1 Proofs

Proposition A.1.1. unf
(
H
)
= unf(H)

Proof. By induction on the unfolding of H. [123]

Proposition A.1.2. Let S,S′ be closed session types. If S ⩽ S′, then for all p also S↾p ⩽ S′ ↾p.

Proof. Standard, can be found in [123].

Proposition A.1.3. For all session types S and roles p, unf(S)↾p = unf(S↾p) .

Proof. By induction on the unfolding of S. [123]

Proposition A.1.4. If (Γ,C)−→∗ (Γ′,C′) then dom(Γ) = dom(Γ′) and dom(C) = dom(C′).

Proof. We first verify the following, by induction on the size of dom(Γ): (Γ,C) −→ (Γ′,C′)

implies dom(Γ) = dom(Γ′) and dom(C) = dom(C′).
Then, we can prove the main statement, by induction on the length of the sequence of

reductions in (Γ,C)−→∗ (Γ′,C′). The base case is trivial, with 0 reductions, and (Γ,C) = (Γ′,C′),
while in the inductive case, we apply the induction hypothesis.

Proposition A.1.5. If (Γ,x : U ;C) is consistent, then (Γ;C) is consistent.

Proof. The proof is straightforward, by noticing that consistency (Definition 4.5.1) does not
depend on x : U .

Proposition A.1.6. If (Γ,s[p] : tr(ρp),ρp : {ρp 7→Sp};C⊗{ρp 7→Sp}) is consistent, then (Γ;C)

is consistent.

111

APPENDIX A. PROOFS FOR Chapter4 112

Proof. Assume that (Γ,s[p] : tr(ρp),ρp : {ρp 7→Sp};C⊗{ρp 7→Sp}) is consistent. By Defini-
tion 4.5.1 ∀s[q],ρq,s[r],ρr ∈ dom(Γ,s[p] : tr(ρp),ρp : {ρp 7→Sp},s[r] : tr(ρr),ρr : {ρr 7→Sr})
with q ̸= r implies Γ(ρq)↾r ⩽ Γ(ρr)↾q. Since dom(Γ) = dom(Γ,s[p],ρp)\{s[p],ρp}, we also
have ∀s[q],s[r] ∈ dom(Γ) with q ̸= r implies Γ(ρq)↾r ⩽ Γ(ρr)↾q. Hence by Definition 4.5.1
(Γ;C) is consistent.

Corollary A.1.0.1. If (Γ1,Γ2;C1⊗C2) is consistent, then (Γ1;C1) and (Γ2;C2) are consistent.

Proof. By repeatedly applying Proposition A.1.5 and Proposition A.1.6 to remove all entries of
(Γ1;C1) from (Γ1,Γ2;C1⊗C2), we prove that (Γ2;C2) is consistent. By the symmetric procedure
we prove that (Γ1;C1) is consistent.

Proposition A.1.7. If (Γ,s[p] : tr(ρ),ρ : S; C) is consistent and S ⩽ S′, then (Γ,s[p] : tr(ρ),ρ :
S′; C) is consistent.

Proof. Assume (Γ,s[p] : tr(ρ),ρ : S; C) is consistent, and take any S′ such that S ⩽ S′. By Def-
inition 4.5.1 we know that ∀s[q] : tr(ρq),ρq : {ρq 7→Sq} ∈ dom(Γ,s[p] : tr(ρ),ρ : {ρ 7→S}):
Sq ↾p ⩽ S↾q; moreover, by Proposition A.1.2 we have ∀q : S↾q ⩽ S′ ↾q. By transitivity of ⩽

we also have ∀s[q] : tr(ρq),ρq : {ρq 7→Sq} ∈ dom(Γ,s[p] : tr(ρ),ρ : {ρ 7→S}): Sq ↾p ⩽ S′ ↾q.
Therefore by Definition 4.5.1 we conclude that (Γ,s[p] : tr(ρ),ρ : S′; C) is consistent.

Corollary A.1.0.2. If (Γ1,Γ2; C1⊗C2) is consistent and C2⩽C′
2, then (Γ1,Γ

′
2; C1⊗C′

2) is

consistent.

Proof. By induction on the size of Γ2. The base case: Γ2 =∅ is trivial, while the inductive case
is proved by the induction hypothesis, and Proposition A.1.7.

Lemma 4.5.1. If (Γ; C) −→ (Γ′; C′) and (Γ; C) is consistent (resp. complete), then so is

(Γ′; C′).

Lemma 4.5.1. By induction on (Γ; C) −→ (Γ′;C′), as per Definition 4.5.2.

• base case:

(Γ; C) =

(s[p] : tr(ρp), s[q] : tr(ρq),ρp : {ρp 7→ Sp},ρq : {ρq 7→ Sq}; {ρp 7→ Sp,ρq 7→ Sq}) −→

(s[p] : tr(ρp), s[q] : tr(ρq),ρp : {ρp 7→ Sk},ρq : {ρq 7→ S′k}; {ρp 7→ Sk,ρq 7→ S′k}) =

(Γ′;C′)

with unf(Sp) = q ⊕i∈I!li(Ui).Si, unf(Sq) = p &i∈I∪J ?li(U ′
i).S

′
i, k ∈ I and Uk⩽U ′

k

APPENDIX A. PROOFS FOR Chapter4 113

We observe:

Sp ↾q⩽Sq ↾p by the hypothesis and Definition 4.5.1 (A.1)

unf
(
Sp ↾q

)
⩽unf(Sq ↾p) by [SPARµL] and [SPARµR] (A.2)

unf(Sp ↾q)⩽unf(Sq ↾p) by Proposition A.1.1 (A.3)

unf(Sp)↾q⩽unf(Sq)↾p by Proposition A.1.3 (A.4)

q ⊕i∈I!li(Ui).Si ↾q⩽p &i∈I∪J ?li(U ′
i).S

′
i ↾p by the hypothesis (A.5)

⊕i∈I!li(Ui).(Si ↾q)⩽ &i∈I∪J ?li(U ′
i).S

′
i ↾p by Definition 4.3.4 (A.6)

&i∈I?li(Ui).(Si ↾q)⩽ &i∈I∪J ?li(U ′
i).S

′
i ↾p by Definition 4.3.3 (A.7)

∀k ∈ I : Sk ↾q⩽S′k ↾p by [SPARBR] (A.8)

if unf(Sp) = q ⊕i∈I!li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si, and
unf(Sq) = p &i∈I∪J ?li(∃[ρi|{ρi 7→U ′

i }].tr(ρi)).S′i, k ∈ I with Uk⩽U ′
k

q ⊕i∈I!li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si ↾q⩽p &i∈I∪J ?li(∃[ρi|{ρi 7→U ′
i }].tr(ρi)).S′i ↾p by the hypothesis

(A.9)

⊕i∈I!li(∃[ρi|{ρi 7→Ui}].tr(ρi)).(Si ↾q)⩽ &i∈I∪J ?li(∃[ρi|{ρi 7→U ′
i }].tr(ρi)).S′i ↾p by Definition 4.3.4

(A.10)

&i∈I?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).(Si ↾q)⩽ &i∈I∪J ?li(∃[ρi|{ρi 7→U ′
i }].tr(ρi)).S′i ↾p by Definition 4.3.3

(A.11)

∀k ∈ I : Sk ↾q⩽S′k ↾p by [SPARBRP]

(A.12)

and we conclude that (Γ′;C′) is consistent;

• inductive case:

(Γ; C) = (Γ1,s[r] : tr(ρ),ρ : {ρ 7→S}; C1⊗{ρ 7→S}) −→

(Γ1
′,s[r] : tr(ρ),ρ : {ρ 7→S′}; C1

′⊗{ρ 7→S′}) = (Γ′; C′) with S ⩽ S′ (A.13)

We observe that (Γ1; C1),(Γ
′
1; C′

1) must have the form:

(Γ1; C1) = (s[p] : tr(ρp), s[q] : tr(ρq),ρp : {ρp 7→ Sp},ρq : {ρq 7→ Sq},Γ0;

{ρp 7→ Sp,ρq 7→ Sq}⊗C0) (A.14)

(Γ′
1;C′

1) = (s[p] : tr(ρp), s[q] : tr(ρq),ρp : {ρp 7→ S′p},ρq : {ρq 7→ S′q},Γ′
0;

{ρp 7→ S′p,ρq 7→ S′q}⊗C′
0) (A.15)

APPENDIX A. PROOFS FOR Chapter4 114

where

(s[p] : tr(ρp), s[q] : tr(ρq),ρp : {ρp 7→ Sp},ρq : {ρq 7→ Sq};{ρp 7→ Sp,ρq 7→ Sq}) −→

(s[p] : tr(ρp), s[q] : tr(ρq),ρp : {ρp 7→ S′p},ρq : {ρq 7→ S′q};{ρp 7→ S′p,ρq 7→ S′q}) (A.16)

and C0 ⩽ C′
0.

Therefore:

(Γ; C) = (Γ1,s[r] : tr(ρ),ρ : {ρ 7→S}; C1⊗{ρ 7→S}) =

(s[p] : tr(ρp), s[q] : tr(ρq),ρp : {ρp 7→ Sp},ρq : {ρq 7→ Sq},Γ0,s[r] : tr(ρ),ρ : {ρ 7→S};

{ρp 7→ Sp,ρq 7→ Sq}⊗C0⊗{ρ 7→S}) is consistent; by the hypothesis (A.17)

(s[p] : tr(ρp), s[q] : tr(ρq),ρp : {ρp 7→ Sp},ρq : {ρq 7→ Sq},Γ0,s[r] : tr(ρ),ρ : {ρ 7→S};

{ρp 7→ Sp,ρq 7→ Sq}⊗C′
0⊗{ρ 7→S′})

is consistent; from the above and Corollary A.1.0.2 (A.18)

(Γ0,s[r] : tr(ρ),ρ : {ρ 7→S};C′
0⊗{ρ 7→S′})

is consistent; from the above and Corollary A.1.0.1 (A.19)

Corollary 4.5.1. If (Γ1,Γ2;C1⊗C2) is consistent and (Γ1;C1)−→∗ (Γ′
1;C′

1), then (Γ′
1,Γ2;C′

1⊗
C2) is consistent.

Proof of Corollary 4.5.1. Assume all the hypotheses, and let n be the length of the sequence of
reductions in (Γ1; C1) −→∗ (Γ′

1;C′
1). In the base case, n = 0, the thesis holds trivially. In the

inductive case n = n′+1, we have:

(Γ1,C1) −→ . . . −→ (Γ∗
1,C

∗
1) −→ (Γ′

1,C
′
1)

and by the induction hypothesis,(Γ∗
1,Γ2; C∗

1⊗C2) is consistent. This implies that (Γ′
1,Γ2;C′

1⊗C2)

is consistent: we prove such a fact with a further induction on the size of (Γ2; C2). In the
base case (Γ2; C2) = (∅;∅) we conclude immediately by Lemma 4.5.1. In the inductive case
we have (Γ2; C2) = (Γ0,c : tr(ρ),ρ : {ρ 7→U}; C0⊗{ρ 7→U}); by applying the induction
hypothesis we get that (Γ′

1,Γ0;C′
1⊗C0) is consistent. We examine the shape of the additional

entry (c : tr(ρ),ρ : {ρ 7→U};{ρ 7→U}) and its consistency w.r.t. (Γ′
1,Γ0;C′

1⊗C0), similarly to
the inductive case in the proof of Lemma 4.5.1. In all cases, we conclude that (Γ′

1,Γ2;C′
1⊗C2) is

consistent.

Proposition 4.5.1 (Weakening). For any multiparty session process P with ∆;Γ⊢P; C:

1. if ∆ and ∆′ are disjoint, then ∆,∆′;Γ⊢P; C.

APPENDIX A. PROOFS FOR Chapter4 115

2. if Γ and Γ′ are disjoint, then ∆;Γ,Γ′⊢P; C.

Proof of Proposition 4.5.1. By induction on typing derivations, with a case analysis on the last
rule applied.

• case P = 0 By applying [TINACT] on ∆,∆′;Γ⊢P; C, respectively ∆;Γ,Γ′⊢P; C.

• case P = P |Q

1. ∆,∆′;Γ⊢P |Q; C.

Let C =C1 ⊗C2. From the premise we know that ∆;Γ⊢P |Q; C1 ⊗C2.
∆;Γ⊢P;C1 ∆;Γ⊢Q;C2

∆;Γ⊢P |Q;C1⊗C2
[TPAR]

By applying [TPAR] we obtain ∆;Γ⊢P;C1 and ∆;Γ⊢Q;C2. By applying the inductive
hypothesis on these two we obtain ∆,∆′;Γ⊢P;C1, respectively ∆,∆′;Γ⊢Q;C2. By
applying [TPAR] we obtain our conclusion:

∆,∆′;Γ⊢P;C1 ∆,∆′;Γ⊢Q;C2

∆,∆′;Γ⊢P |Q;C1⊗C2
[TPAR]

2. ∆;Γ,Γ′⊢P |Q; C.

Let C =C1 ⊗C2. From the premise we know that ∆;Γ⊢P |Q; C1 ⊗C2.
∆;Γ⊢P;C1 ∆;Γ⊢Q;C2

∆;Γ⊢P |Q;C1⊗C2
[TPAR]

By applying [TPAR] we obtain ∆;Γ⊢P;C1 and ∆;Γ⊢Q;C2. By applying the inductive
hypothesis on these two we obtain ∆;Γ,Γ′ ⊢P;C1, respectively ∆;Γ,Γ′ ⊢Q;C2. By
applying [TPAR] we obtain our conclusion:

∆;Γ,Γ′⊢P;C1 ∆;Γ,Γ′⊢Q;C2

∆;Γ,Γ′⊢P |Q;C1⊗C2
[TPAR]

• case P = (ν s)P

1. ∆,∆′;Γ⊢ (ν s)P; C

From the premise we know that ∆;Γ⊢ (ν s)P;C.

∆;Γ,Γ′⊢P;C⊗C′

(Γ′= {s[p] : tr(ρp),ρp : {ρp 7→Sp}}p∈I,C′=⊗p∈I{ρp 7→Sp}) complete

∆;Γ⊢ (ν s : Γ
′)P;C

[TRES]

By applying [TRES] we obtain ∆;Γ,Γ′ ⊢ P;C⊗C′ with (Γ′ = {s[p] : tr(ρp),ρp :
{ρp 7→Sp}}p∈I,C′=⊗p∈I{ρp 7→Sp}) complete. By applying the induction hypothesis
we obtain: ∆,∆′;Γ,Γ′⊢P;C⊗C′. By applying [TINACT] we obtain our conclusion:

APPENDIX A. PROOFS FOR Chapter4 116

∆,∆′;Γ,Γ′⊢P;C⊗C′

(Γ′= {s[p] : tr(ρp),ρp : {ρp 7→Sp}}p∈I,C′=⊗p∈I{ρp 7→Sp}) complete

∆,∆′;Γ⊢ (ν s : Γ
′)P;C

[TRES]

2. ∆;Γ,Γ1 ⊢ (ν s)P; C

From the premise we know that ∆;Γ⊢ (ν s)P;C.
∆;Γ,Γ′⊢P;C⊗C′

(Γ′= {s[p] : tr(ρp),ρp : {ρp 7→Sp}}p∈I,C′=⊗p∈I{ρp 7→Sp}) complete

∆;Γ⊢ (ν s : Γ
′)P;C

[TRES]

By applying [TINACT] we obtain ∆;Γ,Γ′ ⊢P;C⊗C′ with (Γ′= {s[p] : tr(ρp),ρp :
{ρp 7→Sp}}p∈I,C′=⊗p∈I{ρp 7→Sp}) complete. By applying the induction hypothesis
we obtain: ∆;Γ,Γ′,Γ1 ⊢P;C⊗C′. By applying [TINACT] we obtain our conclusion:

∆;Γ,Γ′,Γ1 ⊢P;C⊗C′

(Γ′= {s[p] : tr(ρp),ρp : {ρp 7→Sp}}p∈I,C′=⊗p∈I{ρp 7→Sp}) complete

∆;Γ,Γ1 ⊢ (ν s : Γ
′)P;C

[TRES]

• case P = c[p]⊕⟨l(v)⟩.P

1. ∆,∆′;Γ⊢c[p]⊕⟨l(v)⟩.P; C

From the premise we know that ∆;Γ⊢c[p]⊕⟨l(v)⟩.P;C.
Γ⊢ v : U ;C ∆;Γ⊢P;C′⊗{ρ 7→S j} c : tr(ρ),ρ : {ρ 7→S j} ∈ Γ j ∈ I

∆;Γ⊢c[p]⊕⟨l j(v)⟩.P;C⊗C′⊗{ρ 7→ p ⊕i∈I!li(Ui).Si}
[TSEL]

By
applying [TSEL] we obtain ∆;Γ⊢P;C′⊗{ρ 7→S j}. By applying the induction hy-
pothesis we obtain: ∆,∆′;Γ⊢P;C′⊗{ρ 7→S j}. By applying [TSEL] we obtain our
conclusion:
Γ⊢ v : U ;C ∆,∆′;Γ⊢P;C′⊗{ρ 7→S j} c : tr(ρ),ρ : {ρ 7→S j} ∈ Γ j ∈ I

∆,∆′;Γ⊢c[p]⊕⟨l j(v)⟩.P;C⊗C′⊗{ρ 7→ p ⊕i∈I!li(Ui).Si}
[TSEL]

2. ∆;Γ,Γ′⊢c[p]⊕⟨l(v)⟩.P; C

From the premise we know that ∆;Γ⊢c[p]⊕⟨l(v)⟩.P;C.
Γ⊢ v : U ;C ∆;Γ⊢P;C′⊗{ρ 7→S j} c : tr(ρ),ρ : {ρ 7→S j} ∈ Γ j ∈ I

∆;Γ⊢c[p]⊕⟨l j(v)⟩.P;C⊗C′⊗{ρ 7→ p ⊕i∈I!li(Ui).Si}
[TSEL]

By applying [TSEL] we obtain Γ⊢ v : U ;C and ∆;Γ⊢P;C′⊗{ρ 7→S j}. By applying
the induction hypothesis we obtain Γ,Γ′⊢ v : U ;C and ∆;Γ,Γ′⊢P;C′⊗{ρ 7→S j}. By
applying [TSEL] we obtain our conclusion:

Γ,Γ′⊢ v : U ;C ∆;Γ,Γ′⊢P;C′⊗{ρ 7→S j} c : tr(ρ),ρ : {ρ 7→S j} ∈ Γ j ∈ I

∆;Γ,Γ′⊢c[p]⊕⟨l j(v)⟩.P;C⊗C′⊗{ρ 7→ p ⊕i∈I!li(Ui).Si}
[TSEL]

• case P = c[p]&i∈I{li(xi).Pi}

APPENDIX A. PROOFS FOR Chapter4 117

1. ∆,∆′;Γ⊢c[p]&i∈I{li(xi).Pi}; C

From the premise we know that ∆;Γ⊢c[p]&i∈I{li(xi).Pi};C.
∆;Γ,xi : Ui ⊢Pi;C⊗Ci⊗{ρ 7→Si} c : tr(ρ),ρ : {ρ 7→Si} ∈ Γ ∀i ∈ I

∆;Γ⊢c[p]&i∈I{li(xi).Pi};C⊗{ρ 7→p &i∈I?li (Ui) .Si}
[TBR]

By applying [TBR] we obtain ∆;Γ,xi : Ui ⊢Pi;C⊗Ci⊗{ρ 7→Si}. By applying the
induction hypothesis we obtain ∆,∆′;Γ,xi : Ui ⊢Pi;C⊗Ci⊗{ρ 7→Si}. By applying
[TBR] we obtain:
∆,∆′;Γ,xi : Ui ⊢Pi;C⊗Ci⊗{ρ 7→Si} c : tr(ρ),ρ : {ρ 7→Si} ∈ Γ ∀i ∈ I

∆,∆′;Γ⊢c[p]&i∈I{li(xi).Pi};C⊗{ρ 7→p &i∈I?li (Ui) .Si}
[TBR]

2. ∆;Γ,Γ′⊢c[p]&i∈I{li(xi).Pi}; C

From the premise we know that ∆;Γ⊢c[p]&i∈I{li(xi).Pi};C.
∆;Γ,xi : Ui ⊢Pi;C⊗Ci⊗{ρ 7→Si} c : tr(ρ),ρ : {ρ 7→Si} ∈ Γ ∀i ∈ I

∆;Γ⊢c[p]&i∈I{li(xi).Pi};C⊗{ρ 7→p &i∈I?li (Ui) .Si}
[TBR]

By applying [TBR] we obtain ∆;Γ,xi : Ui ⊢Pi;C⊗Ci⊗{ρ 7→Si}. By applying the
induction hypothesis we obtain ∆;Γ,xi : Ui,Γ

′ ⊢Pi;C⊗Ci⊗{ρ 7→Si}. By applying
[TBR] we obtain:
∆;Γ,xi : Ui,Γ

′⊢Pi;C⊗Ci⊗{ρ 7→Si} c : tr(ρ),ρ : {ρ 7→Si} ∈ Γ,Γ′ ∀i ∈ I

∆;Γ,Γ′⊢c[p]&i∈I{li(xi).Pi};C⊗{ρ 7→p &i∈I?li (Ui) .Si}
[TBR]

• case P = c[p]⊕⟨l(pack(ρ,s[q]))⟩.P

1. ∆,∆′;Γ⊢c[p]⊕⟨l(pack(ρ,s[q]))⟩.P; C

From the premise we know that ∆;Γ⊢c[p]⊕⟨l(pack(ρ,s[q]))⟩.P;C.

[TSELP]

Γ⊢ v : tr(ρ ′);∅ ∆;Γ⊢P;C⊗{ρ 7→ S j,ρ
′ 7→U} c : tr(ρ),ρ : {ρ 7→S j} ∈ Γ j ∈ I

∆;Γ⊢c[p]⊕⟨l j(pack(ρ
′,v))⟩.P;C⊗{ρ 7→ p ⊕i∈I!li(∃[ρ ′|{ρ

′ 7→U}].tr(ρ ′)).Si,ρ
′ 7→U}

By applying [TSELP] we obtain ∆;Γ⊢P;C⊗{ρ 7→ S j,ρ
′ 7→U}. By applying the

induction hypothesis we obtain ∆,∆′;Γ ⊢ P;C⊗{ρ 7→ S j,ρ
′ 7→U}. By applying

[TSELP] we obtain our conclusion:
[TSELP]

Γ⊢ v : tr(ρ ′);∅ ∆,∆′;Γ⊢P;C⊗{ρ 7→ S j,ρ
′ 7→U} c : tr(ρ),ρ : {ρ 7→S j} ∈ Γ j ∈ I

∆,∆′;Γ⊢c[p]⊕⟨l j(pack(ρ
′,v))⟩.P;C⊗{ρ 7→ p ⊕i∈I!li(∃[ρ ′|{ρ

′ 7→U}].tr(ρ ′)).Si,ρ
′ 7→U}

2. ∆;Γ,Γ′⊢c[p]⊕⟨l(pack(ρ,s[q]))⟩.P; C

From the premise we know that ∆;Γ⊢c[p]⊕⟨l(pack(ρ,s[q]))⟩.P;C.

[TSELP]

Γ⊢ v : tr(ρ ′);∅ ∆;Γ⊢P;C⊗{ρ 7→ S j,ρ
′ 7→U} c : tr(ρ),ρ : {ρ 7→S j} ∈ Γ j ∈ I

∆;Γ⊢c[p]⊕⟨l j(pack(ρ
′,v))⟩.P;C⊗{ρ 7→ p ⊕i∈I!li(∃[ρ ′|{ρ

′ 7→U}].tr(ρ ′)).Si,ρ
′ 7→U}

APPENDIX A. PROOFS FOR Chapter4 118

By applying [TSELP] we obtain ∆;Γ⊢P;C⊗{ρ 7→ S j,ρ
′ 7→U} and Γ⊢ v : tr(ρ ′);∅.

By applying the induction hypothesis we obtain ∆;Γ,Γ′ ⊢P;C⊗{ρ 7→ S j,ρ
′ 7→U}

and Γ,Γ′⊢ v : tr(ρ ′);∅. By applying [TSELP] we obtain our conclusion:
[TSELP]

Γ,Γ′ ⊢ v : tr(ρ ′);∅ ∆;Γ,Γ′ ⊢P;C⊗{ρ 7→ S j,ρ
′ 7→U} c : tr(ρ),ρ : {ρ 7→S j} ∈ Γ,Γ′ j ∈ I

∆;Γ,Γ′ ⊢c[p]⊕⟨l j(pack(ρ
′,v))⟩.P;C⊗{ρ 7→ p ⊕i∈I!li(∃[ρ ′|{ρ

′ 7→U}].tr(ρ ′)).Si,ρ
′ 7→U}

• case P = c[p]&i∈I{li(pack(ρi,si[q])).Pi}

1. ∆,∆′;Γ⊢c[p]&i∈I{li(pack(ρi,si[q])).Pi}; C

From the premise we know that ∆;Γ⊢c[p]&i∈I{li(pack(ρi,si[q])).Pi}; C.
[TBRP]

∆;Γ,vi : tr(ρ i),ρi : {ρi 7→Ui}⊢Pi;C⊗{ρ 7→Si} ∀i ∈ I c : tr(ρ),ρ : {ρ 7→Si} ∈ Γ

∆;Γ⊢c[p]&i∈I{li(pack(ρi,vi)).Pi};C⊗{ρ 7→p &i∈I?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si}

By applying [TBRP] we obtain ∆;Γ,vi : tr(ρ i),ρi : {ρi 7→Ui}⊢Pi;C⊗{ρ 7→Si}. By
applying the induction hypothesis we obtain ∆,∆′;Γ,vi : tr(ρ i),ρi : {ρi 7→Ui} ⊢
Pi;C⊗{ρ 7→Si}. By applying [TBRP] we obtain our conclusion:
[TBRP]

∆,∆′;Γ,vi : tr(ρ i),ρi : {ρi 7→Ui}⊢Pi;C⊗{ρ 7→Si} ∀i ∈ I c : tr(ρ),ρ : {ρ 7→Si} ∈ Γ

∆,∆′;Γ⊢c[p]&i∈I{li(pack(ρi,vi)).Pi};C⊗{ρ 7→p &i∈I?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si}

2. ∆;Γ,Γ′⊢c[p]&i∈I{li(pack(ρi,si[q])).Pi}; C

From the premise we know that ∆;Γ⊢c[p]&i∈I{li(pack(ρi,si[q])).Pi}; C.
[TBRP]

∆;Γ,vi : tr(ρ i),ρi : {ρi 7→Ui}⊢Pi;C⊗{ρ 7→Si} ∀i ∈ I c : tr(ρ),ρ : {ρ 7→Si} ∈ Γ

∆;Γ⊢c[p]&i∈I{li(pack(ρi,vi)).Pi};C⊗{ρ 7→p &i∈I?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si}

By applying [TBRP] we obtain ∆;Γ,vi : tr(ρ i),ρi : {ρi 7→Ui}⊢Pi;C⊗{ρ 7→Si}. By
applying the induction hypothesis we obtain ∆;Γ,Γ′,vi : tr(ρ i),ρi : {ρi 7→Ui} ⊢
Pi;C⊗{ρ 7→Si}. By applying [TBRP] we obtain our conclusion:
[TBRP]

∆;Γ,Γ′,vi : tr(ρ i),ρi : {ρi 7→Ui}⊢Pi;C⊗{ρ 7→Si} ∀i ∈ I c : tr(ρ),ρ : {ρ 7→Si} ∈ Γ,Γ′

∆;Γ,Γ′ ⊢c[p]&i∈I{li(pack(ρi,vi)).Pi};C⊗{ρ 7→p &i∈I?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si}

• def D in P

1. ∆,∆′;Γ⊢def D in P; C

From the premise we know that ∆;Γ⊢def D in P; C.
∆,X :Ũ ; x̃ :Ũ ⊢P;C̃ ∆,X :Ũ ;Γ⊢Q;C

∆;Γ⊢def X⟨x̃ :Ũ⟩= P;C̃ in Q;C
[TDEF]

By applying [TDEF] we obtain ∆,X :Ũ ; x̃ :Ũ ⊢P;C̃ and ∆,X :Ũ ;Γ⊢Q;C. By applying
the induction hypothesis we obtain ∆,X :Ũ ,∆′; x̃ :Ũ ⊢P;C̃ and ∆,X :Ũ ,∆′;Γ⊢Q;C.
By applying [TDEF] we obtain our conclusion:

APPENDIX A. PROOFS FOR Chapter4 119

∆,X :Ũ ,∆′; x̃ :Ũ ⊢P;C̃ ∆,X :Ũ ,∆′;Γ⊢Q;C

∆,∆′;Γ⊢def X⟨x̃ :Ũ⟩= P;C̃ in Q;C
[TDEF]

2. ∆;Γ,Γ′⊢def D in P; C

From the premise we know that ∆;Γ⊢def D in P; C.
∆,X :Ũ ; x̃ :Ũ ⊢P;C̃ ∆,X :Ũ ;Γ⊢Q;C

∆;Γ⊢def X⟨x̃ :Ũ⟩= P;C̃ in Q;C
[TDEF]

By applying [TDEF] we obtain ∆,X :Ũ ;Γ⊢Q;C. By applying the induction hypothesis
we obtain ∆,X :Ũ ;Γ,Γ′⊢Q;C. By applying [TDEF] we obtain our conclusion:
∆,X :Ũ ; x̃ :Ũ ⊢P;C̃ ∆,X :Ũ ;Γ,Γ′⊢Q;C

∆,∆′;Γ,Γ′⊢def X⟨x̃ :Ũ⟩= P;C̃ in Q;C
[TDEF]

• P = X⟨x̃⟩

1. ∆,∆′;Γ⊢X⟨x̃⟩; C

By applying [TCALL] we obtain our conclusion:
[TCALL]

∀i ∈ {1..n} Γ⊢ vi :Ui;Ci

∆,X : U1, . . . ,Un,∆
′;Γ⊢X⟨v1, . . . ,vn⟩;C1⊗. . .⊗Cn

2. ∆;Γ,Γ′⊢X⟨x̃⟩; C

From the premise we know that ∆;Γ⊢X⟨x̃⟩; C.
[TCALL]

∀i ∈ {1..n} Γ⊢ vi :Ui;Ci

∆,X : U1, . . . ,Un;Γ⊢X⟨v1, . . . ,vn⟩;C1⊗. . .⊗Cn

By applying [TCALL] we obtain Γ⊢ vi :Ui;Ci. By applying the induction hypothesis
we obtain Γ,Γ′⊢ vi :Ui;Ci. By applying [TCALL] we obtain our conclusion:
[TCALL]

∀i ∈ {1..n} Γ,Γ′⊢ vi :Ui;Ci

∆,X : U1, . . . ,Un;Γ,Γ′⊢X⟨v1, . . . ,vn⟩;C1⊗. . .⊗Cn

Proposition 4.5.2 (Strengthening). For any multiparty session process P:

1. if ∆,∆′;Γ⊢P; C and ∆′ /∈ fpv(P) then ∆;Γ⊢P; C.

2. if ∆;Γ,Γ′⊢P; C and Γ′ /∈ fv(P) and Γ′ /∈C, then ∆;Γ⊢P; C.

Proof of Proposition 4.5.2. By induction on typing derivations, with a case analysis on the last
rule applied.

• case P = 0 By applying [TINACT] on ∆;Γ⊢P; C.

• case P = P |Q

APPENDIX A. PROOFS FOR Chapter4 120

1. ∆,∆′;Γ⊢P |Q; C.

Let C =C1 ⊗C2.
∆,∆′;Γ⊢P;C1 ∆,∆′;Γ⊢Q;C2

∆,∆′;Γ⊢P |Q;C1⊗C2
[TPAR]

By applying [TPAR] we obtain ∆,∆′;Γ⊢P;C1, respectively ∆,∆′;Γ⊢Q;C2. By apply-
ing the inductive hypothesis on these two we obtain ∆;Γ⊢P;C1 and ∆;Γ⊢Q;C2. By
applying [TPAR] we obtain our conclusion:

∆;Γ⊢P;C1 ∆;Γ⊢Q;C2

∆;Γ⊢P |Q;C1⊗C2
[TPAR]

2. ∆;Γ,Γ′⊢P |Q; C.

Let C =C1 ⊗C2.

∆;Γ,Γ′⊢P;C1 ∆;Γ,Γ′⊢Q;C2

∆;Γ,Γ′⊢P |Q;C1⊗C2
[TPAR]

By applying [TPAR] we obtain ∆;Γ,Γ′⊢P;C1, respectively ∆;Γ,Γ′⊢Q;C2. By apply-
ing the inductive hypothesis on these two we obtain ∆;Γ⊢P;C1 and ∆;Γ⊢Q;C2. By
applying [TPAR] we obtain our conclusion:
∆;Γ⊢P;C1 ∆;Γ⊢Q;C2

∆;Γ⊢P |Q;C1⊗C2
[TPAR]

• case P = (ν s)P

1. ∆,∆′;Γ⊢ (ν s)P; C
[TRES]

∆,∆′;Γ,Γ′⊢P;C⊗C′

(Γ′= {s[p] : tr(ρp),ρp : {ρp 7→Sp}}p∈I,C′=⊗p∈I{ρp 7→Sp}) complete

∆,∆′;Γ⊢ (ν s : Γ
′)P;C

By applying [TRES] we obtain ∆,∆′;Γ,Γ′ ⊢P;C⊗C′. By applying the induction hy-
pothesis we obtain: ∆;Γ,Γ′⊢P;C⊗C′. By applying [TRES] we obtain our conclusion:
[TRES]

∆;Γ,Γ′⊢P;C⊗C′

(Γ′= {s[p] : tr(ρp),ρp : {ρp 7→Sp}}p∈I,C′=⊗p∈I{ρp 7→Sp}) complete

∆;Γ⊢ (ν s : Γ
′)P;C

2. ∆;Γ,Γ1 ⊢ (ν s)P; C
[TRES]

∆;Γ,Γ′,Γ1 ⊢P;C⊗C′

(Γ′= {s[p] : tr(ρp),ρp : {ρp 7→Sp}}p∈I,C′=⊗p∈I{ρp 7→Sp}) complete

∆;Γ,Γ1 ⊢ (ν s : Γ
′)P;C

By applying [TRES] we obtain ∆;Γ,Γ′,Γ1 ⊢P;C⊗C′ with (Γ′= {s[p] : tr(ρp),ρp :
{ρp 7→Sp}}p∈I,C′=⊗p∈I{ρp 7→Sp}) complete. By applying the induction hypothesis
we obtain: ∆;Γ,Γ′⊢P;C⊗C′. By applying [TRES] we obtain our conclusion:

APPENDIX A. PROOFS FOR Chapter4 121

[TRES]

∆;Γ,Γ′⊢P;C⊗C′

(Γ′= {s[p] : tr(ρp),ρp : {ρp 7→Sp}}p∈I,C′=⊗p∈I{ρp 7→Sp}) complete

∆;Γ⊢ (ν s : Γ
′)P;C

• case P = c[p]⊕⟨l(v)⟩.P

1. ∆,∆′;Γ⊢c[p]⊕⟨l(v)⟩.P; C
Γ⊢ v : U ;C ∆,∆′;Γ⊢P;C′⊗{ρ 7→S j} c : tr(ρ),ρ : {ρ 7→S j} ∈ Γ j ∈ I

∆,∆′;Γ⊢c[p]⊕⟨l j(v)⟩.P;C⊗C′⊗{ρ 7→ p ⊕i∈I!li(Ui).Si}
[TSEL]

By applying [TSEL] we obtain ∆,∆′;Γ⊢P;C′⊗{ρ 7→S j}. By applying the induction
hypothesis we obtain:∆;Γ ⊢ P;C′⊗{ρ 7→S j}. By applying [TSEL] we obtain our
conclusion:
Γ⊢ v : U ;C ∆;Γ⊢P;C′⊗{ρ 7→S j} c : tr(ρ),ρ : {ρ 7→S j} ∈ Γ j ∈ I

∆;Γ⊢c[p]⊕⟨l j(v)⟩.P;C⊗C′⊗{ρ 7→ p ⊕i∈I!li(Ui).Si}
[TSEL]

2. ∆;Γ,Γ′⊢c[p]⊕⟨l(v)⟩.P; C

Γ,Γ′⊢ v : U ;C ∆;Γ,Γ′⊢P;C′⊗{ρ 7→S j} c : tr(ρ),ρ : {ρ 7→S j} ∈ Γ j ∈ I

∆;Γ,Γ′⊢c[p]⊕⟨l j(v)⟩.P;C⊗C′⊗{ρ 7→ p ⊕i∈I!li(Ui).Si}
[TSEL]

By applying [TSEL] we obtain Γ,Γ′ ⊢ v : U ;C and ∆;Γ,Γ′ ⊢ P;C′⊗{ρ 7→S j}. By
applying the induction hypothesis we obtain Γ⊢ v : U ;C and ∆;Γ⊢P;C′⊗{ρ 7→S j}.
By applying [TSEL] we obtain our conclusion:

Γ⊢ v : U ;C ∆;Γ⊢P;C′⊗{ρ 7→S j} c : tr(ρ),ρ : {ρ 7→S j} ∈ Γ j ∈ I

∆;Γ⊢c[p]⊕⟨l j(v)⟩.P;C⊗C′⊗{ρ 7→ p ⊕i∈I!li(Ui).Si}
[TSEL]

• case P = c[p]&i∈I{li(xi).Pi}

1. ∆,∆′;Γ⊢c[p]&i∈I{li(xi).Pi}; C
∆,∆′;Γ,xi : Ui ⊢Pi;C⊗Ci⊗{ρ 7→Si} c : tr(ρ),ρ : {ρ 7→Si} ∈ Γ ∀i ∈ I

∆,∆′;Γ⊢c[p]&i∈I{li(xi).Pi};C⊗{ρ 7→p &i∈I?li (Ui) .Si}
[TBR]

By applying [TBR] we obtain ∆,∆′;Γ,xi : Ui ⊢Pi;C⊗Ci⊗{ρ 7→Si}. By applying the
induction hypothesis we obtain ∆;Γ,xi : Ui ⊢Pi;C⊗Ci⊗{ρ 7→Si}. By applying [TBR]

we obtain:
∆;Γ,xi : Ui ⊢Pi;C⊗Ci⊗{ρ 7→Si} c : tr(ρ),ρ : {ρ 7→Si} ∈ Γ ∀i ∈ I

∆;Γ⊢c[p]&i∈I{li(xi).Pi};C⊗{ρ 7→p &i∈I?li (Ui) .Si}
[TBR]

2. ∆;Γ,Γ′⊢c[p]&i∈I{li(xi).Pi}; C
∆;Γ,xi : Ui,Γ

′⊢Pi;C⊗Ci⊗{ρ 7→Si} c : tr(ρ),ρ : {ρ 7→Si} ∈ Γ,Γ′ ∀i ∈ I

∆;Γ,Γ′⊢c[p]&i∈I{li(xi).Pi};C⊗{ρ 7→p &i∈I?li (Ui) .Si}
[TBR]

APPENDIX A. PROOFS FOR Chapter4 122

By applying [TBR] we obtain ∆;Γ,xi : Ui,Γ
′ ⊢Pi;C⊗Ci⊗{ρ 7→Si}. By applying the

induction hypothesis we obtain ∆;Γ,xi : Ui ⊢Pi;C⊗Ci⊗{ρ 7→Si}. By applying [TBR]

we obtain:
∆;Γ,xi : Ui ⊢Pi;C⊗Ci⊗{ρ 7→Si} c : tr(ρ),ρ : {ρ 7→Si} ∈ Γ ∀i ∈ I

∆;Γ⊢c[p]&i∈I{li(xi).Pi};C⊗{ρ 7→p &i∈I?li (Ui) .Si}
[TBR]

• case P = c[p]⊕⟨l(pack(ρ,s[q]))⟩.P

1. ∆,∆′;Γ⊢c[p]⊕⟨l(pack(ρ,s[q]))⟩.P; C
[TSELP]

Γ⊢ v : tr(ρ ′);∅ ∆,∆′;Γ⊢P;C⊗{ρ 7→ S j,ρ
′ 7→U} c : tr(ρ),ρ : {ρ 7→S j} ∈ Γ j ∈ I

∆,∆′;Γ⊢c[p]⊕⟨l j(pack(ρ
′,v))⟩.P;C⊗{ρ 7→ p ⊕i∈I!li(∃[ρ ′|{ρ

′ 7→U}].tr(ρ ′)).Si,ρ
′ 7→U}

By applying [TSELP] we obtain ∆,∆′;Γ⊢P;C⊗{ρ 7→ S j,ρ
′ 7→U}. By applying the

induction hypothesis we obtain ∆;Γ⊢P;C⊗{ρ 7→ S j,ρ
′ 7→U}. By applying [TSELP]

we obtain our conclusion:
[TSELP]

Γ⊢ v : tr(ρ ′);∅ ∆;Γ⊢P;C⊗{ρ 7→ S j,ρ
′ 7→U} c : tr(ρ),ρ : {ρ 7→S j} ∈ Γ j ∈ I

∆;Γ⊢c[p]⊕⟨l j(pack(ρ
′,v))⟩.P;C⊗{ρ 7→ p ⊕i∈I!li(∃[ρ ′|{ρ

′ 7→U}].tr(ρ ′)).Si,ρ
′ 7→U}

2. ∆;Γ,Γ′⊢c[p]⊕⟨l(pack(ρ,s[q]))⟩.P; C
[TSELP]

Γ,Γ′ ⊢ v : tr(ρ ′);∅ ∆;Γ,Γ′ ⊢P;C⊗{ρ 7→ S j,ρ
′ 7→U} c : tr(ρ),ρ : {ρ 7→S j} ∈ Γ,Γ′ j ∈ I

∆;Γ,Γ′ ⊢c[p]⊕⟨l j(pack(ρ
′,v))⟩.P;C⊗{ρ 7→ p ⊕i∈I!li(∃[ρ ′|{ρ

′ 7→U}].tr(ρ ′)).Si,ρ
′ 7→U}

By applying [TSELP] we obtain ∆;Γ,Γ′ ⊢ P;C⊗{ρ 7→ S j,ρ
′ 7→U} and Γ,Γ′ ⊢ v :

tr(ρ ′);∅. By applying the induction hypothesis we obtain ∆;Γ⊢P;C⊗{ρ 7→ S j,ρ
′ 7→U}

and Γ⊢ v : tr(ρ ′);∅. By applying [TSELP] we obtain our conclusion:
[TSELP]

Γ⊢ v : tr(ρ ′);∅ ∆;Γ⊢P;C⊗{ρ 7→ S j,ρ
′ 7→U} c : tr(ρ),ρ : {ρ 7→S j} ∈ Γ j ∈ I

∆;Γ⊢c[p]⊕⟨l j(pack(ρ
′,v))⟩.P;C⊗{ρ 7→ p ⊕i∈I!li(∃[ρ ′|{ρ

′ 7→U}].tr(ρ ′)).Si,ρ
′ 7→U}

• case P = c[p]&i∈I{li(pack(ρi,si[q])).Pi}

1. ∆,∆′;Γ⊢c[p]&i∈I{li(pack(ρi,si[q])).Pi}; C
[TBRP]

∆,∆′;Γ,vi : tr(ρ i),ρi : {ρi 7→Ui}⊢Pi;C⊗{ρ 7→Si} ∀i ∈ I c : tr(ρ),ρ : {ρ 7→Si} ∈ Γ

∆,∆′;Γ⊢c[p]&i∈I{li(pack(ρi,vi)).Pi};C⊗{ρ 7→p &i∈I?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si}

By applying [TBRP] we obtain ∆,∆′;Γ,vi : tr(ρ i),ρi : {ρi 7→Ui}⊢Pi;C⊗{ρ 7→Si}.
By applying the induction hypothesis we obtain ∆;Γ,vi : tr(ρ i),ρi : {ρi 7→Ui} ⊢
Pi;C⊗{ρ 7→Si}. By applying [TBRP] we obtain our conclusion:
[TBRP]

∆;Γ,vi : tr(ρ i),ρi : {ρi 7→Ui}⊢Pi;C⊗{ρ 7→Si} ∀i ∈ I c : tr(ρ),ρ : {ρ 7→Si} ∈ Γ

∆;Γ⊢c[p]&i∈I{li(pack(ρi,vi)).Pi};C⊗{ρ 7→p &i∈I?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si}

APPENDIX A. PROOFS FOR Chapter4 123

2. ∆;Γ,Γ′⊢c[p]&i∈I{li(pack(ρi,si[q])).Pi}; C
[TBRP]

∆;Γ,Γ′,vi : tr(ρ i),ρi : {ρi 7→Ui}⊢Pi;C⊗{ρ 7→Si} ∀i ∈ I c : tr(ρ),ρ : {ρ 7→Si} ∈ Γ,Γ′

∆;Γ,Γ′ ⊢c[p]&i∈I{li(pack(ρi,vi)).Pi};C⊗{ρ 7→p &i∈I?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si}

By applying [TBRP] we obtain ∆;Γ,Γ′,vi : tr(ρ i),ρi : {ρi 7→Ui}⊢Pi;C⊗{ρ 7→Si}.
By applying the induction hypothesis we obtain ∆;Γ,vi : tr(ρ i),ρi : {ρi 7→Ui} ⊢
Pi;C⊗{ρ 7→Si}. By applying [TBRP] we obtain our conclusion:
[TBRP]

∆;Γ,vi : tr(ρ i),ρi : {ρi 7→Ui}⊢Pi;C⊗{ρ 7→Si} ∀i ∈ I c : tr(ρ),ρ : {ρ 7→Si} ∈ Γ

∆;Γ⊢c[p]&i∈I{li(pack(ρi,vi)).Pi};C⊗{ρ 7→p &i∈I?li(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si}

• def D in P

1. ∆,∆′;Γ⊢def D in P; C
∆,X :Ũ ,∆′; x̃ :Ũ ⊢P;C̃ ∆,X :Ũ ,∆′;Γ⊢Q;C

∆,∆′;Γ⊢def X⟨x̃ :Ũ⟩= P;C̃ in Q;C
[TDEF]

By applying [TDEF] we obtain ∆,X :Ũ ,∆′; x̃ :Ũ ⊢P;C̃ and ∆,X :Ũ ,∆′;Γ⊢Q;C. By
applying the induction hypothesis we obtain ∆,X :Ũ ; x̃ :Ũ ⊢P;C̃ and ∆,X :Ũ ;Γ⊢Q;C.
By applying [TDEF] we obtain our conclusion:
∆,X :Ũ ; x̃ :Ũ ⊢P;C̃ ∆,X :Ũ ;Γ⊢Q;C

∆;Γ⊢def X⟨x̃ :Ũ⟩= P;C̃ in Q;C
[TDEF]

2. ∆;Γ,Γ′⊢def D in P; C
∆,X :Ũ ; x̃ :Ũ ⊢P;C̃ ∆,X :Ũ ;Γ,Γ′⊢Q;C

∆,∆′;Γ,Γ′⊢def X⟨x̃ :Ũ⟩= P;C̃ in Q;C
[TDEF]

By applying [TDEF] we obtain ∆,X :Ũ ;Γ,Γ′⊢Q;C. By applying the induction hypoth-
esis we obtain ∆,X :Ũ ;Γ⊢Q;C. By applying [TDEF] we obtain our conclusion:
∆,X :Ũ ; x̃ :Ũ ⊢P;C̃ ∆,X :Ũ ;Γ⊢Q;C

∆;Γ⊢def X⟨x̃ :Ũ⟩= P;C̃ in Q;C
[TDEF]

• P = X⟨x̃⟩

1. ∆,∆′;Γ⊢X⟨x̃⟩; C

By applying [TCALL] we obtain our conclusion:
[TCALL]

∀i ∈ {1..n} Γ⊢ vi :Ui;Ci

∆,X : U1, . . . ,Un;Γ⊢X⟨v1, . . . ,vn⟩;C1⊗. . .⊗Cn

2. ∆;Γ,Γ′⊢X⟨x̃⟩; C
[TCALL]

∀i ∈ {1..n} Γ,Γ′⊢ vi :Ui;Ci

∆,X : U1, . . . ,Un;Γ,Γ′⊢X⟨v1, . . . ,vn⟩;C1⊗. . .⊗Cn By applying [TCALL] we obtain
Γ,Γ′ ⊢ vi :Ui;Ci. By applying the induction hypothesis we obtain Γ⊢ vi :Ui;Ci. By

APPENDIX A. PROOFS FOR Chapter4 124

applying [TCALL] we obtain our conclusion:
[TCALL]

∀i ∈ {1..n} Γ⊢ vi :Ui;Ci

∆,X : U1, . . . ,Un;Γ⊢X⟨v1, . . . ,vn⟩;C1⊗. . .⊗Cn

Proposition A.1.1. If ∆;Γ⊢P; C and there exists C′ such that C′ terminated and C and C′ are

disjoint then ∆;Γ⊢P; C⊗C′.

Proof of Proposition A.1.1. By induction on typing derivations, with a case analysis on the last
rule applied.

Proposition 4.5.3. For all multiparty session processes P,P′ if ∆;Γ⊢P; C and P ≡ P′, then

∆;Γ⊢P′; C.

Proof of Proposition 4.5.3. The proof proceeds by induction on the structural congruence ≡.

• P |0 ≡ P Left to right we have ∆; Γ⊢P |0; C and P |0 ≡ P.

∆; Γ⊢P; C1

C2 terminated

∆; Γ⊢0; C2
[TINACT]

∆; Γ⊢P |0; C =C1⊗C2
[TPAR]

Since C2 terminated and C2 and C1 are disjoint then by Proposition A.1.1 we have: ∆; Γ⊢
P; C1⊗C2.

Right to left we have ∆; Γ⊢P; C and P |0 ≡ P. From [TINACT] we know: ∆; Γ⊢0;∅.

∆; Γ⊢P; C ∆; Γ⊢0;∅

∆; Γ⊢P |0; C
[TPAR]

• P |Q ≡ Q |P Left to right we have: ∆; Γ⊢P |Q; C1⊗C2 and P |Q ≡ Q |P.

∆; Γ⊢P; C1 ∆; Γ⊢Q; C2

∆; Γ⊢P |Q; C1⊗C2
[TPAR]

By applying [TPAR] to the two premises we get:

∆; Γ⊢Q; C2 ∆; Γ⊢P; C1

∆; Γ⊢Q |P; C2⊗C1
[TPAR]

C1⊗C2 =C2⊗C1.

Right to left we have ∆; Γ⊢Q |P; C2⊗C1 and P |Q ≡ Q |P.

∆; Γ⊢Q; C2 ∆; Γ⊢P; C1

∆; Γ⊢Q |P; C2⊗C1
[TPAR]

APPENDIX A. PROOFS FOR Chapter4 125

By applying [TPAR] to the two premises we get:

∆; Γ⊢P; C1 ∆; Γ⊢Q; C2

∆; Γ⊢P |Q; C1⊗C2
[TPAR]

C2⊗C1 =C1⊗C2.

• (P |Q) |R ≡ P(Q |R) Left to right we have: ∆; Γ⊢ (P |Q) |R;(C1⊗C2)⊗C3 and (P |Q) |R ≡
P(Q |R).

∆; Γ⊢P; C1 ∆; Γ⊢Q; C2

∆; Γ⊢P |Q; C1⊗C2
[TPAR]

∆; Γ⊢R;C3

∆; Γ⊢ (P |Q) |R;(C1⊗C2)⊗C3
[TPAR]

By applying [TPAR] to the three premises we get:

∆; Γ⊢P; C1

∆; Γ⊢Q; C2 ∆; Γ⊢R;C3

∆; Γ⊢Q |R; C2⊗C3
[TPAR]

∆; Γ⊢P(Q |R); C1⊗(C2⊗C3)
[TPAR]

(C1⊗C2)⊗C3 =C1⊗(C2⊗C3).

Right to left we have ∆; Γ⊢P(Q |R); C1⊗(C2⊗C3).

∆; Γ⊢P; C1

∆; Γ⊢Q; C2 ∆; Γ⊢R;C3

∆; Γ⊢Q |R; C2⊗C3
[TPAR]

∆; Γ⊢P(Q |R); C1⊗(C2⊗C3)
[TPAR]

By applying [TPAR] to the three premises we get:

∆; Γ⊢P; C1 ∆; Γ⊢Q; C2

∆; Γ⊢P |Q; C1⊗C2
[TPAR]

∆; Γ⊢R;C3

∆; Γ⊢ (P |Q) |R;(C1⊗C2)⊗C3
[TPAR]

C1⊗(C2⊗C3) = (C1⊗C2)⊗C3.

• (ν s)0 ≡ 0 Left to right we have: ∆; Γ⊢ (ν s)0; C and (ν s)0 ≡ 0. By inversion on [TRES] and
[TINACT] we obtain C terminated.

From [TINACT] we have ∆; Γ⊢0; C.

Right to left we have ∆; Γ⊢0; C and (ν s)0 ≡ 0. From [TINACT] we have C terminated.

(Γ′={s[p] : tr(ρp),ρp : {ρp 7→Sp}}p∈I,C′=⊗p∈I{ρp 7→Sp})

C⊗C′ terminated

∆; Γ,Γ′⊢0; C⊗C′
[TINACT]

∆; Γ⊢ (ν s : Γ
′)0; C

[TRES]

• (ν s)(ν s′)P ≡ (ν s′)(ν s)P

APPENDIX A. PROOFS FOR Chapter4 126

Left to right: We construct the derivation for (ν s)(ν s′)P.

∆; Γ,Γ′,Γ′′⊢P; C⊗C′⊗C′′

Γ
′′ = {s′[p′

i] : tr(ρ ′
i),ρp′ : {ρp′ 7→Sp′}}i∈I,C′′ =⊗p′∈I{ρp′ 7→Sp′}

∆; Γ,Γ′⊢ (ν s′ : Γ
′′)P; C⊗C′

[TRES]

···· (Γ′ = {s[p] : tr(ρp),ρp : {ρp 7→Sp}}p∈I,C′ =⊗p∈I{ρp 7→Sp})

∆; Γ⊢ (ν s : Γ
′)(ν s′ : Γ

′′)P; C
[TRES]

By rearranging:

∆; Γ,Γ′,Γ′′⊢P; C⊗C′⊗C′′

(Γ′ = {s[p] : tr(ρp),ρp : {ρp 7→Sp}}p∈I,C′ =⊗p∈I{ρp 7→Sp})

∆; Γ,Γ′′⊢ (ν s : Γ
′)P; C⊗C′′

[TRES]

···· Γ
′′ = {s′[p′

i] : tr(ρ ′
i),ρp′ : {ρp′ 7→Sp′}}i∈I,C′′ =⊗p′∈I{ρp′ 7→Sp′}

∆; Γ⊢ (ν s′ : Γ
′′)(ν s : Γ

′)P; C
[TRES]

Right to left:

∆; Γ,Γ′,Γ′′⊢P; C⊗C′⊗C′′

(Γ′ = {s[p] : tr(ρp),ρp : {ρp 7→Sp}}p∈I,C′ =⊗p∈I{ρp 7→Sp})

∆; Γ,Γ′′⊢ (ν s : Γ
′)P; C⊗C′′

[TRES]

···· Γ
′′ = {s′[p′] : tr(ρ ′

p′),ρp′ : {ρp′ 7→Sp′}}p′∈I,C
′′⊗p′∈I{ρp′ 7→Sp′}

∆; Γ⊢ (ν s′ : Γ
′′)(ν s : Γ

′)P; C
[TRES]

By rearranging the premises:

∆; Γ,Γ′,Γ′′⊢P; C⊗C′⊗C′′

Γ
′′ = {s′[p′

i] : tr(ρ ′
i),ρp′ : {ρp′ 7→Sp′}}i∈I,C′′ =⊗p′∈I{ρp′ 7→Sp′}

∆; Γ,Γ′⊢ (ν s′ : Γ
′′)P; C⊗C′

[TRES]

···· (Γ′ = {s[p] : tr(ρp),ρp : {ρp 7→Sp}}p∈I,C′ =⊗p∈I{ρp 7→Sp})

∆; Γ⊢ (ν s : Γ
′)(ν s′ : Γ

′′)P; C
[TRES]

• (ν s)P |Q ≡ (ν s)(P |Q) if s ̸∈ fc(Q)

APPENDIX A. PROOFS FOR Chapter4 127

Left to right:

[TRES]

∆; Γ,Γ′⊢P; C1⊗C′

(Γ′ = {s[p] : tr(ρp),ρp : {ρp 7→Sp}}p∈I,C′ =⊗p∈I{ρp 7→Sp})

∆; Γ⊢ (ν s : Γ
′)P; C1 ∆; Γ⊢Q; C2

∆; Γ⊢ (ν s : Γ
′)P |Q; C1⊗C2

[TPAR]

By Proposition 4.5.1, ∆; Γ⊢Q; C2 with Γ′ we obtain ∆; Γ,Γ′⊢Q; C2.

∆; Γ,Γ′⊢P; C1⊗C′
∆; Γ,Γ′⊢Q; C2

∆; Γ,Γ′⊢P |Q; C1⊗C2⊗C′
[TPAR]

···· (Γ′ = {s[p] : tr(ρp),ρp : {ρp 7→Sp}}p∈I,C′ =⊗p∈I{ρp 7→Sp})

∆; Γ⊢ (ν s : Γ
′)(P |Q); C1⊗C2

[TRES]

• def X⟨x̃ : Ũ⟩= QX in 0 ≡ 0

Left to right: From the induction hypothesis we have ∆; Γ⊢def X⟨x̃ : Ũ⟩= QX in 0; C.

∆,X : Ũ ; x̃ : Ũ ⊢QX ; C̃

C terminated

∆,X : Ũ ;Γ⊢0; C
[TINACT]

∆; Γ⊢def X⟨x̃ : Ũ⟩= QX in 0; C
[TDEF]

From [TINACT]: ∆; Γ⊢0;C′ and C′ terminated. Since both C and C′ are terminated then C =C′.

Right to left: From the induction hypothesis we have : ∆; Γ⊢0; C. From [TINACT] we obtain
C terminated. We construct the derivation for process: def X⟨x̃ : Ũ⟩= QX in 0.

∆,X : Ũ ; x̃ : Ũ ⊢QX ; C̃

C′ terminated

∆,X : Ũ ;Γ⊢0;C′
[TINACT]

∆; Γ⊢def X⟨x̃ : Ũ⟩= QX in 0;C′
[TDEF]

Since both C and C′ are terminated then C =C′.

• def X⟨x̃ : Ũ⟩= QX in (ν s)P ≡ (ν s)(def X⟨x̃ : Ũ⟩= QX in P) s ̸∈ fc(Q)

Left to right: From the induction hypothesis: ∆; Γ⊢def X⟨x̃ : Ũ⟩= QX in (ν s : Γ′)P; C. We

APPENDIX A. PROOFS FOR Chapter4 128

construct the derivation for this:

∆,X : Ũ ; x̃ : Ũ ⊢QX ; C̃

[TRES]

∆,X : Ũ ;Γ,Γ′⊢P; C⊗C′

(Γ′ = {s[p] : tr(ρp),ρp : {ρp 7→Sp}}p∈I,C′ =⊗p∈I{ρp 7→Sp})

∆,X : Ũ ;Γ⊢ (ν s : Γ
′)P; C

∆; Γ⊢def X⟨x̃ : Ũ⟩= QX in (ν s : Γ
′)P; C

[TDEF]

By rearranging the premises:

∆,X : Ũ ;Γ,Γ′⊢P; C⊗C′
∆,X : Ũ ; x̃ : Ũ ⊢QX ; C̃

∆; Γ,Γ′⊢def X⟨x̃ : Ũ⟩= QX in P; C⊗C′
[TDEF]

···· (Γ′ = {s[p] : tr(ρp),ρp : {ρp 7→Sp}}p∈I,C′ =⊗p∈I{ρp 7→Sp})

∆; Γ⊢ (ν s : Γ
′)def X⟨x̃ : Ũ⟩= QX in P; C

[TRES]

Right to left:

∆,X : Ũ ;Γ,Γ′⊢P; C⊗C′
∆,X : Ũ ; x̃ : Ũ ⊢QX ; C̃

∆; Γ,Γ′⊢def X⟨x̃ : Ũ⟩= QX in P; C⊗C′
[TDEF]

···· (Γ′ = {s[p] : tr(ρp),ρp : {ρp 7→Sp}}p∈I,C′ =⊗p∈I{ρp 7→Sp})

∆; Γ⊢ (ν s : Γ
′)def X⟨x̃ : Ũ⟩= QX in P; C

[TRES]

By rearranging the premises:

∆,X : Ũ ; x̃ : Ũ ⊢QX ; C̃

[TRES]

∆,X : Ũ ;Γ,Γ′⊢P; C⊗C′

(Γ′ = {s[p] : tr(ρp),ρp : {ρp 7→Sp}}p∈I,C′ =⊗p∈I{ρp 7→Sp})

∆,X : Ũ ;Γ⊢ (ν s : Γ
′)P; C

∆; Γ⊢def X⟨x̃ : Ũ⟩= QX in (ν s : Γ
′)P; C

[TDEF]

• def X⟨x̃ : Ũ⟩= QX in P |Q ≡ (def X⟨x̃ : Ũ⟩= QX in P) |Q

Left to right:

From the induction hypothesis: ∆; Γ ⊢ def X⟨x̃ : Ũ⟩ = QX in P |Q; C. We construct the
derivation for the process:

∆,X : Ũ ; x̃ : Ũ ⊢QX ; C̃

∆,X : Ũ ;Γ⊢P; C1 ∆,X : Ũ ;Γ⊢Q; C2

∆,X : Ũ ;Γ⊢P |Q; C =C1⊗C2
[TPAR]

∆; Γ⊢def X⟨x̃ : Ũ⟩= QX in P |Q; C
[TDEF]

APPENDIX A. PROOFS FOR Chapter4 129

By rearranging the premises:

∆,X : Ũ ; x̃ : Ũ ⊢QX ; C̃ ∆,X : Ũ ;Γ⊢P; C1

∆,X : Ũ ;Γ⊢def X⟨x̃ : Ũ⟩= QX in P; C1
[TDEF]

∆,X : Ũ ;Γ⊢Q; C2

∆; Γ⊢ (def X⟨x̃ : Ũ⟩= QX in P) |Q; C
[TPAR]

Right to left:

From the induction hypothesis: ∆; Γ⊢ (def X⟨x̃ : Ũ⟩ = QX in P) |Q; C. We construct the
derivation for the process:

∆,X : Ũ ; x̃ : Ũ ⊢QX ; C̃ ∆,X : Ũ ;Γ⊢P; C1

∆,X : Ũ ;Γ⊢def X⟨x̃ : Ũ⟩= QX in P; C1
[TDEF]

∆,X : Ũ ;Γ⊢Q; C2

∆; Γ⊢ (def X⟨x̃ : Ũ⟩= QX in P) |Q; C
[TPAR]

By rearranging the premises:

∆,X : Ũ ; x̃ : Ũ ⊢QX ; C̃

∆,X : Ũ ;Γ⊢P; C1 ∆,X : Ũ ;Γ⊢Q; C2

∆,X : Ũ ;Γ⊢P |Q; C =C1⊗C2
[TPAR]

∆; Γ⊢def X⟨x̃ : Ũ⟩= QX in P |Q; C
[TDEF]

• def X⟨x̃ : Ũ⟩= QX in def Y ⟨ỹ : Ũ⟩= QY in P ≡ def Y ⟨ỹ : Ũ⟩= QY in def X⟨x̃ : Ũ⟩= QX in P

Left to right: From the induction hypothesis: ∆; Γ⊢def X⟨x̃ : Ũ⟩= QX in def Y ⟨ỹ : Ũ⟩= QY in
P; C. We provide the derivation for this process:

∆,X : Ũ ; x̃ : Ũ ⊢QX ; C̃

∆,X : Ũ ,Y : Ũ ; ỹ : Ũ ⊢QY ;C̃′ ∆,X : Ũ ,Y : Ũ ;Γ⊢P; C

∆,X : Ũ ;Γ⊢def Y ⟨ỹ : Ũ⟩= QY in P; C
[TDEF]

∆; Γ⊢def X⟨x̃ : Ũ⟩= QX in def Y ⟨ỹ : Ũ⟩= QY in P; C
[TDEF]

By Proposition 4.5.2 ∆,X : Ũ ,Y : Ũ ; ỹ : Ũ ⊢QY ;C̃′ we obtain: ∆,Y : Ũ ; ỹ : Ũ ⊢QY ;C̃′.

By rearranging the premises:

[TDEF]

∆,X : Ũ ; x̃ : Ũ ⊢QX ; C̃ ∆,X : Ũ ,Y : Ũ ;Γ⊢P; C

∆,Y : Ũ ;Γ⊢def X⟨x̃ : Ũ⟩= QY in P; C ∆,Y : Ũ ; ỹ : Ũ ⊢QY ;C̃′

∆; Γ⊢def Y ⟨ỹ : Ũ⟩= QY in def X⟨x̃ : Ũ⟩= QX in P; C
[TDEF]

Right to left: From the induction hypothesis: ∆; Γ⊢def Y ⟨ỹ : Ũ⟩= QY in def X⟨x̃ : Ũ⟩= QX in
P; C. We provide the derivation for this process:

APPENDIX A. PROOFS FOR Chapter4 130

[TDEF]

∆,Y : Ũ ,X : Ũ ; x̃ : Ũ ⊢QX ; C̃ ∆,X : Ũ ,Y : Ũ ;Γ⊢P; C

∆,Y : Ũ ;Γ⊢def X⟨x̃ : Ũ⟩= QY in P; C ∆,Y : Ũ ; ỹ : Ũ ⊢QY ;C̃′

∆; Γ⊢def Y ⟨ỹ : Ũ⟩= QY in def X⟨x̃ : Ũ⟩= QX in P; C
[TDEF]

By Proposition 4.5.2 ∆,Y : Ũ ,X : Ũ ; x̃ : Ũ ⊢QX ; C̃ we obtain: ∆,X : Ũ ; x̃ : Ũ ⊢QX ; C̃.

By rearranging the premises:

∆,X : Ũ ; x̃ : Ũ ⊢QX ; C̃

[TDEF]

∆,Y : Ũ ; ỹ : Ũ ⊢QY ;C̃′ ∆,X : Ũ ,Y : Ũ ;Γ⊢P; C

∆,X : Ũ ;Γ⊢def Y ⟨ỹ : Ũ⟩= QY in P; C

∆; Γ⊢def X⟨x̃ : Ũ⟩= QX in def Y ⟨ỹ : Ũ⟩= QY in P; C
[TDEF]

Lemma 4.5.1. By induction on the derivation of ∆; Γ,x : U ⊢P; C and ∆; Γ,ρ : {ρ 7→S}⊢P; C⊗
{ρ 7→S}, with a case analysis on the last rule applied.

• 0

1. We have ∆; Γ,x : U ⊢0; C and Γ′⊢v : U ;∅
[TINACT]

C terminated

∆; Γ,Γ′⊢0{v/x}; C

2. We have ∆; Γ,ρ : {ρ 7→S}⊢0; C⊗{ρ 7→S} and Γ′⊢ρ ′ : {ρ ′ 7→S};{ρ ′ 7→S} and (Γ,Γ′; C⊗
{ρ ′ 7→S}) consistent

[TINACT]

C⊗{ρ
′ 7→S} terminated

∆; Γ,Γ′⊢0{ρ
′/ρ}; C⊗{ρ

′ 7→S}

• P |Q

1. ∆; Γ,x : U ⊢ (P |Q); C, Γ′⊢v : U ;∅ From inversion on [TPAR] we have ∆; Γ,x : U ⊢P; C1

and ∆; Γ,x : U ⊢Q; C2.

By applying the induction hypothesis on the two premises we obtain: ∆; Γ,Γ′⊢P{v/x}; C1

and ∆; Γ,Γ′⊢Q{v/x}; C2. Therefore, we conclude by:

[TPAR]

∆; Γ,Γ′⊢P{v/x}; C1 ∆; Γ,Γ′⊢Q{v/x}; C2

∆; Γ,Γ′⊢ (P |Q){v/x}; C1⊗C2

APPENDIX A. PROOFS FOR Chapter4 131

2. ∆;Γ,ρ : {ρ 7→S}⊢(P |Q);C⊗{ρ 7→S}, Γ′⊢ρ ′ : {ρ ′ 7→S};{ρ ′ 7→S} and (Γ,Γ′;C⊗{ρ ′ 7→S})
consistent

If {ρ 7→S} belongs to process P then:

[TPAR]

∆; Γ,ρ : {ρ 7→S}⊢P; C1⊗{ρ 7→S} ∆; Γ,ρ : {ρ 7→S}⊢Q; C2

∆; Γ,ρ : {ρ 7→S}⊢P |Q; C⊗{ρ 7→S}

By applying the induction hypothesis on the first premise we obtain: ∆;Γ,Γ′⊢P{ρ ′/ρ}; C1⊗
{ρ ′ 7→S}. By applying Proposition 4.5.2 to the second premise we obtain: ∆; Γ⊢Q; C2,
and then by Proposition 4.5.1 ∆; Γ,Γ′⊢Q; C2. Therefore:

[TPAR]

∆; Γ,Γ′⊢P{ρ
′/ρ}; C1⊗{ρ

′ 7→S} ∆; Γ,Γ′⊢Q; C2

∆; Γ,Γ′⊢ (P |Q){ρ
′/ρ}; C⊗{ρ

′ 7→S}

Or, if {ρ 7→S} belongs to process Q then:

[TPAR]

∆; Γ,{ρ 7→S}⊢P; C1 ∆; Γ,{ρ 7→S}⊢Q{ρ
′/ρ}; C2⊗{ρ

′ 7→S}

∆; Γ,{ρ 7→S}⊢ (P |Q){ρ
′/ρ}; C⊗{ρ

′ 7→S}

By applying the induction hypothesis on the second premise we obtain: ∆; Γ,Γ′ ⊢
Q{ρ ′/ρ}; C2⊗{ρ ′ 7→S}. By applying Proposition 4.5.2 to the first premise we obtain:
∆; Γ⊢P; C1, and then by Proposition 4.5.1 ∆; Γ,Γ′⊢P; C1. Therefore:

[TPAR]

∆; Γ,Γ′⊢P; C1 ∆; Γ,Γ′⊢Q{ρ
′/ρ}; C2⊗{ρ

′ 7→S}

∆; Γ,Γ′⊢ (P |Q){ρ
′/ρ}; C⊗{ρ

′ 7→S}

• (ν s)P

1. ∆; Γ,x : U ⊢ (ν s)P; C, Γ′′⊢v : U ;∅

∆; Γ,x : U ,Γ′⊢P; C⊗C′

∆; Γ,x : U ⊢ (ν s : Γ
′)P; C

[TRES]

By applying the induction hypothesis on the premise we obtain: ∆; Γ,Γ′,Γ′′⊢P{v/x}; C⊗C′.
Therefore:

∆; Γ,Γ′,Γ′′⊢P{v/x}; C⊗C′

∆; Γ,Γ′⊢ (ν s : Γ
′)P{v/x}; C

[TRES]

2. ∆; Γ,ρ : {ρ 7→S} ⊢ (ν s)P; C⊗{ρ 7→S}, Γ′′ ⊢ ρ ′ : {ρ ′ 7→S};{ρ ′ 7→S} and (Γ,Γ′; C⊗

APPENDIX A. PROOFS FOR Chapter4 132

{ρ ′ 7→S}) consistent

∆; Γ,ρ : {ρ 7→S},Γ′⊢P{ρ
′/ρ}; C⊗{ρ

′ 7→S}⊗C′

∆; Γ⊢ (ν s : Γ
′)P{ρ

′/ρ}; C⊗{ρ
′ 7→S}

[TRES]

By applying the induction hypothesis on the premise we obtain: ∆; Γ,Γ′,Γ′′⊢P{ρ ′/ρ}; C⊗
{ρ ′ 7→S}⊗C′. Therefore:

∆; Γ,Γ′,Γ′′⊢P{ρ
′/ρ}; C⊗{ρ

′ 7→S}⊗C′

∆; Γ,Γ′⊢ (ν s : Γ
′)P{ρ

′/ρ}; C⊗{ρ
′ 7→S}

[TRES]

• c[p]&i∈I{li(xi).Pi}

1. ∆; Γ,w : U ⊢c[p]&i∈I{li(xi).Pi}; C, Γ′ ⊢v : U ;∅. There are several sub-cases, depending
on the position of w and the form of U . If w is not involved in the input:

[TBR]

∆; Γ,w : U ,xi : Ui ⊢Pi; C⊗Ci⊗{ρ 7→ Si} c : tr(ρ),ρ : {ρ 7→ Si} ∈ Γ ∀i ∈ I

∆; Γ,w : U ⊢c[p]&i∈I{li(xi).Pi}; C⊗{ρ 7→ p &i∈I?li (Ui) .Si}

By applying the induction hypothesis on the premise we obtain: ∆;Γ,Γ′,xi :Ui⊢P{v/w};C⊗
{ρ ′ 7→S}⊗C′. Therefore:

[TBR]

∆; Γ,Γ′,xi : Ui ⊢P{v/w}; C⊗{ρ
′ 7→S}⊗C′ c : tr(ρ),ρ : {ρ 7→ Si} ∈ Γ ∀i ∈ I

∆; Γ,Γ′⊢c[p]&i∈I{li(xi).Pi}{v/w}; C⊗{ρ 7→ p &i∈I?li (Ui) .Si}

If w is the input channel:

[TBR]

∆; Γ
′′,w : tr(ρ),ρ : {ρ 7→ Si},xi : Ui ⊢Pi; C⊗Ci⊗{ρ 7→ Si} ∀i ∈ I

∆;Γ
′′,w :tr(ρ),ρ :{ρ 7→p &i∈I?li (Ui) .Si}⊢w[p]&i∈I{li(xi).Pi};C⊗{ρ 7→p &i∈I?li (Ui) .Si}

By applying the induction hypothesis on the premise we obtain: ∆; Γ′′,Γ′,ρ : {ρ 7→ Si},xi :
Ui ⊢Pi{v/w}; C⊗Ci⊗{ρ 7→ Si}.

Therefore:
[TBR]

∆; Γ
′′,Γ′,ρ : {ρ 7→ Si},xi : Ui ⊢Pi{v/w}; C⊗Ci⊗{ρ 7→ Si} ∀i ∈ I

∆;Γ
′′,Γ′,ρ :{ρ 7→p &i∈I?li (Ui) .Si}⊢w[p]&i∈I{li(xi).Pi}{v/w};C⊗{ρ 7→p &i∈I?li (Ui) .Si}

2. ∆; Γ,ρ : {ρ 7→S} ⊢ c[p]&i∈I{li(xi).Pi}; C⊗{ρ 7→S}, Γ′ ⊢ ρ ′ : {ρ ′ 7→S};{ρ ′ 7→S} and

APPENDIX A. PROOFS FOR Chapter4 133

(Γ,Γ′; C⊗{ρ ′ 7→S}) consistent

∆; Γ,ρ : {ρ 7→S},xi : Ui ⊢Pi; C⊗Ci⊗{ρc 7→ Si}⊗{ρ 7→S}
c : tr(ρc),ρ : {ρc 7→ Si} ∈ Γ ∀i ∈ I

∆; Γ,ρ : {ρ 7→S}⊢c[p]&i∈I{li(xi).Pi}; C⊗{ρc 7→ p &i∈I?li (Ui) .Si}⊗{ρ 7→S}
[TBR]

By applying the induction hypothesis on the premise we obtain:

∆; Γ,Γ′,xi : Ui,c : tr(ρ)⊢Pi{ρ ′/ρ}; C⊗Ci⊗{ρc 7→ Si}⊗{ρ ′ 7→S}. Therefore:

∆; Γ,Γ′,xi : Ui ⊢Pi{ρ
′/ρ}; C⊗Ci⊗{ρc 7→ Si}⊗{ρ

′ 7→S}
c : tr(ρc),ρ : {ρc 7→ Si} ∈ Γ ∀i ∈ I

∆; Γ,Γ′⊢c[p]&i∈I{li(xi).Pi}{ρ
′/ρ}; C⊗{ρc 7→ p &i∈I?li (Ui) .Si}⊗{ρ

′ 7→S}
[TBR]

• c[p]⊕⟨l(v)⟩.P

1. ∆; Γ,x : U ⊢c[p]⊕⟨l(v)⟩.P; C, and Γ′⊢w : U ;∅

There are several sub-cases, depending on the position of x and the form of U . If x is not
involved in the output:

Γ,x : U ⊢ v : U ; C ∆; Γ,x : U ⊢P;C′⊗{ρ 7→ S j} c : tr(ρ) ∈ Γ j ∈ I

∆; Γ,x : U ⊢c[p]⊕⟨l j(v)⟩.P; C⊗C′⊗{ρ 7→ p ⊕i∈I!li(Ui).Si}
[TSEL]

By applying the induction hypothesis on the premise we obtain:

∆; Γ,Γ′⊢P{w/x};C′⊗{ρ 7→ S j}. Therefore:

Γ,Γ′⊢ v : U ; C ∆; Γ,Γ′⊢P{w/x};C′⊗{ρ 7→ S j} c : tr(ρ) ∈ Γ j ∈ I

∆; Γ,Γ′⊢c[p]⊕⟨l j(v)⟩.P{w/x}; C⊗C′⊗{ρ 7→ p ⊕i∈I!li(Ui).Si}
[TSEL]

If x is the output name:

Γ,x : U ⊢ x : U ; C ∆; Γ,x : U ⊢P;C′⊗{ρ 7→ S j} c : tr(ρ) ∈ Γ,x : U j ∈ I

∆; Γ,x : U ⊢c[p]⊕⟨l j(v)⟩.P; C⊗C′⊗{ρ 7→ p ⊕i∈I!li(Ui).Si}
[TSEL]

By applying the induction hypothesis on the premises we obtain:

Γ,Γ′⊢w : U ; C and ∆; Γ,Γ′⊢P{w/x};C′⊗{ρ 7→ S j}. Therefore:

Γ,Γ′⊢w : U ; C ∆; Γ,Γ′⊢P{w/x};C′⊗{ρ 7→ S j} c : tr(ρ) ∈ Γ j ∈ I

∆; Γ,Γ′⊢c[p]⊕⟨l j(v)⟩.P{w/x}; C⊗C′⊗{ρ 7→ p ⊕i∈I!li(Ui).Si}
[TSEL]

If x is the output channel:

APPENDIX A. PROOFS FOR Chapter4 134

Γ⊢ v : U ; C ∆; Γ⊢P;C′⊗{ρ 7→ S j} c : tr(ρ) ∈ Γ j ∈ I

∆; Γ⊢c[p]⊕⟨l j(v)⟩.P; C⊗C′⊗{ρ 7→ p ⊕i∈I!li(Ui).Si}
[TSEL]

2. ∆; Γ,ρ : {ρ 7→S}⊢c[p]⊕⟨l(v)⟩.P; C⊗{ρ 7→S}, Γ′⊢ρ ′ : {ρ ′ 7→S};{ρ ′ 7→S} and (Γ,Γ′; C⊗
{ρ ′ 7→S}) consistent

Γ⊢ v : U ; C ∆; Γ⊢P;C′⊗{ρ 7→ S j} c : tr(ρ) ∈ Γ j ∈ I

∆; Γ⊢c[p]⊕⟨l j(v)⟩.P; C⊗C′⊗{ρ 7→ p ⊕i∈I!li(Ui).Si}
[TSEL]

• c[p]⊕⟨l(pack(ρ,c′))⟩.P

1. ∆; Γ,x : U ⊢c[p]⊕⟨l(pack(ρ,c′))⟩.P; C, and Γ′⊢v : U ;∅
[TSELP]

Γ⊢ v : tr(ρ ′);∅ ∆; Γ⊢P; C⊗{ρ 7→ S j}⊗{ρ
′ 7→U} c : tr(ρ) ∈ Γ j ∈ I

∆;Γ⊢c[p]⊕⟨l j(pack(ρ
′,v))⟩.P;C⊗{ρ 7→p ⊕ j∈I!l j(∃[ρ ′|{ρ

′ 7→U}].tr(ρ ′)).S}⊗{ρ
′ 7→U}

2. ∆; Γ,ρ : {ρ 7→S}⊢c[p]⊕⟨l(pack(ρ,c′))⟩.P; C⊗{ρ 7→S},

Γ′⊢ρ ′ : {ρ ′ 7→S};{ρ ′ 7→S} and (Γ,Γ′; C⊗{ρ ′ 7→S}) consistent

[TSELP]

Γ⊢ v : tr(ρ ′);∅ ∆; Γ⊢P; C⊗{ρ 7→ S j}⊗{ρ
′ 7→U} c : tr(ρ) ∈ Γ j ∈ I

∆;Γ⊢c[p]⊕⟨l j(pack(ρ
′,v))⟩.P;C⊗{ρ 7→p ⊕ j∈I!l j(∃[ρ ′|{ρ

′ 7→U}].tr(ρ ′)).S}⊗{ρ
′ 7→U}

• c[p]&i∈I{li(pack(ρ,c′)i).Pi}

1. ∆; Γ,x : U ⊢c[p]&i∈I{li(pack(ρ,c′)i).Pi}; C, and Γ′⊢v : U ;∅
[TBRP]

∆; Γ,vi : tr(ρ i)⊢Pi; C⊗{ρ 7→ Si} ∀i ∈ I c : tr(ρ) ∈ Γ

∆; Γ⊢c[p]&i∈I{li(pack(ρi,vi)).Pi}; C⊗{ρ 7→ p &i∈I?l(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si}

2. ∆; Γ,ρ : {ρ 7→S}⊢c[p]&i∈I{li(pack(ρ,c′)i).Pi};C⊗{ρ 7→S},

Γ′⊢ρ ′ : {ρ ′ 7→S};{ρ ′ 7→S} and (Γ,Γ′; C⊗{ρ ′ 7→S}) consistent

[TBRP]

∆; Γ,vi : tr(ρ i)⊢Pi; C⊗{ρ 7→ Si} ∀i ∈ I c : tr(ρ) ∈ Γ

∆; Γ⊢c[p]&i∈I{li(pack(ρi,vi)).Pi};C⊗{ρ 7→ p &i∈I?l(∃[ρi|{ρi 7→Ui}].tr(ρi)).Si}

• def D in P

1. ∆; Γ,x : U ⊢P; C, Γ′⊢v : U ;∅

2. ∆; Γ,ρ : {ρ 7→S}⊢P; C⊗{ρ 7→S},

Γ′⊢ρ ′ : {ρ ′ 7→S};{ρ ′ 7→S} and (Γ,Γ′; C⊗{ρ ′ 7→S}) consistent

APPENDIX A. PROOFS FOR Chapter4 135

[TDEF]

∆,X : Ũ ; x̃ : Ũ ⊢P; C̃ ∆,X : Ũ ;Γ⊢Q; C

∆; Γ⊢def X⟨x̃ : Ũ⟩= P in Q; C

• X⟨x̃⟩

1. ∆; Γ,x : U ⊢P; C, Γ′⊢v : U ;∅

2. ∆; Γ,ρ : {ρ 7→S}⊢P; C⊗{ρ 7→S}, Γ′ ⊢ρ ′ : {ρ ′ 7→S};{ρ ′ 7→S} and (Γ,Γ′; C⊗{ρ ′ 7→S})
consistent

[TCALL]

∀i ∈ {1..n} Γ⊢ vi : Ui; Ci

∆,x : U1, . . . ,Un;Γ⊢X⟨v1, . . . ,vn⟩; C1⊗. . .⊗Cn

Bibliography

[1] Jonathan Aldrich, Joshua Sunshine, Darpan Saini, and Zachary Sparks. Typestate-oriented
programming. In OOPSLA ’09, pages 1015–1022. ACM Press, 2009.

[2] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie J. Hendren, Sascha Kuzins,
Ondrej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and Julian Tibble.
Adding trace matching with free variables to AspectJ. In OOPSLA, pages 345–364, 2005.

[3] Antlr project homepage. www.antlr.org.

[4] Robert Atkey. Parameterised notions of computation. J. Funct. Program., 19(3-4):335–376,
2009.

[5] Pedro Baltazar, Dimitris Mostrous, and Vasco Thudichum Vasconcelos. Linearly refined
session types. In LINEARITY, volume 101 of EPTCS, pages 38–49, 2012.

[6] Stephanie Balzer and Frank Pfenning. Manifest sharing with session types. PACMPL,
1(ICFP):37:1–37:29, 2017.

[7] Stephanie Balzer, Bernardo Toninho, and Frank Pfenning. Manifest deadlock-freedom for
shared session types. In ESOP, volume 11423 of LNCS, pages 611–639. Springer, 2019.

[8] Nels E. Beckman, Kevin Bierhoff, and Jonathan Aldrich. Verifying correct usage of atomic
blocks and typestate. In OOPSLA ’08, pages 227–244. ACM Press, 2008.

[9] Giovanni Bernardi and Matthew Hennessy. Using higher-order contracts to model session
types (extended abstract). In CONCUR, volume 8704 of Lecture Notes in Computer

Science, pages 387–401. Springer, 2014.

[10] Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton, Simon Peyton Jones, and
Arnaud Spiwack. Linear haskell: practical linearity in a higher-order polymorphic language.
PACMPL, 2(POPL):5:1–5:29, 2018.

[11] Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola Dezani-
Ciancaglini, and Nobuko Yoshida. Global progress in dynamically interleaved multiparty
sessions. In Franck van Breugel and Marsha Chechik, editors, CONCUR 2008 - Concur-

rency Theory, pages 418–433, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

136

www.antlr.org

BIBLIOGRAPHY 137

[12] Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking of aliased objects. In
OOPSLA ’07, pages 301–320. ACM Press, 2007.

[13] Kevin Bierhoff and Jonathan Aldrich. PLURAL: checking protocol compliance under
aliasing. In ICSE Companion, pages 971–972. ACM Press, 2008.

[14] Kevin Bierhoff, Nels E. Beckman, and Jonathan Aldrich. Practical api protocol checking
with access permissions. In ECOOP ’09, volume 5653 of Springer LNCS, pages 195–219,
2009.

[15] Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Kohei Honda, and Nobuko Yoshida.
Monitoring networks through multiparty session types. In FMOODS/FORTE, volume
7892 of Lecture Notes in Computer Science, pages 50–65. Springer, 2013.

[16] Eric Bodden and Laurie J. Hendren. The clara framework for hybrid typestate analysis.
Software Tools for Technology Transfer, 14(3):307–326, 2012.

[17] Viviana Bono and Luca Padovani. Typing copyless message passing. Logical Methods in

Computer Science, 8(1), 2012.

[18] Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. J. ACM,
30(2):323–342, 1983.

[19] Luís Caires and Jorge A. Pérez. Linearity, control effects, and behavioral types. In ESOP,
volume 10201 of LNCS, pages 229–259. Springer, 2017.

[20] Luís Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In
CONCUR, volume 6269 of LNCS, pages 222–236. Springer, 2010.

[21] Sara Capecchi, Mario Coppo, Mariangiola Dezani-Ciancaglini, Sophia Drossopoulou, and
Elena Giachino. Amalgamating sessions and methods in object-oriented languages with
generics. Theoret. Comp. Sci., 410:142–167, 2009.

[22] Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured communication-centered
programming for web services. ACM Trans. Program. Lang. Syst., 34(2):8:1–8:78, 2012.

[23] Marco Carbone, Sam Lindley, Fabrizio Montesi, Carsten Schürmann, and Philip Wadler.
Coherence generalises duality: A logical explanation of multiparty session types. In
CONCUR, volume 59 of LIPIcs, pages 33:1–33:15. Schloss Dagstuhl — Leibniz-Zentrum
für Informatik, 2016.

[24] Marco Carbone, Fabrizio Montesi, Carsten Schürmann, and Nobuko Yoshida. Multiparty
session types as coherence proofs. In CONCUR, volume 42 of LIPIcs. Schloss Dagstuhl —
Leibniz-Zentrum für Informatik, 2015.

BIBLIOGRAPHY 138

[25] Giuseppe Castagna, Rocco De Nicola, and Daniele Varacca. Semantic subtyping for the
pi-calculus. Theor. Comput. Sci., 398(1-3):217–242, 2008.

[26] Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, Elena Giachino, and Luca Padovani.
Foundations of session types. In PPDP, pages 219–230. ACM, 2009.

[27] Giuseppe Castagna, Nils Gesbert, and Luca Padovani. A theory of contracts for web
services. In POPL, pages 261–272. ACM, 2008.

[28] Tushar D Chandra, Robert Griesemer, and Joshua Redstone. Paxos made live: an engineer-
ing perspective. In Proceedings of the twenty-sixth annual ACM symposium on Principles

of distributed computing, pages 398–407. ACM, 2007.

[29] Tzu-Chun Chen, Laura Bocchi, Pierre-Malo Deniélou, Kohei Honda, and Nobuko Yoshida.
Asynchronous distributed monitoring for multiparty session enforcement. In TGC, volume
7173 of Lecture Notes in Computer Science, pages 25–45. Springer, 2011.

[30] Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, Alceste Scalas, and Nobuko Yoshida.
On the preciseness of subtyping in session types. CoRR, abs/1610.00328, 2016.

[31] Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, Alceste Scalas, and Nobuko Yoshida.
On the preciseness of subtyping in session types. Logical Methods in Computer Science,
13(2), 2017.

[32] Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida. On the precise-
ness of subtyping in session types. In PPDP, pages 135–146. ACM, 2014.

[33] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links: Web programming
without tiers. In FMCO, volume 4709 of Lecture Notes in Computer Science, pages
266–296. Springer, 2006.

[34] Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko Yoshida. A
gentle introduction to multiparty asynchronous session types. In SFM, volume 9104 of
Lecture Notes in Computer Science, pages 146–178. Springer, 2015.

[35] Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca Padovani.
Global progress for dynamically interleaved multiparty sessions. Mathematical Structures

in Computer Science, 26(2):238–302, 2016.

[36] Silvia Crafa and Luca Padovani. The chemical approach to typestate-oriented programming.
ACM Transactions on Programming Languages and Systems, 39(3):13:1–13:45, 2017.

[37] Karl Crary, David Walker, and Greg Morrisett. Typed memory management in a calculus
of capabilities. In POPL, pages 262–275. ACM, 1999.

BIBLIOGRAPHY 139

[38] Ornela Dardha, Simon J Gay, Dimitrios Kouzapas, Roly Perera, A Laura Voinea, and
Florian Weber. Mungo and StMungo: Tools for Typechecking Protocols in Java. In
Simon J Gay and António Ravara, editors, Behavioural Types: from Theory to Tools,
chapter 14, pages 309–328. River Publishers, 2017.

[39] Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types revisited. In PPDP.
ACM, 2012.

[40] Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types revisited. Inf.

Comput., 256:253–286, 2017.

[41] Robert DeLine and Manuel Fähndrich. Enforcing high-level protocols in low-level soft-
ware. In PLDI, pages 59–69. ACM Press, 2001.

[42] Robert DeLine and Manuel Fähndrich. Typestates for objects. In ECOOP ’04, volume
3086 of Springer LNCS, pages 465–490, 2004.

[43] Romain Demangeon and Kohei Honda. Full abstraction in a subtyped pi-calculus with
linear types. In CONCUR, volume 6901 of Lecture Notes in Computer Science, pages
280–296. Springer, 2011.

[44] Romain Demangeon and Kohei Honda. Nested protocols in session types. In CONCUR,
volume 7454 of Lecture Notes in Computer Science, pages 272–286. Springer, 2012.

[45] Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty session types meet communicating
automata. In ESOP, volume 7211 of Lecture Notes in Computer Science, pages 194–213.
Springer, 2012.

[46] Pierre-Malo Deniélou, Nobuko Yoshida, Andi Bejleri, and Raymond Hu. Parameterised
multiparty session types. Logical Methods in Computer Science, 8(4), 2012.

[47] Mariangiola Dezani-Ciancaglini, Sophia Drossopoulou, Elena Giachino, and Nobuko
Yoshida. Bounded session types for object-oriented languages. FMCO, 4709:207–245,
2007.

[48] Mariangiola Dezani-Ciancaglini, Sophia Drossopoulou, Dimitris Mostrous, and Nobuko
Yoshida. Objects and session types. Information and Computation, 207(5):595–641, 2009.

[49] Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic, and
Nobuko Yoshida. Precise subtyping for synchronous multiparty sessions. In PLACES,
pages 29–43, 2015.

[50] Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, Alexander Ahern, and Sophia
Drossopolou. A distributed object-oriented language with session types. In TGC ’05,
volume 3705 of Springer LNCS, pages 299–318, 2005.

BIBLIOGRAPHY 140

[51] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen Hunt, James R.
Larus, and Steven Levi. Language support for fast and reliable message-based communi-
cation in Singularity OS. In EuroSys, pages 177–190. ACM Press, 2006.

[52] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen C. Hunt, James R.
Larus, and Steven Levi. Language support for fast and reliable message-based communi-
cation in singularity OS. In EuroSys, pages 177–190. ACM, 2006.

[53] Manuel Fähndrich and Robert DeLine. Adoption and focus: Practical linear types for
imperative programming. In PLDI, pages 13–24. ACM, 2002.

[54] Roy T. Fielding and Julian F. Reschke. Hypertext transfer protocol (HTTP/1.1): message
syntax and routing. RFC, 7230:1–89, 2014.

[55] Simon Fowler. An erlang implementation of multiparty session actors. In ICE, volume
223 of EPTCS, pages 36–50, 2016.

[56] Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. Exceptional asynchronous
session types: session types without tiers. PACMPL, 3(POPL):28:1–28:29, 2019.

[57] Juliana Franco and Vasco Thudichum Vasconcelos. A concurrent programming language
with refined session types. In SEFM Workshops, volume 8368 of Lecture Notes in

Computer Science, pages 15–28. Springer, 2013.

[58] Ronald Garcia, Éric Tanter, Roger Wolff, and Jonathan Aldrich. Foundations of typestate-
oriented programming. ACM Trans. Program. Lang. Syst., 36(4):12:1–12:44, 2014.

[59] Simon J. Gay. Bounded polymorphism in session types. Mathematical Structures in

Computer Science, 18(5):895–930, 2008.

[60] Simon J. Gay. Subtyping supports safe session substitution. In A List of Successes That

Can Change the World, volume 9600 of Lecture Notes in Computer Science, pages 95–108.
Springer, 2016.

[61] Simon J. Gay and Malcolm J. Hole. Subtyping for session types in the pi calculus. Acta

Informatica, 42(2/3):191–225, 2005.

[62] Simon J. Gay, Peter Thiemann, and Vasco T. Vasconcelos. Duality of session types: The
final cut. In PLACES@ETAPS, volume 314 of EPTCS, pages 23–33, 2020.

[63] Simon J. Gay and Vasco T. Vasconcelos. Linear type theory for asynchronous session
types. Journal of Functional Programming, 20(1):19–50, 2010.

BIBLIOGRAPHY 141

[64] Simon J. Gay, Vasco T. Vasconcelos, António Ravara, Nils Gesbert, and Alexandre Z.
Caldeira. Modular session types for distributed object-oriented programming. In POPL

’10, pages 299–312. ACM Press, 2010.

[65] Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.

[66] Jan Friso Groote, Aad Mathijssen, Michel Reniers, Yaroslav Usenko, and Muck Van Weer-
denburg. The formal specification language mcrl2. In Dagstuhl Seminar Proceedings.
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2007.

[67] Görel Hedin. An introductory tutorial on jastadd attribute grammars. In GTTSE, volume
6491 of Lecture Notes in Computer Science, pages 166–200. Springer, 2009.

[68] Kohei Honda. Types for dyadic interaction. In CONCUR, volume 715 of LNCS, pages
509–523. Springer, 1993.

[69] Kohei Honda, Aybek Mukhamedov, Gary Brown, Tzu-Chun Chen, and Nobuko Yoshida.
Scribbling interactions with a formal foundation. In International Conference on Dis-

tributed Computing and Internet Technology, pages 55–75. Springer, 2011.

[70] Kohei Honda, Aybek Mukhamedov, Gary Brown, Tzu-Chun Chen, and Nobuko Yoshida.
Scribbling interactions with a formal foundation. In ICDCIT 2011, volume 6536 of LNCS.
Springer, 2011.

[71] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives
and type discipline for structured communication-based programming. In ESOP, volume
1381 of Lecture Notes in Computer Science, pages 122–138. Springer, 1998.

[72] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session
types. In POPL, pages 273–284. ACM, 2008.

[73] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session
types. J. ACM, 63(1):9:1–9:67, 2016.

[74] Raymond Hu. Distributed Programming Using Java APIs Generated from Session Types.
Behavioural Types: from Theory to Tools, pages 287–308, 2017.

[75] Raymond Hu, Dimitrios Kouzapas, Olivier Pernet, Nobuko Yoshida, and Kohei Honda.
Type-safe eventful sessions in java. In ECOOP ’10, volume 6183 of Springer LNCS, pages
329–353, 2010.

[76] Raymond Hu, Rumyana Neykova, Nobuko Yoshida, Romain Demangeon, and Kohei
Honda. Practical interruptible conversations - distributed dynamic verification with session
types and python. In RV, volume 8174 of Lecture Notes in Computer Science, pages
130–148. Springer, 2013.

BIBLIOGRAPHY 142

[77] Raymond Hu and Nobuko Yoshida. Hybrid session verification through endpoint API
generation. In FASE 16, volume 9633 of Springer LNCS, pages 401–418, 2016.

[78] Raymond Hu and Nobuko Yoshida. Explicit connection actions in multiparty session types.
In FASE, volume 10202 of Lecture Notes in Computer Science, pages 116–133. Springer,
2017.

[79] Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-based distributed programming
in Java. In ECOOP ’08, volume 5142 of Springer LNCS, pages 516–541, 2008.

[80] Hans Hüttel et al. Foundations of session types and behavioural contracts. ACM Computing

Surveys, 49(1), 2016.

[81] Atsushi Igarashi and Naoki Kobayashi. A generic type system for the pi-calculus. Theoret-

ical Computer Science, 311(1-3):121–163, 2004.

[82] Keigo Imai, Nobuko Yoshida, and Shoji Yuen. Session-ocaml: A session-based library with
polarities and lenses. In COORDINATION, volume 10319 of Lecture Notes in Computer

Science, pages 99–118. Springer, 2017.

[83] Keigo Imai, Shoji Yuen, and Kiyoshi Agusa. Session type inference in haskell. In PLACES,
volume 69 of EPTCS, pages 74–91, 2010.

[84] Naoki Kobayashi. Type systems for concurrent processes: From deadlock-freedom to
livelock-freedom, time-boundedness. In IFIP TCS, volume 1872 of Springer LNCS, pages
365–389. Springer, 2000.

[85] Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J. Gay. Typechecking
protocols with Mungo and StMungo. In PPDP, pages 146–159. ACM, 2016.

[86] Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J. Gay. Typechecking
protocols with Mungo and StMungo: a session type toolchain for Java. Science of

Computer Programming, 155:52–75, 2018.

[87] Dimitrios Kouzapas, Ramunas Forsberg Gutkovas, A Laura Voinea, and Simon J Gay.
A Session Type System for Asynchronous Unreliable Broadcast Communication. arXiv

preprint arXiv:1902.01353, 2019.

[88] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169,
1998.

[89] Leslie Lamport et al. Paxos made simple. ACM Sigact News, 32(4):18–25, 2001.

[90] Sam Lindley and J. Garrett Morris. Embedding session types in haskell. In Haskell, pages
133–145. ACM, 2016.

BIBLIOGRAPHY 143

[91] Sam Lindley and J. Garrett Morris. Talking bananas: structural recursion for session types.
In ICFP, pages 434–447. ACM, 2016.

[92] Sam Lindley and J Garrett Morris. Lightweight functional session types. Behavioural

Types: from Theory to Tools, pages 265–286, 2017.

[93] Filipe Militão, Jonathan Aldrich, and Luís Caires. Aliasing control with view-based
typestate. In FTFJP, pages 7:1–7:7. ACM, 2010.

[94] Dimitris Mostrous. Session types in concurrent calculi : higher-order processes and

objects. PhD thesis, Imperial College London, UK, 2010.

[95] Dimitris Mostrous and Vasco T. Vasconcelos. Affine sessions. Logical Methods in

Computer Science, 14(4), 2018.

[96] Dimitris Mostrous and Nobuko Yoshida. Session-based communication optimisation for
higher-order mobile processes. In TLCA, volume 5608 of Lecture Notes in Computer

Science, pages 203–218. Springer, 2009.

[97] Matthias Neubauer and Peter Thiemann. An implementation of session types. In PADL

’04, volume 3057 of Springer LNCS, pages 56–70, 2004.

[98] Rumyana Neykova, Raymond Hu, Nobuko Yoshida, and Fahd Abdeljallal. A session type
provider: compile-time API generation of distributed protocols with refinements in f#. In
CC, pages 128–138. ACM, 2018.

[99] Rumyana Neykova and Nobuko Yoshida. Multiparty session actors. In COORDINATION

’14, pages 131–146, 2014.

[100] Rumyana Neykova and Nobuko Yoshida. Let it recover: multiparty protocol-induced
recovery. In CC, pages 98–108. ACM, 2017.

[101] Rumyana Neykova, Nobuko Yoshida, and Raymond Hu. SPY: local verification of global
protocols. In RV ’13, volume 8174 of Springer LNCS, pages 358–363, 2013.

[102] Nicholas Ng, José Gabriel de Figueiredo Coutinho, and Nobuko Yoshida. Protocols by
default - safe MPI code generation based on session types. In CC ’15, pages 212–232,
2015.

[103] Nicholas Ng, Nobuko Yoshida, and Kohei Honda. Multiparty session C: safe parallel
programming with message optimisation. In TOOLS ’12, pages 202–218, 2012.

[104] Nicholas Ng, Nobuko Yoshida, Olivier Pernet, Raymond Hu, and Yiannos Kryftis. Safe
parallel programming with Session Java. In COORDINATION ’11, volume 6721 of
Springer LNCS, pages 110–126, 2011.

BIBLIOGRAPHY 144

[105] Jesper Öqvist. Extendj: extensible java compiler. In Programming, pages 234–235. ACM,
2018.

[106] Dominic A. Orchard and Tomas Petricek. Embedding effect systems in haskell. In Haskell,
pages 13–24. ACM, 2014.

[107] Dominic A. Orchard and Nobuko Yoshida. Effects as sessions, sessions as effects. In
POPL, pages 568–581. ACM, 2016.

[108] Luca Padovani. Fair subtyping for multi-party session types. In COORDINATION, volume
6721 of Lecture Notes in Computer Science, pages 127–141. Springer, 2011.

[109] Luca Padovani. Fair subtyping for open session types. In ICALP (2), volume 7966 of
Lecture Notes in Computer Science, pages 373–384. Springer, 2013.

[110] Luca Padovani. Type reconstruction for the linear π-calculus with composite regular types.
Logical Methods in Computer Science, 11(4), 2015.

[111] Luca Padovani. Fair subtyping for multi-party session types. Mathematical Structures in

Computer Science, 26(3):424–464, 2016.

[112] Luca Padovani. Context-free session type inference. In ESOP, volume 10201 of Lecture

Notes in Computer Science, pages 804–830. Springer, 2017.

[113] Luca Padovani. A simple library implementation of binary sessions. J. Funct. Program.,
27:e4, 2017.

[114] Tomas Petricek, Gustavo Guerra, and Don Syme. Types from data: making structured data
first-class citizens in f#. In PLDI, pages 477–490. ACM, 2016.

[115] Frank Pfenning and Dennis Griffith. Polarized substructural session types. In FoSSaCS,
volume 9034 of Lecture Notes in Computer Science, pages 3–22. Springer, 2015.

[116] Benjamin C. Pierce. Types and programming languages. MIT Press, 2002.

[117] Gordon D. Plotkin. LCF considered as a programming language. Theor. Comput. Sci.,
5(3):223–255, 1977.

[118] Jeff Polakow. Embedding a full linear lambda calculus in haskell. In Haskell, pages
177–188. ACM, 2015.

[119] Jon Postel and Joyce K. Reynolds. File transfer protocol. RFC, 959:1–69, 1985.

[120] Klaas Pruiksma and Frank Pfenning. A message-passing interpretation of adjoint logic. In
PLACES, volume 291 of Electronic Proceedings in Theoretical Computer Science, pages
60–79. Open Publishing Association, 2019.

BIBLIOGRAPHY 145

[121] Riccardo Pucella and Jesse A. Tov. Haskell session types with (almost) no class. In
Proceedings of the 1st ACM SIGPLAN Symposium on Haskell, pages 25–36. ACM Press,
2008.

[122] Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. A linear decomposi-
tion of multiparty sessions for safe distributed programming. In ECOOP, volume 74 of
LIPIcs, pages 24:1–24:31. Schloss Dagstuhl — Leibniz-Zentrum für Informatik, 2017.

[123] Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. A linear decomposi-
tion of multiparty sessions for safe distributed programming. Technical Report 2, Imperial
College London, 2017.

[124] Alceste Scalas and Nobuko Yoshida. Lightweight session programming in scala. In
ECOOP, volume 56 of LIPIcs, pages 21:1–21:28. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2016.

[125] Alceste Scalas and Nobuko Yoshida. Less is more: multiparty session types revisited.
Proceedings of the ACM on Programming Languages, 3(POPL):30, 2019.

[126] Scribble project homepage. www.scribble.org.

[127] Robert E. Strom and Shaula Yemini. Typestate: A programming language concept for
enhancing software reliability. IEEE Trans. Softw. Eng., 12(1):157–171, 1986.

[128] Joshua Sunshine, Karl Naden, Sven Stork, Jonathan Aldrich, and Éric Tanter. First-class
state change in plaid. In OOPSLA, pages 713–732. ACM, 2011.

[129] Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, and Matthias
Felleisen. Is sound gradual typing dead? In Proceedings of the 43rd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’16,
pages 456–468. ACM, 2016.

[130] Peter Thiemann and Vasco T. Vasconcelos. Context-free session types. In ICFP, pages
462–475. ACM, 2016.

[131] Bernardo Toninho, Luís Caires, and Frank Pfenning. Higher-order processes, functions,
and sessions: A monadic integration. In ESOP, volume 7792 of Lecture Notes in Computer

Science, pages 350–369. Springer, 2013.

[132] Antonio Vallecillo, Vasco T. Vasconcelos, and António Ravara. Typing the behavior of
software components using session types. Fundamenta Informaticæ, 73(4):583–598, 2006.

[133] Vasco T. Vasconcelos. Fundamentals of session types. Inf. Comput., 217:52–70, 2012.

www.scribble.org

BIBLIOGRAPHY 146

[134] Vasco T. Vasconcelos, Simon J. Gay, and António Ravara. Typechecking a multithreaded
functional language with session types. Theoret. Comp. Sci., 368(1–2):64–87, 2006.

[135] Vasco Thudichum Vasconcelos. Fundamentals of session types. In SFM, volume 5569 of
Lecture Notes in Computer Science, pages 158–186. Springer, 2009.

[136] A. Laura Voinea, Ornela Dardha, and Simon J. Gay. Resource Sharing via Capability-
Based Multiparty Session Types. In IFM, volume 11918 of Lecture Notes in Computer

Science, pages 437–455. Springer, 2019.

[137] A. Laura Voinea, Ornela Dardha, and Simon J. Gay. Typechecking Java Protocols with
[St]Mungo. In FORTE, volume 12136 of Lecture Notes in Computer Science, pages
208–224. Springer, 2020.

[138] A Laura Voinea and Simon J Gay. Benefits of session types for software development. In
Proceedings of the 7th International Workshop on Evaluation and Usability of Program-

ming Languages and Tools, pages 26–29. ACM, 2016.

[139] Philip Wadler. Propositions as sessions. In ICFP, pages 273–286. ACM, 2012.

[140] David Walker and J. Gregory Morrisett. Alias types for recursive data structures. In TIC,
LNCS, pages 177–206. Springer, 2000.

[141] Robert NM Watson, Simon W Moore, Peter Sewell, and Peter G Neumann. An introduction
to cheri. Technical report, University of Cambridge, Computer Laboratory, 2019.

[142] Max Willsey, Rokhini Prabhu, and Frank Pfenning. Design and implementation of
concurrent C0. In LINEARITY, volume 238 of EPTCS, pages 73–82, 2016.

[143] Roger Wolff, Ronald Garcia, Eric Tanter, and Jonathan Aldrich. Gradual typestate. In
ECOOP ’11, volume 6813 of Springer LNCS, pages 459–483, 2011.

[144] Nobuko Yoshida, Pierre-Malo Deniélou, Andi Bejleri, and Raymond Hu. Parameterised
multiparty session types. In FOSSACS, 2010.

[145] Nobuko Yoshida, Pierre-Malo Deniélou, Andi Bejleri, and Raymond Hu. Parameterised
multiparty session types. In Proceedings of the 13th International Conference on Founda-

tions of Software Science and Computational Structures, FOSSACS’10, page 128–145,
Berlin, Heidelberg, 2010. Springer-Verlag.

[146] Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. The scribble
protocol language. In International Symposium on Trustworthy Global Computing, pages
22–41. Springer, 2013.

	Thesis cover sheet
	2023VoineaPhD
	Abstract
	Acknowledgements
	Declaration
	Introduction
	Research Questions
	Contributions
	Publications

	Thesis Outline

	I Background
	Session types
	Syntax and Semantics
	Types and Subtypes
	Typing
	Main Results
	Implementations

	Multiparty Session Types
	Introduction
	Syntax and Semantics
	Types and Subtypes
	Typing
	Main Results
	Implementations

	II Resource Sharing via Capability-Based Multiparty Session Types
	Resource Sharing via Capability-Based Multiparty Session Types
	Introduction
	Syntax and Semantics
	Types and Subtypes
	Typing
	Main Results
	Subject Reduction
	Deadlock Freedom

	Case Study
	Producer-Consumer Expanded
	One Producer Two Consumers

	Discussion

	III Typechecking Java Protocols with [St]Mungo
	[St]Mungo toolchain: An overview
	Introduction
	StMungo
	Mungo

	Real-World Case Studies
	Introduction
	HTTP
	FTP
	Paxos

	IV Conclusion
	Conclusion
	Research Questions Revisited
	Research Questions
	Future Work

	Proofs for Resource Sharing via Capability-Based Multiparty Session Types
	Proofs

