
Enhancing web application security through automated penetration testing with
multiple vulnerability scanners.
Abdulghaffar, Khaled ; Elmrabit, Nebrase; Yousefi, Mehdi

Published in:
Computers

DOI:
10.3390/computers12110235

Publication date:
2023

Document Version
Publisher's PDF, also known as Version of record

Link to publication in ResearchOnline

Citation for published version (Harvard):
Abdulghaffar, K, Elmrabit, N & Yousefi, M 2023, 'Enhancing web application security through automated
penetration testing with multiple vulnerability scanners.', Computers, vol. 12, no. 11, 235.
https://doi.org/10.3390/computers12110235

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please view our takedown policy at https://edshare.gcu.ac.uk/id/eprint/5179 for details
of how to contact us.

Download date: 26. Nov. 2023

https://doi.org/10.3390/computers12110235
https://researchonline.gcu.ac.uk/en/publications/4a18e37d-2e79-4415-96eb-a045d93a6ecb
https://doi.org/10.3390/computers12110235


Citation: Abdulghaffar, K.; Elmrabit,

N.; Yousefi, M. Enhancing Web

Application Security through

Automated Penetration Testing with

Multiple Vulnerability Scanners.

Computers 2023, 12, 235. https://

doi.org/10.3390/computers12110235

Academic Editors: Ömer Aslan and

Refik Samet

Received: 9 October 2023

Revised: 7 November 2023

Accepted: 10 November 2023

Published: 15 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Enhancing Web Application Security through Automated
Penetration Testing with Multiple Vulnerability Scanners
Khaled Abdulghaffar 1 , Nebrase Elmrabit 1,* and Mehdi Yousefi 2

1 Department of Cyber Security and Networks, Glasgow Caledonian University, Glasgow G4 0BA, UK;
kabdul203@caledonian.ac.uk

2 School of Computing and Digital Technology, Birmingham City University, Birmingham B4 7XG, UK;
mehdi.yousefi@bcu.ac.uk

* Correspondence: nebrase.elmrabit@gcu.ac.uk; Tel.: +44-141-273-1940

Abstract: Penetration testers have increasingly adopted multiple penetration testing scanners to en-
sure the robustness of web applications. However, a notable limitation of many scanning techniques
is their susceptibility to producing false positives. This paper presents a novel framework designed
to automate the operation of multiple Web Application Vulnerability Scanners (WAVS) within a
single platform. The framework generates a combined vulnerabilities report using two algorithms:
an automation algorithm and a novel combination algorithm that produces comprehensive lists of
detected vulnerabilities. The framework leverages the capabilities of two web vulnerability scanners,
Arachni and OWASP ZAP. The study begins with an extensive review of the existing scientific litera-
ture, focusing on open-source WAVS and exploring the OWASP 2021 guidelines. Following this, the
framework development phase addresses the challenge of varying results obtained from different
WAVS. This framework’s core objective is to combine the results of multiple WAVS into a consolidated
vulnerability report, ultimately improving detection rates and overall security. The study demon-
strates that the combined outcomes produced by the proposed framework exhibit greater accuracy
compared to individual scanning results obtained from Arachni and OWASP ZAP. In summary, the
study reveals that the Union List outperforms individual scanners, particularly regarding recall and
F-measure. Consequently, adopting multiple vulnerability scanners is recommended as an effective
strategy to bolster vulnerability detection in web applications.

Keywords: web applications; web application cyber security; vulnerability scanners; automate
penetration testing

1. Introduction

Discovering Web Application Vulnerabilities (WAV) before cyber attacks occur is a con-
tinuous challenge to organisations [1]. Furthermore, developing a secure web application
without vulnerabilities is a challenge for security analysts. This makes web applications an
attractive target for cyber attacks, with an average of 10 million web attacks per day [2],
a figure that will only increase the number of users of web applications increases [3].

A WAV is defined as “a flaw in the application that stems from coding defects and
causes severe damage to the application upon exploitation” [4]. To identify and mitigate
vulnerabilities that may be exploited by attackers, a penetration testing method or ethical
hacking is used [5]. The Open Web Application Security Project (OWASP) provides the
standard for such penetration testing methodology to test web applications and could be
used to evaluate the effectiveness of web vulnerability scanners [6,7].

Web Application Vulnerability Scanners (WAVS) are tools used by penetration testers.
It is used to conduct web application evaluations with the primary goal of identifying and
mitigating potential vulnerabilities to prevent security breaches. Security measures should
be incorporated throughout the development life cycle rather than being added and tested
only at the final stages of the development life cycle [8].

Computers 2023, 12, 235. https://doi.org/10.3390/computers12110235 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers12110235
https://doi.org/10.3390/computers12110235
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0009-0003-1220-2021
https://orcid.org/0000-0002-4267-8798
https://orcid.org/0000-0003-0832-650X
https://doi.org/10.3390/computers12110235
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers12110235?type=check_update&version=1


Computers 2023, 12, 235 2 of 17

The challenge here is that when using different WAVS, they will not offer the same vul-
nerability results for the same target [1,8]. These differences arise from the different levels
of precision, speed, and coverage in terms of finding various vulnerabilities, for example,
with the respect to XSS and SQLi attacks [8,9]. These differing results mean that penetration
testers need to utilise multiple WAVS and thus, the accuracy and detection coverage of
the penetration testing report depend on the testers’ knowledge and experience of the
most effective WAVS in particular situations. This manual approach to Web Application
Penetration Testing (WAPT) can be time-consuming, costly, and subject to human error [10].

Penetration testing, a cornerstone of cybersecurity practices, involves the authorised
evaluation of a system’s security attributes. It is characterised by the ethical authorisation to
execute simulated attacks for the purpose of identifying vulnerabilities. This well-established
technique is facilitated by a variety of tools that help automate repetitive tasks. The process
is manual, commencing with a comprehensive examination of the target system. Penetration
testers utilise ethical hacking techniques to exploit any vulnerabilities they uncover. These
simulated attacks mirror real-world cyber threats within a controlled environment, with the
goal of breaching the system’s defences and demonstrating proof-of-concept attacks that
compromise network resources. The industry is witnessing a shift toward the automation of
penetration testing, known as automated penetration testing [11].

With the increasing availability of state-of-the-art hacking tools, threat actors have
the motivation, opportunity, and capability to launch automated attacks [12,13]. Similarly,
an automated approach has been the recent trend for WAPT because it eliminates human
error and provides a cost and time-effective solution to creating detailed vulnerability
reports [14].

This leads to our research question: How can vulnerability detection rates be improved
through the development of an automated framework that combines the results of multiple
WAVS into a single vulnerability report, compared to using a single scanner? Therefore,
this paper aims to develop an automated framework that enhances vulnerability detection
by aggregating results from multiple WAVS into a consolidated vulnerability report.

To achieve this paper’s aims, a list of objectives has been presented. A review of the
existing scientific literature on open-source WAVS and OWASP 2021. Develop an automated
framework for enhancing vulnerability detection in web applications. Address the challenges
of varying results obtained from different WAVS. Finally, Combine the results of multiple
WAVS into a consolidated vulnerability report to improve detection rates.

A new framework is proposed that could be used to automate multiple WAVS and to
produce a combined vulnerability report that compares and combines the results of the
vulnerabilities discovered by multiple WAVS. The main contributions of this paper are
summarised as follows:

• Conducting an extensive and rigorous review of the existing scientific literature on
open-source WAVS while also discussing the current works that apply to WAVS and
their weaknesses.

• Introducing a novel framework with the objective of augmenting precision, recall,
and the F-measure within vulnerability detection compared to individual scanners.
This is accomplished by combining outcomes from multiple WAVS.

The rest of this paper is structured as follows. In Section 2, we review the relevant
work in the area of WAVS, web application security standards, automated penetration
testing techniques, and benchmark targets. In Section 3, we describe the methodology used
in our work, functional and non-functional requirements, algorithms, and the detailed
experimental design. In Section 4, we present the experimental results for benchmark
targets and discuss the findings. Finally, Section 5 concludes this paper.

2. Background and Related Work

Although significant work has taken place in recent years to mitigate cyber attacks
and enhance web application security, threat actors are still able to deploy sophisticated
approaches to bypass the current defensive mechanism [15]. In this section, we will review



Computers 2023, 12, 235 3 of 17

the current web application architecture and technologies, and investigate the associated
security standards. We then discuss the use of benchmark targets, investigate the widely
used WAVS and automated penetration testing techniques, and finally present the current
evaluation metrics.

2.1. Web Application Architecture and Technologies

A web application is a computer program that is stored on a server. Web applications
consist of three main components: Front-end, back-end, and database [16]. The front-end
of a web application is what the users of the web application can see when they visit a
website. Thus, the front-end is considered to be part of the client-side code [17]. Frontend
technologies, such as React.js and AngularJS, are built with advanced mechanisms to
prevent commonly known vulnerabilities. Node.js and React.js are the most commonly
used technologies for developing web applications [18].

Both the back-end and database components are considered to be part of the server-
side code [17]. The back-end of a web application is responsible for processing and sup-
plying the data that is shown on the front-end. Commonly used back-end languages are
JavaScript, Java, PHP, Python, and Ruby. The database of the web application is where
data is stored and retained. There are two types of databases: structured databases, such as
MySQL and PostgresSQL, and non-structured databases like MongoDB.

When developing a web application, either single or multiple programming languages
can be used, but, based on Stack Overflow 2022 survey responses, it was revealed that
JavaScript is the most used programming language in modern web applications [18]. Ac-
cordingly, the project framework proposed in this paper is developed using the JavaScript
language. It is also easier to develop the front-end and back-end using a single programming
language.

2.2. Web Application Security Standards

Web applications that have been developed without following the latest security
guidelines and best practices might be vulnerable to various cyber-attacks, and indeed,
in general, the understanding of web application architectures and technologies among
developers is insufficient to shield web applications from cyber threats. Various security
guides and communities, such as OWASP, Common Weakness Enumeration (CWE™), and
Web Security Consortium application (WASC), attempt to address these deficiencies by
providing an updated list of web vulnerabilities.

Among these, CWE encompasses software weaknesses as well as web application
weaknesses, while WASC describes all possible attacks without focusing on which attacks
are the most common ones. OWASP, on the other hand, focuses on the top ten most critical
vulnerabilities. For this reason, and since other studies [6,8,16,19–22] have used OWASP
for web application security guidelines, we also adopted OWASP as our preferred security
guideline for use in this project.

A list of Web application security vulnerabilities for OWASP Top 10 2021 [23] are:
Broken Access Control; Cryptographic Failures; Injection; Insecure Design; Security Mis-
configuration; Vulnerable Components; Identification and Authentication Failures; Soft-
ware and Data Integrity Failures; Security Logging and Monitoring Failures; Server-Side
Request Forgery.

This study focuses on the top five vulnerabilities listed in the OWASP Top Ten for 2021.
Research conducted by [24,25] demonstrates that the vulnerabilities prioritised by OWASP
2021 play a significant role in addressing a substantial percentage of WAV attacks. Broken
Access Control includes issues such as 19% Insufficient Authorisation and 15% Predictable
Resource Location. Injection-related vulnerabilities are represented by 18% SQL Injection
and 12% Cross-Site Request Forgery (CSRF). The category of Insecure Design includes 30%
Insufficient Authentication. Security Misconfiguration. Vulnerable Components encompass
65% Cross-Site Scripting (XSS) and 46% Information Leakage.



Computers 2023, 12, 235 4 of 17

• Broken Access Control is a vulnerability in web applications where inadequate access
controls, such as user permissions, lead to unauthorised access to resources or actions.
This results in users bypassing restrictions and gaining entry to sensitive data or
actions they should not have access to.

• Cryptographic Failures are a weakness in encryption and decryption processes. These
weaknesses include the use of weak encryption algorithms, improper key manage-
ment, or incorrect application of cryptographic methods, allowing attackers to deci-
pher encrypted information.

• Injection vulnerabilities involve the insertion of untrusted data into a program’s
code or commands, unintentionally triggering malicious actions. Common examples
include SQL Injection, where attackers manipulate database queries, and Cross-Site
Scripting (XSS), where they inject harmful scripts into web applications, undermining
system functionality and data security.

• Security Misconfiguration is a security flaw that occurs when an application, system,
or network is not properly configured to protect against known vulnerabilities. It
results from the failure to apply secure settings, patches, and access controls.

• Vulnerable Components are software or hardware elements within an application or
system with known security issues. Attackers target these components due to their recog-
nised vulnerabilities. Examples include outdated software libraries, frameworks, or third-
party components with flaws, which, if exploited, can lead to system compromise.

2.3. Benchmarks Targets

Benchmark targets are used to evaluate WAVS, for example, NodeGoat, and Damn
Vulnerable Node.js Application (DVNA) [26]. But it is important that these benchmarks
should be up to date, and that they consider the latest OWASP vulnerabilities [6]. Currently,
the most up-to-date test targets are Juice Shop [27] and NodeGoat [28] . Juice Shop is
written entirely using JavaScript and is powered by Node.js, Express, and Angular. Node.js
is also entirely written using JavaScript.

Based on [27], a total of 17 vulnerabilities were identified within NodeGoat, covering
only OWASP 2021 vulnerability categories A1, A2, A3, A5, and A6. The vulnerabilities
were distributed as follows. Broken Access Control had 5 vulnerabilities, Cryptographic
Failures had none, Injection had 3, Security Misconfiguration had 6, and Vulnerable and
Outdated Components had 3 vulnerabilities. Moreover, a total of 39 vulnerabilities were
identified within Juice Shop, again scoped only to OWASP 2021 vulnerability categories
A1, A2, A3, A5, and A6. These were distributed as follows: Broken Access Control had
10 vulnerabilities, Cryptographic Failures had 5, Injection had 11, Security Misconfiguration
had 4, and Vulnerable and Outdated Components had 9. Table 1 summarises the NodeGoat
and OWASP Juice Shop vulnerabilities.

The main reasons for using NodeGoat and Juice Shop are that they have been up-
dated recently, they contain vulnerabilities from among the OWASP 2021 vulnerabilities,
and they have been designed with modern web applications technologies such as Node.js,
AngularJS, and React.js. It is worth noting that these are the same technologies that have
been mentioned in Section 2.1. This is significant because if the framework architecture
and targets are built using the same architecture it is possible to use the framework itself
as a target. That, in turn, makes it possible to utilise the multiple WAVS framework as a
benchmark target to validate itself, in addition to using NodeGoat and Juice Shop, which
adds an extra level of efficiency to the project.



Computers 2023, 12, 235 5 of 17

Table 1. NodeGoat & OWASP Juice Shop Vulnerabilities.

OWASP 2021
Vulnerability

Vulnerability
Category

NodeGoat OWASP Juice Shop Vulnerabilities

Challenge/
Vulnerability Name

Total
Vul

Challenge/
Vulnerability Name

Total
Vul

A01:2021 Broken
Access Control

Application Error
Disclosure
Server Leaks
Information
Session Management
Password Guessing
Attacks

5

Admin Section
CSRF
Easter Egg
Five-Star Feedback
Forged Feedback
Forged Review
Manipulate Basket
Product Tampering
SSRF
View Basket

10

A02:2021 Cryptographic N/A N/A

Forged Coupon
Imaginary Challenge
Nested Easter Egg
Premium Paywall
Weird Crypto

5

A03:2021 Injection

Cross-Site Scripting
(DOM Based)
Cross-Site Scripting
(Reflected)
SQL Injection

3

Christmas Special
Database Schema,
Ephemeral
Accountant
Login Admin
Login Bender
Login Jim
NoSQL DoS
NoSQL Exfiltration
NoSQL Manipulation
SSTi
User Credentials

11

A05:2021 Security
Misconfiguration

Backup File Disclosure
CSP: Wildcard
Directive
Content Security
Policy (CSP) Header
Not Set
Permissions Policy
Header Not Set
X-Content-Type-
Options Header
Missing
Missing
’X-Frame-Options’
header

6

Cross-Site Imaging
Deprecated Interface
Error Handling
Login Support Team

4

A06:2021 Vulnerable
Components

Vulnerable JS Library
Cross-Domain
JavaScript Source File
Inclusion
Insecure version of the
Marked library

3

Arbitrary File Write
Forged Signed JWT
Frontend
Typosquatting
Kill Chatbot
Legacy Typosquatting
Local File Read
Supply Chain Attack
Unsigned JWT
Vulnerable Library

9

2.4. Investigate Widely Used WAVS

Web application vulnerability scanning can be classified into three main types. Black-
box scanning performs a scan on a given target without accessing the internal source code
of the targeted web application. WAVS is an example of this type. White-box scanning,
meanwhile, gains complete access to the source code of the web application before it
performs the scan. Finally, grey-box scanning offers the penetration tester partial knowledge
of the application source code. Information such as hidden path and software version can
be supplied [6,29]. WAVS are available on an open-source and commercial basis [8]. Open-



Computers 2023, 12, 235 6 of 17

source scanners are free to use and allow users to access (and thus evaluate) their source
code. Commonly used open-source WAVS include OWASP ZAP, Wapiti, Vega, W3AF,
and Arachni [30,31]. The main commercial WAVS, meanwhile, are BurpSuite, Acunetix
and Netsparker [32].

Based on the research findings by Albalawi et al. [33] and the work of Shahid [19],
the widely used WAVS that are up to date and recognised for their proficiency in detecting
OWASP 2021 vulnerabilities are as follows:

• Acunetix is one of the most widely recognised commercial WAVS. It is adept at
uncovering an array of vulnerabilities, including but not limited to SQL injections,
Cross-Site Scripting (XSS), Host Header Injection, and an extensive list comprising
over 3000 web-related vulnerabilities.

• BurpSuite is available in both free and commercial licenses. BurpSuite takes on the
role of a Man In The Middle (MITM), HTTP requests. This process allows it to capture
and analyse requests originating from the target web application server.

• OWASP ZAP, The OWASP Zed Attack Proxy, is one of the most widely recognized
open-source WAVS. It was created by the OWASP team.

• Arachni is a free and open-source WAVS. It can navigate complex pathways dictated
by a web application’s complexity. Arachni excels at identifying vulnerabilities from
the OWASP 2021 list, making it a valuable asset in enhancing web application security.

• Nikto is an open-source WAVS. It scans server configuration files. One limitation of
Nikto is it primarily focuses on server configuration and may not cover all aspects of
web application security, leaving potential vulnerabilities unaddressed.

Alazmi et al. [32] used Arachni and OWASP ZAP to address the effectiveness of
WAVS. Given that WAVs used for this project needed to be automated from a framework,
an important selection criterion was the ability to run from the command-line interface
(CLI). Since both Arachni and OWASP ZAP can start from the CLI, and also since they have
both recently been updated, these two WAVs were selected for use within the proposed
framework. Based on the sources [34,35].

Hance et al. [12] suggested a novel attack framework utilising a distributed attack plat-
form that incorporated a control scheme for automating vulnerability detection. Qiu et al. [14]
developed an automated penetration testing algorithm that exploited vulnerabilities based
on a scanning report. Zhou et al. [36] proposed the Network Information Gain Based Auto-
mated Attack Planning (NIG-AP) algorithm to automate penetration testing phases that
use the reward system. Minh et al. [37], meanwhile, automated vulnerability assessments
at the commit level, triggering them with each new commit made to the codebase.

2.5. Performance Metrics

Evaluation metrics provide the ability to evaluate the effect of the proposed framework
properly. The evaluation analysis undertaken in this paper will be based on the results
produced by the framework. To ensure appropriate evaluation of the multiple WAVS,
four criteria were used in selecting the evaluation metrics. Consistency: in other words,
metric parameters should remain constant throughout the entire testing period. Repeatable
and reproducible: anyone should be able to replicate the experiment and obtain the same
results. Comparable: metrics should give the ability to compare values against different
results over a period of time. Meaningful: they should provide data that is meaningful and
relevant to the context of the test.

Based on existing studies [8,31,38,39], metrics such as precision, recall, and F-measure
were benchmarked and used to evaluate the multiple WAVS. Precision is the ratio of true
positives (TP) divided by the sum of true positives and false positives (FP). The precision
metrics are limited to the TP and FP, and thus do not take account of the true negative (TN)
values. For this reason, recall is also used as an evaluation metric, defined as the ratio of
true positives divided by the sum of true positives and false negatives. The last metric is
the F-measure, which is used to measure the performance of the framework, and is defined



Computers 2023, 12, 235 7 of 17

as the harmonic mean of precision and recall. A higher F-measure means a better balance
between precision and recall. These are defined as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F-Measure = 2 ×
(

Precision × Recall
Precision + Recall

)
To evaluate the multiple WAVS values such as true positives, false negatives, and false

positives need to be calculated manually. True positives are the vulnerabilities correctly
detected by the WAVS. False negatives are vulnerabilities that exist but have not been
detected by WAVS. False positives are vulnerabilities that do not exist but have been
mistakenly detected by multiple WAVS. True negatives are the non-vulnerable threats that
the multiple WAVS correctly ignored. True negative values cannot be calculated, however,
because the benchmark targets were not designed to provide cases for components that
have no vulnerabilities or negative cases [26]. This means that the full accuracy of the
framework cannot be calculated. Overall, however, precision, recall, and F-measure are
considered good metric choices to evaluate the proposed framework.

3. Experiments

This section presents the experimental design in detail, including the environment
used to run the presented methods and the general structure of the experimental design.
Finally, we introduce the two algorithms used in the WAVS framework.

3.1. Methodology

Choosing an appropriate software development cycle is crucial to the project’s success.
As mentioned in [40,41], there are various software development approaches such as
the prototype-based model, V model, classical waterfall, and iterative waterfall model.
The prototype-based model is best when there is no goal or outcome defined, but since the
goal and the scope of this project are clear the prototype-based model is not appropriate in
this case. The iterative waterfall model allows for multiple iterations, unlike the classical
waterfall model. The iterative waterfall methodology also allows tasks to be broken down
into phases, where each new phase starts after the previous one is finished [42,43]. Since this
project follows a structured approach, and the steps are clear and pre-defined, the iterative
waterfall model is the most appropriate choice.

The experiment was carried out in the following manner:

• Launch the Juice Shop target and initiate an OWASP ZAP scan on the target. After-
wards, collect the scan results, as well as the Precision, Recall, and F-measure metrics.

• Launch the Juice Shop target once more, this time running Arachni for the scan. Collect
the results of the scan, along with the Precision, Recall, and F-measure metrics.

• Commence the scan process on the Juice Shop target by configuring the WAVS frame-
work to target it. This created the Union List and Intersection List. Following this,
gather the results, including the Precision, Recall, and F-measure metrics.

• Repeat the entire process using the NodeGoat target and the WAVS framework.
• Compare the results of the Union list, Intersection list, Arachni list, and OWASP ZAP

list and draw conclusions.

The target selection criteria for benchmark targets are as follows:

• Relevant and up to date: we chose the benchmark targets based on their relevance.
We ensured that they aligned with the latest OWASP vulnerabilities. This entails
focusing on benchmark targets updated recently with vulnerabilities from OWASP
2021 vulnerability categories.



Computers 2023, 12, 235 8 of 17

• Build using Modern Web Technologies: The selected benchmark targets, NodeGoat
and Juice Shop, are characterized by their utilisation of modern web application tech-
nologies. This approach, as detailed in the provided references [6,26,27], contributes
to the robustness and comprehensiveness of the WAVS evaluation process.

The selection of Arachni and OWASP ZAP, being widely used within the cybersecu-
rity domain, carry credibility as mentioned in the comprehensive studies conducted by
Alazmi et al. [32] and Zapotek et al. [34]. The open-source nature of Arachni and OWASP
ZAP enhances the transparency and collaborative essence of these tools, which integrates
with the project’s emphasis on open, community-driven security solutions.

3.2. Requirements

Functional Requirements

• The Combination Algorithm class should create two lists: Union and Intersection.
• The progress of the scan should be communicated to the user.

Non-functional Requirements

• The framework should operate without the need for Personally Identifiable Informa-
tion (PII)

• The framework Combination Algorithm should produce the same results when run
against the same target.

• The Vulnerability Scanner Abstract Class should have the ability to be extended by
the addition of further WAVS.

3.3. Experimental Design

At a high-level architecture overview, the framework operates through the interaction
between its three core components as shown in Figure 1. Users (Actors) communicate with
the front-end web application, which allows the users to interact with the back-end APIs
using the front-end interface. The user (Actor) does not need to understand how to start
Arachni or OWASP ZAP because all of this logic is managed by the framework. The user
(Actor) has to fill in the input field for the target and click the start button.

The back-end initiates the WAVS to perform the necessary scanning tasks after receiv-
ing HTTP requests from the front-end. The back-end then starts the WAVS to scan the
specified target and generate the results. Then, the back-end returns this information to the
front-end, allowing users to view and analyse the results. This communication between the
front-end, back-end, and WAVS ensures a user-friendly experience.

Figure 1. Diagram of the Multiple WAVS Framework.



Computers 2023, 12, 235 9 of 17

In more detail, the multiple WAVS framework sequence is as follows:
The process begins with the WAVS framework front-end, built using React. This serves

as the user interface. The back-end, developed using Node.js with Express, handles the
communication between the front-end, the vulnerability scanners (WAVS), and the overall
process flow. The WAVS, represented by Arachni and OWASP ZAP, are initiated to perform
vulnerability scans on the specified target.

Start Arachni: the Arachni scanner begins its scan on the provided target. Start ZAP:
the OWASP ZAP scanner commences its vulnerability assessment on the same target. Start
Arachni: upon completing the scan, Arachni signals that it has finished scanning. Start
ZAP: similarly, OWASP ZAP indicates that it has completed the scanning process. GET
/backend-state: the front-end queries the back-end for the current state of the scanning
process. GET /health: a health check is conducted to ensure that the back-end is operational.
POST /target: the front-end sends a request to the back-end with the target for scanning.

GET /results: the back-end retrieves the results of the scans for the specified target.
Back-end state results: the back-end combines the state of the process with the scan results.
Actor: the user, or an automated process, interacts with the front-end to initiate scans and
monitor progress. Arachni Finished: after Arachni completes its scan, its status is updated.
Actor Arachni Finished: the user or automated process is notified of Arachni’s completion.
Arachni and ZAP Results: the back-end fetches the scan results from both Arachni and
OWASP ZAP. Combined Results: the back-end combines the results from both scanners.
Results: the consolidated results are prepared for further analysis or presentation.

3.4. Algorithms
3.4.1. Combination Algorithms

Algorithm 1 is a novel algorithm proposed for this paper. This algorithm compares the
results generated from the different WAVSs and then it compares them against each other
to produce a final combined report that contains all of the results from different WAVSs.
The concept of the algorithm is to loop over the generated vulnerability results and store
them in four different lists. Union list, Intersection list, Arachni list, OWASP ZAP list.

1. The Union list represents the combined set of vulnerabilities identified by the WAVSs,
in this case, Arachni and OWASP ZAP. This is the important list that is used to
validate the hypothesis by combining all vulnerabilities identified by either scanner.
By considering the union list, researchers can assess the effectiveness of using multiple
scanners together in enhancing vulnerability detection coverage and accuracy.

2. Intersection list: this list contains the vulnerabilities detected by both scanners, repre-
senting a higher confidence set of vulnerabilities.

3. Arachni list: the unique list for Arachni contains vulnerabilities detected by the
Arachni scanner. This list is used to evaluate Arachni against the union list.

4. OWASP ZAP list: similar to Arachni’s list, the OWASP ZAP list contains vulnerabili-
ties detected by the OWASP ZAP scanner.

3.4.2. Automation Algorithms

Algorithm 2 presented in this paper outlines a systematic process for analysing the
results of various Web Application Vulnerability Scanners (WAVSs). The algorithm iterates
through each WAVS in a loop, starting its execution and evaluating its success. When a
WAVS succeeds, it executes and records its findings, including the target value and results.
If result availability is confirmed, the algorithm aggregates all WAVS results and checks
their retrieval status. Once all results are retrieved, the algorithm employs a process of
combining and filtering the results, producing a refined report of identified vulnerabilities.



Computers 2023, 12, 235 10 of 17

Algorithm 1 Combination Algorithm

1: Input: WAVSs Results.
2: Output: The vulnerabilities results.
3: Arguments:
4: results1: the result list generated by WAVS 1.
5: results2: the result list generated by WAVS 2.
6: function COMBINATIONALGORITHM(results1, results2)
7: intersectionList← Create Intersection List(results1∩ results2)
8: unionList← Create Unique List(results1∪ results2)
9: resultList1← Create Single List(results1)

10: resultList2← Create Single List(results2)
11: while ValidResults do
12: if results1 and results2 then
13: groupResults1ByCweld← GROUP BY CWEID(results1)
14: groupResults2ByCweld← GROUP BY CWEID(results2)
15: for all cweid in groupResults1ByCweld do
16: if cweid ∈ groupResults2ByCweld then
17: intersectionList.add(cweid)
18: else
19: uniqueList.add(cweid)
20: end if
21: resultList1.add(cweid)
22: end for
23: for all cweid in groupResults2ByCweld do
24: if cweid 6∈ groupResults1ByCweld then
25: unionList.add(cweid)
26: end if
27: resultList1.add(cweid)
28: end for
29: else
30: if results1 then
31: unionList← Add to Union List(results1)
32: resultList1← Add to Single List(results1)
33: end if
34: if results2 then
35: unionList← Add to Union List(results2)
36: resultList2← Add to Single List(results2)
37: end if
38: end if
39: Perform Additional Processing()
40: end while
41: finalCombinedResults← Combine and Filter(resultList1, resultList2)
42: if finalCombinedResults then
43: storeResults(finalCombinedResults)
44: generateDetailedReport(finalCombinedResults)
45: else
46: generateFailureReport()
47: end if
48: end function



Computers 2023, 12, 235 11 of 17

Algorithm 2 Automation Algorithm

1: Input: Void.
2: Output: The vulnerabilities results.
3: function AUTOMATIONALGORITHM
4: for i = 0 to the total count of WAVS do
5: startCurrentWAV([i])
6: if Success then
7: Execute WAVS with the current target value
8: Retrieve the current target value
9: Store the Results of the current WAVS

10: else
11: Execute Combination Algorithm
12: End with success message update
13: end if
14: end for
15: while ¬allWAVSResults do
16: if resultAvailable then
17: allWAVSResults← fetchAllWAVSResults()
18: else
19: Wait for Results allWAVSResults
20: end if
21: end while
22: if allWAVSResults then
23: results1← Scanner 1 results extracted from allWAVSResults(allWAVSResults)
24: results2← Scanner 2 results extracted from allWAVSResults(allWAVSResults)
25: combinedResults ← CombinationAlgorithm(results1, results2)(allWAVSResults)

. Invoke Algorithm 1 Combination Algorithm
26: if combinedResults then
27: filteredResults← Filter Results(combinedResults)
28: storeResults(filteredResults)
29: generateSummaryReport(filteredResults)
30: end if
31: end if
32: end function

4. Experiment Results

The experimental results are presented and discussed in this section, which includes
the Union List, Intersection List, Arachni’s List, and OWASP ZAP’s List.

4.1. Target NodeGoat

A total of 17 vulnerabilities were identified within NodeGoat. These are listed in
Figure 2. These 17 vulnerabilities are the total amount of vulnerabilities.

The Union List has the highest F-measure at 73%, as shown in Table 2 and Figure 2.
This means that it has a good balance between precision and recall. With a precision score
of 63%, it reported 37% false positives. Its recall of 88% means that it missed 12% of the
true positives. The Intersection List’s precision score was 100%, meaning it did not report
any false positives. its recall was only 24%, however, indicating that it missed 76% of true
positives. This led to a very low F-measure of 38%. Arachni’s precision was 100%, similar
to the Intersection List, but its recall was just 18%, resulting in a lower F-measure of 30%.
Despite its high-precision score, therefore, Arachni cannot detect all true positives. OWASP
ZAP reported a high F-measure of 70%, lower than the Union List. Its precision of 61%
means it reported 39% false positives. With the second-highest recall after the Union List at
82%, OWASP ZAP demonstrates an impressive performance in detecting true positives.



Computers 2023, 12, 235 12 of 17

Table 2. Table Summary of the evaluation metrics.

List
Precision Recall F-Measure

Node-Goat Juice Shop WAVS Node-Goat Juice Shop WAVS Node-Goat Juice Shop WAVS

Union 63% 78% 86% 88% 18% 100% 73% 30% 92%

Intersection 100% 100% 100% 24% 5% 83% 38% 10% 91%

Arachni 100% 100% 100% 18% 5% 33% 30% 10% 50%

OWASP ZAP 61% 57% 80% 82% 10% 67% 70% 17% 73%

Figure 2. NodeGoat performance metrics with TP, FP and FN comparison.

4.2. Target Juice Shop

A total of 39 vulnerabilities were identified within Juice Shop provided in Figure 3.
These 39 vulnerabilities are the total amount of vulnerabilities.

The Union List has the highest F-measure at 30% as shown in Table 2 and Figure 3.
This means a low balance between precision and recall. With a precision score of 78%, it
reported 22% false positives. Its recall of 18% means that it missed 82% of true positives. The
Intersection List’s precision score was 100%, meaning it did not report any false positives.
Its recall was only 5%, however, which means that it missed 95% of true positives. This led
to a very low F-measure of 10%. Arachni’s precision was 100%, similar to the Intersection
List. Again, however, its recall was just 5%, resulting in a low F-measure of 10%. This means
that, despite its high-precision score, Arachni cannot detect all true positives. OWASP ZAP
reported a relatively high F-measure of 17%, lower than the Union List. Its precision of 57%
means it reported 43% false positives. With the second-highest recall after the Union List at
10%, OWASP ZAP demonstrates a medium performance in detecting true positives.

Figure 3. Juice Shop performance metrics with TP, FP, and FN comparison.

4.3. Target WAVS Framework

A total of six vulnerabilities were identified within the WAVS framework provided in
Figure 4. These six vulnerabilities are the total amount of vulnerabilities.

The Union List has the highest F-measure at 92%, as shown in Table 2 and Figure 4,
indicating a high balance between precision and recall. With a precision score of 86%, it
reported 14% false positives. Its recall of 100% means that it successfully detected all true



Computers 2023, 12, 235 13 of 17

positives. The Intersection List’s precision score was 100%, meaning it did not report any
false positives. its recall of 83%, however, indicated that it missed 17% of true positives.
This led to a high F-measure of 91%, similar to the Union List. Arachni’s precision was
100%, similar to the Intersection List. Its recall was only 33%, however, resulting in an
F-measure of 50%. Again, despite its high-precision score, Arachni cannot detect all true
positives. OWASP ZAP reported an F-measure of 73%, lower than the Union List. Its
precision of 80% means it reported 20% false positives. With a recall of 67%, OWASP ZAP
demonstrates a good performance in detecting true positives.

Figure 4. WAVS framework performance metrics with TP, FP, and FN comparison.

4.4. Discussion

The Union List achieved the highest F-measure across all targets. This means that
it offers the best balance between precision and recall. The Intersection List had the best
precision score, but its recall score varied from target to target, which led to different F-
measures. Arachni had a perfect score of 100% precision for all three targets, but it recorded
the lowest recall. OWASP ZAP had a better recall than both the Intersection List and
Arachni, but still did not surpass the Union List’s performance. This means that the Union
List performed better than either Arachni and OWASP ZAP individually.

The practical significance of scanner performance and the use of the Union List in the
context of web application security is as follows:

• Union List’s High F-Measure: The Union list demonstrated the highest F-measure
across all targets, indicating a good balance between precision and recall. This is
important because it shows that the Union List is effective in identifying vulnerabilities
without high ratios of false positives or false negatives.

• Union List vs. Intersection List: The Union performed better in terms of recall and F-
measure compared to the Intersection List, even though the latter had better precision.
This demonstrates the Union List’s ability to offer a better balance between precision
and recall.

• Importance of Combining Scanners: The Union list was generated by OWASP ZAP,
while Arachni failed to detect the most true positives. This emphasises the value
of combining multiple scanners to improve overall detection rates. In conclusion,
the research findings suggest that the Union List, generated by the WAVS framework,
is a practical choice for web application security assessments due to its balanced
performance. It is able to outperform individual scanners. The use of multiple scanners
in combination is also recommended for comprehensive vulnerability detection.

When compared to the state-of-the-art studies, exemplified by Anhar et al. [26], the com-
prehensive Union List WAVS framework surpassed all findings presented in their research.

In the study conducted by Mburano et al. [6] concluded that ZAP outperformed
Arachni in categories such as SQL Injection (SQLI) and Cross-Site Scripting (XSS). In con-
trast, Arachni exhibited superior performance in the Lightweight Directory Access Protocol
(LDAP) category. These findings substantiate the results obtained from the Union List,
affirming the framework’s efficacy in identifying a broader spectrum of vulnerabilities and
achieving a higher F-measure. The framework’s efficacy can be attributed to several key



Computers 2023, 12, 235 14 of 17

factors. This collective knowledge base uses the framework to identify a more extensive
spectrum of vulnerabilities, as it benefits from the diversity of the WAVS.

When comparing the Union List to the Intersection List, the latter performed better
against all the targets in terms of precision, while the former performed better in terms of
recall and F-measure. This indicates that the Union List offers better balance and detection.
It is important to note that the Intersection List reported quite similar findings to Arachni,
probably because most of the vulnerabilities found by Arachni were also found by OWASP
ZAP. It is also important to note that the Union List result was mainly generated by OWASP
ZAP, while Arachni failed to detect most of the true positives. Indeed, this is why OWASP
ZAP outperformed Arachni in terms of recall and F-measure. Overall, therefore, our
results highlight the benefits of utilising multiple vulnerability scanners in conjunction
with one another.

The Union List leverages this diversity to ensure a well-rounded vulnerability as-
sessment. The higher F-measure achieved by the framework is a testament to its ability
to balance precision and recall effectively. By combining the results of multiple WAVS,
the framework minimises false negatives while maintaining a high level of precision. This
means that it not only detects a broader range of vulnerabilities but also does so with a
lower rate of false positives, enhancing the accuracy of vulnerability identification.

After testing and generating all the results, it was proven that the Union List generated
by the WAVS framework achieved the best performance evaluation in terms of recall
and F-measure.

5. Conclusions

In this paper, we have comprehensively evaluated the performance of different vul-
nerability scanners. Our investigation involved comparing four lists—the Union list, the In-
tersection list, the Arachni list, and the OWASP ZAP list—considering their individual
contributions to vulnerability detection across multiple targets.

The Union List consistently achieved the highest F-measure performance across all
targets. This underscores the significance of combining multiple scanners for an enhanced
security assessment. The study supports the Union List, created by the WAVS framework,
as a practical choice for web application security. It excels in maintaining precision-recall
balance and outperforming individual scanners. Using multiple scanners in combination is
strongly recommended for comprehensive vulnerability detection in web applications.

The Union List emerged as the best performer, exemplifying an exceptional balance
between precision and recall, which shows the significance of the integration of multiple
scanners. Through these comprehensive evaluations, our study demonstrates the potential
of integrating multiple scanners and offers valuable insights into vulnerability scanning
methodologies that will help to enhance vulnerability assessment practices.

The main limitation in our study pertains to the constrained availability of up-to-date,
free, and open-source WAVS suitable for integration into our framework. Furthermore,
our study faces the challenge of having a limited selection of benchmark targets that
encompass the latest OWASP 2021 vulnerabilities, which are essential for evaluating the
framework. This constraint reflects the dynamic nature of the cybersecurity domain,
where vulnerabilities evolve continuously. In accordance with [32]’s findings in their 2022
publication, six studies have undertaken assessments of OWASP ZAP, while only two
have evaluated Arachni. Upon reviewing this body of research, one study has explored
OWASP 2021 vulnerabilities. In consideration of these limitations, we urge future research
to investigate the integration of commercial WAVS into this framework and benchmark
against the most up-to-date OWASP 2021 vulnerabilities.

This study offers valuable insights into vulnerability scanning methodologies, shed-
ding light on their practical applications and how they can significantly enhance vulner-
ability assessment practices in real-world scenarios in the web application cybersecurity
domain. This research underscores the tangible benefits of using these methodologies to



Computers 2023, 12, 235 15 of 17

improve the security and reliability of web applications, making them more robust against
potential threats and vulnerabilities.

Learning how to integrate multiple WAVS, rather than relying solely on single open-
source scanners, will be a key area for future work. Additionally, we are now seeking to
incorporate automated exploits to validate identified vulnerabilities to generate compre-
hensive reports based on the success of those exploit attempts.

Author Contributions: Conceptualization, K.A. and N.E.; methodology, K.A. and N.E.; software,
K.A.; validation, K.A., N.E. and M.Y.; formal analysis, K.A. and N.E.; investigation, K.A., N.E
and M.Y.; resources, K.A. and N.E.; data curation, K.A.; writing—original draft preparation, K.A.;
writing—review and editing, K.A., N.E. and M.Y.; visualization, K.A., N.E. and M.Y.; supervision,
N.E.; project administration, N.E. and M.Y.; funding acquisition, N.E. All authors have read and
agreed to the published version of the manuscript.

Funding: Glasgow Caledonian University provided the funding for open access for this research.

Data Availability Statement: Data available on request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Altulaihan, E.A.; Alismail, A.; Frikha, M. A Survey on Web Application Penetration Testing. Electronics 2023, 12, 1229. [CrossRef]
2. Sadqi, Y.; Maleh, Y. A systematic review and taxonomy of web applications threats. Inf. Secur. J. Glob. Perspect. 2022, 31, 1–27.

[CrossRef]
3. Trickel, E.; Pagani, F.; Zhu, C.; Dresel, L.; Vigna, G.; Kruegel, C.; Wang, R.; Bao, T.; Shoshitaishvili, Y.; Doupé, A. Toss a Fault to

Your Witcher: Applying Grey-box Coverage-Guided Mutational Fuzzing to Detect SQL and Command Injection Vulnerabilities.
In Proceedings of the 2023 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 21–25 May 2023; pp. 2658–2675.
[CrossRef]

4. Deepa, G.; Thilagam, P.S. Securing web applications from injection and logic vulnerabilities: Approaches and challenges. Inf.
Softw. Technol. 2016, 74, 160–180. [CrossRef]

5. Alhamed, M.; Rahman, M.M.H. A Systematic Literature Review on Penetration Testing in Networks: Future Research Directions.
Appl. Sci. 2023, 13, 6986. [CrossRef]

6. Mburano, B.; Si, W. Evaluation of Web Vulnerability Scanners Based on OWASP Benchmark. In Proceedings of the 2018 26th
International Conference on Systems Engineering (ICSEng), Sydney, Australia, 18–20 December 2018; pp. 1–6.

7. Makino, Y.; Klyuev, V. Evaluation of web vulnerability scanners. In Proceedings of the 2015 IEEE 8th International Conference
on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Warsaw, Poland,
24–26 September 2015; Volume 1, pp. 399–402.

8. Idrissi, S.E.; Berbiche, N.; Guerouate, F.; Shibi, M. Performance evaluation of web application security scanners for prevention
and protection against vulnerabilities. Int. J. Appl. Eng. Res. 2017, 12, 11068–11076.

9. Kagorora, F.; Li, J.; Hanyurwimfura, D.; Camara, L. Effectiveness of Web Application Security Scanners at Detecting Vulnerabilities
behind AJAX/JSON. Int. J. Innov. Res. Sci. Eng. Technol. 2015, 4, 4179–4188.

10. Singh, N.; Meherhomji, V.; Chandavarkar, B.R. Automated versus Manual Approach of Web Application Penetration Testing. In
Proceedings of the 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT),
Kharagpur, India, 1–3 July 2020; pp. 1–6. [CrossRef]

11. Hu, Z.; Beuran, R.; Tan, Y. Automated Penetration Testing Using Deep Reinforcement Learning. In Proceedings of the 2020 IEEE
European Symposium on Security and Privacy Workshops (EuroS&PW), Genoa, Italy, 7–11 September 2020; pp. 2–10. [CrossRef]

12. Hance, J.; Milbrath, J.; Ross, N.; Straub, J. Distributed Attack Deployment Capability for Modern Automated Penetration Testing.
Computers 2022, 11, 33. [CrossRef]

13. Elmrabit, N.; Zhou, F.; Li, F.; Zhou, H. Evaluation of Machine Learning Algorithms for Anomaly Detection. In Proceedings of the
2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security), Dublin, Ireland, 15–19 June
2020; pp. 1–8. [CrossRef]

14. Qiu, X.; Wang, S.; Jia, Q.; Xia, C.; Xia, Q. An automated method of penetration testing. In Proceedings of the 2014 IEEE Computers,
Communications and IT Applications Conference, Beijing, China, 20–22 October 2014; pp. 211–216.

15. Shahid, W.B.; Aslam, B.; Abbas, H.; Khalid, S.B.; Afzal, H. An enhanced deep learning based framework for web attacks detection,
mitigation and attacker profiling. J. Netw. Comput. Appl. 2022, 198, 103270. [CrossRef]

16. Lala, S.K.; Kumar, A.; Subbulakshmi, T. Secure Web development using OWASP Guidelines. In Proceedings of the 2021 5th
International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 6–8 May 2021; pp. 323–332.
[CrossRef]

http://doi.org/10.3390/electronics12051229
http://dx.doi.org/10.1080/19393555.2020.1853855
http://dx.doi.org/10.1109/SP46215.2023.10179317
http://dx.doi.org/10.1016/j.infsof.2016.02.005
http://dx.doi.org/10.3390/app13126986
http://dx.doi.org/10.1109/ICCCNT49239.2020.9225385
http://dx.doi.org/10.1109/EuroSPW51379.2020.00010
http://dx.doi.org/10.3390/computers11030033
http://dx.doi.org/10.1109/CyberSecurity49315.2020.9138871
http://dx.doi.org/10.1016/j.jnca.2021.103270
http://dx.doi.org/10.1109/ICICCS51141.2021.9432179


Computers 2023, 12, 235 16 of 17

17. Schutt, K.; Balci, O. Cloud software development platforms: A comparative overview. In Proceedings of the 2016 IEEE 14th
International Conference on Software Engineering Research, Management and Applications (SERA), Towson, MD, USA, 8–10
June 2016; pp. 3–13. [CrossRef]

18. Stack Overflow Developer Survey. 2021. Available online: https://insights.stackoverflow.com/survey/2021#most-popular-
technologies-language (accessed on 31 August 2023).

19. Shahid, J.; Hameed, M.K.; Javed, I.T.; Qureshi, K.N.; Ali, M.; Crespi, N. A Comparative Study of Web Application Security
Parameters: Current Trends and Future Directions. Appl. Sci. 2022, 12, 4077. [CrossRef]

20. Mateo Tudela, F.; Bermejo Higuera, J.R.; Bermejo Higuera, J.; Sicilia Montalvo, J.A.; Argyros, M.I. On Combining Static, Dynamic
and Interactive Analysis Security Testing Tools to Improve OWASP Top Ten Security Vulnerability Detection in Web Applications.
Appl. Sci. 2020, 10, 9119. [CrossRef]

21. Antonelli, D.; Cascella, R.; Perrone, G.; Romano, S.P.; Schiano, A. Leveraging AI to optimize website structure discovery during
Penetration Testing. arXiv 2021, arXiv:2101.07223.

22. Kiruba, B.; Saravanan, V.; Vasanth, T.; Yogeshwar, B.K. OWASP Attack Prevention. In Proceedings of the 2022 3rd Interna-
tional Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 17–19 August 2022;
pp. 1671–1675. [CrossRef]

23. OWASP Foundation Top Ten Project. 2021. Available online: https://owasp.org/www-project-top-ten/ (accessed on 31 August
2023).

24. Zaitseva, E.; Hovorushchenko, T.; Pavlova, O.; Voichur, Y. Identifying the Mutual Correlations and Evaluating the Weights of
Factors and Consequences of Mobile Application Insecurity. Systems 2023, 11, 242. [CrossRef]

25. Alsaffar, M.; Aljaloud, S.; Mohammed, B.A.; Al-Mekhlafi, Z.G.; Almurayziq, T.S.; Alshammari, G.; Alshammari, A. Detection of
Web Cross-Site Scripting (XSS) Attacks. Electronics 2022, 11, 2212. [CrossRef]

26. Al Anhar, A.; Suryanto, Y. Evaluation of Web Application Vulnerability Scanner for Modern Web Application. In Proceedings of
the 2021 International Conference on Artificial Intelligence and Computer Science Technology (ICAICST), Yogyakarta, Indonesia,
29–30 June 2021; pp. 200–204. [CrossRef]

27. Kimminich, B. The OWASP Juice Shop Project. 2023. Available online: https://owasp.org/www-project-juice-shop/ (accessed
on 31 August 2023).

28. Karande, C. OWASP NodeGoat project. Available online: https://github.com/OWASP/NodeGoat (accessed on 31 August 2023).
29. Antunes, N.; Vieira, M. Penetration testing for web services. Computer 2013, 47, 30–36. [CrossRef]
30. Albahar, M.; Alansari, D.; Jurcut, A. An Empirical Comparison of Pen-Testing Tools for Detecting Web App Vulnerabilities.

Electronics 2022, 11, 2991. [CrossRef]
31. Alsaleh, M.; Alomar, N.; Alshreef, M.; Alarifi, A.; Al-Salman, A. Performance-Based Comparative Assessment of Open Source

Web Vulnerability Scanners. Secur. Commun. Netw. 2017, 2017, 6158107. [CrossRef]
32. Alazmi, S.; De Leon, D.C. A Systematic Literature Review on the Characteristics and Effectiveness of Web Application Vulnerabil-

ity Scanners. IEEE Access 2022, 10, 33200–33219. [CrossRef]
33. Albalawi, N.; Alamrani, N.; Aloufi, R.; Albalawi, M.; Aljaedi, A.; Alharbi, A.R. The Reality of Internet Infrastructure and Services

Defacement: A Second Look at Characterizing Web-Based Vulnerabilities. Electronics 2023, 12, 2664. [CrossRef]
34. Laskos, T. Arachni—Web Application Security Scanner Framework. Available online: https://github.com/Arachni (accessed on

31 August 2023).
35. ZAPping the OWASP Top 10. 2021. Available online: https://www.zaproxy.org/docs/guides/zapping-the-top-10-2021/

(accessed on 31 August 2023).
36. Zhou, T.-Y.; Zang, Y.-C.; Zhu, J.-H.; Wang, Q-X. NIG-AP: A new method for automated penetration testing. Front. Inf. Technol.

Electron. Eng. 2019, 20, 1277–1288. [CrossRef]
37. Minh Le, T.H.; Hin, D.; Croft, R.; Ali Babar, M. DeepCVA: Automated Commit-level Vulnerability Assessment with Deep

Multi-task Learning. In Proceedings of the 2021 36th IEEE/ACM International Conference on Automated Software Engineering
(ASE), Melbourne, Australia, 15–19 November 2021; pp. 717–729. [CrossRef]

38. Urbano, L.; Perrone, G.; Romano, S.P. Reinforced WAVSEP: A Benchmarking Platform for Web Application Vulnerability Scanners.
In Proceedings of the 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET), Prague, Czech
Republic, 20–22 July 2022; pp. 1–6. [CrossRef]

39. Antunes, N.; Vieira, M. Benchmarking Vulnerability Detection Tools for Web Services. In Proceedings of the 2010 IEEE
International Conference on Web Services, Miami, FL, USA, 5–10 July 2010; pp. 203–210. [CrossRef]

40. Huo, M.; Verner, J.; Zhu, L.; Babar, M.A. Software quality and agile methods. In Proceedings of the 28th Annual International
Computer Software and Applications Conference, Hong Kong, China, 28–30 September 2004; pp. 520–525.

41. Mitchell, S.M.; Seaman, C.B. A comparison of software cost, duration, and quality for waterfall vs. iterative and incremental
development: A systematic review. In Proceedings of the 2009 3rd International Symposium on Empirical Software Engineering
and Measurement, Lake Buena Vista, FL, USA, 15–16 October 2009; pp. 511–515.

http://dx.doi.org/10.1109/SERA.2016.7516122
https://insights.stackoverflow.com/survey/2021#most-popular-technologies-language
https://insights.stackoverflow.com/survey/2021#most-popular-technologies-language
http://dx.doi.org/10.3390/app12084077
http://dx.doi.org/10.3390/app10249119
http://dx.doi.org/10.1109/ICESC54411.2022.9885691
https://owasp.org/www-project-top-ten/
http://dx.doi.org/10.3390/systems11050242
http://dx.doi.org/10.3390/electronics11142212
http://dx.doi.org/10.1109/ICAICST53116.2021.9497831
https://owasp.org/www-project-juice-shop/
https://github.com/OWASP/NodeGoat
http://dx.doi.org/10.1109/MC.2013.409
http://dx.doi.org/10.3390/electronics11192991
http://dx.doi.org/10.1155/2017/6158107
http://dx.doi.org/10.1109/ACCESS.2022.3161522
http://dx.doi.org/10.3390/electronics12122664
https://github.com/Arachni
https://www.zaproxy.org/docs/guides/zapping-the-top-10-2021/
http://dx.doi.org/10.1631/FITEE.1800532
http://dx.doi.org/10.1109/ASE51524.2021.9678622
http://dx.doi.org/10.1109/ICECET55527.2022.9872956
http://dx.doi.org/10.1109/ICWS.2010.76


Computers 2023, 12, 235 17 of 17

42. Trivedi, P.; Sharma, A. A comparative study between iterative waterfall and incremental software development life cycle model
for optimizing the resources using computer simulation. In Proceedings of the 2013 2nd International Conference on Information
Management in the Knowledge Economy, Chandigarh, India, 19–20 December 2013; pp. 188–194.

43. Chandra, V. Comparison between various software development methodologies. Int. J. Comput. Appl. 2015, 131, 7–10. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.5120/ijca2015907294

	Introduction
	Background and Related Work
	Web Application Architecture and Technologies
	Web Application Security Standards
	Benchmarks Targets
	Investigate Widely Used WAVS
	Performance Metrics

	Experiments
	Methodology
	Requirements
	Experimental Design
	Algorithms
	Combination Algorithms
	Automation Algorithms


	Experiment Results
	Target NodeGoat
	Target Juice Shop
	Target WAVS Framework
	Discussion

	Conclusions
	References

