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Introduction: Loss-of-control (LOC) eating, a key feature of binge-eating disorder,

may relate attentional bias (AB) to highly salient interpersonal stimuli. The current

pilot study used magnetoencephalography (MEG) to explore neural features of AB

to socially threatening cues in adolescent girls with and without LOC-eating.

Methods: Girls (12–17 years old) with overweight or obesity (BMI >85th

percentile) completed an AB measure on an a�ective dot-probe AB task during

MEG and evoked neural responses to angry or happy (vs. neutral) face cues

were captured. A laboratory test meal paradigm measured energy intake and

macronutrient consumption patterns.

Results: Girls (N = 34; Mage = 15.5 ± 1.5 years; BMI-z = 1.7 ± 0.4) showed a

blunted evoked response to the presentation of angry face compared with neutral

face cues in the left dorsolateral prefrontal cortex, a neural region implicated in

executive control and regulation processes, during attention deployment (p <

0.01). Compared with those without LOC-eating (N = 21), girls with LOC-eating

(N = 13) demonstrated a stronger evoked response to angry faces in the visual

cortex during attention deployment (p < 0.001). Visual and cognitive control ROIs

had trends suggesting interaction with test meal intake patterns among girls with

LOC-eating (ps = 0.01).

Discussion: These findings suggest that girls with overweight or obesitymay fail to

adaptively engage neural regions implicated in higher-order executive processes.

This di�culty may relate to disinhibited eating patterns that could lead to excess

weight gain.
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1. Introduction

Approximately one-third of US youth have overweight and

17% have obesity (1–4); these conditions often persist during

adulthood (5–8). The DSM-5 definition of binge-eating disorder

(BED) (9) involves the presence of objectively large binge episodes

with loss-of-control (LOC) overeating (defined as the subjective

experience of being unable to stop eating) that occurs at least

once a week for 3 months, where the episodes also have other

characteristics, such as rapid eating, eating when not hungry or

until feeling uncomfortably full, and/or feeling disgusted with

oneself, depressed, or guilty after overeating. Full syndrome BED is

less common during adolescence than adulthood (10). However,

people reporting even low-frequency episodes of LOC-eating

(without objectively large binge episodes) share many of the

characteristics found among those who have BED (11). For

example, LOC-eating uniquely places youth at risk for overweight

and obesity (12, 13). Regardless of age or disordered eating status,

individuals with obesity also report greater interpersonal stress,

characterized by frequent and pervasive weight-related stigma

(14–16), than individuals having lower weight (17). Theories of

interpersonal sensitivity (18, 19) posit that pervasive experiences

of social criticism or exclusion (e.g., weight stigma) increase

awareness and vigilance toward negative feedback cues. Indeed,

individuals with obesity display increased sensitivity to negative

social feedback as indicated by an attention bias to social threat

(20, 21). Furthermore, adolescents (22), girls in particular (23, 24),

exhibit heightened vulnerability to social stressors. Given the

frontal cortex is not yet fully developed during adolescence, this

neural region may be particularly vulnerable to psychosocial stress

during this stage of development (25). According to interpersonal

theory, LOC-eating results from maladaptive coping with social

stress (26–30), for example, social exclusion or criticism due to

weight stigma. Maladaptive coping, in turn, might reflect perturbed

neural responses to social cues (31, 32). Indeed, neuroimaging

data support interpersonal theory in revealing that girls with

overweight or obesity and LOC-eating express aberrant responses

to social distress (i.e., simulated peer rejection) in the ventral

prefrontal cortex, striatum, and fusiform face area (31), supplying

several regions of interest (ROIs) for analyses. Taken together,

interpersonal theory and extant neuroimaging data suggest that

girls with LOC-eating may manifest abnormal neural responses to

social threats. The current study utilizes magnetoencephalography

(MEG), a novel brain imaging tool, to extend this

previous study.

Neural correlates of LOC-eating may manifest within attention

tasks that employ social threats. Attention bias, expressed as

an excessive response to such threats, relates to many health

conditions, such as disordered eating (33, 34). In conjunction

with the interpersonal model of disordered eating, youth with

LOC-eating may respond abnormally to attention paradigms,

which engage two key temporal processes: automatic or “bottom-

up” attention and voluntary or “top-down” attention. Automatic

attention capture involves the engagement of ventral–frontal

networks encompassing the insula, anterior cingulate, and medial

prefrontal cortices (35–37), which typically occur within 250

milliseconds (ms) (32, 38). Voluntary attention capture involves the

engagement of dorso-frontal regions encompassing the dorsolateral

prefrontal cortex and dorsal anterior cingulate, which occur in a

later or more sustained fashion (35–37, 39, 40). This offers several

additional ROIs for imaging (i.e., insula, anterior cingulate, and

medial and dorsolateral prefrontal cortices). Aberrant activation in

these regions may fail to regulate attention deployment in ways that

unleash attentional bias to social threats. Previous research studies

have shown strong engagement of occipital regions in healthy

individuals during the processing of negative-valence emotional

stimuli (41–43), supplying another ROI for a visual attention-

biased social threat task.

Imaging studies may extend the interpersonal model of LOC-

eating. Circuitry central to food reward processing overlaps with

ROIs from attention biased imaging research (44–48). Individuals

with disordered eatingmanifest hyperactivity in regions supporting

attention capture and social threat processing, such as the amygdala

and anterior cingulate cortex (49–51), supplying additional ROIs

for analyses. One relevant functional magnetic resonance imaging

(fMRI) study examined 22 adolescent girls with overweight and

obesity, finding that, following a social rejection task, girls with

reported LOC-eating failed to engage prefrontal cortex regions

implicated in emotion regulation and demonstrated hyperactivity

in the fusiform face area, which subsequently related to palatable

food intake at a laboratory test meal (31). fMRI, however, is

limited in its capacity to elucidate temporal sequences of neural

activity. Neural processes involved in attentional bias occur over

a short period of time; these processes are optimally measured by

temporally sensitive methods (36). MEG, which has both excellent

temporal and acceptable spatial resolution (52–54), has been used

to isolate neural response periods of attention bias to social threat

in pediatric samples (55). This provides a precise quantification

of attentional bias to psychosocial stress as a potential mechanism

for LOC-eating.

The current study examined the links between neural activation

implicated in attention bias to social threat and subsequent

laboratory test meal energy intake. The sample consisted of

adolescent girls with overweight or obesity, with and without

reported LOC-eating. We hypothesized that, compared with

neutral control face cues, youth would exhibit a greater bottom-

up evoked response to social threat cues in aforementioned ROIs

related to attention capture and threat detection [i.e., occipital,

amygdala, fusiform, insula, striatum, anterior cingulate cortex

(ACC), ventrolateral prefrontal cortex (PFC), medial PFC, and

dorsolateral PFC]. Similarly, this sample of youth with overweight

or obesity was expected to exhibit a blunted top-down evoked

response to angry salient face cues in ROIs related to attention

deployment. Moreover, youth with LOC-eating were expected

to exhibit a greater bottom-up evoked response and a blunted

top-down evoked response to social threat cues compared with

youth without LOC-eating. Finally, it was hypothesized that the

associations between bottom-up evoked response to angry face

cues and maladaptive test meal intake patterns [i.e., greater total

calorie intake and percentage of consumption from carbohydrates

and fats and lower percentage of intake from protein, in line with

previous research studies (56)] would be most strongly positively

associated with girls with LOC-eating. The relationships between

top-down evoked response and maladaptive test meal intake
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patterns were expected to be most strongly negatively related to

girls with LOC-eating.

2. Materials and methods

2.1. Participants and recruitment

The inclusion criteria of the participants were as follows:

female sex, 12–17 years old at the start of the study, overweight

or obesity (BMI at or above the 85th percentile for age and sex

according to the Centers for Disease Control US standards) (57),

English-speaking, and right-handedness. Girls were excluded if

they met any of the following criteria: an obesity-related health

comorbidity requiring medical treatment, such as hypertension or

fasting hyperglycemia consistent with diabetes; presence of other

major medical illnesses including renal, hepatic, gastrointestinal,

endocrinologic, hematological problems, or pulmonary disorders;

regular use of any medication known to affect body weight

or eating behavior (e.g., stimulants prescribed for attention

deficit hyperactivity disorder); current pregnancy or a history of

pregnancy; a significant reduction in weight during the past 3

months, for any reason, exceeding 5% of body weight; presence

of a significant, full-threshold psychiatric disorder based on the

DSM-5 (9) criteria that may impede competence or compliance or

possibly hinder completion of the study; a history of significant or

recent brain injury that may considerably influence performance;

current involvement in a weight loss program, participating

in psychotherapy aimed at weight loss or treatment of eating

behavior; or a condition under which MEG participation would

be contradicted (e.g., metal in the body, pregnancy, claustrophobia,

and history of significant neurological insult or injury). Girls who

reported allergies to gluten, nuts, dairy, fruit, or any other item in

the test meal array were excluded from the test meal portion of

the study.

Participant recruitmentmethods involvedmailing to families in

the greater Washington, D.C. metropolitan area. This recruitment

method has been used successfully for prior community-based

studies of youth with and without LOC-eating (13, 56, 58).

All participants received monetary compensation for each visit.

Based on rates reported in previous studies involving fMRI and

MEG in youth, 35% attrition was estimated a priori due to

excessive movement during MRI/MEG (55, 59). Consistent with

standards in the disordered eating literature (10, 56, 60), LOC-

eating was defined by the presence of one or more episodes of

LOC-eating during the previous month prior to assessment, as

assessed using a clinical diagnostic interview for eating disorders

(61) described below.

2.2. Study procedures

The National Institutes of Health (NIH) Institutional Review

Board (IRB) approved all study procedures. All study visits took

place at the NIH Hatfield Clinical Research Center. The current

study was a component of the Pilot Mobile Attention Retraining

in Overweight Female Adolescents protocol (ClinicalTrials.gov ID:

NCT02977403). All data for the current study were collected prior

to the participation of youths in the larger protocol’s intervention.

Adolescent girls with overweight or obesity participated in a

screening visit and a laboratory visit. At the first visit, interested

parents and daughters signed IRB-approved consent and assent

forms, and then, participants underwent a physical examination

with weight and height objectively measured in triplicate by trained

staff and two semi-structured interviews to determine eligibility.

Total mass (kg), lean mass (kg), fat mass (kg), and fat mass

percentage (%) were assessed by dual-energy x-ray absorptiometry

(DXA, GE Lunar iDXA, GE Healthcare, Madison WI; software

GE encore 15), a validated measure of body composition in youth

(62). During the laboratory visit, girls completed an anatomical

MRI scan, a social threat attention bias paradigm while undergoing

MEG, and lastly a laboratory test meal. Participants were instructed

to begin fasting at 10:00 p.m., the night before the laboratory

visit. At approximately 10:00 a.m. in the morning of the laboratory

visit, participants consumed a standardized breakfast shake (17%

protein, 16% fat, and 67% carbohydrate) containing 21% of daily

energy needs as estimated by measured body weight, height, age,

and average activity level within the previous week (63).

2.2.1. Semi-structured interviews
2.2.1.1. Eating disorder examination

The Eating Disorder Examination (EDE) (61) is a

semi-structured diagnostic interview of eating disorder

psychopathology. The EDE contains 21 items that assess

disordered attitudes and behaviors related to cognitive and

dietary restraint, eating, body shape, and weight, and 13 items

designed and adapted to diagnose specific DSM-5 eating disorders.

The presence or absence of LOC-eating was determined by the

overeating subsection of the EDE. Girls who reported at least

one episode of LOC-eating in the past 28 days on the EDE were

categorized into the LOC-eating group. The EDE has demonstrated

sound psychometric properties, including good construct validity

with physiological and objective measures and good-to-excellent

interrater reliability (Cohen’s κ = 0.8–1.0) in adolescent samples

(10, 64).

2.2.1.2. Kiddie schedule for a�ective disorders and

schizophrenia for school-age children

The Kiddie Schedule for Affective Disorders and Schizophrenia

for School-Age Children (KSADS) (65) is a reliable and valid

semi-structured diagnostic interview to assess DSM-5 psychiatric

diagnoses. Specific diagnostic sections of the KSADS were used

to assess psychiatric functioning and exclude participants with

significant psychiatric comorbidities (e.g., bipolar, psychosis, and

suicidality) that may have impeded competence or compliance or

possibly hindered completion of the study. The KSADS was only

administered to participants who positively endorsed depression,

suicidal ideation, mania, psychosis, or substance use disorder on a

screening measure. Girls were administered only a relevant portion

of the KSADS in order to identify any current psychiatric issues

that warranted the exclusion of the study or would have impeded

adherence to the study.
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2.2.2. Anatomical MRI scan
AnMRI scan was conducted on a SiemensMAGNETOMVerio

3T scanner equipped with a 16-channel head/neck coil for co-

registration with MEG. Standard imaging parameters were used

including the acquisition of T1-weighted structural images for co-

registration. Individuals were screened for contraindications before

the scan. In addition, all magnetic objects (e.g., watches, coins, and

jewelry) were removed before entering the MRI scan room. As

all participants were female, a pregnancy test was performed not

more than 24 h before the structural MRI scan. Participants were

fitted with hearing protection during the MRI scan. Anatomical

MRI data preprocessing was conducted using AFNI software,

which included removing the skull and normalizing it to standard

Talairach coordinates.

2.2.3. Magnetoencephalography equipment and
procedures

This study was performed on the 275-channel CTF MEGTM

brain imaging system at the National Institute of Mental Health

MEG CORE Facility. Participants sat in the magnetically shielded

recording room with their heads positioned in the MEG helmet.

The position of the head was determined before and after each

MEG session by localizing the position of three indicator coils that

are attached to the preauricular and the nasion fiducial points. The

positions were used to co-register the MEG coordinate system with

the individual MRI. Padding was used to minimize movement of

the head during the scan. Participants with excessive head motion

and poor MRI co-registration, according to visual inspection, were

excluded from the MEG analysis. MEG data were sampled at

600Hz, and synthetic 3rd-order gradiometer correction was applied

to reduce environmental noise. The entire MEG session lasted for

approximately 60 min.

MEG source reconstruction was performed in MNE Python

(66) with a multiple-sphere headmodel and an LCMV beamformer

on a 5-mm grid. ROI voxels were defined with Freesurfer

(aparc.a2009s+aseg.mgz) with reference to individual MRIs. Sensor

data were first filtered between 1 and 30Hz and then segmented

into trials with reference to the presentation of face stimuli

(t = 0) in a time window starting 500ms pre-stimulus and ending

800ms post-stimulus. The data covariance was calculated from the

concatenated data of all trials to estimate beamformer weights. The

trial-average responses to each face stimulus type (angry, happy,

or neutral) were then reconstructed to voxels within the ROIs.

To account for the sign uncertainty of the beamformer inverse

solution, responses for all voxels within an ROI were inverted to

be positively correlated with each other. Evoked responses for each

ROI were obtained as primary outcomes by averaging all voxels

within the ROI.

2.2.4. Social threat task
The social threat attention bias task involved two picture pairs

of angry, happy, or neutral faces, presented on a computer screen,

followed by a probe appearing behind one of the images, prompting

a response. Normed face images were selected from the NimStim

Face Stimulus Set (67). The task consisted of three face pair types,

namely, neutral-neutral, happy-neutral, and angry-neutral. Each

task block consisted of 15 face pairs of the same type, presented four

times each. The order of pair-type blocks was randomized across all

participants; however, the specific face pairs remained consistent.

The location of each stimulus and probe was counterbalanced

across participants. Importantly, the probe replaced the neutral

images (i.e., neutral faces) and the salient images (i.e., happy or

angry faces) with equal frequency. The design and contrasts of

this social threat attention bias task have been used extensively in

pediatric samples with anxiety symptoms and have been repeatedly

shown to stimulate neural responsivity linked to regions associated

with anxiety (32, 36, 55, 68, 69). Moreover, the task has been shown

to stimulate similar neurocircuitry to that of other social anxiety

laboratory paradigms (55, 69) and, in particular, circuits linked

to previous research using fMRI among a sample of girls with

overweight and obesity and LOC-eating (31). The use of angry

faces, rather than disgust or fear social cues, is consistent with the

previous imaging literature using the same attention bias dot-probe

paradigm (55, 68, 70).

Participants completed a practice session before beginning the

dot-probe task. The full task consisted of 180 trials divided into

four segments with 45 trials each. Each pair of images appeared

on the computer screen for 500ms. After 500ms, the image pair

disappeared, and a probe (horizontal or vertical dots) appeared

in one of the previously occupied photo locations for 200ms.

Participants were instructed to respond as quickly as possible with

a right- or left-sided button to indicate the orientation of the dots.

A central fixation cross appeared for 500ms before each face pair

presentation, and the blank inter-trial interval lasted for 1,300ms.

Trials consisted of a mixture of incongruent trials, in which the

probe replaced the neutral face image, and congruent trials, in

which the probe replaced the angry or happy face image. Sixty pairs

of each combination (neutral-neutral, angry-neutral, and happy-

neutral) were presented in randomized order. The spatial location

of images and probes was counterbalanced. Trials were excluded

from analyses if the participant did not respond within the time

window or responded incorrectly.

2.2.5. Laboratory test meal
Immediately following the MEG scan, girls were introduced to

the standardized multi-array test meal (∼11,000 kcal, 12% protein,

33% fat, and 55% carbohydrate), which was designed to objectively

capture LOC-eating behaviors involving excess calorie intake and

consists of standard lunch-type foods, as well as those typically

rated as highly palatable among youth (Figure 1) (56, 71). The test

meal began with tape-recorded binge-eating instructions to “Let

yourself go and eat as much as you want.” Participants notified

the study team when they were finished eating. Consumption

was calculated by weighing each food item before and after the

meal. The primary outcome variables of interest were total energy

(kcal) and percentage macronutrient (i.e., percentage of energy

consumed from protein, fats, and carbohydrates) intakes. Energy

content and macronutrient composition for each food item were

determined according to the USDA National Nutrient Database

for Standard Reference. This LOC-eating test meal paradigm

is well-validated and has been successfully used in pediatric

studies (56).
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FIGURE 1

Laboratory bu�et lunch test meal. Participants ate from a >10,000 kcal laboratory bu�et lunch test meal consisting of a variety of macronutrients.

Before the meal, all participants received tape-recorded binge instructions “Let yourself go and eat as much as you want.”

2.3. Statistical analyses

Analyses were performed using the Python 3 MNE package

(66) and IBM SPSS Statistics (version 29). Descriptive statistics

were calculated for participant demographic characteristics and

laboratory test meal variables. Chi-square and independent samples

t-tests were conducted to compare the groups of girls with and

without LOC-eating on age, race, ethnicity, BMI-z, fat mass

percentage, lean mass, and test meal consumption.

Behavioral attentional bias scores (i.e., “angry bias,” “happy

bias”) were calculated by subtracting the mean reaction times in

responding to probes replacing a salient stimulus (i.e., angry or

happy face cues) from mean reaction times to probes replacing a

neutral stimulus (i.e., neutral face cues), consistent with standards

in prior literature (68, 72, 73). Reaction times are expected to

be faster when the probe replaces a stimulus; the participant is

currently orienting toward the time of the probe presentation onset.

A bias score of 0 indicates no attentional bias to either cue, a

negative score indicates a bias away from the more salient cue

(i.e., angry or happy face), and a positive score indicates a bias

toward the more salient cue. Paired-sample t-tests were conducted

to examine whether behavioral attention bias scores differed by

emotional salience (i.e., angry bias score and happy bias score) in

the total sample. To examine whether angry and happy bias scores

differ between youth with and without LOC-eating, a one-way

analysis of variance (ANOVA) was conducted.

MEG analyses used a broad frequency band (1–30Hz), in line

with procedures from previous MEG studies (55, 74, 75). Nine

neural ROIs (i.e., occipital, amygdala, fusiform, insula, striatum,

ACC, ventrolateral PFC, medial PFC, and dorsolateral PFC)

implicated in attention capture and orientation, threat detection,

and executive control were selected a priori for analyses based

on the previous literature (31, 37, 44, 46, 48–51, 76, 77). A

complete list of ROIs and corresponding Freesurfer atlas labels

is presented in Supplementary Table S1. Based on the previous

literature (35, 36, 39) and visual inspection, the “bottom-up”

initial attention capture period was defined as the time window

between 0 and 250 milliseconds (ms) after each face stimulus onset,

and the “top-down” maintained attention deployment period was

defined as the time window between 250 and 600ms after face

stimulus onset. For the occipital region, the bottom-up time

window is determined by visual inspection of peak evoked response

at 140–250ms rather than 0–250ms, which is consistent with

other research studies using visual regions of interest (76, 78).

A significance threshold of p < 0.01 was applied to account for

multiple comparisons. Only a priori ROIs that survived a p < 0.01

threshold were interpreted.

Paired-sample t-tests were conducted to examine whether the

evoked response to face cues differed by emotional salience in the

total sample (i.e., girls with and without LOC-eating). Comparisons

of average evoked response during bottom-up (i.e., 0–250ms) or

top-down (i.e., 250–600ms) time windows were examined between

angry vs. neutral and happy vs. neutral face cues in each ROI.

Next, ANOVAs were conducted to examine whether neural activity

in ROIs differs between youth with and without LOC-eating.

LOC-eating (presence/absence) was the independent variable (IV);

bottom-up (i.e., 0–250ms) or top-down (i.e., 250–600ms) evoked

response to angry, happy, or neutral face cue presentations in each

ROI was examined as the dependent variable (DV).

To examine the association between angry or happy (vs.

neutral) evoked response in ROIs and energy intake at the

laboratory test meal, and whether LOC-eating moderated these

associations, generalized linear mixed models were conducted.

Arcsine square-root transformations were conducted for laboratory
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test meal percentage intake from carbohydrates, fats, and protein.

Fixed model covariates included age, race, anthropometric

variables (height, fat mass percentage, and lean mass), and pubertal

status in order to account for body size, metabolic activity, and

hormonal influences on outcomes (79, 80). IV was bottom-up

(i.e., 0–250ms) or top-down (250–600ms) evoked responses to

angry, happy, or neutral face cues in each ROI (i.e., occipital,

amygdala, fusiform, insula, striatum, ACC, ventrolateral PFC,

medial PFC, and dorsolateral PFC), and DV was energy intake

variable (i.e., total kcal or % energy consumed from protein, fat,

or carbohydrates). LOC-eating presence or absence served as an

interaction term with evoked responses in ROIs, and age, race,

pubertal status, height, fat mass percentage, and lean mass were

included as covariates.

3. Results

3.1. Missing data and participant
characteristics

It was estimated that 53 youth would have provided at least

80% power to detect small to medium effect sizes. Assuming a 35%

attrition rate in unusable MEG data based on prior MEG studies

in youth (55, 59), N = 80 youth were targeted for recruitment.

However, due to the limitations of social distancing and stay-at-

home orders during the COVID-19 pandemic, recruitment was

truncated at N = 55 adolescent girls. All participants were female

and had overweight or obesity (BMI ≥ 85th percentile). In total,

21 (38%) of the 55 girls were missing MEG data due to several

reasons, such as excessive (>80) task errors (n = 10), technical

issues (n = 4), failure to administer the social threat task due

to visit timing issues (n = 3), or poor anatomical co-registration

(n = 4). Thus, there were N = 34 participants (average age of 15.5

± 1.5 years) with complete and usable MEG data included in the

final sample. Chi-square and t-tests revealed that there were no

statistically significant differences between the groups of included

and excluded girls on age, race, ethnicity, or percentage of energy

consumed from proteins, carbohydrates, or fats at the laboratory

test meal (ps> 0.08). Girls excluded from analyses were more likely

to have obesity [X2 (1, N= 55)= 6.21, p= 0.01], had higher BMI-z

scores [t(33)= 2.33, p= 0.02], and consumed a significantly greater

total number of calories at the laboratory test meal [t(33) = 2.97,

p= 0.01] compared with girls included in analyses.

Of the included participants, 13 (38.2%) had LOC-eating; 16

(47.1%) had obesity, and 18 (52.9%) had overweight; 12 (35.3%)

participants identified as Black or African American; four (11.8%)

identified as Hispanic or Latino; and the average BMI z-score

was 1.7 ± 0.4. The characteristics of participants (N = 34) are

presented in Table 1. Chi-square and t-tests revealed that there

were no significant differences between the groups of girls with

and without LOC-eating on age, race, ethnicity, BMI-z, body

composition, bias scores, or percentage of energy consumed from

proteins, carbohydrates, or fats at the laboratory test meal (ps >

0.09). Girls reporting LOC-eating consumed significantly more

energy at the laboratory test meal compared with girls without

LOC-eating [t(33)=−2.99, p= 0.01].

TABLE 1 Participant characteristics.

Total
sample

LOC No LOC

(N = 34) (N = 13) (N = 21)

Age (years) 15.5± 1.5 15.8± 1.3 15.3± 1.6

Race (%)

White 44.1 46.2 42.9

Black or African

American

35.3 53.8 23.8

Multiple Races 17.6 0.0 33.3

Ethnicity (%)

Hispanic or Latino 11.8 0.0 19.0

Non-Hispanic or

Latino

85.3 100.0 76.2

Not reported 2.9 0.0 4.8

BMI-z 1.7± 0.4 1.7± 0.5 1.6± 0.4

Fat mass (%) 40.8± 6.0 41.1± 7.3 40.7± 5.3

Lean mass (kg) 43.3± 6.0 45.7± 7.5 41.8± 4.5

Overweight (%) 52.9 46.2 57.1

Obesity (%) 47.1 53.8 42.9

Angry bias score 1.43± 28.48 −3.16± 28.98 4.27± 28.50

Happy bias score 0.98± 31.31 2.40± 36.18 0.10± 28.81

Test meal, total Kcal 882.7± 291.7 1049.0± 211.3∗ 769.0± 288.3

Test meal, % carb 48.9± 8.2 51.2± 8.6 47.2± 7.8

Test meal, % fats 36.9± 6.5 34.9± 6.5 38.2± 6.4

Test meal, % protein 14.3± 2.8 13.8± 3.1 14.6± 2.7

LOC, Loss-of-control eating; BMI-z, body mass index z-score; ∗p < 0.01.

3.2. Behavioral results

Analyses examining the angry bias score vs. happy bias score

in the total sample revealed no significant difference in behavioral

reaction times to either emotional condition compared with neutral

[t(33) = 0.57, p = 0.95]. An ANOVA comparing angry bias

score between girls with (N = 13) and without (N = 21) LOC-

eating revealed no significant behavioral reaction time difference

between the groups [F(1, 32) = 0.54, p = 0.47]. Similarly, an

ANOVA comparing happy bias score between the LOC-eating

groups revealed no significant difference in reaction time among

girls with LOC-eating compared with girls without LOC-eating

[F(1, 32)= 0.04, p= 0.84].

3.3. MEG results

Analyses examining evoked responses to angry vs. neutral and

happy vs. neutral faces in the total sample (i.e., girls with and

without LOC-eating) revealed a significantly blunted (i.e., weaker)

top-down (i.e., 250–600ms time window) evoked response to angry

faces compared with neutral faces in the left dorsolateral PFC
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FIGURE 2

Time series of the total sample left dlPFC evoked response to angry

vs. neutral face cues.

FIGURE 3

Time series of the right occipital evoked response to angry face

cues among girls with and without LOC-eating.

(dlPFC) [t(33)= 2.80, p= 0.008] (see Figure 2 for time series of left

dlPFC evoked response to angry face cues compared with neutral).

No other top-down ROIs met the threshold for significance

(ps > 0.01). All bottom-up findings were non-significant (ps

> 0.02).

Analyses comparing evoked response with face cues between

girls with and without LOC-eating revealed a significantly stronger

top-down evoked response to angry face cues in the right occipital

cortex among girls with LOC-eating compared with girls without

LOC-eating [F(1, 32) = 16.38, p = 0.0003] (see Figure 3 for

time series of right occipital evoked response to presentation

of angry face cues among girls with and without LOC-eating).

No other top-down ROIs met the threshold for significance

(ps > 0.01). All bottom-up findings were non-significant (ps

> 0.02).

3.4. Test meal results

Models examining the main and interactional effects of angry,

happy, or neutral evoked response with LOC-eating on test meal

intake patterns are presented in Supplementary material. Models

adjusted for all covariates (i.e., age, race, pubertal status, height,

fat mass percentage, and lean mass). In response to happy face

cues, a greater bottom-up evoked response to happy face cues in

the right occipital cortex was marginally associated with a lower

percentage of energy consumed from carbohydrates among girls

with LOC-eating [F(1, 22) = 7.72, p = 0.01]. A greater top-

down evoked response to happy face cues in the left dlPFC was

marginally associated with a lower percentage of energy consumed

from fats among girls with LOC-eating compared with girls without

LOC-eating [F(1, 22)= 7.19, p= 0.01].

In response to angry face cues, a greater bottom-up evoked

response in the left insula was marginally associated with a greater

percentage of energy consumed from fats among girls with LOC-

eating and a lower percentage of energy consumed from fats

among girls without LOC-eating [F(1, 22) = 8.19, p = 0.01].

This finding was considered marginal due to the corrected p-value

of 0.01. In addition, a greater top-down evoked response in the

left ACC was marginally associated with a greater percentage of

energy consumed from carbohydrates [F(1, 22) = 8.23, p = 0.01]

and a lower percentage of energy consumed from fats among

girls with LOC compared with girls without LOC-eating [F (1,

22) = 8.05, p = 0.01]. There were no significant interactions for

evoked response to neutral cues, total calorie intake (kcal), or

percentage of energy consumed from protein (ps > 0.01).

4. Discussion

The current study examined neural activation to social threat

cues and subsequent energy intake at a laboratory test meal in

girls with overweight or obesity. Three main findings emerged

from the study. First, compared with those without LOC-eating,

girls with LOC-eating demonstrated a stronger evoked response

to angry faces in the visual cortex during attention deployment.

Second, in this sample of girls with overweight and obesity

examined as a whole, socially threatening cues, compared with

neutral cues, elicited a blunted evoked response in the left dlPFC,

a neural region implicated in executive control and regulation

processes. Finally, inconclusive findings arose concerning relations

between neural responses and energy intake patterns. While several

notable trends were observed, they did not pass the threshold for

statistical significance.

The findings revealed that a stronger visual neural response

to social threat during attention deployment may differentiate

youth with LOC-eating and overweight or obesity from those

without LOC-eating. Such responses could involve both deleterious

and protective effects. For example, prolonged visual attendance

toward socially threatening stimuli may contribute to heightened

social distress and subsequently trigger maladaptive coping via

overeating (30), in line with interpersonal theory. Adolescent girls

(22–24), as well as individuals with obesity across the lifespan

(17), regularly confront a multitude of social stressors. As shown

in a previous fMRI study among adolescent girls with overweight
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and obesity, social rejection was linked to failed engagement of

prefrontal cortex regions implicated in emotion regulation, which

subsequently related to palatable food intake at a laboratory test

meal (31). Thus, the composition of the current sample, comprising

adolescent girls with overweight, may include a group that is

uniquely susceptible to interpersonal threat cues. Alternately, other

facets of neural responding could mitigate risk. For example,

a stronger initial visual response to positive cues may serve to

protect against overeating of foods high in carbohydrates. Taken

together, in line with interpersonal theory and the attentional bias

literature outlined above, a visual attention bias to social threat

may partially explain eating patterns among girls with obesity and

LOC-eating. However, as mentioned below, the role of age and

sex on these processes cannot be determined given the relatively

homogenous sample.

Both the current and past studies suggest that girls with

overweight or obesitymanifest attention dysfunction when exposed

to social threat cues. In this current sample of girls with overweight

and obesity, socially threatening cues elicited a blunted response

in the left dlPFC, a neural region implicated in executive control

and regulation processes. Blunted engagement in the dlPFC

could hinder cognitive efforts to efficiently deploy attention to

mitigate overeating behaviors. This could represent a potentially

modifiable mechanistic target (i.e., bolstering attentional awareness

and control) for the prevention of excess weight gain. Effects

of attention to a social threat on overeating could derive from

influences on specific emotional processes. Indeed, previous

research has shown that youth sometimes report “numbing” (60),

or a blunted awareness of emotions, during LOC-eating episodes.

Difficulty identifying emotional experiences (60, 81), also known

as alexithymia, is also commonly reported during binge episodes

among youth with LOC-eating. Attending to one’s emotions

facilitates one’s ability to identify them; thus, aberrant emotion

awareness may link weaker dlPFC engagement, observed among

girls with LOC-eating compared with controls, to overeating.

Accordingly, such relations among attention, emotion awareness,

and the observed blunting in the dlPFC may further explain

overeating behavior. The current findings may identify a potential

neural basis for overeating among girls with LOC-eating and

overweight or obesity.

Previous research demonstrates the importance of integrating

findings from behavior and neural responses in brain imaging

research. While between-group differences in neural responding

arose in the current study, no such differences arose in behavioral

reaction times. The recent literature has questioned the reliability

of the behavioral attention bias score as a primary outcome of

the dot-probe task (82, 83). Behavioral reaction time can be

influenced by a variety of factors, such as response selection

latency, that do not pertain to the underlying attentional bias

neurocognitive construct (82). Moreover, behavioral results may

have been subjected to a ceiling effect given the dot-probe task is

not highly cognitively demanding. Such factors may explain the

presence of stronger findings in the imaging than behavioral data.

Behavioral manifestations of attentional bias likely arise from a

multiplicity of causes. To best clarify the intersection of attentional

bias and eating behavior, the underlying neural dysfunctions of

attention bias must be disentangled using imaging approaches.

These considerations will be important for future studies exploring

the role of social threat in relation to overeating.

In the current study, stronger dlPFC response to salient positive

(i.e., happy) social cues related to lower percentage consumption of

fats among girls with LOC-eating. While replication of findings in

larger samples is needed, the results could inform future research

paradigms to retrain attention toward positive social cues. Bias

toward positive social cues may conceivably be protective against

overeating. Indeed, research supports the role of positive social

engagement in the improvement of weight outcomes among adults

(84), children (85), and adolescents (86, 87). A recent study

demonstrated that thoughts about binge eating reduced following

an interpersonal scenario characterized by social inclusion in a

Cyberball task among individuals with BED (88), which aligns

with current findings linking positive social cues and lower

palatable food intake. Engagement of the dlPFC, which supports

cognitive control processes, powerfully modulates engagement of

the ventral stream, a series of brain regions beginning in the

occipital cortex that represents the identity of objects. This includes

emotionally salient objects, such as faces conveying threat detection

(89). Although functional connectivity analyses were deemed

inappropriate for the paradigm used in the current study, future

research could explore connectivity between the dlPFC and ventral

stream as a potential mechanism underlying the interpersonal

model of overeating.

In response to social threat (i.e., angry) cues, girls with

LOC-eating may demonstrate aberrant neural circuitry central to

food reward and attention allocation (i.e., insula and anterior

cingulate) (44–48) that contributes to a maladaptive pattern

of eating. Consumption of dessert-type foods, typically high

in carbohydrates, is often sought out as “comfort foods” to

reduce negative effects and may offer high reward value.

Laboratory test meal studies have found that youth demonstrate

greater consumption of highly palatable foods during LOC-

eating episodes, such as carbohydrates (56). Prospectively, greater

consumption of foods high in carbohydrates or fats may serve

as a mechanism for excess weight gain or development of

full-syndrome binge-eating disorder (13, 58). Furthermore, self-

reported negative effect has predicted a greater percentage of

intake from carbohydrates in the laboratory (90, 91). The pattern

of neural activation and eating observed in the current study

supports a potential mechanism aligning with this LOC-eating

literature. However, given the marginal significance of interactions

and a large number of tests performed, as well as the large and

multifunctional nature of the implicated ROIs, it is uncertain

whether these interactions would replicate in larger samples. The

findings concerning relations between neural responses and energy

intake patterns should be considered inconclusive and interpreted

with caution.

The current study has several strengths. First, the sample

consisted of a racially and ethnically diverse subset of

adolescent girls with overweight or obesity, which improves

the representativeness and generalizability of results. A well-

validated semi-structured interview was used to assess LOC-eating

(10, 61, 92). MEG is an ideally suited neuroimaging methodology

for the temporal nature of attention bias to social threat and short-

occurring activity in neural circuits involved in threat processing
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(52–54). The inclusion of relevant covariates improves the internal

validity of the findings, and body composition covariates are

objectively measured by trained staff using calibrated scales and

stadiometers for height and weight, and DXA techniques measure

fat mass. Finally, the laboratory test meal is a well-validated and

controlled paradigm (56, 91) that allowed for objective analysis

of energy intake among youth with and without LOC eating in a

highly controlled environment.

This study has several notable limitations. First, due to

social distancing requirements and stay-at-home orders during

the COVID-19 pandemic, recruitment was truncated, resulting

in an underpowered sample for most analyses. This recruitment

barrier indicates that all results should be interpreted with caution.

Furthermore, although consistent with attrition rates in otherMEG

studies of youth (55, 59), 38% of participants had missing or

unusable data. Additionally, the design of the larger pilot study

restricted the sample only to female adolescents with overweight

and obesity. A comparison group of youth with average BMI,

adolescent boys, or younger, pre-pubertal children would aid future

studies in terms of generalizability, given the vast differences

between boys and girls in nutritional needs across the various

stages of the developmental spectrum (93). Given the odds of

obesity are higher among youth identifying as Hispanic/Latino

and non-Hispanic Black compared with non-Hispanic white youth

(1), this underrepresented group may be a particularly vulnerable

population in need of further study. Moreover, given the sample

is comprised entirely of girls with overweight or obesity, it cannot

be determined how specific neural findings might differentially

manifest among youth with an average BMI percentile, thus

limiting the generalizability. Indeed, neuroimaging findings among

adolescent girls with overweight or obesity demonstrate elevated

reward region response to palatable food cues and food receipt

compared with controls of normal weight, while the risk of eating

pathology even further enhanced reward region responsivity to

food cues (94). While the current study focused on a small

portion of information processing functions linked to LOC-eating,

future studies might consider alternate neural mechanisms (e.g.,

inhibitory control and reward processing). Additional limitations

include the use of cross-sectional data; as such, no causal

conclusions can be drawn from the findings. The laboratory

buffet test meal may not have accurately reflected eating in the

natural environment, potentially limiting the ecological validity

of the findings. Youths’ natural social environments, which can

involve salient social threat cues such as weight-based teasing

and bullying (95–97), may provide further insights into the links

between social threat and LOC-eating behaviors among girls with

overweight or obesity. Although the current test meal included

foods typically considered palatable by youth (56), it is possible

that the composition of the laboratory buffet test meal used in

the current study may have impacted the pattern of macronutrient

findings. For example, the current test meal included some dessert-

type foods that were high in carbohydrate but low in fat (e.g.,

jelly beans), as opposed to highly palatable dessert-type foods that

are high in both carbohydrates and fats (e.g., ice cream) (56).

Finally, it cannot be determined to what extent the social threat task

influenced experienced social exclusion among youth, as rejection

sensitivity was not assessed. This should be considered in future

studies along with the other aforementioned limitations.

In conclusion, evoked response patterns in visual and cognitive

control neural regions among adolescent girls with overweight

or obesity may support the interpersonal model of LOC-eating.

Hypoactivation in higher order executive function regions in

response to social threat cues may contribute to disinhibited

eating patterns that could lead to excess weight gain. Sustained

visual attention bias to social threat cues may elucidate an

underlying neural mechanism for LOC-eating and could inform

early treatment targets for the prevention of excess weight gain.
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