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Purpose: To propose standardized and feasible imaging protocols for constructing artificial 
intelligence (AI) database in acute stroke by assessing the current practice at tertiary hospitals 
in South Korea and reviewing evolving AI models.
Materials and Methods: A nationwide survey on acute stroke imaging protocols was con-
ducted using an electronic questionnaire sent to 43 registered tertiary hospitals between April 
and May 2021. Imaging protocols for endovascular thrombectomy (EVT) in the early and late 
time windows and during follow-up were assessed. Clinical applications of AI techniques in 
stroke imaging and required sequences for developing AI models were reviewed. Standardized 
and feasible imaging protocols for data curation in acute stroke were proposed.
Results: There was considerable heterogeneity in the imaging protocols for EVT candidates in 
the early and late time windows and posterior circulation stroke. Computed tomography (CT)-
based protocols were adopted by 70% (30/43), and acquisition of noncontrast CT, CT angiog-
raphy and CT perfusion in a single session was most commonly performed (47%, 14/30) with 
the preference of multiphase (70%, 21/30) over single phase CT angiography. More hospitals 
performed magnetic resonance imaging (MRI)-based protocols or additional MRI sequences in 
a late time window and posterior circulation stroke. Diffusion-weighted imaging (DWI) and flu-
id-attenuated inversion recovery (FLAIR) were most commonly performed MRI sequences with 
considerable variation in performing other MRI sequences. AI models for diagnostic purposes 
required noncontrast CT, CT angiography and DWI while FLAIR, dynamic susceptibility contrast 
perfusion, and T1-weighted imaging (T1WI) were additionally required for prognostic AI mod-
els.
Conclusion: Given considerable heterogeneity in acute stroke imaging protocols at tertiary 
hospitals in South Korea, standardized and feasible imaging protocols are required for con-
structing AI database in acute stroke. The essential sequences may be noncontrast CT, DWI, CT/
MR angiography and CT/MR perfusion while FLAIR and T1WI may be additionally required.
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INTRODUCTION

As diagnosis and management of stroke highly depends on 
the rapid assessment of large amount of information from 
imaging studies, automated methods using artificial intelli-
gence (AI) may be applied at various stages in the evaluation 
and decision making.1 Application of AI in stroke may range 
from the identification and triage of potential stroke patients 
to postprocessing of rapidly acquired images.2 AI techniques 
have been applied in automatic or accurate diagnosis of 
stroke and its mechanism which may aid and expedite treat-
ment initiation in an acute setting.3 In addition, prediction of 
prognosis including development of hemorrhagic transfor-
mation and functional outcomes was achieved by various 
machine learning techniques.3 There are ongoing research 
efforts for clinical application of AI techniques in stroke to ac-
celerate and facilitate diagnosis and management of stroke 
and enable precision medicine.

Data curation is a prerequisite for developing AI mod-
els, and constructing a large database for various AI tasks 
in stroke requires a multicenter and multidisciplinary ap-
proach.4 While imaging protocols for clinical trials are highly 
controlled and standardized, its application is impractical 
and unrealistic in routine clinical practice. On the other 
hand, a large amount of imaging data in stroke patients are 
acquired in routine clinical practice but imaging protocols 
and parameters remain highly variable. Previous nationwide 
survey of acute stroke imaging protocols for endovascular 
thrombectomy (EVT) reported considerable heterogeneity 
in acute stroke imaging protocols across South Korean ter-
tiary hospitals reflecting hospital-specific conditions.5,6 This 
supports the need to propose standardized and feasible im-
aging protocols for data curation in acute stroke.

In this study, we aimed to assess the current imaging pro-
tocols in acute stroke at tertiary hospitals in South Korea in 
the view of data curation and review evolving AI models to 
propose standardized and feasible imaging protocols.

METHODS

Survey
A nationwide, multicenter survey on acute stroke imaging 
protocols was conducted between April and May 2021 using 
an electronic questionnaire. A representative neurointerven-
tionist or neuroradiologist at 43 registered tertiary hospitals 

certified by the Korean Society of Interventional Neuroradiol-
ogy (KSIN) was contacted and the questionnaire was sent 
and collected electronically. The responses were analyzed 
using standard descriptive statistics (Microsoft Excel; Micro-
soft).

The survey consisted of multiple choice questions written 
in Korean with opportunities to provide additional com-
ments if necessary. The first part was regarding the respond-
er’s hospital including the average number of patients with 
acute ischemic stroke treated with intravenous tissue plas-
minogen activator (IV t-PA) and EVT. The second part was 
subdivided into imaging protocols in the early time window, 
late time window and follow-up. The imaging protocols in 
the early time window was tailored for computed tomog-
raphy (CT)- or magnetic resonance imaging (MRI)-based 
protocols. Imaging protocols for posterior circulation stroke 
were also evaluated.

Literature Review
A comprehensive literature search of publications on MED-
LINE and EMBASE databases was conducted to identify orig-
inal articles related to AI models in stroke imaging published 
up to November, 2022. The following search terms were used 
for screening ((“cerebral vascular disease”) OR (“cerebrovas-
cular disease”) OR (“cerebrovascular accident”) OR (CVA) OR 
(stroke)) AND ((“artificial intelligence”) OR (“deep learning”)) 
AND ((performance) OR (AUC) OR (sensitivity) OR (specificity)).

RESULTS

Survey
All 43 registered tertiary hospitals with a representative certi-
fied by KSIN participated in the survey, and included 18 (42%) 
regional emergency medical centers and 15 (35%) local emer-
gency medical centers. There were 30 (70%) hospitals with 
500–1,000 inpatients, 6 (14%) with 1,000–2,000 inpatients, 
4 (9%) with 300–500 inpatients, and 3 (7%) with more than 
1,500 inpatients. Five to ten patients were treated with IV t-PA 
at 20 (47%) hospitals, and less than 5 patients at 15 (35%) hos-
pitals per month. Less than 5 patients were treated with EVT 
at 22 (51%) hospitals, and 5–10 patients at 17 (40%) hospitals 
per month. There were 25 (58%) hospitals with CT dedicated 
for emergency department and 13 (30%) with both CT and 
MRI dedicated for emergency department while 5 (12%) did 
not have dedicated CT or MRI for emergency department. 
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Amongst hospitals performing MRI for acute ischemic stroke, 
only 3 Tesla (3T) MRI was used at 30 (73%) hospitals and both 
3T and 1.5T MRI at 10 (23%) while only 1.5T MRI was used at  
1 (2%) hospital.

Imaging protocols for IV t-PA candidates
For patients who presented within 4.5 hours of symptom 
onset and are considered candidates for IV t-PA, 15 (35%) hos-
pitals performed noncontrast CT only, 14 (33%) performed 
noncontrast CT and CT angiography in a single session, and 
13 (30%) performed noncontrast CT, CT angiography and CT 
perfusion in a single session.

Imaging protocols for EVT candidates in an early time win-
dow
For patients who presented within 6 hours of symptom on-
set and are considered candidates for EVT, 30 (70%) hospitals 
performed CT-based protocols, 5 (12%) MRI-based protocols, 
and 8 (19%) combined CT and MRI protocols. The variation 
of CT- and MRI-based protocols and sequences adopted in 
MRI-based protocols are shown in Fig. 1.

Amongst 30 hospitals performing CT-based protocols, 
most hospitals (47%, 14/30) performed noncontrast CT, CT 
angiography and CT perfusion in a single session. Other hos-
pitals performed noncontrast CT and CT angiography in a 
single session without CT perfusion (30%, 9/30) or performed 
CT perfusion selectively (7%, 2/30). For CT angiography, mul-
tiphase CT angiography (70%, 21/30) was more frequently 
performed than single phase CT angiography (30%, 9/30).

Amongst 13 hospitals performing MRI-based protocols or 
combined CT and MRI protocols, all hospitals (100%, 13/13) 
performed diffusion-weighted imaging (DWI) and 10 (77%) 
performed fluid-attenuated inversion recovery (FLAIR) image. 
There were 8 (62%) hospitals performing contrast-enhanced 
MR angiography (CE-MRA), 7 (54%) performing time of flight 
(TOF) MRA, and 7 (54%) performing dynamic susceptibility 
contrast (DSC) perfusion. There were 7 (54%) hospitals per-
formed susceptibility-weighted imaging (SWI) and 5 (38%) 
performing gradient echo (GRE). There were 5 (38%) hospi-
tals adopting fast MRI while 8 (62%) did not alter parameters 
to reduce scan time in an acute stroke setting.

Imaging protocols for EVT candidates in a late time window
For patients presenting after 6 hours and within 16 or 24 
hours of symptom onset, 28 (65%) hospitals performed the 
identical protocol to that applied to patients presenting 

within 6 hours of symptom onset. The variation of CT- and 
MRI-based protocols and sequences adopted in MRI-based 
protocols are shown in Fig. 1. There were 8 (19%) hospitals 
performing additional MRI sequences for EVT candidates 
presenting in a late time window, which entailed converting 
from CT-based protocols in an early time window to com-
bined CT and MRI protocols in a late time window in 7 (16%) 
hospitals. Different set of protocols was performed for EVT 
candidates presenting in a late time window at 6 (14%) hos-
pitals, which entailed converting from CT-based protocols in 
an early time window to MRI-based protocols in a late time 
window. Noncontrast CT was performed at 34 (79%) hospi-
tals, CT angiography at 28 (65%) hospitals, and CT perfusion 
at 16 (37%) hospitals. DWI was performed at 26 (60%) hos-
pitals and FLAIR at 23 (53%). TOF MRA was performed at 15 
(35%) hospitals, CE-MRA at 10 (23%), and DSC perfusion at 17 
(40%). GRE was performed at 13 (30%) hospitals and SWI at 
8 (19%). There were 10 (23%) hospitals using post-processing 
program for acute ischemic stroke that enabled estimation 
of infarct core and penumbra aiding treatment decision.

Imaging protocols in posterior circulation stroke
For acute ischemic stroke in posterior circulation, patients 
were considered for EVT if time from symptom onset to 
groin puncture was estimated to be within 24 hours at 19 
(44%) hospitals, 12 hours at 7 (16%), and 6 hours at 2 (5%). 
There were no time criteria when considering candidates 
for EVT in posterior circulation at 15 (35%) hospitals. Identical 
imaging protocols to that used in anterior circulation stroke 
were used for posterior circulation stroke at 40 (93%) hospi-
tals as it is difficult to differentiate posterior circulation stroke 
from anterior circulation stroke solely on the clinical grounds. 
Additional imaging was performed for posterior circulation 
stroke at 3 (7%) hospitals, which included performing DWI 
after CT-based protocol and additionally performing TOF 
MRA or CE-MRA.

Follow-up imaging protocols in acute ischemic stroke
Follow-up imaging studies within 1 week of acute ischemic 
stroke was performed in all patients at 27 (63%) hospitals. 
Patients underwent follow-up imaging studies only if treated 
with EVT at 13 (30%) hospitals and no follow-up imaging 
studies were performed at 3 (7%). Follow-up imaging studies 
were performed within 3 days of acute ischemic stroke at 26 
(60%) hospitals, within 5 days at 7 (16%), and within 7 days at 
6 (14%).
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For follow-up imaging, CT and/or MRI-based protocols 
were adopted. Noncontrast CT was included at 13 (30%) 
hospitals and CT angiography at 5 (12%). No hospitals includ-
ed CT perfusion during follow-up. For MRI-based protocols, 
FLAIR was included at 32 (74%) hospitals, and DWI at 28 
(65%). T2-weighted imaging (T2WI) was included at 27 (63%), 
T1-weighted imaging (T1WI) at 26 (60%), CE-T1WI at 15 (35%). 
SWI was included at 25 (58%) hospitals, and GRE at 18 (42%). 
TOF MRA was included at 26 (60%) hospitals, CE-MRA at 22 
(51%), DSC perfusion at 6 (14%) and arterial spin labelling at 4 
(9%). Vessel wall imaging was included at 3 hospitals (7%).

Literature Review
Main applications of AI in stroke include supporting detec-
tion of key imaging characteristics and predicting outcomes. 
During acute phase, AI can support detecting acute isch-
emic lesion including infarct core or potentially salvageable 
tissue, large vessel occlusion or hemorrhage. AI can also be 
used to predict short-term imaging outcome such as final 
infarct or hemorrhagic transformation and long-term func-
tional outcome. The required imaging sequences used to 
develop AI models in acute stroke are summarized in Table 1.  
Of 26 studies, 18 (69%) studies were conducted at a single 
center while 8 (31%) were multicenter studies. The sample 
size ranged from 34 patients in a single center setting to 1,383 
patients in a multicenter registry.7,8 The AI algorithms were 
assessed using performance metrics such as sensitivity, spec-
ificity, accuracy, area under the receiver operating character-
istic curve, F1 score, correlation and dice indices.

AI models have been developed to support diagnosis in 
an acute setting or estimate stroke volume in subacute or 
chronic stage. For determination of Alberta Stroke Program 
Early CT Score (ASPECTS), follow-up CT or DWI were used to 
establish ground truth and predict ASPECTS on the baseline 
CT.7,9,10 The model using DWI as the ground truth showed 
higher specificity than the models using noncontrast CT 
alone (94.2% vs. 57.0%). In addition, one of the CT-based 
models used DWI as the ground truth while MR-based 
models were based solely on MR images. For identification 
of stroke within 4.5 hours, MRI sequences such as DWI and 
FLAIR as well as parameters such as Tmax from DSC perfu-
sion were used to detect acute ischemic lesions.11,12 The in-
clusion of DSC led to an improvement in sensitivity (89.3% vs. 
72.7–75.8%). For identification of large vessel occlusion, multi-
modal CTs including noncontrast CT, CT angiography and CT 
perfusion were used to determine large vessel occlusion on 

CT angiography.13,14 The model performance in identification 
of large vessel occlusion was comparable with or without CT 
perfusion. For automatic lesion segmentation, DWI was used 
to detect infarct core and noncontrast CT to detect hem-
orrhagic stroke.15-17 For automatic lesion segmentation in 
the subacute and chronic stage, FLAIR and T1WI were used 
respectively.18,19

AI models have also been developed to predict final infarct, 
hemorrhagic transformation and functional outcome. For 
predicting final infarct, there were a small number of studies 
using noncontrast CT, CT angiography or CT perfusion al-
though most studies were MR-based using information on 
DWI, FLAIR and DSC perfusion to predict final infarct defined 
on FLAIR or DWI with AUC of up to 0.92 and accuracy of up 
to 84%.20-24 AI models using CT as the input data offered 
quantitative outcome measures such as correlation of the 
final infarct volume but did not provide anatomical outcome 
measures such as overlapping ratio between ground truth 
and predicted region of interest masks as in AI models using 
MRI. For hemorrhagic transformation, ground truth was de-
fined on follow-up GRE or noncontrast CT, and information 
on noncontrast CT as well as MRI sequences such as DSC 
perfusion and DWI were used.25-27 For predicting functional 
outcome such as successful recanalization following EVT and 
functional scores such as modified Rankin scale or national 
institute of health stroke scale, noncontrast CT as well as CT 
angiography and CT perfusion were used along with mul-
tiple clinical and laboratory parameters.8,28,29 For predicting 
outcome such as visual field, motor function and cognition, 
three-dimensional T1WI was commonly used as well as T2WI, 
FLAIR and DWI for lesion segmentation.30,31 MRI-based pre-
diction of functional outcome with inclusion of T1WI result-
ed in prediction accuracy of up to 91.3%.30 Information on 
functional MRI enabled correlating lesion topography and 
network dysfunction in accounting for behavioral deficit.

DISCUSSION

Our study aimed to assess the current imaging protocols in 
acute stroke at tertiary hospitals in South Korea and review 
required imaging sequences for developing AI models in 
stroke. A nationwide survey involving 43 registered tertiary 
hospitals revealed considerable heterogeneity in the imag-
ing protocols for EVT candidates in the early time window, 
late time window and posterior circulation stroke. In addition, 
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indication and imaging protocols for follow-up MR imaging 
differed considerably. Required imaging sequences for de-
veloping AI models for diagnostic and prognostic purposes 
were reviewed. The commonly used sequences were non-
contrast CT, CT angiography and DWI for diagnostic purpos-
es while FLAIR, DSC perfusion, and T1WI were additionally 
required for prognostic AI models.

Heterogeneity in Imaging Protocols in Acute Stroke 
Imaging
The result of our survey was consistent with the findings of 
previous nationwide surveys which reported considerable 
heterogeneity in acute stroke imaging protocols.5,6 The 
imaging protocol is inherently influenced by the medical 
resources and hospital-specific circumstances as reflected 
by variable availability of emergency department dedicated 
CT (84%) and MRI (12%) revealed by the current survey. CT-
based protocols were preferred (70%, 30/43) for EVT candi-
dates in an early time window while more hospitals adopted 
MRI-based or combined CT and MRI protocols in a late 
time window. For EVT candidates in an early time window, 
noncontrast CT and CT angiography were performed in all 
patients undergoing CT-based protocols. For EVT candidates 
in a late time window, more hospitals performed MRI-based 
protocols or additional MRI sequences as shown by previous 
nationwide surveys.5,6

For MRI-based or combined CT and MRI protocols, DWI 
was most frequently performed MRI sequence in both ear-
ly (30%, 13/43) and late time windows (60%, 26/43) as well 
as posterior circulation stroke (70%, 30/43). FLAIR was the 
second most frequently performed MRI sequence for EVT 
candidates in both early (23%, 10/43) and late time windows 
(53%, 23/43) while there were more variations in perform-
ing other MRI sequences such as MRA, MR perfusion, T2WI, 
T1WI, GRE, and SWI. During follow-up, FLAIR was the most 
frequently performed MRI sequence (74%, 32/43) and there 
was a particularly frequent inclusion of T2WI (63%, 27/43) and 
T1WI (60%, 26/43). Additional MRI sequences such as arterial 
spin labelling and vessel wall MRI were also performed only 
during follow-up.

Required Imaging Sequences for AI Model Develop-
ment in Acute Stroke
In an acute stroke setting, detecting imaging findings that 
indicate acute ischemia and large vessel occlusion are critical 
in screening appropriate candidates for EVT. For AI models 

for detecting acute ischemic lesions, noncontrast CT and 
DWI were most commonly used as input images as well as 
reference standard. For identification of large vessel occlu-
sion, CT angiography was most commonly used. For identi-
fying stroke within 4.5 hours, FLAIR and DSC perfusion were 
additionally used.

For prognostic purposes, noncontrast CT was used for 
predicting hemorrhagic transformation. CT angiography and 
CT perfusion were used to predict treatment and functional 
outcome. DWI, FLAIR and DSC perfusion were used to pre-
dict final outcome with FLAIR used as a reference for the final 
infarct. Three-dimensional T1WI was used for co-registration 
purpose in predicting for delicate functional outcomes.

Proposed Protocols for AI Imaging Database in 
Stroke Imaging
It is important to propose feasible and standardized proto-
cols in order to construct imaging database for AI in acute 
stroke. We hereby propose such protocol taking into account 
of the considerable heterogeneity in the current acute stroke 
imaging protocols and required imaging sequences for AI 
model development (Fig. 1).

Noncontrast CT should be included as a baseline study 
as it was performed for all IV t-PA candidates and most 
commonly used as input images and reference standard for 
important AI tasks such as determining ASPECTS, identifying 
large vessel occlusion, and predicting hemorrhagic transfor-
mation. CT angiography, which was always performed along 
with noncontrast CT for EVT candidates in an early time win-
dow, should also be included if CT-based protocol is adopted 
as CT angiography may be used in identifying large vessel 
occlusion and predicting functional outcome. As shown by 
this nationwide survey, multiphase CT angiography may be 
preferred over single phase CT angiography.

Despite the universal use of noncontrast CT in stroke 
imaging, however, the inherent limitation in detecting and 
segmenting acute ischemic lesions and hemorrhagic trans-
formation solely on noncontrast CT is well-recognized32 ac-
counting for currently lower AI algorithm performance than 
MRI-based algorithms.20,21 DWI, which was the most fre-
quently performed MRI sequence in the early and late time 
windows and posterior circulation stroke, formed the basis 
for developing most AI models in identifying stroke within 
4.5 hours, automatic lesion segmentation, and predicting 
final infarct by serving as the ground truth as well as input 
images. FLAIR, as second most frequently performed MRI 
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sequence, should also be considered as it is used to identify 
of stroke within 4.5 hours and predict final infarct and func-
tional outcome. Perfusion imaging including DSC perfusion 
or CT perfusion should also be considered for predicting 
final infarct and prognosis as identification of penumbra 
size plays a vital role in treatment decision for mechanical 
thrombectomy. Moreover, it is important to obtain baseline 
and posttreatment angiography for evaluating treatment 
outcome of EVT, and recanalization is an important factor for 
prognosis as well as hemorrhagic transformation.33

Despite the lack of universal inclusion of T1WI in the early 
and late time windows, T1WI may serve an important role 
in the co-registration process for developing AI models. The 
survey showed that T1WI was performed at 60% of hospi-
tals during follow-up of acute ischemic stroke. While T1WI 
obtained during follow-up may be used for co-registration 
purpose, lack of corresponding T1WI in the early and late 
time windows may limit the scope of tasks for AI models, 
and the possibility of using DWI and FLAIR for co-registration 
purpose is being increasingly explored.

Combined CT and MRI based protocols consisting of 
noncontrast CT, DWI, FLAIR, DSC perfusion, T1WI, and CT/
MR angiography are likely to offer strong foundation for con-
structing AI imaging database in acute stroke. With attempts 
to accelerate MRI acquisition,34 more MRI sequences may 
be incorporated due to inherently limited amount of infor-
mation available on noncontrast CT. Given the considerable 
heterogeneity in the imaging protocols amongst hospitals 
at each time window, it is impractical to propose an identical 
imaging protocol in acute stroke. As seen in recent large-
scale clinical trials, more efforts should be directed in unify-
ing baseline and posttreatment protocols in order to allow 
intra-individual comparison while ensuring quality control of 
the obtained images. Moreover, standardization of treatment 
outcome using clinically validated measures such as arterial 
occlusive lesion scale or modified treatment in cerebral isch-
emic scale should be emphasized.33 In addition, clinical infor-
mation such as accurate last known normal times should be 
collected together.

Fig. 1. Proposed protocols for AI imaging database in stroke. AI, artificial intelligence; NCCT, noncontrast computed tomography; CTA, CT angiogra-
phy; CTP, CT perfusion; MRI, magnetic resonance imaging; EVT, endovascular thrombectomy; DWI, diffusion-weighted imaging; FLAIR, fluid-atten-
uated inversion recovery; T2WI, T2-weighted imaging; T1WI, T1-weighted imaging; TOF MRA, time of flight MR angiography; CE-MRA, contrast-en-
hanced MRA; DSC PWI, dynamic susceptibility contrast perfusion-weighted imaging; SWI, susceptibility-weighted imaging; GRE, gradient echo; VW-
MRI, vessel wall MRI; ASL, arterial spin labeling; ASPECTS, Alberta Stroke Program Early CT Score; LVO, large vessel occlusion.
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Limitations
There were several limitations in this study. While this na-
tionwide survey with 43 participating hospitals successfully 
demonstrated considerable heterogeneity in imaging 
protocols in acute stroke, only the hospitals with members 
certified by KSIN were invited to participate in the survey. 
Given that the South Korean government designated 150 
hospitals as local or regional emergency medical centers, 
the current status at 43 tertiary hospitals may not reflect 
the true real-world variation. In addition, the survey did not 
consider clinical outcome of the imaging protocols and the 
proposed protocols were based on the feasibility and stan-
dardization of the protocols rather than clinical impact. Al-
though many AI models developed in stroke were reviewed, 
extensive search of literature with systematic meta-analyses 
may provide more comprehensive compilation of required 
imaging sequences. The model performance of AI models 
was presented with variable parameters resulting in limited 
comparison of model performance developed with different 
combination of imaging modalities and sequences.

CONCLUSION

In conclusion, AI heavily relies on data curation and there is 
a need to propose standardized and feasible imaging proto-
cols given the current considerable heterogeneity in acute 
stroke imaging protocols. The essential sequences may 
be noncontrast CT, DWI, CT/MR angiography, and CT/MR 
perfusion while FLAIR and T1WI may be additional used for 
prognostic AI models. MR-based AI models currently offers 
detailed anatomical outcomes with superior performances 
while further research is required to improve the perfor-
mance of AI models based on CT protocols. Moreover, iden-
tical imaging protocols from baseline to follow-up evaluation 
are recommended.
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