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Optimization of plastic polymers
for shellfish aquaculture
infrastructures: in situ antifouling
performance assessment

Vânia Freitas, Odete Gonçalves, Marina Dolbeth,
Sandra Ramos, João Morais, Rodrigo O. de A. Ozorio,
Irene Martins and Joana R. Almeida*

Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto,
Matosinhos, Portugal
Biofouling poses a significant challenge to bivalve aquaculture affecting both the

target culture and/or the immersed infrastructure. In suspended bivalve cultures

(e.g., oysters and scallops), biofouling accumulation leads to additional labor

demands and increased costs for the maintenance of underwater structures.

Given that the inherent properties of materials used in farming infrastructure

influence the formation of fouling communities, evaluating how these materials

perform under diverse environmental conditions can help the industry select the

most effective materials for preventing or minimizing biofouling growth. This

study evaluates the impact of aquaculture material and environmental conditions

on biofouling, focusing on two commonly used plastic polymers in marine

aquaculture: polyamide (PA) and high-density polyethylene (PE). Both

untreated and color-additive treated polymers were tested for their response

to fouling development. Performance was gauged by total fouling wet weight

and the extent of fouling-induced mesh occlusion. Experimental panels were

deployed for 4 months (from May to September 2021) in estuarine (oyster farm)

and marine (port) environments on the northern coast of Portugal. The marine

sites exhibited greater fouling species diversity, while higher biofouling loads

were found in the subtidal estuarine area. Within 3 months, complete mesh

occlusion occurred mainly due to colonial hydroids (Obelia dichotoma) in the

subtidal site. In contrast, panels deployed in the intertidal estuarine area had

lower fouling biomass and mesh occlusion. Notably, significant differences

between polymer types and treatments were only evident in the estuarine

intertidal area, with long air exposure during low tide. White panels

outperformed orange ones in fouling biomass, and PA panels outperformed PE

panels in mesh occlusion. These differences were attributed to the settlement

and growth of the acorn barnacle Austrominius modestus, known to favor dark-

colored and less hydrophilic surfaces. Considering that oyster production in

intertidal areas is one of the most important aquaculture industries globally,

these findings offer valuable insights into material selection and characteristics

that can mitigate fouling loads and their associated impacts. These results could

also be relevant for other forms of bivalve aquaculture where infrastructure-

related biofouling presents a challenge.
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1 Introduction

Biofouling, the undesired colonization of a wide range of micro-

and macro-organisms in submerged structures, is responsible for 5-

10% of production costs (Lane and Willemsen, 2004), being one of

the main barriers to efficient and sustainable aquaculture

production (Dürr and Watson, 2010). In the bivalve aquaculture

industry, biofouling control may account for over 14.7% of total

operating expenses in the USA (Adams et al., 2011) and up to 30%

of oyster production costs in Europe (CRAB, 2007). The effects of

biofouling on cultivated bivalve species and farming infrastructure

may occur by different processes (Fitridge et al., 2012): (1) direct

physical damage by fouling organisms (e.g., epibiotic calcareous

organisms) that adhere at the shell, weakening the entire structure

and affecting bivalves’ vulnerability to disease and/or their visual

appearance; (2) mechanical interference in the functioning of the

shell, affecting feeding capacity and increasing the susceptibility to

predators; (3) biological competition for resources, such as food and

space, with negative consequences on growth and condition of the

bivalves; (4) modification of the environmental conditions by the

colonization on the submerged infrastructures, leading to reduced

water flow, accumulation of waste, decreased oxygen levels, and

reduced food availability; and (5) increased weight of the

aquaculture structures and gears (e.g., panels, nets, trays, ropes

and floats) due to biofouling biomass accumulation, causing an

increase in the production costs and maintenance frequency.

Finally, biofouling may also induce toxic effects on aquaculture

species as some of these organisms produce secondary metabolites

that act against predators or competitor species, negatively affecting

the target aquaculture species.

The most widely used strategy to control biofouling in finfish

aquaculture is to apply antifouling biocides to the surface of

submerged structures (Chambers et al., 2006; Nikolaou et al.,

2014). Despite research efforts to replace biocides with more eco-

friendly alternatives (Vilas-Boas et al., 2020; Pereira et al., 2021),

copper-based coatings are still generally applied to cages and nets to

inhibit the settlement of fouling organisms (Bannister et al., 2019).

In shellfish farming, biofouling control requires alternative

strategies due to the toxicity, bioaccumulation, and persistence of

these metals in target cultured species (Fitridge et al., 2012). Non-

toxic coatings, such as wax/silicon-based coatings (Hodson et al.,

2000; de Nys and Ison, 2004), have been applied with varying

degrees of success against fouling adhesion. However, the

mechanical removal of fouling organisms through daily air

exposure and manual cleaning remains the most efficient and

cost-effective approach (Watson et al., 2009; Reyes-Salarda et al.,

2020). Oyster growers commonly place their stock in the intertidal

zone to reduce fouling (Moroney and Walker, 1999), and in mussel

aquaculture, many farmers expose the mussels for one or two days

to air (Papadopoulos et al., 2023). However, this technique may not

be feasible for all farming systems.

The formation and development of biofouling communities rely

on both extrinsic factors (environmental conditions), including

salinity, temperature, light, availability of nutrients, and water

circulation (Railkin, 2004), and on intrinsic factors (surface
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properties), such as composition, roughness, shape, color, among

others. Studies investigating the effects of material type and features

on the formation and development of fouling communities may

provide effective and more environmentally sound solutions for

biofouling control. The surface energy and roughness seem to play a

significant role in the initial stages of fouling by microorganisms

(Characklis and Cooksey, 1983; Artham et al., 2009), while surface

color seems to influence the larval settlement of sessile invertebrates

(Dahlem et al., 1984; Satheesh and Wesley, 2010) and algal spores

(Hodson et al., 2000; Swain et al., 2006). In the specific case of acorn

barnacles Amphibalanus amphitrite (Darwin, 1854), previous

studies have reported that their recruitment was significantly

enhanced on red and blue panels compared to white and yellow

ones, confirming a preference of these organisms for darker and less

reflective substrates (Su et al., 2007). Conversely, higher abundances

of the macroalgae Ulva rigida C.Agardh, 1823 were found in fish

cages that used white nets compared to black ones, suggesting a

settlement preference for lighter surfaces (Hodson et al., 2000).

Aquaculture cages and netting are generally made from plastic

such as polyamide (nylon) and polyethylene (low and high-density

polyethylene) (Amara et al., 2018), with the latter being the most

commonly used type in shellfish culture infrastructure (e.g.,

longlines, baskets, floating mesh bags, bottom cages, and trays).

High-density polyethylene, compared to polyamide, has a smoother

surface structure with the potential to delay the onset of biofouling

and facilitate cleaning maintenance (Bloecher and Floerl, 2020).

However, there have been limited studies reporting the effect of

these polymers on biofouling growth (e.g., Artham et al., 2009;

Edwards et al., 2015). Researching the spatiotemporal dynamics of

fouling communities and their growth on various aquaculture

materials would enhance our understanding of the most effective

materials. This, in turn, could guide the development of improved

alternatives for controlling biofouling in aquaculture settings

(Fitridge et al., 2012). Considering this, the present study aimed

to characterize the development of biofouling on widely used plastic

materials and to test whether the presence of pigment additives in

the materials may contribute to biofouling prevention and/or

attenuation. The study was conducted in different environmental

settings (marine and estuarine waters), covering a range of

conditions experienced in bivalve aquaculture. The results may

ultimately be used to minimize the impacts of biofouling by

optimizing the grow-out bivalve aquaculture equipment.
2 Materials and methods

2.1 Test materials

For this study, plastic samples in the form of square mesh panels

(20 cm x 20 cm, 0.5 cm thickness, 1.24 cm2 mesh) of different

polymers and treatments were considered, resulting in four different

conditions: polyamide (PA) and high-density polyethylene (PE)

polymers, both natural (untreated) and treated with an additive

(pigment masterbatch) (Table 1). These plastic samples were

manufactured using standardized industrial procedures by an
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injection molding company (Ernesto São Simão Lda.). The additive

of the antioxidant type was supplied by Flexaco company (RNM

group) and added to the polymer base to give a specific orange color

to the plastic, in contrast with the untreated white panels.

The surface properties of the polymers and treatments were not

examined. Previous studies described polyamide as a more

hydrophilic (high surface energy and high wettability) material

compared to high-density polyethylene (low surface energy and

low wettability) (Artham et al., 2009; Carl et al., 2012; Bloecher

et al., 2013). Although most materials are susceptible to biofouling,

hydrophobic substrates are considered to produce more

pronounced fouling than hydrophilic materials (Kang et al., 2006).
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2.2 Study sites and experimental design

Panel samples were tested at four study sites with distinct

hydrodynamic properties: two in the vicinity of an estuarine

oyster aquaculture and the other two under marine conditions

associated with a commercial port (Port of Leixões) (Figure 1).

Estuarine testing was conducted at an oyster farm located in a

sandflat in the Lima River Estuary (NW Portugal, 41°41’31” N, 8°

48’42” W). The Lima Estuary is a temperate mesotidal estuary with

semidiurnal tides (Ramos et al., 2006). Two sites at different tidal

heights were selected, one in the subtidal section of the sandflat (S1),

a permanently submerged zone, and another in the upper intertidal
TABLE 1 Summary of materials tested in this study.

Designation Polymer Treatment Color Weight (g)

PA_NATURAL Polyamide Untreated White 78

PA_ADDITIVE Polyamide Additive Orange 78

PE_NATURAL High-density Polyethylene Untreated White 64

PE_ADDITIVE High-density Polyethylene Additive Orange 60
FIGURE 1

Study sites on the North coast of Portugal: Lima River Estuary (S1 – subtidal and S2 – intertidal) and Port of Leixões (S3 – recreational marina and S4
– cruise-ship terminal).
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(S2), with aerial exposure at low tide (4h per low tide). Marine sites

were selected in two marinas, one next to the North breakwater (41°

11’08”N, 8°42’14”W), used by recreational boats, and the other next

to the South breakwater of the Port of Leixões (41°10’42”N, 8°

42’15”W), in the cruise-ship terminal (S3 and S4, respectively).

Commercial marinas and ports are preferred locations for marine

fouling assessments, particularly with regard to the study of

colonization by non-indigenous species (Azevedo et al., 2020).

The selected locations, in addition to the ease of access and

sampling, were previously studied regarding biofouling

communities (Azevedo et al., 2020), contributing background

information for the present study.

At all study sites, three replicates of each of the four panel types

were used, resulting in a total of 12 panels. In the S3 and S4 sites,

panels were attached with plastic cable ties to PVC frames, and the

frames were deployed vertically at a 2 m depth. In the S1 and S2

sites, panels were individually attached to the longlines used to

suspend oyster cages, being exposed to the same tidal variations as

farmed oysters.
2.3 Biological colonization assessment and
monitoring

All panels were deployed in May 2021 and sampled monthly

until the experiment was concluded in September 2021. This time

frame encompassed the highest biofouling season (spring-summer)

expected at the studied latitude (Azevedo et al., 2020).

The biological colonization of the different test materials was

assessed by two methods: 1) measurements of the individual wet

weight (WW) of the panels in each month, and 2) image analysis of

the panels to estimate the percentage of mesh occlusion (PMO).

Once a month, panels were pulled from the water and allowed to

drip before being weighed on an electronic balance and

photographed. The total wet weight (± 1 g) of attached fouling

was calculated by subtracting from each sample the wet weight of

the clean (unfouled) panels. Fouling community biomass was then

expressed as g/400 cm2, relative to the total area of the panel. In

June, at sampling site S2, no weights were recorded due to

equipment malfunction.

Images of one side (the same side each time) of each panel were

taken, with the panels held up in the air against a contrasting

background, using a digital camera attached to a fixed stand to

reduce differences in scale between images. The images were

analyzed using the open-source ImageJ (Schneider et al., 2012)

software to determine the percentage of mesh occlusion (PMO) of

the different types of materials. This parameter has been developed

and refined to quantify biofouling on aquaculture nets (Braithwaite

et al., 2007). The PMO is a direct measure of the degree of

accumulation of organisms and is calculated with reference to the

mesh size of the panels before being placed in the water. For its

calculation, measurements were made of 36 mesh opening areas (6

x 6) of the central zone of each panel, thus obtaining an average

value for the area of each material. The edges of the panels were

excluded from the analysis as they are subject to handling associated

with fixing plastic cable ties.
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PMO was then calculated as follows (modified from Braithwaite

et al., 2007):

PMO (%) = [ 1 - (Mesh Area at tx/Mesh Area at t0)] x 100,

where Mesh area at t0 corresponds to the mesh area measured

before the panels were immersed and Mesh area at tx corresponds

to the mesh area measured at each monthly sampling.

Images of the panels were also used for a qualitative assessment

of the predominant fouling taxa over the study period. At the end of

the study period (September), destructive sampling was conducted

with all panels being removed and transported to the laboratory for

species identification. All the material collected from the plastic

panels was sorted and identified under the stereomicroscope to the

lowest possible taxonomic level, by specialists of different groups

(see Acknowledgements). Taxa were listed according to the World

Register of Marine Species nomenclatural system (WoRMS

Editorial Board, 2021).
2.4 Environmental parameters

At each sampling site and time, water physical-chemical parameters

such as temperature (°C), salinity, dissolved oxygen concentration (mg

L-1), oxygen saturation (%), and pH were measured monthly, with

multiparametric probes (HI98194 Hanna Instruments and YSI EXO 1

sonde) properly calibrated. In addition, surface and bottom water

samples were collected for further analytical quantification of

nutrients (nitrites, phosphates, ammonia, and silica) and chlorophyll a

concentrations (Ramos et al., 2012). Water samples were collected using

a water sampler (Hydro-Bios), transferred to acid-washed 1.5 L bottles,

transported to the laboratory in cool boxes, and processed immediately.
2.5 Data analysis

All biological and environmental data were expressed through

means and their respective standard deviations. Statistics and

graphics were performed in R (R Core Team, 2019), using the

libraries “vegan” and “ggplot2”.

The environmental data measured were first evaluated for

collinearity with a correlation matrix and variance inflation factor

(VIF) values (Zuur et al., 2010). Parameters with a correlation

higher than 0.85 were removed, and the remaining parameters were

normalized. Data was then explored with a principal component

analysis (PCA) to highlight differences among sites.

Biological data, namely, the total biomass of fouling organisms

and the percentage of mesh occlusion (PMO), were analyzed with a

permutational analysis of variance (PERMANOVA) (Anderson

et al., 2008) applied to univariate data using the “adonis” function

within the “vegan” package (Oksanen et al., 2019). This analysis

aimed to evaluate differences among sites (S1 to S4), treatments

(natural, orange), and polymers (PA and PE) using a 3-way crossed

design with fixed factors. Because the panels were repeatedly

analyzed over time, we used a “repeated measures” approach to

account for the non-independence of the data (Anderson et al.,

2008). In this case, we considered each month as a variable, and
frontiersin.org
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analyzed the multivariate matrix of the set of 4 months (June, July,

August, and September). These factors were also tested for

multivariate dispersions using PERMDISP. The data were initially

square root-transformed, and the Bray-Curtis dissimilarity matrix

was calculated upon which the PERMANOVA was performed

(Anderson et al., 2008). Significant differences were visually

displayed using Principal Coordinate Analysis (PCoA) plots.
3 Results and discussion

3.1 Environmental conditions

The water quality parameters at the different sites during the 4-

month period are shown in Table 2 and Supplementary Table S1.

Water temperature was generally higher in the estuarine sites (S1

and S2) compared to the marine sites (Table 2). However, no clear

monthly variations were observed, except for a sharp increase in

September in all sites (Table S1). The relatively low water

temperatures observed in the marine locations (S3 and S4) in

summer (15.6 ± 0.8°C) may have been associated with the

upwelling events that are frequent in Portuguese coastal waters at

this time of the year (Fiúza et al., 1982; Ramos et al., 2006).

Estuarine waters presented higher Chl a concentrations (5.58 ±

1.54 mg/L) when compared to marine sites (S3: 2.22 ± 1.59 mg/L; S4:
2.00 ± 1.12 mg/L), presenting a peak value of 7.83 mg/L in July.

Overall, the concentration of nitrites, ammonia, phosphates,

and silica was considerably lower in the estuary than in the marine

sites (Table 2). Together with the reduced oxygenation of the water,

particularly in S4, these results indicate lower water quality in the

marine sites. This might be related to the fact that these sampling

sites are located within the Port of Leixões, a confined area with less

hydrodynamics and with potential contamination due to port

activities and drainage from a local tributary (Leça River) into

the seaport.

The PCA analysis highlighted the differences in the analyzed

parameters, particularly on the horizontal axis (PC1, 45% of total

variance explained), which distinctly separates estuarine and

marine samples (Figure 2). The main parameters responsible for
Frontiers in Marine Science 05
such difference were the higher salinity and nutrient content in

marine sites, in contrast to the estuarine waters with lower salinity,

higher water temperatures, and concentrations of silica and

chlorophyll a. Along the vertical axis (PC2, 22% of explained

variance), there seemed to be a separation of the marine samples

in July and August, associated with higher dissolved oxygen

content (Figure 2).
3.2 Biofouling development

Biological colonization of the test panels was observed in the

different sampling locations over time (Figure 3; Supplementary

Table S2). At the end of the first month of immersion (June), the

panels presented an extensive microbial biofilm, composed of

organic detritus, diatoms, cyanobacteria, and other microalgae

species typical of coastal and estuarine environments (data not

shown). Some macrofouling species were also observed, including

algal spores, arborescent bryozoans (Bugula sp.), and bivalve spat

(Mytilus sp.) at the marine sites (S3 and S4), and newly settled

barnacles at the estuarine sites (S1 and S2) (Table S2).

In the sampling times of July, August, and September, an

increase in colonization by macrofoulers (macroalgae and

invertebrates) was observed, and after 4 months of immersion,

panels located at different sampling sites presented their own

specific community composition (Figure 3, Supplementary Table

S2). As expected, marine sites exhibited a greater diversity of

taxonomic groups, including native and non-indigenous species,

which is consistent with findings from Marins et al. (2010) and

McNaught and Norden (2011). On the contrary, estuarine sites had

a lower diversity dominated by one or two taxa. The main fouling

groups in the marine sites were macroalgae (green, brown, and red),

encrusting and arborescent bryozoans, ascidians, barnacles

Amphibalanus spp., and calcareous tube-dwelling polychaetes. In

the estuarine sites, the dominant fouling organisms were

filamentous green algae (Ulva spp.), acorn barnacles Austrominius

modestus (Darwin, 1854), and colonial hydroids of the species

Obelia dichotoma (Linnaeus, 1758). The dominant fouling groups

identified in this study are recognized as typical common fouling
TABLE 2 Environmental parameters that were measured at the study sites (S1- S4) in the period from May to September 2021.

Parameters S1 S2 S3 S4

Temperature (°C) 18.41 ± 2.33 18.91 ± 2.18 16.68 ± 2.55 16.38 ± 2.33

Salinity 17.46 ± 4.70 15.11 ± 2.71 33.80 ± 3.42 33.49 ± 3.80

Dissolved oxygen (mg L−1) 7.89 ± 0.47 8.04 ± 0.57 7.38 ± 2.37 6.98 ± 1.28

pH 7.46 ± 0.37 7.33 ± 0.31 7.52 ± 0.40 7.47 ± 0.40

Chlorophyll a (mg L-1) 5.52 ± 0.74 5.36 ± 2.19 2.22 ± 1.09 1.70 ± 0.66

Nitrite (mg L−1) 0.01 ± 0.002 0.01 ± 0.001 0.05 ± 0.04 0.07 ± 0.04

Ammonia (mg L−1) 0.03 ± 0.01 0.03 ± 0.01 0.24 ± 0.18 0.24 ± 0.16

Phosphate (mg L−1) 0.04 ± 0.02 0.02 ± 0.01 0.15 ± 0.06 0.14 ± 0.06

Silica (mg L−1) 3.88 ± 0.66 4.04 ± 1.57 0.84 ± 0.43 0.74 ± 0.25
Data are expressed as average ± S.D.
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organisms (Fitridge et al., 2012; Azevedo et al., 2020; Vinagre

et al., 2020).
3.3 Biofouling biomass and mesh occlusion

The change in biofouling composition over time, from

microfoulers to macrofoulers, is reflected in the total biomass

(wet weight - WW), with relatively low values in the first month

of immersion, followed by larger increases in the following

months (Figure 4).

There were no consistent temporal or spatial patterns in the

fouling community biomass. Panels deployed at the estuarine site,

near the oyster farm, with longer immersion times (S1), had the

highest fouling load over the study period (WW= 80 ± 36 g), while

at the other sites, fouling biomasses were about half of that value

(S2: 39 ± 22 g; S3: 39 ± 21 g; and S4: 38 ± 30 g) (Figure 4). This

pattern is consistent with previous reports showing that

continuously submerged structures at or near aquaculture farms

typically exhibit greater biofouling biomass than sites distant from

aquaculture activity, probably due to the enhanced food supply

associated with mariculture (Cook et al., 2006; Fernandez-Gonzalez

et al., 2021).

The temporal development of fouling communities differed

according to site (Figure 4). Sites S1 and S4 showed greater

biomass growth between July and August. In sites S3 and S2, a

decrease in biomass was observed during the third month of

immersion. As also observed by Marques et al. (2022) for ascidian

communities, some fouling populations can proliferate rapidly and
Frontiers in Marine Science 06
then retreat. This change in the fouling accumulation pattern might

be indicative of a disturbance event or other differences in the

environmental settings affecting marine fouling recruitment locally.

Because there was no significant change in water quality

parameters, this phenomenon might have been caused by biotic

interactions within the fouling communities. In fact, the visual

inspection of the fouling communities at that specific time (Table

S2) showed an overall decrease in the abundance of dominant

groups, namely, filamentous green algae in S2, and the arborescent

bryozoan Bugula sp. in S3. In the case of bryozoans, Chang and

Marshall (2016) also found that, in a 3-month study of marine

fouling communities, this functional group had their maximum

cover during mid-succession, declining the following month. This is

probably linked to the relatively weak competitive abilities of

arborescent bryozoans, relying on rapid colonization of free space

before being overgrown by other species.

Results from the PERMANOVA analysis of biomass across the

entire study period showed a significant interaction for treatment by

site (p < 0.05; Table 3). Pairwise comparisons showed significant

differences in biomass between natural (white) and treated (orange)

panels only at the estuarine intertidal site, S2 (Table 3). At this site, the

orange-colored panels had significantly larger biomass than the white

(untreated) panels (50.17 ± 23.52 gWW vs. 27.61 ± 12.86 gWW), and

the analysis of the fouling composition showed that the difference was

due to the presence of the acorn barnacle Austrominius modestus,

which settled more abundantly on colored panels (Figure 5).

The percentage of mesh occlusion (PMO) closely followed the

patterns observed in fouling biomass (Figure 6). The greatest

amount of clogging occurred at the subtidal estuarine site (S1)
FIGURE 2

PCA ordination plot showing the position of all sites (color symbols) in the environmental gradient of the non-collinear variables (explained variance:
PC1 = 45.2%, PC2 = 21.9%). Estuarine sites (S1 and S2) are in green, and marine sites (S3 and S4) are in blue.
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with 100% clogging in treated panels (either of polyamide or high-

density polyethylene) after 4 months of immersion. In other

locations, the occlusion of the openings was less than 50% in

most months. In the subtidal estuarine site (S1), mesh occlusion

was caused by colonial hydroids (Obelia dichotoma) (Table S2),

which tended to form dense mats colonizing the entire surface area

of all plastic panels. The hydroid O. dichotoma is a well-known

fouling species, forming locally abundant colonies and found

almost everywhere in aquaculture facilities (Braithwaite and

McEvoy, 2005; Fitridge et al., 2012; Bloecher et al., 2013; Martell

et al., 2018), particularly in suspended culture. In addition to
Frontiers in Marine Science 07
causing problems related to occlusion of cage mesh apertures,

Obelia spp. has been found to colonize shell surfaces in mussels

(Antoniadou et al., 2013) and pearl oysters (Guenther et al., 2006;

Ye et al., 2019), leading to reduced growth rates and lower

marketability of the bivalves.

The heavy fouling observed at the subtidal estuarine site

contrasts with the significantly less clogged panels at the nearby

intertidal site. Aerial exposure is one of the ways to control

biofouling in shellfish cultivation, and innovative designs in

culture equipment that allow air-drying have been evolving to

tackle this problem (Mizuta and Wikfors, 2019).
FIGURE 3

Synoptic image of the test materials at the different sampling sites (S1 to S4), over the immersion period. Top row: polyamide panel with color additive
(PA_ADD) and untreated polyamide panel (PA_NAT). Bottom row: high-density polyethylene panel with color additive (PE_ADD) and untreated high-
density polyethylene panel (PE_NAT). Images over time are from the same plate randomly selected from the three replicates of each condition.
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The two dimensions of the PCO ordination (Figure 7)

effectively captured the general structure of the variability in

fouling biomass (95%) and mesh occlusion (96%), with samples

clustering according to the testing site. The PCO plots showed a

smaller variation in the biomass and percentage of mesh occlusion

of samples from site S1 (estuarine subtidal), while the other sites

presented a larger variation and a general overlap of samples from

sites S2 and S3, in accordance with the PERMANOVA

results (Table 3).

The PERMANOVA results indicated a significant interactive

effect of “site” and “polymer” types on PMO, preventing the analysis

of the main effects (Table 3). This interaction term was primarily

driven by differences in panels deployed at the estuarine intertidal

site S2, where panels made of high-density polyethylene (PE) were

significantly more occluded than polyamide (PA) ones. As observed

in the case of fouling biomass, these results were also attributed to

an increased settlement of A. modestus in PE panels (Figure 5).
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The acorn barnacle A. modestus is a non-native species typically

found in intertidal and shallow subtidal estuarine areas (Ashton

et al., 2017), and commonly associated with shellfish aquaculture

(Rech et al., 2018). As an intertidal barnacle, A. modestus is able to

tolerate fluctuations in salinity and temperature, and due to its fast

growth rates and short generation times, it can form dense

aggregations affecting shellfish, gear, and aquaculture equipment

(Katsanevakis et al., 2018).

Dark-colored surfaces have been found to promote higher

settlement of barnacle larvae (Yule and Walker, 1984; Robson

et al., 2009) compared to lighter, more reflective colors such as

white and yellow. The results presented here also confirm this

pattern, reinforcing that substrate color is an important factor in the

formation of macrofouling communities (Robson et al., 2009;

Satheesh and Wesley, 2010; Dobretsov et al., 2013).

A number of studies have reported that different marine

invertebrates show a preference for surfaces with a certain initial
TABLE 3 Summary of significant terms for the PERMANOVA on the fouling biomass and on percentage mesh occlusion (PMO) as dependent variables,
and site, treatment, and polymer as independent variables, with the indication of the significant terms and pairwise combinations (p<0.05).

Dependent variable Significant terms d.f. Pseudo-F P(perm) Significant pairwise comparisons

Biomass Site * Treatment 3 3.0469 0.012 Within Site:
S2: NAT vs ADD treatments
Within Treatment:
ADD: all pair combinations, except S2 vs S3
NAT: all pair combinations

PMO Site * Polymer 3 2.7468 0.024 Within Site:
S2: PA vs PE polymers
Within Polymer:
PE: all pair combinations, except S2 vs S3
PA: all pair combinations
FIGURE 4

Fouling biomass (g wet weight per panel) on the tested plastic panels, over the 4 months of immersion at the different study sites (S1 to S4). Each
column represents the mean of three replicate panels. Bars=standard deviation. PA_ADD: Polyamide with color additive; PA_NAT: Natural
(untreated) polyamide; PE_ADD: High-density polyethylene with color additive; PE_NAT: Natural (untreated) high-density polyethylene. In site S2,
biomass from June was not recorded due to equipment malfunction.
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FIGURE 6

Percentage mesh occlusion (PMO, %) of the tested plastic panels, over the 4 months of immersion at the different study sites (S1 to S4). Each column
represents the mean of three replicate panels. Bars=standard deviation. PA_ADD: Polyamide with color additive; PA_NAT: Natural (untreated) polyamide;
PE_ADD: High-density polyethylene with color additive; PE_NAT: Natural (untreated) high-density polyethylene.
FIGURE 5

Barnacle cover on the tested plastic panels at the estuarine intertidal site (S2) after 4 months of immersion.
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wettability (Schmidt et al., 1987; Rittschof and Costlow, 1989;

Roberts et al., 1991). Some species of barnacles such as

Amphibalanus amphitrite avoid surfaces with low wettability

(Rittschof and Costlow, 1989; Dahlstrom et al., 2004), while

bryozoans such as Bugula sp. settle in a higher percentage on

surfaces with lower initial wettability (Rittschof and Costlow, 1989;

Roberts et al., 1991). In contrast, the barnacle species A. modestus

and Balanus crenatus, exhibit a preference for surfaces with lower
Frontiers in Marine Science 10
initial wettability (Brown et al., 2001). Polyamide is a more

hydrophilic (high-energy and high wettability) material compared

to high-density polyethylene (Artham et al., 2009; Carl et al., 2012;

Bloecher et al., 2013). While we have not analyzed the

physicochemical characteristics of the surfaces of plastic materials

and treatments, the differential settlement response of barnacle

larvae is likely influenced by the surface properties of different

polymers. However, it should be noted that the pristine surfaces will
A

B

FIGURE 7

Principal coordinate analysis (PCoA) plots for the (A) biomass of biofouling community, evidencing sites and treatments, and the (B) percent mesh
occlusion (PMO), evidencing sites and polymer types, in accordance with the PERMANOVA results, with an indication of the variance explained by
each axis. Convex hulls were drawn to represent the area occupied by each group.
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undergo some degree of modification upon immersion before

macrofouler adhesion events occur (Callow and Fletcher, 1994).

Plastic material exposed to UV-B radiation in the intertidal zone

and subjected to tidal immersion-emersion cycles can also undergo

surface modifications through mechanical abrasion and chemical

processes (Cooper and Corcoran, 2010; Weinstein et al., 2016). This

could explain why differences in polymer performance were only

evident at the intertidal site, where complex interactions in abiotic

and biotic factors could cause the greatest changes in plastic

surfaces depending on the resistance to degradation of the specific

polymers. Overall, these results underscore the need for field tests to

assess gear-related plastics performance.

A final observation pertains to the utilization of plastics in

aquaculture infrastructure. While plastics are valued for their

robustness, cost-effectiveness, durability, affordability, and

versatility, they can degrade into smaller particles, releasing

microplastics and/or chemical compounds. Additionally, plastics

can act as carriers for pathogenic agents (e.g., Botterell et al., 2019;

Almeida et al., 2020), posing environmental risks to both cultivated

species and human food security. To mitigate the risks associated

with microplastic release and its potential hazards, it is essential to

implement proper maintenance and disposal practices for plastics

employed in aquaculture settings (e.g., Hingant et al., 2023).
4 Conclusions

Overall, the development of biofouling organisms in the

different study locations was highly dynamic, varying temporally

and spatially, even among sites that were in close proximity. These

results highlight the need for conducting studies on seasonal

changes in biofouling communities near aquaculture farms to

anticipate and devise effective strategies to mitigate biofouling

impacts. Although natural variability may have obscured the

effects of surface properties in some of the sites, it is evident that

polymer type and color play an important role, particularly in

estuarine intertidal areas, where barnacle settlement, the main

fouling organism, appears to be influenced by these two

properties. This study suggests that the use of reflective colors

and higher hydrophilic materials may help attenuate biofouling

development. These findings offer valuable insights for selecting

materials that can effectively reduce fouling loads and associated

impacts, especially in bivalve aquaculture within intertidal estuarine

regions. Future studies are planned, including the incorporation of

natural effective antifouling compounds in plastic prototypes

having those advantageous traits highlighted here.

Employing appropriate materials and proactive fouling control

strategies will be essential in ensuring efficient and sustainable

aquaculture practices in the future. By understanding and managing

biofouling dynamics, the aquaculture industry can maintain its

productivity and minimize the challenges posed by fouling organisms.
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