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Urban ecosystems play a crucial role in providing a wide range of services to

their inhabitants, and their functioning is deeply intertwined with the e�ects of

climate change. The present review explores the dynamic interplay between urban

ecosystem services and climate change, highlighting the reciprocal relationships,

impacts, and adaptation strategies associated with these phenomena. The urban

environment, with its built infrastructure, green spaces, and diverse human

activities, o�ers various ecosystem services that enhance the wellbeing and

resilience of urban dwellers. Urban ecosystems o�er regulatory services like

temperature control, air quality upkeep, and stormwater management, plus

provisioning like food and water. They also provide cultural benefits, promoting

recreation and community unity. However, climate change poses significant

challenges to urban ecosystem services. Rising temperatures, altered precipitation

patterns, and increased frequency of extreme weather events can disrupt the

functioning of urban ecosystems, impacting the provision of services. Heatwaves

and urban heat island e�ects can compromise human health and energy demands,

while changes in rainfall patterns can strain stormwater management systems

and lead to flooding. Moreover, climate change can disrupt biodiversity and

ecological processes, a�ecting the overall resilience and sustainability of urban

ecosystems. To address these challenges, cities are adopting various adaptation

strategies that recognize the interdependence between urban ecosystems and

climate change. Green infrastructure interventions, such as the creation of urban

parks, green roofs, and community gardens, aim tomitigate the impacts of climate

change by enhancing the regulation of temperature, improving air quality, and

reducing stormwater runo�. Additionally, urban planning and design approaches

prioritize compact and walkable neighborhoods, promoting public transportation

and reducing reliance on fossil fuels. Furthermore, engaging communities in the

management of urban ecosystems and climate change adaptation measures is

crucial for ensuring equitable distribution of ecosystem services and building social

resilience. Therefore, the review article highlights a comprehensive understanding

of the dynamic interrelationship between urban ecosystem services and climate

change and their implications. By recognizing and integrating the contributions

of urban ecosystems, cities can develop sustainable and resilient strategies to

mitigate and adapt to climate change, ensuring the wellbeing and habitability of

urban environments for present and future generations.
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1. Introduction

Currently, 56% (4.4 billion) world population reside in urban
areas, projected to reach nearly seven out of 10 by 2050
(World Bank, 2023). Urbanization’s potential for sustainable
growth lies in cities contributing over 80% of global GDP,
fostering productivity and innovation when managed effectively
(Zhang, 2016). In such an era marked by rapid urbanization
and escalating climate change, the intricate relationship between
urban ecosystems and the changing climate has come to the
forefront of global environmental discourse. Cities, as vibrant hubs
of human activity and economic development, rely heavily on
the services provided by their surrounding ecosystems to sustain
and enhance human wellbeing. These services, known as urban
ecosystem services, encompass a wide range of benefits, including
clean air and water, climate regulation, food production, cultural
and recreational opportunities, and support for biodiversity. By
adopting the ecosystem services approach, researchers, advocates,
and policymakers can effectively showcase the advantages that
urban trees and other elements of ecological infrastructure provide
to human societies. This framework allows for a comprehensive
evaluation of the positive impacts, such as improved wellbeing,
enhanced environmental quality, and social values, while also
considering potential drawbacks and costs (Salmond et al., 2016).
By precisely identifying, measuring, and modeling these benefits,
informed decisions can bemade, priorities can be set, and resources
can be allocated efficiently for the planning and management of
urban green infrastructure.

In mainstream concept, ecosystem services have been merely
divided into four categories according to the classification offered
by the Millennium Ecosystem Assessment (2005) regulatory,
provisioning, cultural, and supporting services. Several researchers
have proposed more detailed classifications of ecosystem services
specifically tailored to urban environments. In a pioneering
study by Bolund and Hunhammar (1999), they introduced a
straightforward categorization of ecosystem services that are
distinct to urban ecosystems and environments. Their research
emphasized the numerous benefits that urban green infrastructure
offers to human health. These benefits include micro-climatic
control, air purification, acoustic attenuation, rainwater harvesting,
effluent treatment, and aesthetic values. However, the delicate
balance between these urban ecosystem services is being disrupted
by the far-reaching impacts of climate change. Rising temperatures,
altered precipitation patterns, sea-level rise, and more frequent
extreme weather events pose significant challenges to the
functioning and resilience of urban ecosystems. Moreover, there
have been noticeable changes over time including the rapid
reduction of ozone in the stratosphere, the expansion of desert
areas, the loss of forests, excessive deposition of nitrogen in the
atmosphere, a reduction in freshwater resources, shifts in land use
patterns, and biotic interchanges (Thuiller, 2007).

The review highlights the aspects involving two Sustainable
Development Goal, i.e., 13 and 15. The interaction between
Sustainable Development Goal 13 (SDG 13), which focuses on
climate action, and Sustainable Development Goal 15 (SDG 15),
which emphasizes life on land, is integral to addressing the
complex challenges of environmental sustainability which is being

emphasized in this review. Climate change, a central concern of
SDG 13, directly impacts terrestrial ecosystems and biodiversity, as
highlighted in SDG 15. Mitigating greenhouse gas emissions and
adapting to climate change (SDG 13) can enhance the resilience
of land-based ecosystems and contribute to the prevention of
land degradation, deforestation, and desertification (SDG 15).
Conversely, the conservation and sustainable management of
forests, wetlands, and other land resources (SDG 15) play a critical
role in sequestering carbon and mitigating climate change, aligning
with the goals of SDG 13. This interconnectedness underscores the
importance of a holistic approach that recognizes the symbiotic
relationship between climate action and the preservation of
terrestrial ecosystems to achieve sustainable development.

The interplay between urban ecosystem services and climate
change is a complex and dynamic relationship (Figure 1). On one
hand, climate change poses threats to the provision of ecosystem
services, making cities more vulnerable to environmental risks and
undermining their capacity to support thriving and sustainable
communities (Frumkin et al., 2008). On the other hand, urban
ecosystems have the potential to act as critical tools for climate
change mitigation and adaptation, contributing to efforts to reduce
greenhouse gas emissions, enhance urban resilience, and promote
sustainability. For example, Urban areas possess a dual role in
relation to greenhouse gas (GHG) emissions, serving as both a
significant source and a potential reservoir of carbon (Strohbach
et al., 2012; Schröder et al., 2013). In urban environments,
the source-sink feedback system functions by cities releasing
greenhouse gases through activities such as transportation and
energy consumption (acting as a source) and simultaneously
offering potential for carbon sequestration through urban green
spaces and infrastructure (functioning as a sink). Furthermore,
urban soils, containing 3–5 times more carbon than natural soils in
various climates, have the potential to sequester significant carbon,
although the effectiveness of this sequestration remains debated
due to the loss of a substantial portion of new carbon inputs
through soil respiration (Upadhyay et al., 2021). Consequently, it
is crucial to include cities in global initiatives aimed at mitigating
and adapting to climate change (Bulkeley and Betsill, 2013; Masson
et al., 2014). Urban forests, consisting of trees and shrubs within
urban environments, offer valuable services for climate regulation
by sequestering and storing carbon (Nowak and Crane, 2002;
Strohbach and Haase, 2012; Brandt et al., 2016; Upadhyay et al.,
2021). Considering their capacity to capture and retain atmospheric
carbon, urban forests present a valuable tool for climate change
mitigation on various scales. For instance, at micro level, it can
influence the microclimatic conditions of the urban buildings and
structures by providing shade, lessen up the energy consumption,
and subsequently lowering carbon emissions. At meso level or
at the city level, urban forests have the potential to influence
solar radiation reaching the ground surface, the atmospheric
humidity, and other local climatic variables (Gill et al., 2007;
Redon et al., 2020). On the other hand, at macro level or at
a global scale, it can serve as magnificent carbon sink (Jo and
McPherson, 2001; Chen, 2015). Therefore, understanding and
harnessing the interconnections between urban ecosystems and
climate change is crucial for creating more sustainable and resilient
cities. Nevertheless, these forests are under threat from the impacts
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of climate change and air pollution. The decline of forests has
primarily been observed in regions spanning from 27◦ to 56◦N
latitude and 103◦ to 145◦E longitude, encompassing subtropical,
temperate, and cool temperate climates. The most significant
decline has been noted in Western Japan and Korea. Across Asia,
this decline can largely be attributed to localized emission sources,
including traffic, thermal power plants, electric power plants, other
industrial activities, and commercial areas (Sonwani et al., 2022).
This review delves into the intricate dynamics between urban
ecosystem services and climate change, exploring the impacts of
climate change on urban ecosystems and the reciprocal role of
urban ecosystems in mitigating and adapting to climate change.
It examines the various components of urban ecosystem services
and their vulnerability to climate change, while also highlighting
the potential for urban ecosystems to contribute to climate change
mitigation and adaptation efforts. This review also underscores
the significance of the interplay between two pivotal Sustainable
Development Goals, namely SDG 13, which centers on climate
action, and SDG 15, with its focus on terrestrial ecosystems and
biodiversity. This interaction is pivotal in tackling the intricate
issues associated with environmental sustainability, a central theme
emphasized throughout the review.

Thus, by examining the current knowledge and emerging
trends in the field, this review seeks to shed light on the
complex and nuanced relationship between urban ecosystems and
climate change. It aims to inform policymakers, urban planners,
researchers, and other stakeholders about the importance of
recognizing and valuing urban ecosystem services in the context
of climate change, while also emphasizing the need for integrated
and sustainable approaches that can maximize the benefits of
urban ecosystems and enhance the resilience of cities in a rapidly
changing world.

2. Material and methodology

The selection procedure for scientific papers for a review
article followed a systematic and rigorous approach to
ensure the quality and relevance of the included literature.
Literature published between 2000 and 2023 in relevance to
the specified sub-topics focusing on urban ecosystem services,
climate change impacts on urban areas, and nature-based
solutions for climate change adaptation has been the defined
inclusion criteria. The following standards were used to select,
appraise, and eliminate articles: (1) presenting findings from
an original scientific study or a review and summary of reports
of such studies, (2) determining ecosystem services under
supporting, provisioning, cultural and regulating services category
(3) representing studies urban ecology and global climate
change. A comprehensive literature search was conducted
using academic databases, such as PubMed, Google Scholar,
Scopus, or Web of Science. Use a combination of keywords
related to the sub-topics, such as “urban ecosystem services,”
“urban structures” “climate change adaptation,” “synergies and
trade-offs,” “urban development,” “policy and planning,” and
“challenges.” Those papers that do not meet the inclusion
criteria or are not directly related to the specified sub-topics has
been excluded.

3. Navigating climate change e�ects
on ecosystem services and
sustainability

Urban Ecosystem Services encompass a wide array of services
directly or indirectly influencing human wellbeing and urban
functionality. As climate change accelerates, urban areas confront
escalating pressures on their ecosystems and the indispensable
services they provide (Weiskopf et al., 2020). For instance, in
coastal cities, rising sea levels pose threats to wetland ecosystems
(Plane et al., 2019) that offer flood protection, carbon sequestration
(Speak et al., 2020), and habitat for biodiversity (Williams and
Newbold, 2020). Urban heat islands intensify due to extreme
temperatures, impacting green spaces and compromising their
capacity for cooling, air quality improvement, and carbon dioxide
absorption (Moser et al., 2017; Moser-Reischl et al., 2018). Changes
in precipitation patterns disrupt urban water systems, affecting
water availability and stormwater management, jeopardizing the
crucial role of urban green infrastructure in mitigating floods
and enhancing water quality (Park et al., 2010; Nelson et al.,
2013; Molina-Navarro et al., 2014; Wang et al., 2017). Moreover,
urbanization has triggered significant ecological and societal
transformations, underscoring the need to understand the diverse
benefits provided by urban ecosystems and effect of climate change
on ecosystem services (Bai et al., 2017; Wang et al., 2021).

3.1. Provisioning services in urban areas

Provisioning services in urban areas refer to the tangible goods
obtained from urban ecosystems, such as food, water, and raw
materials (Rodríguez et al., 2006; Kettunen and D’Amato, 2013).
Urban provisioning ecosystem services encompass a wide range
of benefits in urban areas which is being listed in Table 1. While
cities may not seem like primary providers of these services, urban
agriculture, green infrastructure, and water management play vital
roles in meeting the demands of their inhabitants (Mell, 2009;
Cilliers et al., 2013; Artmann and Sartison, 2018).

3.1.1. Food production
Climate change significantly impacts urban provisioning

services, including food production, distribution, and access.
Altered temperature and precipitation patterns influence urban
vegetation yields, leading to heat stress and reduced productivity
(Cârlan et al., 2020; Kabisch et al., 2021). This stress affects
fish and aquatic plants in urban ponds, impacting aquaculture
yields and water-related food production (Hill et al., 2017;
Pagliaro and Knouft, 2020; Krivtsov et al., 2022). Changes in
precipitation cause drought or excessive rainfall, affecting urban
and peri-urban food production and water resources (Forkuor
and Cofie, 2011; Sabiiti et al., 2014). Water scarcity can lower
peri-urban agricultural productivity, potentially causing food
shortages and higher prices (Wolf et al., 2003). Extreme weather
events, like droughts, floods, and heatwaves, stress urban trees,
hinder nutrient absorption, and damage roots, leading to lower
yields (Czaja et al., 2020; Haase and Hellwig, 2022). Higher
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FIGURE 1

An illustrative portrayal showcasing the dynamic interplay between urban ecosystem services and climate change which serves as a powerful tool for

communicating intricate connections. Within this representation, blue arrows signify the ways in which urban ecosystem services act as a bu�er,

alleviating the e�ects of climate change. Conversely, red arrows depict how climate change acts as a stressor, imposing strains on the delicate

balance of the urban ecosystem. A, temperature regulation; B, air quality control; C, stormwater management/flood water absorption; D, flood

mitigation; E, biodiversity support; F, carbon sequestration; G, pollination services; H, cultural services; I, food security; J, climate resilience; a, urban

heat island/global warming; b, loss of cultural services; c, air pollution; d, biodiversity loss; e, less carbon sequestration; f, flooding; g, a�ected

pollination; h, food insecurity.

temperatures deplete food nutrients, reducing their nutritional
value, while floods and storms cause spoilage and food waste
(Wagstaff, 2016; Sehgal et al., 2018; Blekking et al., 2022).
Disruptions in supply chains and transportation lead to food losses,
impacting urban populations. Climate-induced changes increase
food prices, affecting affordability, particularly for low-income
households. Farmers may adapt to alternative crops, influencing
food choices in urban areas (Blekking et al., 2022). Furthermore,
the susceptibility of crops to environmental stress induced by the
emission of greenhouse gases is a matter of significant concern,
as highlighted by Uprety and Saxena (2021). Climate change
is making its presence felt in India with noticeable shifts like
shorter winters and an earlier onset of summer than usual.
This change is particularly significant due to India’s proximity to
the equator. Additionally, the delayed sowing of wheat, caused
by late rice harvesting, places the wheat crop at risk of high-
temperature stress during the crucial grain-filling stage (Ghosh
et al., 2020), ultimately resulting in terminal heat stress and
reduced crop yields. According to simulations conducted by
Dubey et al. (2020), based on field experimental trials (2011–
2012 and 2012–2013) the projected outcome for the year 2050
indicates that this terminal heat stress is expected to lead to
an 11.1% reduction in wheat yield. Furthermore, another Indian
researcher Guntukula (2020) uses annual time-series data from
1961 to 2017 to examine how rainfall, maximum, and minimum
temperatures affect crop yields of rice, wheat, pulses, sugarcane,
and groundnut in India. The study revealed that a spike in rainfall

could negatively affected food crops except pulses, whereas the
average maximum temperature helps food and non-food crops
except rice. Furthermore, food crops tend to benefit from average
minimum temperature.

Climate change poses diverse and interconnected challenges to
urban livestock and dairy (Beneberu and Wondifraw, 2020; Chari
and Ngcamu, 2022). Rising temperatures induce heat stress (Polsky
and von Keyserlingk, 2017), reducing productivity (Babinszky
et al., 2011), impairing reproduction (Boni, 2019), and increasing
mortality in animals (Crescio et al., 2010), affecting milk quality (de
Felicio Porcionato et al., 2009). Altered precipitation patterns limit
water availability, impacting hydration, sanitation, and causing
waterborne diseases. Climate shifts influence feed crop growth,
affecting nutrition and animal health, and alter disease and pest
distribution, requiring additional resources (Bett et al., 2017;
Murray-Tortarolo and Jaramillo, 2019, 2020).

3.1.2. Timber quality
Climate change also significantly impacts urban timber

provision services (Sevianu et al., 2021). Changes in temperature,
precipitation patterns, and extreme weather events can have
profound effects on the quality and quantity of timber resources
within urban ecosystems. Higher temperatures and prolonged
heatwaves can stress urban trees, altering their growth, wood
quality, and suitability for construction (Depietri et al., 2012;
Esperon-Rodriguez et al., 2021; Marchin et al., 2022). Increased
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TABLE 1 A general overview of the ecosystem services associated with di�erent urban ecosystem structures.

Ecosystem structure Supporting services Regulating services Provisioning
services

Aesthetic services

Urban green spaces Biodiversity maintenance Climate regulation Food production (gardens) Recreational opportunities

Habitat provision Air quality improvement Cultural and spiritual
significance

Soil formation Water regulation Aesthetic value

Urban trees Biodiversity maintenance Climate regulation Timber and raw materials Recreational opportunities

Habitat provision Air quality improvement Medicinal resources Cultural and spiritual
significance

Soil formation Noise reduction Aesthetic value

Urban wetlands Biodiversity maintenance Water regulation and
purification

Water supply Recreational opportunities

Habitat provision Climate regulation Cultural and spiritual
significance

Nutrient cycling Flood control Aesthetic value

Green roofs Biodiversity maintenance Climate regulation Food production Recreational opportunities

Habitat provision Air quality improvement Aesthetic value

Stormwater management

Pollination

Urban agriculture Biodiversity maintenance Climate regulation Food production Recreational opportunities

Habitat provision Air quality improvement Cultural and spiritual
significance

Nutrient cycling Stormwater management Aesthetic value

Soil formation

Urban forests Biodiversity maintenance Climate regulation Timber and raw materials Recreational opportunities

Habitat provision Air quality improvement Medicinal resources Cultural and spiritual
significance

Nutrient cycling Noise reduction Aesthetic value

Soil formation Pollination

Urban rivers Biodiversity maintenance Climate regulation Water supply Recreational opportunities

Habitat provision Water regulation Food supply Cultural and spiritual
significance

Nutrient cycling Flood control Aesthetic value

Soil formation

temperatures can also impact timber’s chemical composition,
affecting durability and resistance to decay, pests, and fungi
(Ayanleye et al., 2022). Changes in precipitation patterns influence
urban tree growth, with droughts reducing timber availability
due to water stress (Savi et al., 2015) and excessive rainfall
lowering yields by affecting root health and nutrient uptake
(Sieghardt et al., 2005; Brune, 2016). Additionally, changes in the
distribution of timber-yielding tree species have been documented
as climate change induced alteration. A recent study by Patasaraiya
et al. (2023) investigated how climate change is affecting the
distribution of important timber-yielding tree species in India,
particularly Sal and Teak, which were identified as crucial species
by Kaul et al. (2010). The study focused on central India and

used high-resolution modeling for two future time periods (2050
and 2070) under two climate change scenarios (RCP 2.6 and
8.5). The study’s findings indicated that there will likely be
an expansion of suitable habitat for teak in the future, while
the habitat for sal is expected to decrease. Temperature was
found to be the primary influencing factor for teak, whereas
precipitation played a critical role in the distribution of sal.
Climate change also affects pest and disease prevalence, favoring
certain pests and leading to timber losses (Volney and Fleming,
2000; Holmes et al., 2009). Extreme weather events like storms
and hurricanes damage urban forests, causing tree mortality and
limiting timber availability (Escobedo et al., 2009; Landry et al.,
2021).
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3.1.3. Water quality and replenishing groundwater
Soil compaction from human activities hinders water

infiltration, increasing stormwater volume and flood risks.
Urban forests influence watershed hydrology by intercepting,
evapotranspiring, and storing rainfall (Oke, 1989; Wang et al.,
2008; Berland et al., 2017). Climate change exerts selective pressures
on urban tree species, leading to shifts in their distribution and
abundance. Some species exhibit enhanced resilience, while others
struggle to adapt, impacting their capacity for rainfall interception
and water retention (Jones et al., 2020). Climate-induced shifts in
rainfall patterns challenge urban trees’ ability to intercept and store
intense rainfall events, leading to increased runoff and reduced
water infiltration (Riedel andWeber, 2020; Hendricks and Dowtin,
2023). Drought stress associated with climate change decreases
canopy cover and evapotranspiration, limiting the capacity of
urban trees to intercept and store rainfall (Baptista et al., 2018;
Carlyle-Moses et al., 2020). Extreme rainfall overwhelms canopy
interception capacity, saturates soil, and leads to increased runoff
(Qin, 2020). Soil erosion and compaction compromise tree
root systems, hindering water uptake. Warmer temperatures
from climate change elevate evapotranspiration rates, impacting
groundwater recharge and soil moisture maintenance (Chan
et al., 2019). Additionally, climate-induced pest and pathogen
activity reduce canopy interception and transpiration, while
altered tree-microorganism interactions compromise tree defenses
(O’Neil-Dunne et al., 2014). Climate change-induced disruptions
exacerbate urban tree illnesses, affecting their capacity to manage
rainfall water.

3.2. Regulating services for urban resilience

Regulating services, integral to urban resilience, encompass
imperceptible yet crucial functions like maintaining the quality
of air and soil, providing flood and disease control, and plant
pollination (Haase et al., 2014; McPhearson et al., 2014) (Table 1).
Despite their inconspicuous nature, detrimental perturbations of
ecosystem regulating services can lead to substantial, intricate
losses that pose challenges in restoration (Baró and Gómez-
Baggethun, 2017; Palliwoda and Priess, 2021; Morris et al., 2022).

3.2.1. Air quality
Reducing air pollution poses a critical issue in numerous major

urban centers across various income-level nations. Scientific studies
(Jalaludin et al., 2004; Karagulian et al., 2015) consistently reinforce
the detrimental effects of ambient air pollution on human health. In
the latest Global Burden of Diseases Study, air pollution ranked as
the fourth primary contributor to premature mortality worldwide
in 2019, accounting for 6.67 million untimely deaths (Murray et al.,
2020). The urban air quality of many cities is jeopardized by local
emissions from transportation, industries, and other origins, while
climate change also significantly influences these conditions. This
interaction not only modifies local microclimates and influences
building energy consumption but also involves the release of
pollen, impacting allergies (D’Amato, 2011), and volatile organic

compounds (VOCs), which contribute to the formation of O3 and
PM2.5 (Wakamatsu et al., 2017; Pandey and Ghosh, 2022).

Besides, acting as a sink to various air pollutants, urban
vegetation emits biogenic volatile compounds (BVOC),
contributing to ground-level ozone (O3) and carbon monoxide
formation (Davoren and Shackleton, 2021) and such problem
could be exacerbated under present scenario of climate change
(Ghosh et al., 2018). Conversely, research suggests that trees,
especially low volatile organic compound (VOCs) emitters, can
effectively decrease urban O3 levels (Taha, 1996; Nowak et al.,
2000; Ghosh et al., 2018; Sicard et al., 2018; Fitzky et al., 2019).
Ground-level ozone concentrations can surge significantly due to
the oxidation of isoprene (BVOC) by NOx, as noted by Lerdau
et al. (1997). The presence of substantial NOx, stemming largely
from automobile exhaust within urban locales, contributes to
elevated urban O3 levels when combined with VOCs emitted
by nearby vegetation. The findings of Saxena and Ghosh (2011)
unveiled those locales in Delhi, characterized by dense vegetation
and significant vehicular emissions exhibited the most pronounced
O3 formation which was linked to the release of precursor gases
(NOx and VOCs) responsible for ozone production, emanating
from traffic sources, as well as VOCs discharged by vegetation like
isoprene and terpenes.

In addition to the inherent VOCs emission capacity of trees,
the atmospheric conditions of a given region play a pivotal role
in O3 formation. This phenomenon is particularly notable in
Mediterranean and tropical countries, as explored by Calfapietra
et al. (2013). Consequently, a meticulous approach to urban
plantation strategies is imperative to manage the burden of VOCs
emissions. The selection of high VOC-emitting species for urban
environments could exacerbate VOCs emissions and, by extension,
O3 production—a concern, especially in light of the already
elevated global O3 levels. Moreover, the situation could worsen due
to global warming, as high temperatures and extended periods of
sunshine tend to promote the formation of O3.

3.2.2. Climate regulation
United Nations (2018) attributes 60% of anthropogenic

greenhouse gas emissions to urban activities. Urban vegetation,
particularly trees, directly counteract greenhouse gas emissions by
sequestering carbon dioxide through photosynthesis and biomass
storage (Nowak et al., 2013a; Agbelade and Onyekwelu, 2020; Klein
et al., 2021). Most of the mentioned studies focus solely on CO2

flux from urban trees and vegetation, neglecting soil contribution.
Urban soils, particularly those rich in organic matter (histosols
or peat soils), can serve as substantial carbon sinks (Malone
et al., 2023). However, shifting climate conditions might influence
the growth and survival of trees and plants. Rising temperatures
can dehydrate and damaged roots, thus reducing their ability to
absorb water, affecting soil microbial communities and impacting
nutrient uptake by plants (Pandey et al., 2019). Climate change
can pose a threat to the availability of nutrients (Lotze-Campen,
2011; Elbasiouny et al., 2022). Nonetheless, the process of global
warming has the potential to alter the yearly and seasonal patterns
of nutrient availability and cycling (Koller and Phoenix, 2017).
Specifically, changes in the availability of carbon (C), nitrogen
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(N), and phosphorus (P) can have significant consequences for
plant life, as these nutrients are vital for proper plant growth and
development. Insufficient nutrient availability can lead to stunted
growth of the urban trees, their instability, and vulnerability to
other stressors. Thus, elevated temperature due to climate change,
diminished the capacity of the urban green spaces to counteract
local warming. Higher temperatures could potentially undermine
the cooling effect provided by vegetation, reducing their ability to
create cooler microclimates within urban areas.

Additionally, extreme weather events such as flooding,
prolonged droughts can compromise the health of urban
vegetation, reducing its carbon sequestration potential. These
events can even cause soil erosion and disrupt the carbon stored in
the soil. Warmer temperatures might accelerate microbial activity
in the soil, potentially leading to increased decomposition of
organic matter (Elbasiouny et al., 2022; Shahzad et al., 2022). This
could lead to an accelerated release of carbon into the atmosphere
in the form of carbon dioxide (Dotaniya et al., 2016), contributing
to a positive feedback loop that amplifies the effects of climate
change. Additionally, changes in soil moisture levels can affect the
balance between carbon uptake and release, potentially leading to
reduced carbon sequestration. However, soil respiration can also
emit carbon (Velasco et al., 2016; Upadhyay and Raghubanshi,
2020), adding complexity to urban carbon budget assessments
under ongoing climate change scenario.

3.2.3. Pollination and flowering
Pollination, typically classified as a regulating service (Smith

et al., 2011; Crossman et al., 2013), occurs through abiotic
(primarily wind) or biotic (pollinating animals) means (Ollerton
et al., 2011). Flowering plants, as complex biological entities,
intricately intertwine with the survival and reproductive success
of a myriad of pollinators, comprising bees, butterflies, and
a plethora of other insect species (Dorin et al., 2022). The
symbiotic relationship between these plants and pollinators is
an elemental cornerstone of ecosystem functionality (Stevenson
et al., 2020). Through this dynamic interaction, they inadvertently
transfer pollen grains, laden with genetic material, from one
flower to another, orchestrating the fertilization process vital for
plant reproduction (Carper et al., 2022). The consequences of
this mutualistic alliance extend far beyond the realm of botany,
as numerous plant species integral to human sustenance and
wellbeing heavily depend on successful pollination events (Oliveira
et al., 2019).

Amid the various facets of climate change, one aspect that
stands out is the impact of heat stress. This stress not only affects
pollination services, foraging behavior, and the overall growth of
pollinators but also triggers observable changes in these areas (Zhao
et al., 2021). These negative effects are projected to be even more
pronounced as climate change progresses, with significant shifts
expected in tropical, cold, and mountainous regions, as previously
noted by Medina et al. (2018), Alqarni (2020), and Soroye et al.
(2020). The primary driving force behind these changes is the
heightened frequency and duration of heat waves, which have
become a prominent characteristic of climate change (Xu et al.,
2018). Of particular concern is the impact on tropical regions,

which are already accustomed to elevated temperatures. With the
anticipated temperature increases brought about by climate change,
these tropical regions are likely to experience a disproportionately
negative impact compared to temperate areas (Mora et al., 2013).
The rising temperatures have far-reaching consequences on the
reproductive processes of plants, potentially leading to decreased
fertility in numerous species and subsequent effects on pollination.
The repercussions of heat stress extend to changes in pollen
quantity, morphology, cell wall structure, and notably, pollen
metabolism (Hedhly, 2011; Chaturvedi et al., 2021).

Climate change has sparked significant interest due to its
considerable impact on pollination. Two key effects have garnered
attention: (a) disruptions in the timing of plant-pollinator
interactions, known as phenological decoupling, and (b) shifts in
the geographical distribution of these interactions, referred to as
spatial decoupling (Høye et al., 2013; Herrera et al., 2014; Sirois-
Delisle and Kerr, 2018). The influence of heat on this delicate
balance is noteworthy, as it can lead to reduced pollen viability
and alter the timing of flower initiation and opening, ultimately
impacting successful pollination. When flowering times shift
while pollinator schedules remain unchanged, mismatches between
flowers and pollinators arise. This can instigate phenological
decoupling in plant-pollinator interactions, with temperature
changes causing distinct shifts in developmental stages among
plants (Settele et al., 2016). Notably, some butterflies have exhibited
3-fold faster spring advancement in phenology compared to their
host plants, highlighting an increasing asynchrony between these
two groups (Settele et al., 2016). Such phenological mismatches
can have cascading effects. They may lead to diminished food
availability for insect pollinators while also reducing pollinator
visits to the very plants they serve. This misalignment further
disrupts pollen transfer, resulting in decreased fertilization rates
and reproductive success. These repercussions, in turn, reverberate
through plant fitness and offspring viability. The cumulative impact
of heat-induced disruptions during flowering and fruiting can
impede genetic diversity and jeopardize population persistence.
Additionally, evidence points to the ongoing shift in the spatial
distribution of insect pollinators because of climate change.
This phenomenon is projected to persist, particularly affecting
bumblebees and butterflies (Settele et al., 2008; Rasmont et al.,
2015). Heat stress further amplifies these challenges by diminishing
the production of secondary metabolites like phenolic compounds,
which act as natural defenses against pests and pathogens. While
heat-induced stomatal closure limits water loss, it also reduces the
emission of volatile organic compounds (VOCs) that contribute to
pest deterrence. The alteration in VOC composition under heat
stress modifies the pattern of attraction or repulsion of pests,
adding another layer of complexity to the evolving dynamics of
plant-insect interactions.

3.3. Supporting services for urban
ecosystem functioning

Supporting services provided by urban ecosystem services are
the invisible but essential foundation that sustains the functionality
and health of cities (Table 1). These services encompass processes
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like nutrient cycling, soil formation, and biodiversity maintenance,
working behind the scenes to ensure the vitality of urban
environments. They contribute to the productivity of urban
green spaces, facilitate water purification, and foster habitat for
diverse species. As urban areas grapple with the challenges
posed by rapid development and climate change, recognizing and
nurturing these supporting services becomes paramount. Climate
change has exerted noticeable impacts on urban supporting
ecosystem services, altering the foundational processes that sustain
urban environments. Rising temperatures and altered precipitation
patterns influence soil health and composition, affecting nutrient
cycling and soil fertility (Scholes, 2016; Weiskopf et al., 2020;
Bakure et al., 2022). Rising temperatures lead to heightened
soil organic matter decomposition, potentially elevating soil
carbon losses and causing shifts in C:N balances (Davidson and
Janssens, 2006). These alterations are influenced by various biotic
interactions, including secondary changes to the composition of
soil microbial communities (Crowther et al., 2011). Concurrently,
human activities linked to climate change, such as the combustion
of fossil fuels, lead to heightened nitrogen deposition. This
deposition carries significant consequences for both terrestrial
and aquatic ecosystems, notably contributing to issues like
eutrophication (Galloway et al., 2008). The urban environment,
in particular, contends with heightened vulnerabilities to more
intense and erratic rainfall, leading to elevated risks of flooding
and erosion that directly impact water regulation and purification
services. The essential role of biodiversity in enhancing ecosystem
resilience faces jeopardy, with many species struggling to acclimate
to the evolving environmental conditions. Notably, recent research
by Habibullah et al. (2022) underscores that the impact of
biodiversity loss is notably influenced by shifts in precipitation
and temperature, surpassing even the effects of alterations in
the frequency of natural disaster events. Urban heat islands,
exacerbated by climate change, strain energy systems and human
health while also disrupting natural processes. The interplay of
these factors has led to a decline in the capacity of urban
ecosystems to provide essential supporting services, challenging
the ability of cities to maintain their functionality and the
wellbeing of their inhabitants. Adaptation and mitigation strategies
are crucial to restore and enhance these services, ensuring the
resilience and sustainability of urban areas in the face of a
changing climate.

3.4. Cultural services and human wellbeing

Cultural ecosystem services can be defined as the non-
material benefits that people obtain from nature, including
spiritual, aesthetical, educational and recreational values (Schaich
et al., 2010; Plieninger et al., 2015; Ament et al., 2017).
Parks, green spaces, and vibrant urban landscapes offer places
of relaxation, leisure, and social interaction, enhancing the
overall quality of life in cities (Gotham and Brumley, 2002;
Kazmierczak, 2013; Tsunetsugu et al., 2013; Cox et al., 2017;
Verma et al., 2020). These spaces serve as venues for cultural
events, festivals, and artistic expressions, fostering community

identity and connection (Ulrich, 1981; Kaplan, 1985; Van
den Berg et al., 2010; Russell et al., 2013). Additionally,
urban ecosystems offer settings for education and learning,
enabling people, especially children, to connect with nature
and gain insights into ecological processes (Tidball and Krasny,
2011).

Climate change is affecting some of the critical services
that ecosystems provide to society (Lipton et al., 2018). The
cultural ecosystem in terms of recreation and tourism provides
valuable services which play a crucial role in generating substantial
economic benefits (Reyers et al., 2013). Most recreational services
exhibit a high degree of vulnerability to the impacts of global
warming, with a particular emphasis on outdoor winter sports and
tropical holidays (Khan et al., 2013). Many urban cultural events
and festivals take place in outdoor settings, drawing residents
and tourists together to celebrate diversity and community
spirit. However, climate change can disrupt these events by
increasing the risk of extreme weather events such as storms,
heavy rainfall, or heatwaves. These weather patterns could lead to
cancellations, rescheduling, or diminished attendance, impacting
the vibrancy and social cohesion associated with such gatherings.
In a recent investigation conducted by Dhavale et al. (2022),
findings reveal a notable 52% surge in cyclone occurrences
within the Arabian Sea from 2001 to 2019. Moreover, the study
reports a staggering 150% increase in the incidence of “very
severe” cyclones during the same period. These climatic shifts
have consequently impacted coastal tourism in states like Goa
and Kerala.

The global phenomenon of climate change has been observed
to have a significant impact on these cultural ecosystem services on
a worldwide scale (Tuvendal and Elmqvist, 2011). Climate change
can alter the availability and functionality of the green spaces.
Increased temperatures, heatwaves, and shifting precipitation
patterns, rising air pollution might limit the comfortable use of
outdoor areas, reducing people’s ability to engage in outdoor
activities like picnicking, jogging, or sports (Evans, 2019).
Moreover, droughts and water scarcity can negatively impact the
vitality of green spaces, affecting the visual appeal and recreational
value of these areas. These effects are not limited to specific regions,
but rather have implications that extend beyond geographical
boundaries. Debnath et al. (2023) conducted a recent study
highlighting the vulnerability of the entire Delhi region, India, to
severe heat wave impacts. Surprisingly, the current state action
plan for climate change does not acknowledge this vulnerability.
Through an analytical assessment of the Heat Index (HI) combined
with the Climate Vulnerability Index (CVI), the study reveals
that over 90% of the country faces an alarmingly high risk
level, with potential adverse effects on livelihood adaptability,
food grain yields, the spread of vector-borne diseases, and urban
sustainability. These conditions not only have the potential to deter
tourists but also pose health risks, including heat-related illnesses.
Furthermore, urban ecosystems often historical sites, monuments,
and culturally significant landmarks that connect residents to
their heritage and identity could be affected by climate change-
related factors which can damage or threaten these sites, potentially
erasing important aspects of a city’s cultural history and identity
(Quesada-Ganuza et al., 2021).
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4. Enhancing urban ecosystem
services for climate change adaptation

4.1. Green infrastructure and ecological
design

Green infrastructure and ecological design play crucial roles in
climate change adaptation by promoting sustainable and resilient
solutions. They encompass a range of practices and systems that
harness the power of nature to mitigate the impacts of climate
change and enhance ecosystem services. Green infrastructure refers
to strategically planned andmanaged networks of natural and semi-
natural areas, as well as green spaces within urban environments
(Bendict andMcMahon, 2006;Wright, 2011;Matthews et al., 2015).
It includes features such as urban forests, wetlands, green roofs,
green buildings, green walls, permeable pavements, and bioswales,
vegetated surfaces green streets and alleys, community parks and
gardens (Gill et al., 2007; Douglas, 2010; Klemm et al., 2015). These
elements work together to provide multiple benefits, including
stormwater management, heat island reduction, lowering of wind
speed, reduction in energy consumption, air quality improvement,
biodiversity conservation, carbon sequestration and maintenance
of wellbeing of the urban societies, nevertheless, the full measure of
these advantages is still up for debate (Pataki et al., 2011). Table 2
presents a compilation of noteworthy case studies covering these
diverse ecosystem structures spanning the years 2013 to 2023.

In the context of climate change adaptation, green
infrastructure helps cities and communities cope with the
challenges posed by changing climate patterns. By capturing and
storing rainfall, green infrastructure reduces the risk of flooding
and enhances water resource management. It also helps mitigate
urban heat islands by providing shade, evaporative cooling, and
natural ventilation, thereby reducing energy consumption for
cooling purposes. For example, the city of Portland, located in
the northwestern United States, serves as an illustrative case
of how adopting a green infrastructure design approach for
managing flood risks can yield a wide range of benefits for the local
community, both at the site and neighborhood level. In response to
significant strain on Portland’s drainage system, leading to around
50 combined wastewater overflows into the Willamette River in
1990, Hoyer et al. (2011) emphasize the proactivmeasures taken
by the city’s municipal government. They implemented a diverse
range of green infrastructure initiatives to alleviate the burden
on the sewer system and minimize adverse impacts on urban
waterways. These measures include providing monetary incentives
for disconnecting downpipes, redirecting stormwater to lawns,
gardens, and ground infiltration, constructing green roofs to boost
local biodiversity, and establishing a network of green spaces for
recreational purposes, which also helps mitigate rainwater runoff
into the Willamette. By implementing such programs, there is
an increase in local biodiversity, as well as an enhancement in
the attractiveness of the streetscape (Hoyer et al., 2011). In a
similar vein, Lancaster (2006) analyze the comprehensive and
community-based drainage programs in Vancouver, Canada. The
municipal government has actively encouraged the Green Streets
program, which enables residents to engage in city gardening

through the funding of projects aimed at improving roadside areas
(Lancaster, 2006).

Ecological design focuses on integrating ecological principles
and processes into the planning and design of human-built
environments. It seeks to create sustainable and regenerative
systems that harmonize with nature. Ecological design approaches
consider the ecological, social, and economic aspects of a project
to foster resilience and adaptability. In the face of climate change,
ecological design emphasizes strategies such as using native plant
species, restoring and enhancing natural habitats, promoting
biodiversity, and conserving natural resources. As an illustration,
the plans for Ho Chi Minh City in Vietnam encompass various
strategies such as reservoir management, constructing a ring dike,
and preserving the riparian area, all with the primary objective
of flood prevention. One potential advantage of safeguarding the
riparian zone is the preservation of habitat integrity and species
diversity, as demonstrated in Lagos, Nigeria. Furthermore, the Ho
Chi Minh City plan includes a target to reduce river pollution,
which presents additional opportunities for biodiversity benefits
(Butt et al., 2018). Chennai and Kochi are showing initial progress
in embarking on a journey toward urban climate transition.
These Indian cities actively participated in normative adaptation
integration, leveraging a diverse array of actions and projects.
They prioritized the restoration and enhancement of Blue-green
infrastructures as a foundational strategy to bolster urban resilience
in the face of climate change challenges. Notably, international
cooperation organizations played a pivotal role in assisting the
municipalities in these case studies, particularly in the revitalization
of the Buckingham Canal in Chennai and the Mullassery Canal
in Kochi, marking a significant milestone in the evolution of a
novel regulatory framework (Sánchez and Govindarajulu, 2023).
By integrating green infrastructures into urban development, there
is also the potential to enhance landscape connectivity, provide
supplementary or improved habitat, and in certain cases, facilitate
the establishment of controlled populations of threatened species
(Butt et al., 2018). These strategies not only enhance ecosystem
resilience but also provide numerous co-benefits, such as improved
air and water quality, enhanced wildlife habitats, and enhanced
community wellbeing. Therefore, such integration of nature-
based solutions into urban planning and design, cities can better
prepare for the future while promoting ecological health and
human wellbeing.

The global consciousness surrounding sustainability in the
construction sector has been steadily increasing, driven by factors
such as climate change, population growth, and rapid urbanization.
This growing awareness has led to a heightened demand for green
buildings as a means to achieve sustainable development (Gou and
Xie, 2017). Green buildings, as defined by The Energy and Resource
Institute, a non-profit organization specializing in sustainable
development, are structures meticulously designed, constructed,
and operated to minimize their overall environmental impact while
simultaneously enhancing user comfort and productivity (GRIHA
Manual, 2010). Evidence supporting the economic advantages and
reduced energy consumption associated with green buildings has
emerged from various studies. For instance, research conducted
in Malaysia demonstrated that green buildings can save ∼71.1%
of energy compared to industry baseline standards, underscoring
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TABLE 2 Significant case studies on diverse ecosystem structures from 2013 to 2023.

S. No. Case
study location

No. of
sites/area
covered

Study period Method of data
collection/analysis

Ecosystem
structures

Ecosystem
services

Major findings References

1. Manchester, UK 5 sites (9 m2) January-September,
2011

In-situ surface runoff
collection and analysis

Street trees and
amenity grasses

Surface water runoff Grass eliminated surface
runoff, and trees with tree pits
reduced asphalt runoff by up
to 62%.

Armson et al., 2013

2. United States 28 cities and 6 states 1989–2010 Random sampling/i-Tree Eco
[formerly Urban Forest
Effects (UFORE)] model

Urban trees Carbon storage and
sequestration

In urban areas, trees store
7.69 kg C m−2 on average and
sequester 0.28 kg C m−2 per
year. By 2005, U.S. urban trees
had stored 643 million tons of
carbon ($50.5 billion; 95% CI
= 597–690 million tons) and
annually sequestered 25.6
million tons ($2.0 billion).

Nowak et al., 2013a

3. Barcelona
city, Spain

Area: 101.21 km2 Meterological
data-2008
Field work:
May-July, 2009

Field sampling/i-Tree Eco
[formerly Urban Forest
Effects (UFORE)] model

Urban forest Air purification and air
pollution control,
climate regulation

Urban forests make a
valuable, albeit modest,
contribution to improving air
quality and working toward
local GHG reduction goals,
particularly in certain sectors
under the City Council’s
jurisdiction.

Baró et al., 2014

4. Bologna (Italy) 10th floor rooftops
of two public
housing buildings

April 2012 and
January, 2014

Experimental trials Rooftop garden Food provision Mapping urban flat roof
surfaces in Bologna
uncovered 82 ha of rooftop
gardens (RTGs) capable of
producing 12,495 t of
vegetables annually, meeting
77% of the urban vegetable
demand.

Orsini et al., 2014

5. Montréal Island as whole
(472.6 km²)and
each 33 boroughs of
Montréal
independently

– Spatial analyses using ArcMap
10.1 and Google Earth 6.2

Urban agriculture
includes industrial
rooftop space,
residential yard
space

Food production The island could meet
vegetable demand with pricey
hydroponics on industrial
rooftops. Alternatively, using
vacant land can match
demand, cutting operational
costs.

Haberman et al.,
2014

(Continued)

F
ro
n
tie

rs
in

S
u
sta

in
a
b
le
C
itie

s
1
0

fro
n
tie

rsin
.o
rg

https://doi.org/10.3389/frsc.2023.1281430
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org


P
a
n
d
e
y
a
n
d
G
h
o
sh

1
0
.3
3
8
9
/frsc

.2
0
2
3
.1
2
8
1
4
3
0

TABLE 2 (Continued)

S. No. Case
study location

No. of
sites/area
covered

Study period Method of data
collection/analysis

Ecosystem
structures

Ecosystem
services

Major findings References

6. Beijing City, China Thirteen agriculture
related countries
Chaoyang, Haidian,
and Fengtai in the
urban, Changping,
Shunyi, Tongzhou,
and Daxing in the
plain peri-urban,
and Huairou,
Miyun, Yanqing,
Pinggu, Mentougou
and Fangshan

1997–2010 data collection: agricultural
census and remote sensing
database. Data analysis: index
grade mapping

Urban agriculture Ecological function,
economic function,
Cultural benefits such as
recreational benefits,
employment, leisure and
entertainment and food
provision

In Beijing, urban agriculture
exhibits a decreasing level of
multifunctionality from north
to south, with Pinggu County
standing out as the area where
agricultural multifunctionality
is most significant, showing
the highest scores in
ecological, economic, and
social functions, albeit with
notable discrepancies.

Peng et al., 2015

7. Central Szeged,
South-east Hungary

– Vegetation period
of 2012 and 2013

i-Tree Eco [formerly Urban
Forest Effects (UFORE)]
model

Urban trees Carbon sequestration
and Air pollution
removal

Tree species significantly
influence ecosystem service
provision, as observed in a
comparison of two tree lane
pairs, highlighting that clear
cuts and complete tree alley
alterations are not advisable
for maintaining ecosystem
services.

Kiss et al., 2015

8. City of Phoenix
(Arizona, USA)

June 23, 2011 Simulation using ENVI-met
V3.1 Beta

Tree and Shade
Master Plan and a
Cool Roofs

Heat mitigation and
climate adaptation

• Increasing tree canopy
cover from 10 to 25%
reduced midday cooling by
up to 2.0◦C in local
residential neighborhoods.

• Implementing cool roofing
on private homes reduced
neighborhood air
temperatures by 0.3◦C.

Middel et al., 2015

9. Berlin, Germany
and Łódz, Poland

– Berlin-2011
Łódz-2014

Land-use data were collected
from the municipalities.
Senate Department for Urban
Development and the
Environment and Łódz City
Geodesy Center.
Analysis using Urban Atlas
and municipal land-use data

Urban green spaces Cultural services The availability of urban
green space is only one part of
the complex social-ecological
interactions that contribute to
cities’ ability to increase
human health and wellbeing.

Kabisch et al., 2016
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TABLE 2 (Continued)

S. No. Case
study location

No. of
sites/area
covered

Study period Method of data
collection/analysis

Ecosystem
structures

Ecosystem
services

Major findings References

10. Gothenburg, Sweden – 2012–2013 Field Sampling Urban trees Cooling effect/Climate
regulation

With a night-time latent heat
flux of 24Wm−2 , tree
transpiration greatly
accelerated cooling after
sunset but not later in the
night. Tree transpiration did
not cool the day, despite a
substantial noon latent heat
input of 206Wm−2 .

Konarska et al.,
2016

11. Munich 3.5 ha – Simulation using ENVI-met
V4 with computational fluid
dynamics approach

Urban green
infrastructure
(strees, green roofs,
and green façade)

Temperature regulation Planting trees offers the most
significant cooling benefit,
lowering the physiological
equivalent temperature by
13% compared to existing
vegetation. Green facades help
too, mitigating 5–10%.
However, increasing overall
green cover doesn’t directly
reduce temperature; instead,
strategically placing trees in
heat-exposed areas proves
more effective than pursuing
high green cover uniformly.

Zölch et al., 2016

12. Phoenix – 2012 Single-layer urban canopy
model and Monte Carlo
method

Urban vegetation Shade provision, human
thermal comfort

Tree shading outperforms
lawn evapotranspiration in
cooling, leading to significant
energy savings in cooling
needs, emphasizing the
crucial role of urban
vegetation, especially in arid
or semi-arid cities, in ensuring
human thermal comfort.

Wang et al., 2016

13. Residential district
in Freiburg,
(Southwest Germany)

2.25 ha 27th July, 2009, 4
August 2003

ENVI-met model Urban green
coverage

Human Heat stress
mitigation

Trees in grasslands reduce air
temperature by 2.7 K, mean
radiant temperature by 39.1 K,
and physiological effective
temperature by 17.4 K,
demonstrating their superior
ability to mitigate human heat
stress compared to grasslands.

Lee et al., 2016
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TABLE 2 (Continued)

S. No. Case
study location

No. of
sites/area
covered

Study period Method of data
collection/analysis

Ecosystem
structures

Ecosystem
services

Major findings References

14. Strasbourg
city, France

– July 2012 to June
2013
Field survey:
April-July, 2013

i-Tree eco model and field
survey. Meteorological data
from “Meteo France” (2
stations) and the National
Oceanic and Atmospheric
Administrationa

Urban trees Air Pollution removal City-managed trees cleared 88
tons of pollutants in 1 year,
including 1 ton of CO, 14 tons
of NO2 , 56 tons of O3 , 12 tons
of PM10 coarse, 5 tons of
PM2.5, and 1 ton of SO2 .

Selmi et al., 2016

15. Beijing,
North China

51,434 ha 2014 Geographic information
system, remote sensing, and
the Global Positioning
System, Field Survey

Urban wetlands Climate regulation, flood
regulation, water
purification, biodiversity
maintenance, and gas
regulation, aquatic
product provision and
water provision

• Wetland regulate floods
(2.07 billion m3); Produce
water (944.01 million m3);
Purify COD (42,154 tons),
Absorb heat (3.03 PJ) and
Provide habitat (9,587
hectares)

• Reservoirs and river
wetlands supply 78% of
critical ecosystem services.

Zhang et al., 2017

16. City cores of
Bangkok, Jakarta,
and Manila

2,500 km2

landscape, with
25 km radius from
the city center

• February 2,
2014-Bangkok

• September 13,
2014-Jakarta

• February 7,
2014-Manila

Landsat-8 Operational Land
Imager and Thermal Infrared
Sensor (Landsat-8 OLI/TIRS)
imagery

Green spaces Mitigation of urban heat
island

• Impervious surfaces are
3◦C hotter than green areas

• The size, shape, and
aggregation of impervious
and green patches
correlated with land surface
temperature, with
aggregation being the most
consistent factor.

Estoque et al., 2017

17. Colombo, Srilanka 62 wetlands – Rapid Assessment of Wetland
Ecosystem Services (RAWES)

Urban wetlands Habitat Provision, water
regulation, climate
regulation,
photosynthesis,
pollination, provision for
food and natural
medicines, pest control,
nutrient cycling, all
cultural services

Habitat, water regulation, and
global climate regulation are
the top-ranking ecosystem
services, while education,
social relations, and aesthetics
stand out as important
cultural services,
underscoring the significance
of both natural and cultural
aspects of ecosystems.

McInnes and
Everard, 2017

18. Hong Kong 160,000 m2 June-September Field survey (in-situ climate
measurement and
morphological analysis)

Pocket Parks
(Urban green space)

Mitigation of urban heat
island effect

Hong Kong pocket parks with
dense tree cover (around
42%) effectively reduce urban
heat island intensity.

Lin et al., 2017
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TABLE 2 (Continued)

S. No. Case
study location

No. of
sites/area
covered

Study period Method of data
collection/analysis

Ecosystem
structures

Ecosystem
services

Major findings References

19. Marylebone
neighborhood
(Central London)

Marylebone,
Gloucester Place,
Baker Street

2014 Computational Fluid
Dynamics (CFD) simulations
with OpenFOAM using the
k-ε model.

Urban trees Air Quality maintenance • Trees reduce air pollution
by up to 7% at Marylebone
site in spring, autumn, and
summer, indicating
consistent aerodynamic
effects.

• Deposition effects are 4
times less impactful (up to
2% reduction), with higher
rates in summer due to
denser leaf area.

Jeanjean et al., 2017

20. Rome, Italy 2 sites January 2016 and
January 2017

Field survey Urban wetlands Habitat
provision/Biodiversity
maintenance

First site: portion of Tiber
River and adjacent open areas:
• Average bird count: 1,041.5

± 486.5
• Species: 16 waterbird

species, 4
raptor species Second site:
flooded flint quarry

• Average bird count: 440±
56

• Species: 13 waterbird
species, 3 raptor species

Panuccio et al., 2017

21. Bologna (Italy) 29 h October and
November, 2016

Interview based data
collection/Statistical analysis

Urban agriculture Provision for food and
medicinal components

Consumers prioritize food
and medicinal plants, with
social ecosystem services
highly valued, but only a third
are willing to pay extra for
urban agriculture items.

Sanyé-Mengual
et al., 2018

22. Boston,Massachusetts – – Google street View
panoramas, building footprint
map, a street map of the city, a
tree canopy cover map, and a
normalized Digital Surface
Model

Street trees Shade provision Downtown street trees reduce
sky view by 18.52%, with
larger trees offering vital
shade in lower building areas,
but their effectiveness
diminishes in high-rise
construction zones.

Li et al., 2018

23. Hanul Madang,
Seoul National
University, Seoul,
South Korea

– – Survey Rooftop garden Food provision,
pollination, education,
recreation, bee keeping
activities, Honey
production

The garden features a variety
of line-fixed flowers blooming
from early summer to
autumn, alongside cultivated
vegetables and herbs that
attract bees for pollen
collection.

Son, 2018

(Continued)

F
ro
n
tie

rs
in

S
u
sta

in
a
b
le
C
itie

s
1
4

fro
n
tie

rsin
.o
rg

https://doi.org/10.3389/frsc.2023.1281430
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org


P
a
n
d
e
y
a
n
d
G
h
o
sh

1
0
.3
3
8
9
/frsc

.2
0
2
3
.1
2
8
1
4
3
0

TABLE 2 (Continued)

S. No. Case
study location

No. of
sites/area
covered

Study period Method of data
collection/analysis

Ecosystem
structures

Ecosystem
services

Major findings References

24. Jimma highlands 116.25 ha 1 January−30
March, 2014

Cross-sectional interviews
and conceptual modeling

Urban wetlands Food and Water
provision, microclimatic
regulation, Water
regulation and
purification, Erosion
regulation, sediment
retention, carbon
sequestration, disease
control, pollination,
cultural services, biota
conservation

Wetlands in agricultural and
urban areas offer more
provisioning and cultural
services than regulatory and
supporting services,
particularly when compared
to forest-based wetlands.

Moges et al., 2018

25. New York City
(United States) and
Osaka (Japan)

1:5,000 vector
land-use dataset

2008 High-resolution land-use-
and land-cover data to map,
Production statistics by
municipality, Farming
concrete databaseb .

Community garden
and urban farmland

Food production • Osaka’s vegetable
production can feed 0.50
million people. Expanding
urban and peri-urban
agriculture to unused dry
fields could potentially feed
3.4 million
people annually.

• NYC community gardens
serve 1,700 people.

Hara et al., 2018

26. Singapore 1.86 ha – Survey Building corridors
(community-driven
vertical greenery)

Food provision,
Medicinal resources,
Biotic dispersal and
pollination, species
habitat, aesthetic values,
spiritual sense

This urban ecology initiative
features 265 diverse plant
species, averaging 124 species
per hectare, providing
biodiversity enhancement,
food/medicine (77.5%),
aesthetics (72.3%), and
fostering human-nature
connections through
community vertical greenery.

Oh et al., 2018

27. Dhaka City
(Dhanmondi,
Lalmatia
(Mohammadpur),
Mohakhali DOHS
and 13 no. sector
of Uttara)

Four residential
areas

– Questionnaire Rooftop Graden Aesthetic values,
recreational services

36.4% of buildings have
rooftop gardens, influenced
by personal aesthetics and
beliefs.

Islam et al., 2019

28. Canberra, Australia – – Literature review Urban forest, lakes
and bushland

Microclimate regulation,
air quality control,
carbon sequestration,
urban amenity, biomass,
timber, education,
recreation

Australia’s parliamentary
democracy and cultural
institutions are well-planted
and these planted areas offer
cultural, utilitarian, and
ecological benefits, including
climate regulation.

Alexandra and
Norman, 2020
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29. Nigde, Turkey 2,303 km² 1989–2019 Landsat 7 and 8 satellite
images/statistical and
geographical data analyses.

Green spaces Mitigation of urban heat
island, inducing cooling
effect

Despite expanding green
areas in Nigde, land surface
temperature (LST) has
increased over the last three
decades, with impervious
surfaces having significantly
higher LSTs, contributing to
urban heat islands.

Soydan, 2020

30. Oslo, Norway 147 km2 2016–2020 • STRAVA database, mobility
trends from google
database/Digital surface
(DSM) and terrain models.

• Google Earth Engine (GEE)
cloud computing platform

Urban green spaces Recreational activities,
Resilience Infrastructure

• During COVID-19
lockdown in Oslo,
recreational activity surged
on secluded, greener paths.

• Green areas replaced
indoor activities, providing
stress relief during
COVID-19 and potentially
aiding social distancing for
virus containment.

Venter et al., 2020

31. Ghodaghodi
wetland, Nepal

2,563 ha April–July, 2019 Data collections: key
informant interviews, field
observations, household
survey, Entry register records

Urban wetland Forest produce (food,
timber fodder, water),
water regulation, carbon
sequestration, flood
control, water quality,
nutrient cycle,
pollination, biodiversity
conservation, wildlife
habitat, and cultural
services such recreation,
education, religious
belief

• Locals prioritized lumber,
fuelwood, and edible food
(fish, Singar, Ghongi) as key
ecosystem services.

• The wetland’s annual
economic value is US$ 0.67
million, with 93.8%
attributed to ecosystem
services like food and
forest products.

Aryal et al., 2021

32. Kathmandu and
Dhulikhel (Nepal)

103 households 12 February−23
March, 2020

Interview based approach Roof top garden Biodiversity
conservation, food
provision, provision for
medicinal values,
aesthetic purpose

Rooftop gardening covers
13.52% in Dhulikhel and
7.32% in Kathmandu.
Respondents unanimously
support it for its myriad
benefits.

Thapa et al., 2021

33. Kolkata 1,886.67 km2 2018–2020 Landsat 8 Satellite data Urban wetlands Climate regulation The crucial function of
wetlands in mitigating the
effects of urban heat is the
subject of the study.

Bera et al., 2021

(Continued)
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34. Pan’an Lake
Wetland Park,
Xuzhou City, China

11.6 km2 2018 Mining mobile phone signal
for data collection/establishes
an evaluation model

Urban wetland Recreational service Pan’an Lake Wetland Park
attracted recreationists from
229 cities, primarily within
500 km, with an average
recreation value of 448.11
CNY and a consumer surplus
of 129.79 CNY per person,
contributing significantly to
its 2018 evaluation value of
836 million CNY.

Dai et al., 2022

35. Varanasi, India 5 urban sites December
2014–September
2016

Field sampling Urban Soil Soil nutrient cycling Soil temperature, moisture,
and nutrient availability are
key regulators of soil carbon
sequestration, with their
seasonal variations potentially
affecting future soil carbon
dynamics in urban
environments, especially
under climate change
scenarios.

Upadhyay et al.,
2021

36. XMA,
Northwest China

3 types cities:
Megacity: Xian;
medium-sized:
Xianyang and
Weinan;
small-sized:
Tongchuan

2000, 2010, 2020,
2019

Data collection: different
online databases/analysis:
different simulation models

Urban green spaces Climate regulation,
carbon sequestration and
recreation

• As urban areas expanded,
Xi’an showed lowest ES
averages in each circle.
Baoji and Xianyang had
lower carbon sequestration
and recreation averages
than the small city.

• The Xi’an Metropolitan
Area’s UGS-provided ES
inequality increased from
2000 to 2020.

Peng et al., 2022

aNOAA (2016). http://www.ncdc.noaa.gov/cdo-web/ (accessed October 10, 2023).
bFarming Concrete (2016). https://farmingconcrete.org/.
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their economic benefits and energy efficiency (Dwaikat and Ali,
2018). The imperative to reduce carbon emissions from buildings
and construction aligns with the broader goal of mitigating the
global impact of climate change. Moreover, the environmental,
social, and economic benefits of green infrastructure, such as
green roofs and walls, extend beyond the building itself. A
simulation study conducted by Pragati et al. (2023) on multi-
storied commercial buildings in Chennai, situated in India’s hot
and humid tropical climate, revealed significant positive impacts of
greening systems on the urban environment. These systems led to
reductions in air temperature, radiant temperature, humidity, and
solar gain. Furthermore, they lowered the total energy consumption
of buildings with green roofs and walls by 10.5% and reduced
district cooling demand by 13%. In addition to these energy-related
benefits, greening systems also substantially improved air quality
and overall building energy efficiency.

4.2. Urban agriculture and food security

There is a growing global focus on recognizing the significance
of cities in fostering resilient and ecologically sound food systems.
These systems play a crucial role in withstanding and recovering
from various crises, including natural disasters like storms,
droughts floods, as well as anthropogenic and socioeconomic
emergencies. The emergence of the COVID-19 pandemic has shed
light on the importance of food resilience within cities, prompting
a fresh consideration of the desired level of food self-sufficiency
achievable through urban agriculture. This socio-economic crisis
has prompted us to reevaluate the role of urban agriculture in
ensuring a reliable and resilient food supply within cities. As a
result, international policy efforts are increasingly directed toward
understanding and addressing the pivotal role, cities play in
ensuring food security and adaptability in the face of challenges.

The Sustainable Development Goal 11 of the UN 2030 Agenda
for Sustainable Development acknowledges the imperative of
creating inclusive, secure, resilient, and eco-friendly cities and
human settlements. Within this agenda, there are additional goals
related to sustainable agriculture that aim to alleviate poverty (SDG
1), enhance nutrition and diminish hunger (SDG 2), promote
sustainable supply and demand patterns (SDG 12), and mitigate
the effects of climate change (SDG 13). While agriculture has
traditionally been practiced in and around cities, it is only
recently that urban agriculture has gained formal recognition
in international agendas. What distinguishes urban and peri-
urban agriculture is not merely its urban location, but rather
its integral role within the urban socioecological and economical
system (Mougeot, 2000). The dependency of urban and peri-
urban agriculture on urban resources such as land, workforce,
and organic waste from the treated wastewater and municipal
solid wastes to be used in the form of organic fertilizer, cannot
be ignored. The urban agricultural system is also profoundly
influenced by urban conditions such as governmental policies,
regulations, land competition, urbanmarkets demand patterns, and
prices. Moreover, it in turn could impacts the urban system by
affecting food security, poverty, ecology, and public health. Thus,
urban agriculture plays a vital role in climate change adaptation

by contributing to food security and enhancing the resilience of
urban communities.

Over the past decade, urban agriculture has experienced a
significant shift in perception, moving from being considered a
niche interest to garnering substantial attention from policymakers
and urban planners, both in developed and developing nations.
The urgency of providing sustenance to a rapidly urbanizing
global population has become a critical priority for cities (FAO,
2012, 2014). The incorporation of productive landscapes into
urban design and development planning has gained widespread
acceptance (Bohn and Viljoen, 2011), recognizing the need for
integrating agricultural practices within urban environments. In
the context of climate change, urban agriculture offers several
benefits for adaptation strategies when integrated with proper
policy framework, resulting to smart climate agriculture (Figure 2).
The expansion of urban and peri-urban agriculture offers a
valuable solution in mitigating the consequences of increased
rainfall by preserving low-lying areas free from construction.
This approach helps to minimize the impact of floods, reduce
runoff, and facilitate the storage and infiltration of excess water.
Notable examples include the cities of Kesbewa in the Western
Province of Sri Lanka and Rosario in Argentina, which actively
promote the preservation and safeguarding of green and productive
spaces along stream banks as a means to mitigate flood risks
(Dubbeling, 2015). Within the framework of its Urban Master
Plan (2005–2020), Beijing, China, has set forth a range of
initiatives to preserve agricultural land and green spaces. These
include the establishment of permanent green areas in peripheral
zones and corridors, the promotion of wastewater recycling and
rainwater/floodwater harvesting, the protection of forested areas
and parks, and the certification and subsidization of energy-saving
production practices.

In densely populated urban areas where space is limited, cities
can encourage the development of rooftop gardens to enhance
the thermal comfort of apartments situated beneath them. Such
agricultural rooftops not only provide food for households but also
have the potential to generate income through sales. An illustrative
scenario developed for Vancouver, Canada, indicates that utilizing
half of the city’s available rooftop space for urban agriculture
could meet ∼4% of the food requirements for 10,000 people.
By incorporating hydroponic greenhouses into the equation, this
percentage could be further increased to 60%. Prominent examples
of rooftop projects in North America include Brooklyn Grange,
renowned for its soil-based rooftop gardens in New York City
where they cultivate over 45,000 kg of organic produce annually.1

Another notable venture is Gotham Greens, which operates
hydroponic greenhouses across five states in the United States.2

These innovative initiatives showcase the potential of utilizing
rooftops for urban agriculture, demonstrating successful models
of sustainable food production in urban environments. Urban
agriculture has indeed gained momentum in India, with various
factors influencing its prospects within the Indian context. Despite

1 Brooklyn Grange Farm. Brooklyn Grange. Available online at: https://

www.brooklyngrangefarm.com (accessed August 6, 2023).

2 Gotham Greens. Available online at: https://www.gothamgreens.com/

(accessed August 17, 2023).
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FIGURE 2

Cultivating sustainability: How urban agriculture nurtures communities and the environment. The picture depicts how urban agriculture along with

policies could enhance food security by providing local and fresh produce, reducing reliance on distant and vulnerable food supply chains. This

localized food production reduces the risks associated with disruptions in transportation and distribution caused by extreme weather events or other

climate-related factors. Secondly, urban agriculture can contribute to climate change mitigation by reducing greenhouse gas emissions (Sonwani

and Saxena, 2022). By producing food closer to consumers, it reduces the carbon footprint associated with long-distance transportation and

refrigeration. Moreover, urban farming practices such as composting organic waste and promoting soil health can sequester carbon and mitigate

urban heat island e�ects. Thirdly, urban agriculture enhances the resilience of urban communities by fostering social cohesion and building

community networks. It provides opportunities for community engagement, skill-building, and knowledge sharing, creating a sense of ownership

and empowerment among residents. In times of climate-related crises, such as extreme heatwaves or flooding, urban agriculture initiatives can serve

as resilience hubs, providing access to fresh food, social support, and disaster response mechanisms.

its potential, urban agriculture faces notable challenges in the
country. A study conducted in Bengaluru by Camille (2018) sheds
light on the class-specific nature of involvement in organic terrace
gardening, primarily limited to the middle class. These terrace
gardens are primarily driven by concerns about declining food
quality and safety. Additionally, they serve as a means to create
green spaces that counteract environmental degradation in the city.
However, the study points out both the possibilities and limitations
of urban gardening as a middle-class intervention into unsafe food
systems and deteriorating urban ecologies.

Notably, in recent times, several Indian celebrities have
taken proactive steps to promote and support urban organic
farming. This movement has gained popularity due to its
emphasis on sustainable and chemical-free agricultural practices.
These celebrities leverage their influence and resources to raise
awareness about organic farming and encourage its adoption.
For instance, former Indian cricket captain Mahendra Singh
Dhoni operates an agricultural farm spanning 43 acres in
Ranchi, Jharkhand. His farm cultivates a variety of crops,
including strawberries, capsicums, dragon fruit, watermelons,
muskmelons, peas, and other vegetables. Such influential initiatives
have the potential to significantly raise awareness among local
communities, highlighting the importance of urban agriculture
and its positive impact on sustainable food production and
urban environments.

4.3. Biodiversity conservation and habitat
restoration

As cities continue to expand and face the challenges posed
by climate change, it becomes increasingly important to prioritize
the preservation and restoration of biodiversity and habitats
within urban areas. Urban areas often suffer from habitat loss
and fragmentation due to urbanization, leading to a decline
in biodiversity. However, preserving and restoring biodiversity
within cities can provide numerous benefits for climate change
adaptation and the overall wellbeing of urban populations.
One of the primary benefits of biodiversity conservation in
urban areas is the enhancement of ecosystem services such
as clean air and water, pollination, and climate regulation.
For example, urban green spaces, which are part of the
green infrastructure, are facing growing expectations to serve
multiple ecosystem services, including provisioning (gardening),
regulating (such as thermoregulation, air quality control, flood
mitigation, pollination), and cultural purposes (such as aesthetic
and education) (Oberndorfer, 2007; Jerome et al., 2019; Keeler et al.,
2019).

According to the survey conducted by Williams et al. (2014),
the most frequently mentioned conservation benefit in green
roof project descriptions was the creation of biodiversity habitat
through facilitating plant growth. Various taxa were reported to
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benefit from these habitats, including native plants, birds, reptiles,
mammals, bees, butterflies, moths, spiders, beetles, grasshoppers,
and flies. Numerous studies have confirmed the presence of
insects on green roofs (Kadas, 2006; Colla et al., 2009; MacIvor
and Lundholm, 2011; Schindler et al., 2011; Tonietto et al.,
2011), which are also readily colonized by spiders and soil-
dwelling arthropods (Buttschardt, 2005; Schrader and Böning,
2006). Sedum-based roofs, in particular, have been noted for
supporting high densities of collembolan species, as the fleshy
vegetation retains water in the substrate for longer periods,
creating a suitable habitat even during the warmest and driest
times of the year (Schrader and Böning, 2006). Urban gardens
also emerge as vital elements in pollinator habitat networks
(Hall et al., 2017), benefiting species like bumblebees (Andersson
et al., 2007; Jansson and Polasky, 2010; Conflitti et al., 2022).
Surprisingly, urban areas harbor diverse pollinator species, with
single gardens supporting 35% of UK hoverflies (Owen, 2010)
and Berlin sustaining half of Germany’s bee species (Saure, 1996).
Urbanization influences pollinator communities, introducing new
species and favoring adaptable ones (McIntyre et al., 2001; Angold
et al., 2006; Geslin et al., 2013). Urban spaces provide consistent
pollinator communities, benefiting agricultural productivity both
within cities and neighboring rural areas (Baldock et al., 2015).
Functional response diversity varies among pollinator types in
response to biosphere changes, underscoring urban gardens’
significance (Jansson and Polasky, 2010). The efficacy of this
intricate process is inherently linked to the diversity and abundance
of flowering plants available to pollinators. The ramifications
of a thriving pollinator population are not confined to the
immediate floral realm but reverberate throughout the entire
urban ecosystem.

Bird visitation has also been observed in many studies
(Millett, 2004; Baumann and Kasten, 2010; Fernández Cañero
and González Redondo, 2010), and Pearce and Walters (2012)
discovered increased bat activity over green roofs. A study
conducted in Dehradun, India emphasized the significant impact
of tree species diversity on enhancing bird communities within
urban green spaces (Kaushik et al., 2022). The study identified
the size of the urban green space at the broader landscape
level and the diversity of tree species at the local scale as key
factors that influenced bird species richness, density, and the
presence of vulnerable insectivorous bird groups across different
seasons. Another study conducted in Pune, India, highlighted
that vegetation composition remains the primary determinant
for birds in their habitat selection, regardless of the size or
location of urban green spaces (Choudaj and Wankhade, 2023).
Furthermore, biodiverse habitats in urban areas play a vital role
in supporting pollinators like bees and butterflies, which are
essential for the reproduction of numerous plant species (MacIvor
and Lundholm, 2011; O’Brien et al., 2012; Ksiazek et al., 2014;
Zhang et al., 2022). Similar to managed residential gardens,
green roofs can provide floral and nesting opportunities for bees
in urban settings, contributing to both ecological and socio-
economic benefits (Loder, 2014; Makinson et al., 2017; Baldock,
2020). However, a recent study by Dusza et al. (2020) emphasizes
the importance of plant community composition in modulating
plant-pollinator interactions on the green roofs. It suggests that

combining plant species with diverse flowering morphologies and
phenologies can enhance pollinator diversity. Therefore, urban
gardens and green spaces that offer suitable habitats for pollinators
not only contribute to the preservation of plant diversity but
also enhance the production of fruits and vegetables. This, in
turn, can enhance food security, particularly in densely populated
urban areas.

Biodiversity conservation and habitat restoration also
contribute to the resilience of urban ecosystems in the face of
climate change impacts. To enhance urban ecosystem services for
climate change adaptation, several strategies can be employed.
The analysis of city adaptation plans revealed that “Physical
infrastructure” and “Green infrastructure” were the predominant
types of actions identified (Butt et al., 2018). The plans frequently
included measures to enhance urban spaces by increasing
vegetation cover through initiatives such as tree planting,
expanding canopy cover, and restoring native vegetation in parks,
wetlands, forests, and other natural areas within cities. This can be
achieved through land-use planning and zoning regulations that
prioritize the preservation of green infrastructure. Amsterdam, as
a notable example, has developed a dedicated biodiversity climate
adaptation plan that aims to enhance resilience against extreme
events by increasing and expanding protected areas. This plan also
focuses on improving connectivity to facilitate species dispersal
and migration. By utilizing natural processes such as recruitment
and succession, the plan aims to enhance landscape heterogeneity,
thereby promoting habitat integrity and persistence, which in turn
benefits threatened species (McKinney, 2002). This case study
exemplifies the alignment and mutual reinforcement of climate
adaptation and biodiversity protection.

Another noteworthy initiative is seen in the Brazilian
NDC (Nationally Determined Contribution), which includes a
target to restore and reforest 12 million hectares of forests
by 2030 (Bustamante et al., 2019). The restoration of native
vegetation is considered a fundamental pillar for sustainable
rural development in Brazil, and it should encompass multiple
objectives, ranging from the conservation of biodiversity and
ecosystem services to fostering social and economic advancement.
By integrating these various purposes, the restoration efforts can
effectively contribute to the holistic development of the region.
Another notable achievement in the restoration and conservation
of urban biodiversity can be found in WIPRO’s efforts in
Bangalore, India.

The implementation of watershed protection activities can also
play a crucial role in promoting biodiversity by effectively reducing
polluted runoff and enhancing water flow within these areas. This
has the potential to yield significant improvements for a total river
length of 5,872 km, benefiting numerous threatened freshwater fish
species identified within the cities (Butt et al., 2018). Considering
the inherent dryness and higher temperatures of urban areas
compared to the surrounding landscapes (Moriwaki et al., 2013),
coupled with the high-water demand in cities (where 60% of urban
water use is concentrated; Grimm et al., 2008), water management
emerges as a key focus in many city adaptation plans. Prominent
examples include cities such as Copenhagen, Rotterdam, and Lagos,
which have prioritized water management strategies to address the
challenges posed by climate change and urbanization.

Frontiers in SustainableCities 20 frontiersin.org

https://doi.org/10.3389/frsc.2023.1281430
https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org


Pandey and Ghosh 10.3389/frsc.2023.1281430

4.4. Urban forests: carbon sequestration, air
quality improvement and climate regulation

Urban forests play a crucial role in climate change adaptation,
providing numerous environmental, social, and economic benefits
to cities and their inhabitants. By strategically managing and
expanding urban forest cover, cities can effectively address
climate-related challenges and build more resilient communities.
Investments in urban forests have witnessed an upsurge in
numerous cities across the United States. Studies highlight the
importance of expanding urban forests as they offer a desirable
solution to mitigate pollution-related issues (Manning, 2008;
McPherson et al., 2013). Consequently, urban tree planting
initiatives are actively advocated as a planning tool to facilitate
climate change adaptation, promote urban sustainability, and
enhance human health and wellbeing.

Urban areas are often characterized by the “urban heat
island” effect, where temperatures are significantly higher than
surrounding rural areas. Urban forests can mitigate this effect
by providing shade and evaporative cooling, thereby reducing
ambient temperatures. The dense foliage of trees and vegetation
can act as natural air conditioners, creating a cooler microclimate
and reducing energy demand for cooling. Trees excel in these
mechanisms compared to other vegetation types like shrubs or
grass due to their higher evapotranspiration capacity. Shashua-
Bar and Hoffman (2000) highlights the significance of the road-
side trees in the urban ecosystem, as they could modify indoor
temperatures by providing shade to buildings. This shading effect
greatly induces indoor insulation (Mavrogianni et al., 2014).
Furthermore, urban trees mitigate greenhouse gas emissions tied
to building energy usage by regulating microclimates via shading
and evapotranspiration effects (McPherson et al., 2013; Hsieh
et al., 2018). This is particularly beneficial for human health
in situations where financial resources are limited for cooling
buildings, as it can alleviate the need for artificial cooling methods
and potentially reduce energy consumption. A study by Berry et al.
(2013) demonstrated that tree shade can lower wall temperatures
by as much as 9◦C and air temperatures by up to 1◦C.

Moreover, trees contribute to increased humidity levels in their
vicinity, serving as conduits for water loss to the atmosphere
(Salmond et al., 2016). Their roots draw moisture from deeper
soil layers, which is especially advantageous in urban areas facing
water availability challenges. Implementing water-sensitive urban
design, stormwater harvesting, and recycled water systems can
effectively enhance soil moisture levels in cities. Water stored on
urban tree canopies may either evaporate or be transmitted to the
ground for root absorption (Seitz and Escobedo, 2008; Berland
et al., 2017). Trees utilize some absorbed rainfall and transpire the
rest. Unabsorbed canopy water drips to the ground, while stemflow
mitigates raindrop impact, preventing soil erosion (Livesley et al.,
2016; Qin, 2020). Leaf litter aids water absorption, stabilizes soil,
and curbs erosion.

Urban forests also contribute to the sequestration of carbon.
For instance, studies estimate that the urban forest in the
Chicago region alone provides ∼$14 million per year in carbon
sequestration benefits (Nowak et al., 2013c). A recent interpretive
analysis conducted by Bherwani et al. (2022) focused on five cities

in India—Nagpur, Navi Mumbai, Bengaluru, Delhi, and Leh. The
study utilized the normalized difference vegetation index (NDVI)
and allometric relationships to evaluate the fiscal importance of
urban greeneries in terms of carbon sequestration and their role
in mitigating severe climatic impacts. The valuation of carbon
sequestration in these cities ranged from $19.04 to $6,537.15
million, highlighting the substantial economic value associated
with the carbon sequestration potential of urban green spaces.
Many studies evaluating urban vegetation’s carbon storage and
sequestration utilize tree biomass and growth equations, often
integrating field surveys and remote sensing data (Nowak et al.,
2008; Liu and Li, 2012; He et al., 2017; Li et al., 2020). Some
meta-analyses in the USA and China underscore significant
carbon sequestration potential in urban green infrastructure
(Nowak et al., 2013a; Chen, 2015). Assessments estimating urban
carbon budgets generally demonstrate modest impact on offsetting
through urban vegetation (Escobedo et al., 2010; Liu and Li,
2012; Vaccari et al., 2013; Baró et al., 2015; Zhao and Sander,
2015; Baró and Gómez-Baggethun, 2017). However, these studies
predominantly consider direct carbon sequestration, overlooking
urban vegetation’s indirect contributions to reducing city energy
use (Escobedo et al., 2010; McPherson et al., 2013).

Urban vegetation, particularly trees, plays a pivotal role in
removing pollutants from the air through processes like pollutant
uptake via leaf stomata and airborne particle interception (Linden
et al., 2023). This vegetation also acts as a physical barrier,
restricting pollutant entry into specific zones (Prigioniero et al.,
2023). Greenery-based strategies are proposed for reducing air
pollution (Nowak et al., 2006). However, the extent of vegetation’s
impact on urban air quality and health is debated due to predictive
uncertainties and limited empirical data (Pataki et al., 2011).
Through various mechanisms, such as leaf surfaces and stomata,
trees absorb harmful substances, preventing them from lingering
in the air and reducing their negative impacts on human health
and the environment. The ability of urban trees to act as natural
air purifiers highlights their immense value in combating urban
air pollution and underscores the importance of preserving and
expanding urban forest areas (Garcia, 2017; Kim, 2017). Dry
deposition is the primary mechanism by which urban trees filter
out harmful gases from the air (Cabaraban et al., 2013). With help
of the stomata in their leaves, they can absorb gaseous pollutants,
while capturing or trapping particulate matter in the air by other
processes such as sedimentation or impaction (Gómez-Baggethun
et al., 2013; Sharma and Saxena, 2022). The foliar surface serves
as a resting place for particles while other surfaces, including as
bark, hair, moisture, and stickiness, help to adsorb the particles on
such organs (Grote et al., 2016). Studies assessing urban vegetation’s
air pollution mitigation capacity often employ dry deposition
models. These models (Yang et al., 2005; Nowak et al., 2006, 2013b;
Escobedo and Nowak, 2009; Cabaraban et al., 2013; Selmi et al.,
2016; Yin et al., 2022) operate at the city scale, incorporating
parameters such as leaf area index, pollution concentrations, and
meteorological data. This modeling showcases substantial pollution
removal by urban vegetation, though it has limited efficacy in
addressing city-wide pollution challenges (Baró et al., 2015).

Air pollutants (such as O3, SO2, and NO2) that can be
efficiently metabolized inside the leaf tissues are taken up through
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the stomata (Rai et al., 2011; Ghosh et al., 2021). The cuticle is
a porous barrier that allows some pollutants (such as NO and
NO2) access to the intercellular space of the plants (Bytnerowicz,
1996) where moisture or the chemicals inside the apoplast alter
the gaseous pollutants and dispersed into the intercellular spaces
(Omasa et al., 2002; Nowak et al., 2006). Once pollutants enter
cells, they are met with defensive mechanisms and initial and
subsequent metabolic reactions (Bytnerowicz, 1996). Different
metabolic mechanisms in tree leaves biochemically convert each
pollutant (Omasa et al., 2002). Remarkably, localized greening
strategies like green roofs and walls, proposed by Pugh et al. (2012),
exhibit notable reductions in NO2 (up to 43%) and PM10 (up to
62%) due to enhanced deposition without impeding ventilation.
Experimental studies consistently affirm that green spaces are
linked to reduced site-scale pollution, especially particulate matter
(Irga et al., 2015; Yao et al., 2023). Plants can ozonolyze O3 in the
sub-stomatal cavity and apoplast after it has been taken up through
the stomata (Ghosh et al., 2018). Most of the carbon dioxide (CO2)
that trees take in is converted into serine and then, via the serine
pathway, into sucrose. Bidwell and Fraser (1972) andNowak (1994)
both suggest that photosynthesis might fix some CO as CO2.

A broad variety of plant and animal species rely on the
habitats and resources provided by urban forests in cities (Stagoll
et al., 2012; Wood and Esaian, 2020). Native trees are excellent
in sustaining native animal populations and communities. Recent
research, however, suggests that non-native trees can nevertheless
help to preserve native biodiversity in urban areas (Liu and Slik,
2022). To help wildlife cope with the effects of climate change
on ecosystems and migration patterns, urban woods provide safe
havens. Urban areas can help the cause of biodiversity conservation
on a regional and global scale by protecting and extending their
green spaces.

Apart from their ecological significance, urban forests offer
numerous societal benefits and wellbeings to city dwellers. Having
easy access to green areas and natural habitats has been associated
with better psychological wellbeing, lower anxiety levels, and more
time spent being physically active. Community resilience and
cohesion can be boosted by efforts to improve urban woods, which
in turn increase options for leisure pursuits, civic engagement,
and individual wellbeing. In this way, urban forests not only
connect people with nature but also cultivate a sense of place—an
intricate process where individuals interact with urban forests, have
unique experiences (both favorable and unfovorable), and develop
their own ways of valuing and appreciating nature (Phillips and
Atchison, 2020; Bolleter and Hooper, 2021).

5. Synergies and trade-o�s: balancing
urban development and ecosystem
services

Achieving a balance between urban development and the
provision of ecosystem services is a complex challenge faced
by policymakers, urban planners, and communities. A pictorial
diagram has been provided illustrating the interplay between
urban ecosystem services and climate change factors, depicting
the environmental health of urban areas (Figure 3). While urban

development is necessary for meeting the needs of the growing
populations, it often leads to the loss or degradation of natural
ecosystems, resulting in a reduction of essential ecosystem services.
Synergies and trade-offs exist between urban development and
ecosystem services, requiring careful consideration to strike a
sustainable balance. Synergies refer to situations where urban
development and the maintenance or enhancement of ecosystem
services can reinforce one another. For example, incorporating
green infrastructure, such as parks, urban forests, and wetlands,
into urban designs can provide multiple benefits. These green
spaces not only contribute to the aesthetic appeal of cities but also
enhance air quality, regulate temperatures, support biodiversity,
and offer recreational opportunities. Thus, urban development that
integrates and enhances ecosystem services can create positive
synergies, improving both the livability and sustainability of cities
(Salmond et al., 2016). However, trade-offs can also arise when
urban development compromises ecosystem services. For instance,
converting natural habitats into built environments can result
in the loss of biodiversity, reduced water infiltration, increased
runoff, and diminished climate regulation. This can have negative
consequences such as increased flood risk, reduced water quality,
and decreased resilience to climate change. Trade-offs may also
arise when land is allocated to urban infrastructure rather than
preserving or restoring natural areas.

5.1. Urbanization and service provision

Urbanization and land use change have profound implications
for the provision of ecosystem services and pose challenges
in achieving a balance between urban development and the
preservation of these services. As cities expand and develop,
natural ecosystems are often converted into built environments,
leading to the loss or degradation of valuable ecosystem services.
Balancing urban development and ecosystem services requires
understanding the synergies and trade-offs associated with these
processes. Urbanization can result in both positive and negative
synergies with ecosystem services. Land use changes associated
with urban development often involve the conversion of natural
habitats, agricultural lands, or wetlands into built-up areas.
This loss of natural ecosystems results in the degradation or
reduction of critical services. For instance, the loss of forests or
wetlands can diminish water filtration and purification, increase
stormwater runoff, and reduce habitat availability for biodiversity.
Such trade-offs can have negative consequences for water quality,
flood risk, climate resilience, and overall ecological functioning.
Contrary, if well-planned urban development can incorporate
green infrastructure, such as parks, urban forests, and green spaces,
which provide multiple benefits. By integrating ecosystem services
into urban design, cities can enhance livability and sustainability
while providing important social, environmental, and economic
benefits (Elmqvist et al., 2015). For example, India strives to
achieve a remarkable urbanization rate of 60% by 2050, the
Government of India is actively working to match this rapid
urban transition. A key initiative in this endeavor is the ambitious
Smart Cities Mission, which aims to overhaul 100 cities by
modernizing their infrastructure. This transformation involves
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FIGURE 3

A visual diagram depicts how urban ecosystem services and climate change factors interact, o�ering insight into the overall environmental heath of

urban regions.

the application of cutting-edge technology to enhance essential
urban services and improve living conditions. The Smart Cities
Mission encompasses various aspects, including the development
of eco-friendly infrastructure, the construction of energy-efficient
buildings, and a strong emphasis on renewable energy sources.
Ultimately, the mission’s strategy revolves around the creation
of well-integrated, livable, and sustainable cities that offer a high
quality of life for all their residents.

Furthermore, green infrastructure and built infrastructure are
two contrasting approaches to urban development, each with its
own set of synergies and trade-offs when it comes to balancing
urban development and ecosystem services. While the benefits
of urban forests are widely acknowledged, understanding the
specific contributions of trees in kerbside locations to human
wellbeing and the local environment requires further exploration
(Salmond et al., 2016). Developing comprehensive methodologies
and frameworks for assessing their impact at this scale remains
a challenge. Nonetheless, continued research and innovation in
evaluating the net impact of trees in urban areas will be essential
to inform effective decision-making and maximize the benefits
derived from urban tree planting initiatives. Most studies on the
benefits of street trees for human health and the urban environment
have been conducted in isolated locations, and those that have
been conducted have used overly simplistic methods. Street trees
have far-reaching and interrelated effects on urban ecosystems, but
these effects are typically overlooked by techniques that take a more
general view of trees or focus primarily on individual benefits or
drawbacks. Consequently, urban planners and policymakers may
make decisions based on optimizing a single parameter, which can
be problematic when a single action produces a wide range of
outcomes, has many effects, and presents potential trade-offs in
diverse settings (Salmond et al., 2016).

It is widely recognized that incorporating green infrastructure
and urban greening practices into urban design can effectively
mitigate the urban heat island effect. Nonetheless, to harness the full
potential of urban forests and tree covers and optimize the benefits
they offer, strategic planning becomes imperative. It is important
to weigh the benefits of street trees during the day against their
drawbacks at night and in the winter, as stated by Coutts et al.
(2016). While trees do help mitigate nighttime heat loss, they also
act as a radiation barrier within the urban canyon, making it harder
for air to circulate and preventing sensible heat from building
up during the day. A broad tree canopy can be beneficial during
the day, but it may prevent the building from receiving sufficient
longwave radiation at night, leading to warmer and uncomfortable
conditions inside.

It is also important to remember that trees change the
aerodynamic resistance to heat diffusion, which can prevent cool
breezes from penetrating open windows on hot summer evenings
(Salmond et al., 2016). Trees and the weather in an area interact
in a mutually beneficial way. Maintaining tree canopies in good
health and transpirational activity requires a steady supply of
water. But unlike their forest cousins in the countryside, street
trees in cities face a variety of hazards (Ferrini et al., 2014)
which includes pollution, vehicular damage, vandalism, inadequate
watering, soil compaction, pest attack, etc. There is a significant
evaporative requirement because of the high temperatures, low
humidity, and low soil moisture found in cities (Montague
et al., 2000). The health and ability of street trees to cool
metropolitan areas may be jeopardized if they are not provided
with adequate irrigation to keep soil moist, support trees, and
absorb excessive heat loads. Given the anticipated patterns of
climate change in many urban locations, this scenario is of
particular concern.
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5.2. Socioeconomic equity and access to
services

Socioeconomic equity and access to services are critical
considerations in the context of balancing urban development
and ecosystem services. Achieving a balance between these
factors involves understanding the synergies and trade-offs
associated with urban development and ensuring that the
benefits of ecosystem services are accessible to all segments
of society. Urban development can have both positive and
negative impacts on socioeconomic equity and access to
services. On one hand, well-planned urban development can
lead to improved infrastructure, enhanced service provision,
and increased opportunities for economic growth and social
development. This includes access to basic services such as clean
water, sanitation, healthcare, education, and transportation,
which are essential for improving the quality of life for
urban residents.

However, urban development can also create trade-offs
and challenges in achieving equitable access to services. Rapid
urbanization and land use changes often result in the displacement
of marginalized communities, who may be forced to relocate
to areas with limited access to essential services (Forbes, 2016).
Forced urban displacements, especially slum removals, are
often justified under the pretext of aesthetic reasons or the
necessity to accommodate major events like international games,
fairs, conferences, etc., according to research by the Habitat
International Coalition, a non-governmental organization
focused on housing policy matters. These measures, however,
only benefit special interests rather than the general public
and do little to solve the underlying housing crisis (Forbes,
2016). Furthermore, the development of certain urban areas
may prioritize high-income neighborhoods, leaving lower-
income communities with inadequate infrastructure and
limited access to ecosystem services such as green spaces,
clean air, and recreational opportunities. According to research
conducted by Lara-Valencia and García-Pérez (2015), residents
of low-income areas in the Mexican city of Hermosillo are
disproportionately affected by the unequal distribution of
public park space. Based on the findings, it appears that the
struggle between globalized places and local public locations is
becoming more pronounced as the city’s economy gets more
interwoven with global networks. As a result, this exacerbates
the marginalization of communities that have unequal access
to urban parks to begin with. In another instance, Guzman and
Bocarejo (2017) conducted a case study in Bogota, Colombia,
focusing on accessibility analysis for various income levels
to the urban infrastructure. The study revealed that more
than 80% of the low-income population faced significantly
low accessibility indexes concerning their commute to work.
These disparities in access likely play a pivotal role in the
substantial variations in mobility observed among different
socioeconomic groups. In particular, the study found that high-
income groups made ∼150% more trips compared to their
low-income counterparts.

While the idea of the Smart Cities mission is widely embraced
in India, there remains a notable lack of clarity in the concept
note regarding its implications for the most marginalized sectors
of society. It is of paramount importance to take into account
urban ecosystem services, especially the affordable and publicly
accessible provisioning services originating from urban commons,
when formulating strategic plans for Indian cities. This approach
can serve as a vital means to bolster the social and ecological
resilience of the ever-expanding population of disempowered
and underprivileged individuals residing in cities across India
(Mundoli et al., 2017). The research conducted by Mundoli
et al. (2017) highlights several crucial principles that should be
integrated into the vision of smart cities. One such principle
emphasizes the importance of preserving urban commons and
the ecosystem services they offer as shared resources accessible
to all members of society. Regrettably, there appears to be a
growing trend among urban planners to redefine urban ecosystem
services as economic commodities, thereby restricting their use
to those with the financial means to afford these services. This
shift in perspective is concerning. To address this challenge, it
is imperative that our country embarks on a thoughtful and
contextually aware reimagining of the concept and representation
of urban commons. These areas should be considered as assets
owned collectively by and for all citizens. To address these
challenges, it is important to integrate principles of social equity
into urban planning and decision-making processes. This involves
prioritizing inclusive development, affordable housing, and mixed-
income neighborhoods to ensure that all residents have access to
essential services. Proactive measures should be taken to prevent
the displacement of vulnerable communities and provide them
with adequate support and opportunities for upward mobility.
Promoting the equitable distribution of ecosystem services is
also crucial. Green infrastructure and urban greening projects
should be strategically implemented to benefit all communities,
including those in socioeconomically disadvantaged areas. This
can help reduce environmental inequalities and provide equal
access to the multiple benefits that ecosystem services offer, such
as improved health and wellbeing, enhanced resilience to climate
change, and increased social cohesion. Community engagement
and participation play a vital role in achieving socioeconomic
equity and ensuring access to services. Inclusive decision-making
processes that involve the voices of diverse stakeholders, including
marginalized communities, can lead to more equitable outcomes.
This can help identify specific needs, preferences, and priorities
of different groups and guide the development of policies and
interventions that address their unique challenges and aspirations.
Therefore, by integrating principles of social equity into urban
planning, preventing displacement, promoting mixed-income
neighborhoods, and prioritizing the equitable distribution of
ecosystem services, cities can create inclusive and sustainable
environments that benefit all residents. A comprehensive
and participatory approach is essential to address trade-offs
and foster synergies between urban development, ecosystem
services, and socioeconomic equity, leading to more resilient and
thriving communities.
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6. Policy and planning for sustainable
urban ecosystem services and the
existing challenges

Incorporating ecosystem services into urban planning is a
crucial approach in policy and planning for sustainable urban
ecosystem services since last 100 years. Policy and planning for
sustainable urban ecosystem services involves several key aspects.
Firstly, it requires recognizing and valuing the contributions
of ecosystems to urban areas. This involves understanding the
various ecosystem services provided by natural systems and
quantifying their economic and social value. By incorporating
this information into decision-making processes, policymakers
and planners can prioritize the preservation and restoration
of ecosystems within urban environments. Secondly, sustainable
urban ecosystem services planning emphasizes the integration of
green infrastructure into urban design (McPhearson et al., 2014).
Additionally, policy and planning for sustainable urban ecosystem
services necessitates collaboration among various stakeholders,
including government agencies, community organizations, and
private entities (Hansen et al., 2015). This collaborative approach
ensures that diverse perspectives are considered and integrated
into decision-making processes. It also fosters partnerships for
implementing and maintaining green infrastructure, promoting
shared responsibility for the sustainable management of urban
ecosystems. Furthermore, monitoring and evaluation play a vital
role in policy and planning for sustainable urban ecosystem
services. Continuous monitoring of ecosystem conditions and the
assessment of the effectiveness of interventions and policies help
refine strategies and ensure that desired outcomes are achieved. By
monitoring indicators related to ecosystem health, biodiversity, and
the provision of ecosystem services, policymakers and planners can
make informed decisions and adapt their strategies as needed.

Governance and stakeholder engagement are critical
components of policy and planning for sustainable urban
ecosystem services. Effective governance ensures that decision-
making processes are transparent, inclusive, and participatory,
while stakeholder engagement involves actively involving various
stakeholders in the planning and implementation of policies
related to urban ecosystem services. For instance, the study of
Olsson et al. (2020) highlights the importance of involving various
stakeholders in the decision-making process to achieve a just and
honest urban ecosystem services governance that benefits the
entire community and fosters long-term sustainable development
in the Sofielund district in Malmö, Sweden. They conducted
interviews with 16 stakeholders, including property owners or
managers, businesses, and representatives from the Swedish
Union of Tenants. The findings stress the need for inclusive and
accountable governance of urban ecological services. Failure to
take into account the interests of all parties involved could have
resulted to one group’s voice affecting urban development at
the expense of others. The lack of a formal system for property
owners to have input and communicate with the city government
is a major obstacle. A different instance in Bogota, Colombia,
highlights the susceptibility of local stakeholder involvement and
cooperative management when faced with unstable government
regulations concerning urban wetland management. In response

to this precarious situation, local stakeholders have found legal
actions to be the most effective strategy. These legal actions
not only facilitate collaborative management but also safeguard
their participation in the development and continuity of this
management approach (Remolina, 2015). Thus, the governance
and policy frameworks related to urban ecosystem services and
climate change adaptation are often fragmented or inadequate.
This highlights the fact that there is often a lack of coordination and
collaboration among different sectors and stakeholders involved
in urban ecosystem management. Climate change adaptation
and mitigation strategies need to be better integrated into urban
planning frameworks to ensure the effective management and
enhancement of ecosystem services.

In another assessment, Kabisch (2015) uncovered how the
ecosystem service framework is structured and implemented
inside Berlin’s existing urban green planning structure. This
evaluation not only highlighted considerable difficulties in urban
green governance, but also indicated the level of integration
of the ecosystem service framework into the planning system.
Although stakeholders are aware with the phrase, the examination
of planning documents revealed that only recently established
informal strategies expressly use the ecosystem service framework.
Increasing development pressure due to population growth
and municipal budget constraints, the loss of expertise, and a
lack of communication leading to a lack of awareness of the
benefits of green spaces among various stakeholders are the
primary challenges facing urban green governance in Berlin. Such
examples set out for the need of more coherent and integrated
policies that explicitly address the linkages between climate
change, urban development, and ecosystem services. Additionally,
stronger coordination and collaboration between different levels
of government and stakeholders are required to effectively address
climate change impacts on urban ecosystems.

Furthermore, urban resilience and adaptation strategies in the
context of policy and planning are crucial for cities to address
and prepare for the challenges posed by various stressors and
shocks. These strategies aim to enhance the ability of cities to
withstand and recover from adverse events of climate change
while maintaining essential functions and quality of life for their
residents. Despite its great popularity, resilience has been shown
in studies to occasionally lead to the maintenance of the current
situation at the expense of social justice (Ziervogel et al., 2017).
Further, it has the potential to accidentally lock in unsustainable
growth patterns, leading to complex and underappreciated trade-
offs at many spatial and temporal scales (Chelleri et al., 2015).
This results in a governance gap (Wagenaar and Wilkinson, 2015)
between the aspirational goal of resilience and the practical capacity
to effectively control resilience at the urban level. When thinking
about governance, the most effective method for bolstering urban
resilience is to create a network of public institutions, government
agencies, and private citizens working together to achieve common
goals as part of a coordinated plan of action (Coaffee et al.,
2009). However, municipal officials face substantial obstacles in
accomplishing such objective. Furthermore, effective monitoring
and evaluation systems are also lacking to assess the effectiveness
of climate change adaptation measures and the provision of
ecosystem services in urban areas. Thus, there is a need to
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develop standardized indicators and monitoring protocols to track
changes in urban ecosystems and evaluate the success of climate
change adaptation strategies. Public backing appears essential,
particularly for consistent monitoring of habitat alterations and for
their sustained engagement in the preservation and administration
efforts. Furukawa (2013) research on the revitalized ecosystems
of Shibaura Island and Yokoyama in Tokyo provides a prime
illustration of the active participation of local residents from
both urban and rural areas in the planning, implementation,
and maintenance of these spaces. Kolkata’s urban wetlands in
India provide another example of success, primarily attributed
to three factors: (1) diverse utilization of the ecosystem, (2) the
harmony of urban ecological interactions, and (3) the powerful
collaborative efforts of the community. This demonstrates how
effective environmental and ecosystem governance relies on
collective action and informal institutions as much as formal
governance mechanisms (Hettiarachchi and Morrison, 2017).
An additional instance of active involvement from the public,
particularly students, can be observed in the upkeep of Hanul
Madang, a rooftop garden located in Seoul city, South Korea as
indicated in Table 2 (Son, 2018). Despite presenting positive case
studies, it does not alter the harsh reality of ongoing social inequity
in ecosystem service management and access which varies with
regions and countries. However, ensuring that all communities,
especially those most vulnerable to the impacts of climate change,
have access to the benefits of ecosystem services can help alleviate
some of the existing societal challenges in this context.

Another crucial aspect is the financing mechanisms that can
play a significant role in supporting the enhancement of ecosystem
services in urban areas. These mechanisms provide the necessary
financial resources to implement projects and initiatives aimed at
improving and maintaining the provision of ecosystem services.
However, the deployment of green infrastructure faces extra
hurdles due to the presence of financial constraints in many
cities (Pataki et al., 2011). Cities can hardly afford to keep their
current infrastructure running, let alone invest in researching,
designing, building, and testing greener alternatives. Tree planting,
stream daylighting (raising underground streams to the surface),
and biofiltration project building are just a few examples of the
ecosystem-services infrastructure efforts that many communities
have turned to non-profits to implement in order to deal with this
problem. This strategy, however, may result in complex public-
private partnerships that are not sustainable over the long run due
to grant cycles, inadequate nonprofit capacity, and other structural
challenges (Svendsen and Campbell, 2008). Green bonds have
emerged as a viable and attractive financing option that India,
alongside other nations like China, the United States, Brazil, and
many more across the globe, has actively embraced. India has been
steadily advancing its commitment to environmentally sustainable
project financing for an extended period. The demand for “green”
financial products is on the rise, accompanied by a growing
trend of investors declining to invest in companies that do not
meet the evolving sustainability criteria. Consequently, financial
service providers find themselves facing mounting pressure from
both investors and rating agencies to establish effective strategies
for sustainable management and conduct. Additionally, they now
contend with new competitors who prioritize sustainability as a
central element of their business models. In the context of the
Indian banking sector, the government has introduced several laws

and initiatives aimed at incentivizing lending to carbon-neutral
enterprises and promoting environmentally friendly loans. These
measures reflect a broader effort to align the financial sector with
ecologically responsible practices (Bhatnagar et al., 2022).

7. Conclusion

In conclusion, the review highlights the importance of urban
ecosystem services in the context of climate change and emphasizes
the need for enhancing these services for effective adaptation.
Urban ecosystems provide a range of benefits, including improved
air and water quality, climate regulation, biodiversity conservation,
and enhanced wellbeing for urban residents. However, climate
change poses significant challenges to urban ecosystem services,
including increased heat stress, flooding, and habitat loss. These
impacts require proactive measures to enhance the resilience of
urban ecosystems and ensure their continued provision of services.
By incorporating nature-based solutions, such as green and blue
infrastructure, cities can mitigate climate change effects, reduce
vulnerabilities, and promote adaptation. It is essential to strike
a balance between urban development and the preservation of
ecosystem services. Synergies and trade-offs need to be carefully
considered to avoid compromising the long-term sustainability
and functionality of urban ecosystems. Integrating ecosystem
services into policy and planning frameworks is crucial for
sustainable urban development and effective climate change
adaptation. Balancing urban development and ecosystem services
requires an integrated approach that considers the long-term
impacts on both human wellbeing and environmental health.
This involves incorporating principles of sustainable development,
such as compact city planning, mixed land-use zoning, and
the protection and restoration of natural habitats. It also
necessitates engaging stakeholders, including local communities, in
decision-making processes to ensure their needs and perspectives
are considered. Innovative planning and design strategies can
help maximize synergies and minimize trade-offs. Nevertheless,
challenges and gaps exist in the field of urban ecosystem services.
Knowledge gaps, limited financial resources, governance and
policy deficiencies, social equity considerations, and the need
for robust monitoring and evaluation systems are significant
challenges that must be addressed. These gaps call for increased
research, innovative financing mechanisms, improved governance
structures, and greater inclusivity and equity in decision-making
processes. However, addressing these challenges and filling the
gaps requires a multi-dimensional approach that combines
scientific research, policy development, financial mechanisms, and
community engagement. It calls for stronger collaboration among
stakeholders, increased investment in urban ecosystem services,
and the integration of climate change considerations into urban
planning and governance processes.

Future research in the realm of urban ecosystem services
and climate change should explore innovative approaches for
enhancing urban resilience. This includes investigating the
effectiveness of nature-based solutions in mitigating climate
impacts, such as urban green infrastructure, green roofs, and
sustainable urban planning strategies. Additionally, understanding
the socioeconomic and equity implications of these solutions, as
well as developing integrated assessment tools and models, will
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be critical for informed decision-making by urban policymakers.
Furthermore, research should address emerging challenges related
to climate-induced migration, urban heat island effects, and the
preservation of biodiversity within cities. Ultimately, a holistic
approach that combines ecological, social, and technological
perspectives will be essential to create sustainable and climate-
resilient urban environments.
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