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Abstract: Emotions are a crucial aspect of daily life and play a vital role in shaping human inter-
actions. The purpose of this paper is to introduce a novel approach to recognize human emotions
through the use of electroencephalogram (EEG) signals. To recognize these signals for emotion
prediction, we employ a paradigm of Reservoir Computing (RC), called Echo State Network (ESN).
In our analysis, we focus on two specific classes of emotion recognition: H/L Arousal and H/L
Valence. We suggest using the Deep ESN model in conjunction with the Welch Power Spectral
Density (Wlech PSD) method for emotion classification and feature extraction. Furthermore, we
feed the selected features to a grouped ESN for recognizing emotions. Our approach is validated
on the well-known DEAP benchmark, which includes the EEG data from 32 participants. The
proposed model achieved 89.32% accuracy for H/L Arousal and 91.21% accuracy for H/L Valence
on the DEAP dataset. The obtained results demonstrate the effectiveness of our approach, which
yields good performance compared to existing models of emotion analysis based on EEG.
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1 Introduction

Recognizing emotions using EEG signals is a challenging task due to the complexity
and richness of the data, and the difficulty of detecting internal emotions from outward
manifestations [Bouazizi et al. 2021] [Bouazizi et al. 2023]. In fact, the development
of systems that can identify, comprehend, analyse, and replicate human emotions is
known as Affective Computing [Poria et al. 2017], which encompasses computer science,
psychology, and cognitive science [Khemakhem et al. 2020] . As Picard noted in his
book ”Affective Computing” [Picard 1997] in the 1990s, improving human-machine
connection requires giving machines the ability to detect, recognize, and understand
human emotions [Ellouzi et al. 2015]. Researchers have mostly focused on Emotion
Recognition (ER) in their work [Fourati et al. 2022].

The electroencephalogram (EEG) is a tool for directly assessing brain activity. EEG
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is intriguing because it has exceptional temporal resolution, capturing data every mil-
lisecond. Recognizing emotions from outward manifestations can result in inaccurate
interferences, particularly when participants have control over their emotions. However,
the EEG modality overcomes this problem. The goal of EEG- based emotion recognition
is to classify internal human emotions. The idea of applying machine learning techniques
is driven by the complexity and richness of EEG data. Machine learning involves using
computer system models and logic to explore a particular goal. The primary families
of models used in EEG-based applications are nearest neighbour classifiers, neural net-
works, nonlinear Bayesian classifiers, and linear classifiers.

The motivation behind this study is rooted in the challenge of accurately recognizing
emotions using EEG signals. To address this challenge, the usage of Neural Networks
(NN) has presented promising results [Fourati et al. 2022]. It allows for the development
of sophisticated models that can effectively analyse the complex patterns in EEG data
and classify emotions with high accuracy. Therefore, the utilization of EEG and NNs
can significantly improve our understanding of emotions and their underlying neural
processes. A powerful type of NN for time-series analysis and forecasting is Recurrent
Neural Networks (RNN), which includes Echo State Networks (ESNs). They are dis-
tinguished by their high amount of recurrence and being three-layered NNs, with the
hidden reservoir layer being particularly important. ESNs are ideally suited for several
applications, such as time series prediction [Chouikhi et al. 2017], [Slama et al. 2017] or
robot control [Ammar et al. 2013], and typically perform well. ESNs are a perfect fit for
emotion identification since EEG is a temporal signal.

The machine learning community has become increasingly interested in the potential
of deep learning models to cope with the difficulties of modelling complex tasks by
representing them in a hierarchical fashion. Deep learning models have the capacity to
learn data representations at various levels of abstraction. For this reason, we propose
the use of the Deep ESN for EEG-based emotion recognition. However, several research
works applied Deep ESN for temporal prediction. Most of the existing models have been
improved to achieve efficient emotion classification. The suggested approach employs
multiple deep models to attain higher accuracy than the existing methods. We propose
increasing the depth of the reservoir network in Deep ESN by using the Grouped Deep
ESN architecture to further improve its performance.

Furthermore, it is commonly acknowledged that the process of EEG signal recogni-
tion involves several steps, one of which is feature extraction. This indispensable step is
designed to reduce the loss of significant signal-embedded information. In this context,
we propose integrating the Power Spectral Density (PSD) based on the welch method
for feature extraction with the Grouped Deep ESN algorithm for EEG signal recognition.
The aim of combining PSD, Welch method, and Grouped Deep ESN is to overcome two
challenges in EEG signal processing: (1) extracting meaningful information from the
signals through feature extraction, which involves transforming the raw data into a set
of features that capture relevant characteristics. To achieve this, we integrate the PSD
technique, which measures the power distribution across different frequency bands in the
signal, providing information about the relative power of different frequency components
and identifying patterns or abnormalities. The Welch method is used to estimate the
PSD by dividing the signal into overlapping segments, computing the PSD of each
segment using the Fourier transform, and averaging the estimates to obtain a smoother
PSD estimate. (2) the second challenge is classifying the EEG signals, which is achieved
using the Grouped Deep Echo State Network (ESN). It is commonly used for time-series
prediction and classification tasks, capable of handling high-dimensional input data, i.e.,
EEG signals, and learning complex temporal patterns in that data. This algorithm aims to
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improve the performance of the ESN by dividing it into groups of neurons and training
each group separately, enabling it to learn more diverse and complex representations of
the input data.

To validate our proposal, named PSD-Grouped Deep ESN for EEG-based emotion
recognition, we tested it on the frequently used “Database for Emotion Analysis using
the Physiological Signals (DEAP)” benchmark, which comprises EEG signals of 32
participants. The results indicate better performance than recent existing related works.
The outline of this article includes four sections. Section 2 presents our research context
concerning the EEG-based emotion recognition. Section 3 provides an explanation of
our PSD-Grouped Deep ESN model building. Section 4 details the experimental results
and the evaluation. Finally, the article is summarized, and our perspectives are described
in Sections 5 and 6.

2 Research context

The theoretical foundations and related research for EEG-based emotion recognition are
presented in this section.

2.1 EEG-based emotion recognition: theoretical background

Research is increasingly focusing on emotion recognition. In fact, the main scientific
question in affective computing is how to enable computer systems to accurately analyse,
understand, and interpret emotional information expressed by humans [Picart 1976]. It
is a key research area in both ambient intelligence and artificial intelligence [Dunne et
al. 2021]. Discoveries in emotion recognition can further advance the development of
many fields, including computer science, engineering, and medical science. Emotion is a
complicated psychological state that manifests in bodily movements and physiological
changes [Adolphs et Anderson 2018]. The recent years have seen significant progress in
the emotion recognition domain, which relies on affective data gathered from a variety of
physical actions and physiological processes, including vocalizations from microphones,
signals from devices that measure neurophysiological activity, videos from cameras, and
texts from websites, etc.

Humans can sometimes control their facial expressions, but it is not easy to control
their natural bodily responses, such as variations in body temperature, heart rate, or
physiological signals [Rattanyu et al. 2010]. Biosignals, imaging techniques or emo-
tional videos are some of the ways to recognize emotions. Because a biosignal is a
physiological signal that is independent of human desire, it can be used to determine
human emotions objectively [Wioleta 2013]. Therefore, our work focuses on EEG- based
emotion recognition. EEG signals are a promising method for detecting emotional states.
They are physiological signals derived from brain biosignals [Tripathi 2011] and are
recorded using electrodes implanted in the scalp. These electrodes capture electrical
energy potentials indicative of brain activity [Minguillon et al. 2017].

Numerous studies on EEG-based emotion recognition have been introduced in the
literature, utilizing well-known open EEG datasets and applying machine learning and
signal processing techniques.

2.2 EEG datasets

There are numerous studies on EEG-based emotion detection in the literature. Each study
was tested and evaluated using a particular private EEG dataset. As far as we know,
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there are five open EEG benchmarks: MAHNOB-HCI [Soleymani et al. 2012], DEAP
[Koelstra et al. 2012], SEED [Zheng et Lu 2015], DREAMER [Katsigiannis et Ramzan
2018], and HR-EEG4EMO [Becker et al. 2017]. The most popular dataset is DEAP
[Fourati et al. 2022]. Therefore, we used the DEAP affective benchmark to validate our
proposed deep ESN for EEG-based emotion recognition.
Forty emotional videos were utilized in the DEAP dataset’s elicitation methodology.
Thirty-two participants, 16 men and 16 women, were involved in the study. They were
outfitted with Biosemi Active 2 acquisition systems, which have 32 EEG channels and 8
sensors. Participants’ judgments for each trial were stated based on the three emotion
components: (1) arousal for emotion intensity incited by a stimulus, (2) valence for the
pleasantness of a stimulus, and (3) dominance for the control level exerted by a stimulus.

Several research works have contributed to the EEG-based emotion recognition on
the DEAP dataset. Therefore, we briefly discuss these related works in the next section
to provide insight into available knowledge.

2.3 EEG-based emotion recognition related works

Research in the field of EEG-based emotion recognition is rich and varied in terms of
classifier algorithms and EEG datasets. In our work, we are interested in related works
that deal with the DEAP dataset.

Our literature review focused on themost recent contributions of emotion recognition
between 2017 and 2022. For the classification of two valence or arousal levels, various
works have been proposed (such as [Zhuang et al. 2017], [Piho et Tjahjadi 2018], and
[Li et al. 2018]). Better outcomes were achieved by making the task subject-dependent
and customizing the classifier for that subject by combining training and test data from
the same subject. For instance, [Piho et Tjahjadi 2018] used the K-Nearest Neighbor
(KNN) approach to classify statistical features from the DEAP dataset and achieved
82.76% and 82.77% accuracy rates for the two valence and arousal levels, respectively.
[Piho et Tjahjadi 2018] underlined the importance of specific channels in affecting the
emotion recognition performance. They asserted that just one F4 channel is enough for
an EEG-based emotion recognition task. In 2019, [Chen et al. 2019] applied the hierar-
chical bidirectional GRU (Gated Recurrent Unit) based on the attention mechanism and
obtained accuracy rates of 67.9% for valence and 66.5% for arousal. Although using ESN
to process EEG data is not novel (such as [Bozhkov et al. 2016] [Bozhkov et al. 2017]
and [Ren et al. 2018]), there are not many related works that use it on the DEAP data set.
As far as we know, there are just few works: [Fourati et al.2017] and [Fourati et al. 2022].
[Fourati et al. 2017] suggested training ESN with Intrinsic Plasticity before applying it to
pre-processed DEAP EEG data. Arousal levels, valence levels, and the eight emotional
states were classified with accuracy rates of 68.28%, 71.03%, and 68.79%, respectively.
The findings obtained with an ESN pretrained with synaptic plasticity, where the greatest
accuracy result achieved was 76.15%, were then outperformed by those obtained with an
ESN pretrained with intrinsic Gaussian plasticity, as discovered by [Fourati et al. 2022].

Recently, deep learning has attracted more attention as an intelligent technology
to achieve better recognition performance. Deep learning for the EEG-based emotion
recognition has presented interesting results in the literature. [Tripathi et al. 2017] and
[Al-Nafjan et al. 2017] conducted CNN tests on the DEAP dataset with successful per-
formance outcomes (average of 77,47% and 82% respectively). In 2020, [Kim et Choi
2020] applied LSTM (Long Short-Term Memory) technique combined with an attention
mechanism to attribute weights to the affective states occurring at a specific instant. They
achieved a best accuracy rate of 90.1%.
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Cheng et al. (2020) [Cheng et al. 2020] proposed a deep forest-based approach for
emotion recognition from multi-channel electroencephalogram (EEG) signals, reporting
an accuracy of 92.89% for arousal recognition and 93.06% for valence recognition. In
2022, [Joshi et Ghongade 2022] applied the Bidirectional LSTM (BiLSTM) with Modi-
fied Differential Entropy. The best accuracy they obtained was 75%. [Qu et Zheng 2022]
used physiological functions of EEG regions and the active scenario of band signals to
select emotion-sensitive signals. These signals were then combined using LSTM and
CNN to extract both temporal and spatial features. The merged features were classified
to identify the emotion. The researchers evaluated the method on the DEAP dataset, and
the average accuracy for recognizing valence and arousal dimensions was found to be
92.87% and 93.23%, respectively. [Hu et al. 2022] combined a Convolutional Neural
Network (CNN), a Bidirectional Long and Short-Term Memory network (BiLSTM), and
Multi-Head Self-Attention (MHSA). This model enables deep learning of time-series
and spatial information of EEG emotion signals. CNN is used to smooth EEG signals and
extract deep features, BiLSTM to learn emotion information from past and future time
series, and MHSA to enhance recognition accuracy by reassigning weights to emotional
features. The authors achieved an accuracy of 85.57%.

Recently, a study in 2023 [Lyer et al. 2023] introduces a hybrid model that combines.
CNN and LSTM models for accurate detection. The approach allows extracting features
using Differential Entropy (DE). These selected features are fed to CNN, LSTM, and
CNN-LSTM models for emotion recognition. At the end, the predictions of the three
models are combined by an ensemble model. The researchers validate the proposed
approach on two datasets, SEED and DEAP, for EEG-based emotion analysis. The
proposed method achieves a high 97.16% accuracy for emotion classification on the
SEED dataset, outperforming compared methods for EEG-based emotion analysis.

However, for the DEAP dataset, the proposal achieves 65% accuracy. Upon re-
viewing the literature, we have found that deep learning has enabled the achievement
of accuracies beyond 90%. As we have not come across any studies, to the best of our
knowledge, utilizing deep ESN for EEG-based emotion recognition from the DEAP
dataset, we propose to apply this method and enhance its performance through the use of
the grouped deep ESN architecture.

3 PSD-based Grouped Deep ESN model building

The EEG-based emotion recognition process includes three principal steps: data pre-
processing, feature extraction using Welch-PSD, and classification using the grouped
deep ESN as illustrated in the following figure:
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Figure 1: Flowchart of the proposed approach

3.1 Data pre-processing

As presented previously (cf. Section 2.2), we are interested to the DEAP affective
dataset, which contains three dimensions, namely Valence, Arousal and Dominance.
Consequently, numerous categorization problems were created, including Low/High
Valence, Low/High Arousal, and Dominance.

Figure 2 presents the first 40 data rows for one participant in the DEAP dataset.

Figure 2: First 40 data rows for one participant

We have separated the EEG and non-EEG data. The DEAP dataset includes 32
EEG channels and 8 peripheral physiological channels. The peripheral signals consist of
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electrooculogram (EOG), electromyograms (EMG) of Zygomaticus and Trapezius mus-
cles, GSR, respiration amplitude, blood volume by plethysmograph, and skin temperature.
Emotional states can be derived from the combinations of valence and arousal, including
high arousal and high valence (excited and happy), low arousal and high valence (calm
and relaxed), high arousal and low valence (angry and nervous), and low arousal and
low valence (Sad, Bored). Table 1 presents the number of trials for each group.

High Valence 571

Low Valence 509

High Arousal 540

Low Arousal 540

Table 1: Trials per group

Table 1 contains the count of trials that have been conducted for each group.
Then, we generated the number of trials for the combinations between the four groups as
shown in Table 2.

High Arousal High Valence 242

Low Arousal High Valence 215

High Arousal Low Valence 200

Low Arousal Low Valence 223

Table 2: Trials per group

3.2 Welch based PSD for Feature extraction

In this work, the adopted feature extraction method was Power Spectral Density (PSD).
PSD is an effective stationary signal processing method that works well with narrowband
signals. It is a typical signal processing approach that displays the energy strength as a
function of frequency and distributes the signal power over frequency [Ong et Ibrahim
2018]. In this research, PSD was applied along with Welch’s technique. To estimate
power spectra, Welch’s method (also known as the periodogram method) [Welch 1967]
divides the time signal into sequential blocks, creates a periodogram for each block, and
then averages the results. Equations (1) and (2) mathematically describe the Welch-based
PSD. The first equation defines the power spectra density, and the second one calculates
the Welch Power Spectrum, i.e., the average of the periodogram for each interval.

P (f) =
1

MU
|
M−1∑
n=0

xi(n)e
−j2πf |2 (1)

where:

– P(f) is the power spectral density at frequency f
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– MU is a normalization factor, typically the length of the signal

– xi(n) is the ith sample of the signal at time n

– W(n) is a window function applied to the signal to reduce spectral leakage

Pwelch(f) =
1

L

L−1∑
i=1

P (f) (2)

Where L is the length of the signal or window used in the Welch method.

The accuracy of the traditional periodogram is increased by the Welch’s approach
(cf. Figure 3). The simple logic behind this is that EEG data is constantly time-varying.
Therefore, it is highly improbable for the signal to appear as a perfect sum of pure
sines when examining 30 seconds of EEG data. Instead, the neural activity occurring
underneath the scalp gradually modifies the EEG’s spectral composition over time. The
issue with the conventional periodogram is that it requires the signal’s spectral content
to remain stationary (i.e., time-unvarying) during the time period taken into account to
provide a genuine spectral estimate. In this research, we used the welch’s method to
extract theta, alpha, beta and gamma spectral power for each electrode (cf. respectively
Fig. 4(a), (b), (c), and (d)). The frequency bands used are theta (4-8 Hz), alpha (8-12
Hz), beta (12-30 Hz), and gamma (30-64 Hz).

Figure 3: Welch’s periodogram



1124 Bouazizi S., Benmohamed E., Ltifi H.: Enhancing EEG-based emotion…

Figure 4: (a) Theta periodogram, (b) Alpha periodogram, (c) Beta periodogram, and (d) Gamma
periodogram

The frequency vector is plotted on the x-axis (frequency bins), while the PSD
(Power Spectral Density) vector is plotted on the y-axis. Typically, the units of the power
spectral density for EEG data are micro-Volts-squared per Hz (uV2/Hz). It is essential to
identify the frequency bins that cross the delta, theta, alpha, and beta frequency ranges.
The welch periodogram generated is shown in Figures 3 and 4, with the filled area
representing theta, alpha, beta, and gamma band power. The blue region in these figures
denotes the band power. Since there isn’t a closed-form formula to integrate this region, it
must be approximated. The composite Simpson’s rule is frequently used for this purpose
[Weisstein 2003]. This region is divided into multiple parabolas, and the areas of each
parabola are added to determine the total area.

Theta 5.434119660168186

Alpha 5.369595513295193

Beta 6.286556266834863

Gamma 0.9879159580139809

Table 3: Value of bands power

Table 3 presents the value of each band power (i.e., Theta, Alpha, Beta and
Gamma).

Fig. 5 illustrates the power spectral density of each channel related to the participant’s
scalp. Figures 6, 7, 8 and 9 show the topographical map of the brain for the alpha, beta,
theta, and gamma bands, respectively. The distinct colour lines show how much energy
each electrode received from the frequency band wave. The colour bar used to show the
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topological brain map indicates the highest power intensity in red and the lowest power
intensity in blue.

Figure 5: The power spectral density across channels

Figure 6: Theta band of frequency topo map
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Figure 7: Alpha band of frequency topo map

Figure 8: Beta band of frequency topo map

Figure 9: Gamma band of frequency topo map

Jaeger [Jaeger 2001] introduced Echo State Networks (ESNs), a specific class
of Recurrent Neural Networks (RNN) that is part of the Reservoir Computing (RC)
framework. ESNs consist of an input, a reservoir (hidden) layer, and an output layer. The
structure of an ESN is illustrated in Figure 10.

Unlike traditional RNN, the connection weights between the input layer and the
reservoir (i.e., Win) and the Reservoir weights (i.e., W) are both not trainable and
randomly initialized. However, the connection weights between the reservoir and the
output layer (Wout) must be trained throughout the learning process. The output layer
and reservoir are connected by a Wback connection as well. The ESN is capable of multi-
step predictions when Wback is present. If not, it can only forecast one step forward.

The Win and Ws are initialized arbitrarily during the initial network establishment
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and are left untouched during the training phase. Once the reservoir’s condition and the
ESN’s output mode have been established, Wout can be calculated based on the desired
output to minimize the difference between the predicted model output and the actual one.
Learning ESN is a relatively quick linear regression problem [Liu et al., 2020]. There
are numerous ways to calculate this straightforward linear regression [Liu et al., 2019].

Figure 10: ESN Architecture inspired from [Li et al. 2015]

The equation (3) and (4) shows the ESN sate update:

x(i+ 1) = f(Win ∗ u(i+ 1) +W ∗ x(i) +Wback ∗ y(i)) (3)

y(i+ 1) = g(Wout ∗ x(i+ 1) (4)

With f: activations function for reservoir neurons
and g: activations function for output layer neurons. It can be linear or nonlinear.
Recently, a few research works have examined deep ESNs to improve the capabilities
of the ESN. The primary idea behind adding depth to an ESN is to support hierarchical
representations of the temporal input while simultaneously capturing the multi-scale
dynamics of the input characteristics (cf. Figure 11).

ESNs have been utilized in the literature to perform various temporal tasks [Soures
et al. 2017]. To effectively utilize each reservoir’s temporal kernel characteristic, [Ma et
al. 2017] suggested the Deep-ESN architecture, which includes stacked reservoir layers
(i.e., N Sub-Reservoirs for N layers) and unsupervised encoders. In memory capacity
experiments, [Gallicchio et al. 2017] found that the Deep ESN network performed best
both with and without using intrinsic plasticity.

Unlike a standard deep neural network, the output of all intermediate layers is
concatenated for to produce the final result (cf. Figure 11).
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Figure 11: Deep ESN

To extract features with a greater order of complexity and capture multi-scale
dynamics of time series data, a deeper reservoir network is necessary [Gallicchio et al.
2017]. In this context, we suggest the Grouped Deep ESN as an efficient solution to
recognize EEG emotions (cf. Figure 12). The multi-layered topology of the Grouped
deep ESN is shown in Figure 12. The Deep ESN sub-reservoirs’ outputs are concatenated
to generate the final grouped deep ESN result.

The grouped deep ESN uses a two-dimensional organization of sub-reservoirs for
its architecture. Equations (5), (6) and (7) are used to characterize the grouped deep ESN
state transitions:

x(i,j)(n) = (1− α(i,j)x(i,j)(n− 1) + α(i, j)x̄(i, j)(n) (5)

x̄(i, j)(n) = f(W
(i,j)
in [1; v(i,j(n)] +W(i,j)

x (n− 1)), (6)

v(i,j)(n) =

{
u(n) ifj = 1

xi,j−1)(n) ifj > 1,
(7)

Where Ng is the number of groups (1 < i <= Ng), N1 the number of layers (1 < i

<= N1) and (1 < i <= α (i,j) is the leaking rate for ith group,jth layer.

y(n) = Wout[1; x
(1,1)(n); ...; x(1,N1)(n); ...; x(Ng,1)(n); ...; x(Ng,N1)(n)] (8)

Where x(i,j)(n) are the node activations for all sub-reservoirs. They are concatenated

the generate the Wout:Wout ∈ R(Ny× (NxNgNl+1))With Ny output units and Nx
input units.
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Figure 12: Grouped deep ESN

4 Experimental analysis and comparison

We already described the workflow for PSD-Grouped Deep ESN (cf. section 3). We
highlight its effectiveness in this part by describing the experimental outcomes of its
application to the DEAP dataset for EEG-based emotion recognition.

4.1 Experimental Setup

In our study, the experimental setup involves splitting the dataset into two parts - 80%
for training the ESN, deep ESN and grouped deep ESN algorithms and 20% for testing
their performance.

Additionally, a cross-validation for each algorithm was generated. Cross-validation
is a technique used to validate the performance of a model. In our context, we generated
10-fold cross-validation. This involves splitting the dataset into 10 subsets, training the
model on 9 subsets and testing it on the remaining subset. This process is repeated 10
times, with each subset used as the testing set exactly once. The results are then averaged
to obtain an estimate of the model’s performance. Figure 13 presents the generated
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cross-validation.

Figure 13: Generated 10-fold cross-validation results

The results provided in Figure 13 show the mean and standard deviation of the
performance of the different models on the DEAP dataset using 10-fold cross-validation.
The performance is measured using accuracy, which is commonly used in classification
tasks. The mean accuracy of the ESN on the dataset is 0.701, and the standard deviation
is 0.299. This means that the performance of the ESN varies widely across the 10 folds,
with some folds achieving high accuracy and others achieving low accuracy. The mean
accuracy of the Deep ESN is slightly higher than that of the ESN at 0.715, and the
standard deviation is also similar at 0.285. This suggests that the Deep ESN is performing
slightly better than the standard ESN, but the performance is still inconsistent across
the folds. As for the Grouped Deep, the mean accuracy on the Grouped Deep ESN on
the dataset is significantly higher at 0.923, and the standard deviation is much lower at
0.077. This indicates that the Grouped Deep ESN is performing much better than the
other two models and is more consistent in its performance across the 10 folds.

4.2 ESN, deep ESN and grouped deep ESN comparison

A comparative analysis of the results of PSD-ESN, PSD-Deep ESN, PSD-Grouped deep
ESN allows us to conclude the validity of the choice of this latter model. Mean Square
Error (MSE), Root Mean Square Error (RMSE), and Normalized Root Mean Square
Error (NRMSE) are important metrics for assessing the quality of a predictive model.
The formulas following for calculating these metrics are given in Equations (9), (10) and
(11):

MSE =
1

T

T∑
i=1

(Yi − Pi)
2 (9)

RMSE =

√√√√ 1

T

T∑
i=1

(Yi − Pi)2 (10)

NRMSE =
1

T

T∑
i=1

(Yi − Pi)
2

Tσ2
(11)
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The target and predicted outputs are denoted by Yi and Pi, respectively. T rep-
resent the number of data samples, and σ2 represents the variance of target values.
Three models were used for performance comparisons: PSD-ESN, PSD-deep ESN and
PSO-Grouped-deep ESN (cf. Table 4).

Model MSE RMSE NRMSE

PSD-ESN 0.13960

3909616

0.37363606

614265527

0.74727213

202853105

PSD-Deep-ESN 1.997851453

7141146e-08

0.00060571

88466422778

0.00267438

0209248765

PSD-Grouped Deep

ESN

1.40976765

53335032e-08

8.8770565

88940362e-05

0.0003919

445570371235

Table 4: MSE, RMSE and NRMSE comparison

By averaging the squared errors from data, the MSE is computed. The MSE mea-
sures how inaccurate statistical models are. It evaluates the average squared discrepancy
between model predictions and observations. When a model is error-free, the MSE is
equal to 0. Its value rises when model errors increase. As visible in Table 4, the smaller
MSE (1.4097676553335032e-08) is of the PSD-Grouped deep ESN which proves its
superiority in terms of estimation. The Root Mean Squared Error (RMSE) of the PSD-
Grouped Deep ESN model is also the lowest among the three models, with a value of
8.877056588940362e-05, which suggests that this model has the smallest difference
between predicted and actual values.

The Normalized Root Mean Squared Error (NRMSE) is a metric that measures the
error between predicted and actual values, normalized by the range of the target variable.
Among the three models, the PSD-Grouped Deep ESN model is the most accurate, with
the smallest NRMSE value of only 0.039% of the range of the target variable.
Based on the results presented in Table 4, it can be concluded that the combination
of PSD and Grouped Deep ESN is the most effective model for accurately predicting
emotions in the DEAP dataset. Another metric frequently used to evaluate classification
models is accuracy, which is interpreted as the proportion of correctly predicted values.
It summarizes the performance of the model with a single value. Therefore, in Table 5,
we present the accuracy of PSD-ESN, PSD-Deep ESN and PSD-Grouped deep ESN.

We note that the accuracy values of PSD-ESN and PSD-Deep ESN are close, in-
dicating that there is no point in migrating to PSD-Deep ESN. However, the accuracy
of the PSD-Grouped Deep ESN is significantly higher, indicating its effectiveness. We
observed a notable increase in accuracy from 71.58% (for the deep version) to 92.39%,
which is an encouraging result. Table 5. Accuracy model comparison

PSD-ESN 70.14%

PSD-Deep-ESN 71.58%

PSD-Grouped Deep ESN 92.39%

Table 5: Accuracy model comparison
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The results presented in Tables 4 and 5 highlight the superiority of the grouped
deep ESN model which proves its validity for EEG-based emotion recognition.

4.3 Performance measurement

The performance of our proposed PSD-Grouped Deep ESN method has been further
verified using the performance measurements shown in Table 6. These metrics are
expressed in terms of the True Positive (TP), True Negative (TN), False Positive (FP),
and False Negative (FN) parameters of the confusion matrix (see Figure 13).

Figure 14: PSD-Grouped deep ESN confusion matrix
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Metric Description Equation Value

Accuracy

(Acc)

Measures the model

performance

Acc =
(TP + TN)

(TP + TN + FN + FP )
∗ 100

92.39%

Positive

predictive

value

(PPV)

Measures the percent

of predicted positives

that are actually posi-

tive

PPV =
(TP )

(TP + FP )
∗ 100

99.06%

Negative

predictive

value

(NPV)

Measures the percent

of negative positives

that are actually nega-

tive

NPV =
(TN)

(TN + FN)
∗ 100

81.25%

Sensitivity

(Sen)

Measures the proba-

bility of a positive

test, conditioned on

truly being positive.

Sen =
(TP )

(TP + FN)
∗ 100

89.83%

Specificity

(Spe)

Measures the proba-

bility of a negative

test, conditioned on

truly being negative

Spe =
(TN)

(TN + FP )
∗ 100

92.39%

F1-score Measures the har-

monic mean

F1− Score = 2 ∗ (Sen× PPV )

(Sen+ PPV )

94.21%

Matthews’s

correlation

coefficient

(MCC)

Measure the differ-

ence between the pre-

dicted values and ac-

tual values

MCC =
(TP × TN) − (FP × FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

92.39%

Table 6: Performance metrics

The calculated performance results of our PSD-Grouped Deep ESN are inter-
esting, with an accuracy of 92.39%, a PPV of 99.06% and NPV 81.25%. These values
prove the significant prediction ability of our model. The sensitivity, specificity and
F1-score rates (89.93%, 98.11% and 94.21%, respectively) inform about the preformance
of the classification ability of the model. They can be considered encouraging results. In
contrast, the MCC is a more trustworthy statistical measure that generates a high score
only if the prediction did well in each of the four confusion matrix classes (TP, FN,
TN, and FP) according to the amount of the dataset’s positive and negative elements.
In our case, the MCC rate is 84%, which is considered a high score, proving again the
performance of the PSD-Grouped Deep ESN.
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4.4 Comparison with related works

To judge the quality and validity of our results in the literature, we compare them to
existing scientific conclusions (cf. Table 7), i.e., to related works that have already been
presented in the background of this paper (cf. section 2.3).

Related work Feature extraction Classifier Emotion Accuracy

[Fourati et al. 2017] Raw EEG ESN H/L Arousal

H/L Valence

8 emotions

68.28%

71.03%

68.79%

[Zhuang et al. 2017] Intrinsic Mode Func-

tions

SVM H/L Arousal

H/L Valence

72.10%

70.41%

[Tripathi et al. 2017] CNN CNN H/L Arousal

H/L Valence

81.78%

73.1%

[Al-Nafjan et al.

2017]

DNN DNN H/L Arousal

H/L Valence

82.00%

(average)

[Piho et Tjahjadi

2018]

Statistical features KNN H/L Arousal

H/L Valence

82.77%

82.76%

[Chen et al. 2019] Attention mechanism Hierarchical

bidirectional

GRU

H/L Arousal

H/L Valence

66.5%

67.9%

[Kim et Choi 2020] Attention mechanism LSTM H/L Arousal

H/L Valence

87.9%

90.1%

[Chen et al 2020] - Deep

forest

H/L Arousal

H/L Valence

92.89%

93.06%

[Joshi et Ghongade

2022]

Modified Differential

Entropy

BiLSTM H/L Arousal

H/L Valence

75%

73.5%

[Fourati et al. 2022] Discrete Wavelet

Transform

ESN-Intrinsic

Plasticity

H/L Arousal

H/L Valence

8 emotions

69.23%

71.25%

69.95%

[Qu et Zheng 2022] LSTM CNN to

extract temporal and

spatial features

FC (SoftMax) H/L Arousal

H/L Valence

93.23%

92.87%

[Hu et al. 2022] CNN BiLSTM

MHSA

CNN BiL-

STM MHSA

H/L Arousal

H/L Valence

85.57%

Lyer et al. [2023] Differential Entropy

(DE)

Hybrid CNN-

LSTM

H/L Arousal

H/L Valence

65%

Our proposal Welch-PSD K2 based

ESN

H/L Arousal

H/L Valence

93.59%

Table 7: Precision, recall and F1-score.

Our proposed method for EEG-based emotion recognition on the DEAP dataset
combines theWelch Power Spectral Density (PSD) method with Grouped deep echo state
networks (ESNs), resulting in superior feature extraction and classification capabilities.
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To validate its effectiveness, we compared its accuracy with that of previous works,
all of which reported accuracy for the Arousal (High/Low) and Valence (High/Low)
dimensions. Our method achieved an accuracy of 89.32% for H/L Arousal and 91.21%
for H/L Valence, which is notably better than that of most previous studies. Although
two works ([Chen et al. 2020] and [Qu et Zheng 2022]) achieved higher accuracy, our
proposed approach still demonstrates significant improvement over related works.

The Welch PSD method improves our feature extraction capabilities by extracting
accurate frequency information from EEG signals through noise reduction and enhanced
spectral resolution. This is a significant improvement over previous studies. Additionally,
our Grouped deep ESN technique leverages the hierarchical architecture of reservoirs
to capture more complex temporal patterns, resulting in enhanced classification perfor-
mance. Together, these techniques enable our proposed method to achieve state-of-the-art
accuracy in emotion recognition on the DEAP dataset, surpassing the performance of
most previous works. Therefore, our study demonstrates the effectiveness of combining
Welch PSD and Grouped deep ESN techniques for EEG-based emotion recognition.

In addition, based on the provided results in terms of running time, it seems that
the proposed model, PSD-Grouped deep ESN, has the lowest running time among the
listed related works with a time of 5.35 seconds. This is can be attributed to the fact that
ESNs are known to be fast and efficient in terms of training and testing time. This is
because ESNs have a simple and fixed structure, with the reservoir weights randomly
initialized and kept fixed during training. As a result, the computational cost of training
an ESN is much lower than that of more complex architectures such as deep neural
networks (DNNs) or convolutional neural networks (CNNs). Furthermore, our proposal,
PSD- Grouped deep ESN, groups the input features based on their power spectral density
(PSD) and uses separate ESNs for each group. This allows for a more efficient utilization
of the available computational resources as each ESN is trained on a subset of the input
features, reducing the overall complexity of the model.

For all these reasons we can say that our work improves the EEG-based emotion
recognition compared to recent literature which encourages us to move forward in our
research work in this direction.

5 Conclusion

Recognizing human emotions is proposed an improved deep method for emotion recogni-
tion in EEG signals. To achieve our objective, we used the Grouped Deep ESN model in
conjunction with the Welch Power Spectral Density (Wlech PSD) method. This approach
allows for the selection of important features to improve the recognition accuracy. In addi-
tion, we conducted tests on the well-known DEAP benchmark by employing the selected
features to grouped Deep ESN model. The produced results, using 32 channels, show that
the performance of our proposed model is better than many existing models, achieving
89.32% and 91.21% accuracy for H/L Arousal and H/L Valence classes, respectively.
Furthermore, the introduced model has a significantly lower running time compared to
the related works, taking only 5.35 seconds to run, while the other models have longer
running times, ranging from 89.98 seconds to 693.4861 seconds. This indicates that our
proposed model is not only effective in terms of accuracy but also efficient in terms of
computational resources. Therefore, our approach is promising for real-time EEG- based
emotion recognition applications, where speed and accuracy are both critical factors.
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6 Future Work

In this work, we have proposed an improved deep learning method for EEG signals in the
context of emotion recognition. In near future, we plan to apply the proposed method on
other EEG-emotion datasets to conduct a comparative study. This will enable to analyse
the performance of the model in different scenarios and provide a better understanding
of its capabilities. Additionally, we aim to explore better ESN Reservoir Computing
architectures that can efficiently process dynamic temporal graphs. This will allow for
more efficient processing and analysis of data, leading to more accurate and reliable
results.
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