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Facial vascularized composite allotransplantation (FVCA) is an emerging field of
reconstructive surgery that represents a dogmatic shift in the surgical treatment
of patients with severe facial disfigurements. While conventional reconstructive
strategies were previously considered the goldstandard for patients with
devastating facial trauma, FVCA has demonstrated promising short- and long-
term outcomes. Yet, there remain several obstacles that complicate the
integration of FVCA procedures into the standard workflow for facial trauma
patients. Artificial intelligence (AI) has been shown to provide targeted and
resource-effective solutions for persisting clinical challenges in various
specialties. However, there is a paucity of studies elucidating the combination of
FVCA and AI to overcome such hurdles. Here, we delineate the application
possibilities of AI in the field of FVCA and discuss the use of AI technology for
FVCA outcome simulation, diagnosis and prediction of rejection episodes, and
malignancy screening. This line of research may serve as a fundament for future
studies linking these two revolutionary biotechnologies.
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Introduction

Facial vascularized composite allotransplantation (FVCA) is a surgical procedure that

involves transplanting composite tissue to patients with devastating and irreversible

(mid-)facial defects (1–4). FVCA transplants are comprised of different tissue types such

as skin, muscle, bone, nerves, and blood vessels (5). This approach represents a novel

surgical therapy for complex clinical conditions (e.g., extensive burn or gunshot wounds)

that cannot be effectively addressed through conventional reconstructive techniques (6).

As of April 2023, there have been at least 47 FVCA worldwide with promising short- and

longer-term outcomes (4, 7). Yet, FVCA research still needs to overcome different hurdles

to further enhance postoperative results and increase the feasibility and accessibility of

FVCA procedures. Such hurdles range from individualized preoperative planning to life-

long immunosuppressive drug regimens that can increase the risk of malignancies (1, 8).
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While various basic science and translational projects are underway

to solve these issues, there is a scarcity of studies elucidating the

integration of artificial intelligence (AI) into the field of FVCA. AI

refers to computer systems that can learn, infer, synthesize, and

perceive information similar to human cognition. AI is commonly

established on large data sets that serve as training models to produce

mathematical and computational programs; these computational

designs are often based on machine learning (ML) and its subsets

including deep learning (DL), and neural networks, among

other computational methods (Figure 1). More importantly, AI has

recently seen a rapid expansion in capabilities as computational

power has exponentially increased in the past decade; however, these

advancements have yet to translate into the field of FVCA.

Herein, we aim to shed light on the application possibilities of

AI systems in FVCA and discuss future research directions. This

scoping review may provide a fundament to leverage the

innovation of FVCA and the limitless learning capacities of AI.
AI-Aided outcome simulation

Over the past decades, preoperative surgical outcome

simulation has become a vital component of comprehensive

perioperative patient management (9). Preoperative outcome

simulation encompasses visual and statistical prognoses of

surgical procedures. Currently, the combination of patient photo
FIGURE 1

Artificial intelligence (AI) is an umbrella term for various computational strategie
there is no scientific consensus on how to subcategorize AI and classification
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series, mathematical calculation models, in-person consultation,

and the surgeon’s clinical experience still represent the

goldstandard to provide patients with realistic outcome

predictions (10, 11). Yet, AI-aided simulations have been

demonstrated to automatically produce precise prognoses for

various procedures in plastic and reconstructive surgery (9, 12–14).

A 2020 study by Bashiri-Bawil et al. trained an AI-based

computer model to visualize postoperative rhinoplasty results

using 400 patient images (frontal and side view) and 87 facial

landmarks. In a testing set of 20 patients, this approach resulted in

an accuracy level of >80% (15). Similarly, Bottino et al. utilized 125

face profile images to train an AI algorithm on rhinoplasties.

Besides possible outcome visualization, this computer model also

suggested a best-matching face profile based on the patient’s

individual facial characteristics. This automated, yet personalized

approach yielded positive qualitative results with a quantitative

assessment of postoperative attractiveness improvement still

pending (16). A recent study by Mussi et al. introduced an

AI-aided strategy for the preoperative simulation of autologous

ear reconstruction procedures. The authors proposed a semi-

automated workflowvthat integrated AI-based strategies to provide

advanced design and customization techniques for this type of

surgery. The authors further underscored that such easy-to-use

tools may allow for streamlining the production process and

reducing overall treatment costs (17). Persing et al. used the 3D

VECTRA [Canfield, Fairfield, NJ; a 3D photosystem based on
s including machine learning, robotics, or cognitive computing. Note that,
s may vary between different authors.
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visual assessment management software (VAM)] to compare

AI-generated to actual rhinoplasty outcomes. To this end, the

authors enrolled 40 patients and concluded that this simulation

technique is a powerful planning tool for rhinoplasty candidates (18).

However, such concepts cannot be directly transferred to

FVCA, since preoperative outcome simulation needs to integrate

the donor’s and patient’s facial features at the same time.

Subsequently, reliable predictions can only be made once the

donor is identified. Automated facial landmark recognition

systems such as Emotrics (a ML algorithm that automatically

localizes 68 facial landmarks) or 3D VECTRA could be used for

quick and precise facial measurements (19, 20). Following facial

feature recognition (e.g., nasal dorsal humps, prominent

cheekbones) and exact skin color assessment, DL models [e.g.,

convolutional neural networks (CCN)] or VAM-based systems

could generate postoperative FVCA outcome simulation and

support optimal skin color matching. Of note, novel AI-based

models can predict surgical outcomes based on limited datasets

(i.e., less than ten observations per predictor variable) reducing

the time from donor identification to outcome simulation (21).

AI-aided outcome prediction may play a vital role in managing

patients’ expectations given that the number of FVCA performed

worldwide is still limited with large interpatient variabilities. For

example, there has been only one case of a Black FVCA patient

(4). Previous outcome images, therefore, provide little decision

support for the recipient’s preoperative informed consent. Yet,

future studies are warranted to establish an efficient workflow

starting with donor identification over facial feature recognition

to outcome simulation.
AI-Aided intraoperative image-
guidance

The potential advantages of AI are substantial, particularly for

intricate procedures such as FVCA. The degree to which

preoperative planning can be detailed and meticulously executed

largely predicts the potential success of the outcome.

Precision and real-time feedback are essential pillars of

contemporary surgical practice. These elements are considerably

amplified with the integration of AI into intraoperative image-

guidance systems (22). These advanced systems have the

capability to discern minute details that may escape the human

eye or rare anatomical variations (23). For instance, den Boer

et al. proposed a DL algorithm to identify anatomical structures

(e.g., aorta, right lung) based on 83 video sequences. They

calculated accuracy levels of up to 90% underscoring the

potential clinical applicability (24). Hashimoto et al. programmed

an artificial neural network to automatically detect the cystic

duct and artery yielding an accuracy of 95% (25). Such DL

algorithms for landmark identification may help preserve critical

anatomical structures such as the facial nerve, ultimately

improving transplantation outcomes.

During FVCA, the precise fitting of the donor tissue onto the

recipient’s facial structure is paramount for the success of the

procedure (26, 27). AI software can analyze intraoperative images
Frontiers in Surgery 03
in real-time, providing surgeons with detailed instructions and

assisting in for example the precise positioning (22, 23).

Moreover, the precision offered by AI extends beyond simple

visual analysis. AI systems are capable of predicting potential

risks and outcomes with increased accuracy based on patient

history and health records. For instance, Formeister et al.

enrolled 364 patients undergoing head and neck free tissue

transfer to predict surgical complications. To this end, they

trained a supervised ML algorithm to prognosticate surgical

complications using 14 clinicopathologic patient characteristics

(e.g., age, smoking pack-years). The ML algorithm yielded a

prediction accuracy of 75% (28). Further, a meta-analysis

including 13 studies concluded that CNN are sensitive and

specific tools to capture intraoperative adverse events (e.g.,

bleeding, perfusion deficiencies) (29). These features aid surgeons

in making precise and informed decisions during critical phases

of the operation.

Real-time feedback plays a significant role during surgery, a role

that might be efficiently fulfilled by AI-integrated intraoperative

imaging systems. These systems provide surgeons with real-time

data, enabling immediate adjustments to their surgical approach,

which can prove invaluable during complex procedures like FVCA

(30). More precisely, Nespolo et al. enrolled ten

phacoemulsification cataract surgery patients and trained a deep

neural network (DNN) based on the intraoperative video

sequences. The DNN showed an area under the curve of up to 0.99

for identifying different surgical procedure steps such as

capsulorhexis and phacoemulsification with a processing speed of

97 images per second (31). Studier-Fischer et al. trained a DNN on

9,059 hyperspectral images from 46 pigs to test its intraoperative

tissue detection accuracy. The authors calculated accuracy levels of

95% when automatically differentiating 20 organ and tissue types

(32). In another study of nine thyroidectomy patients, Maktabi

et al. programmed a supervised ML classification algorithm to

automatically discriminate the parathyroid, the thyroid, and the

recurrent laryngeal nerve from surrounding tissue and surgical

instruments. The mean accuracy was 68% ± 23% with an image

processing time of 1.4 s (33). However, such intraoperative

approaches should still be considered add-ons to the surgeon’s

real-time feedback rather than making hands-on experience

obsolete.
AI-Aided diagnosis and prediction of
rejection episodes

Despite distinct advancements in the perioperative patient

management including more patient-specific risk profiles, novel

biomarkers, and targeted immunosuppressants, allograft rejection

persists as a major burden in transplant surgery still affecting

more than 15% of solid organ transplant (SOT) patients (34, 35).

More precisely, acute rejection reactions occur in approximately

30% of liver, 40% of heart, and 33% of renal transplant

recipients resulting in increased mortality rates, delayed graft

function, and poor long-term outcomes (36–38). While tissue

histopathology assessment represents the goldstandard for graft
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rejection diagnosis, it poses the downsides of low reproducibility

and high inter-observer variability and has been shown to be

inefficient for assessing graft steatosis, (i.e., a clinical parameter

for predicting post-transplant graft function) (39, 40).

In SOT, ML and DNN (especially CNN) have been successfully

investigated to identify risk patients for transplant rejection.

Thongprayoon et al. performed ML consensus cluster analysis for

22,687 Black kidney transplant recipients identifying four distinct

clusters. Interestingly, the authors found that the risk for

transplant rejection was significantly increased in highly

sensitized recipients of deceased donor kidney retransplants and

young recipients with hypertension (41). In liver transplantation,

Zare et al. programmed a feed-forward neural network (i.e., a

type of artificial neural network where information flows in one

direction from input to output) based on laboratory values and

clinical data from 148 recipients. The network outperformed

conventional logistic regression models in predicting the risk of

acute rejection seven days after transplant, with 87% sensitivity,

90% specificity, and 90% accuracy and correctly determined eight

out of ten acute rejection patients and 34 out of 36 non-rejection

ones in the testing set (42). The combination of different AI

methods (i.e., ML and DNN) and microarray analysis also have

been deployed to detect molecular signatures correlating with

rejection patterns in lung transplant transbronchial biopsies and

heart transplant recipients. Given the patterns’ complexity, such

prediction pathways only have become available since the advent

of AI and the ability to make sense of enormous data set

(43–45). Further, CNN have been demonstrated to facilitate the

diagnostic workflow for transplant rejection. Abdeltawab et al.

merged data from 56 patients (e.g., diffusion-weighted MRI

images and clinical biomarkers such as creatinine clearance and

serum plasma creatinine) to predict kidney graft rejection with

an accuracy of 93%, sensitivity of 93%, and specificity of 92% (46).

Across the different vascularized composite allograft (VCA)

surgery subtypes, 85% of VCA patients experience at least one

rejection episode one year post transplantation with more than

50% of cases reporting multiple rejection episodes (47). Such

episodes can lead to irreversible loss of graft function and

represent a major hurdle for integrating FVCA surgery into

routine clinical care (48). Current diagnosis protocols

recommend a prompt biopsy and histologic examination in case

of suspicious cutaneous changes. For histologically confirmed

rejection reactions, immediate steroid bolus administration and/

or other immunosuppressants are commonly administered (49).

Besides a more standardized method for prediction and diagnosis

of FVCA rejection, AI models could allow for non-invasive graft

examination based on distinct macroscopic changes typical of

transplant rejection (e.g., a maculopapular erythematous rash of

varying color intensities) (50–52). For instance, a CNN classifier

could be trained based on FVCA patient images to detect

rejection episodes. Skin photographs of patients with transplant

rejection compared to healthy individuals may serve as input

data (48, 53, 54). Alternatively, patient mucosa photographs

could be utilized for training purposes since the mucosal tissue

was recently identified as one of the primary target sites for

rejection episodes by Kauke-Navarro et al. (2, 55). Given the
Frontiers in Surgery 04
limited number of FVCA procedures, researchers may integrate

data augmentation techniques such as flipping (i.e., horizontally

or vertically mirroring an image or data point), shearing (i.e.,

distorting the image by tilting it in a specific direction), or color

channel shifting (i.e., altering the intensity of individual color

channels in the image) (56, 57). Further, computer vision (CV)

could be used to extract visual data from patient images or

videos. Following image classification, detection, and recognition,

CV may autonomously analyze and interpret signs of VCA

rejection (58, 59). Moreover, AI technology (e.g., CNN) may

support large data storage and maintenance through automatized

deduplication and error detection, ultimately leading to a more

holistic approach to rejection prediction and diagnosis. Such a

database could integrate genetic, metabolomic, immunoproteomic,

histological variables, and laboratory values to leverage their

diagnostic and predictive value (60, 61).
AI-Aided malignancy screening

Cancer represents a widely recognized complication of both

SOT and VCA, since there is a two to four-fold elevated risk of

malignancies following organ transplant. Remarkably, transplant

recipients are at a 100-fold higher risk for developing skin cancer

(62). While the exact mechanisms are still under investigation,

immunosuppressants have been linked to an increased incidence

of cancer in transplant recipients when compared to age-

matched control groups (63). Of note, different regimes of

immunosuppressants resulted in comparable cancer rates (64).

Therefore, follow-up guidelines commonly include routine check-

ups such as skin examinations (65). Yet, there are various

barriers for access to such dermatologic care (e.g., long wait

times, lack of specialized transplant dermatologists, long travel

distances) and aftercare in general that reduce patient compliance

and the effectiveness of follow-up care (66).

AI technology (especially CNN and DL) has been shown to

provide a versatile and precise screening platform for diverse

cancer entities and detect mammographic abnormalities with

comparable accuracy to radiologists and reduce radiologist

workloads (67–70). Yi et al. programmed DeepCAT (a DL

platform) including two key elements for mammogram suspicion

scoring: (1) discrete masses and (2) other image features

indicative of cancer, such as architectural distortion. The authors

used a training set of 1,878 2D mammographic scans. The model

classified 315 out of 595 images (53%) as “low priority”. Notably,

none of these low-priority images contained any tumorous

malignancies (71). Moreover, Kulkarni et al. used digital

pathology images of 108 breast cancer patients to predict disease-

specific survival. The authors reported an area under the curve of

0.90 in their testing set which consisted of 104 patients. Based on

this cut-off, the CNN model could reliably assess the disease-

specific survival (72). Lotter et al. developed a DL-aided

diagnostic tool to effectively screen mammographies. Strikingly,

the algorithm outperformed five radiologists, each fellowship-

trained in breast imaging, on a cancer-enriched dataset. The

algorithm resulted in an absolute increase in sensitivity of 14%
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and specificity of 24%, respectively. Further, the AI-based approach

showed promising potential to detect interval cancers (increase in

sensitivity of 18%; increase in specificity of 16%) (73). Tschandl

et al. further used ML to categorize skin neoplasia. When

comparing the screening accuracy of 511 human evaluators

(dermatologists, general practitioners) to the AI model, the

authors found that the algorithm yielded a significantly higher

accuracy. Interestingly, the AI platform even outperformed

dermatologists with more than ten years of clinical experience

(74). For skin cancer screening, AI yielded an average accuracy

value of 87% (with a maximum of 99% and a minimum of 67%)

(75–79). Further, Pham et al. programmed a ML platform, based

on 17,302 images of melanoma and nevus. The model

performance was compared to that of 157 dermatologists from

twelve university hospitals in Germany. The authors reported

that the AI-based screening approach yielded a sensitivity of

85%, and specificity of 95%, ultimately outperforming all human

evaluators (80). DL has also been demonstrated to reliably detect

soft tissue sarcomas using 506 histopathological slides from 291

patients. The screening program showed an accuracy of 80% in

diagnosing the five most common soft tissue sarcoma subtypes,

as well as significantly improving the accuracy of the pathologists

from 46% to 87% (81).

Following FVCA, one transplant recipient patient was

diagnosed with basal cell carcinoma of the native facial skin six

years post-transplant, while another FVCA patient presented with

a B cell lymphoma which was treated with rituximab,

cyclophosphamide, vincristine, doxorubicin, and prednisolone

(82). Despite the successful treatment of the lymphoma, the

patient was diagnosed with posttransplant-related liver tumors

(83). Vice versa, there were also two cases of patients who

underwent FVCA because of their cancer disease. The first was a

Chinese patient with advanced melanoma who received a graft

including the scalp and both ears. Of note, the long-term
FIGURE 2

The combination of artificial intelligence and facial vascularized composite
outcome simulation, prediction and diagnosis of rejection episodes, and canc
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outcome of this case remains unreported (84). The other case

involved a 42-year-old, HIV-positive male from Spain. While

pseudosarcomatous spindle cell proliferation was diagnosed eleven

months postoperatively and successfully treated, the patient

ultimately died of a transplant-related lymphoma (85). AI

technology carries promising potential to address this medical

complication by facilitating posttransplant screening examinations

and allowing for more frequent follow-up checks. Given that

FVCA still remains a novel procedure with a specific indication,

AI-aided cancer screening could also accelerate the examiner’s

diagnosis-making, thus leveraging AI and the limited human

clinical experience. This semi-automated, human-controlled

pathway may represent a valuable alternative to fully automatized

strategies when discussing possible liability issues (Figure 2) (86).
Discussion

FVCA has emerged as a novel and versatile reconstructive

technique to provide adequate therapy for patients with

devastating facial wounds and trauma (61, 87). While the

surgical outcomes have proven its effectiveness, further steps are

needed to streamline the perioperative workflow in FVCA

surgery, thus broadening access to this type of surgery and

increasing the work volume (7). Further research is needed to

overcome persisting hurdles in the field. For instance, AI

performance is based on access to patient datasets used for

training. However, recent research has underpinned that AI

algorithms could be susceptible to data security breaches (88).

Given that FVCA involves highly sensitive patient information

that allows to identify FVCA patients, any data breach could

have severe ethical and legal implications. Therefore, the

integration of AI into the field of FVCA calls for comprehensive

data security strategies at the same time. Moreover, Obermeyer
allotransplantation carries promising potential in advancing preoperative
er screening.
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et al. revealed racial disparities in a state-of-the-art U.S. healthcare

algorithm. The authors found that Black patients were in

significantly poorer condition compared to White patients

assigned the same level of risk by the algorithm, ultimately

reducing the number of Black patients receiving extra care by

∼50% (89). Our group has recently highlighted the risk of racial

disparities in FVCA patients (90). Therefore, FVCA providers

should be sensitized on AI technology potentially catalyzing

racial inequities. To this date, FVCA surgery still represents a

highly individualized and resource-intensive therapy concept.

Therefore, AI could help reduce work costs and time, as well as

address persisting challenges in this uprising field such as

outcome simulation, rejection detection, and postoperative cancer

screening. This line of research may serve as the fundament for

large-scale studies investigating possible points of leverage

between FVCA and different AI concepts. Future research areas

may include the use of AI in personalized drug therapy following

FVCA. AI algorithms such as neural networks are being used to

tailor drug regimens (i.e., drug combinations, drug dosages) in

liver transplantation patients (NCT03527238). This approach

could reduce the therapy-induced side effects after FVCA and

expand the FVCA recipient pool onto patients with severe

preexisting comorbidities resulting in complex drug interaction

(91). In addition, AI-driven natural language processing systems

could facilitate remote monitoring of FVCA patients. There is

evidence that AI-supported telemedicine helps improve patient-

reported outcomes in chronic disease care (e.g., diabetes mellitus

type II, malignancies) (92, 93). Currently, at least 23 U.S.

institutions have established FVCA programs with some patients

traveling long-distance for pre- and postoperative clinic visits

(94). Long distances between healthcare providers and patients

have been demonstrated to reduce compliance leading to poorer

postoperative outcomes (95). AI-powered telemedicine may fill in

this healthcare gap facilitating closer perioperative FVCA patient

management. Overall, the symbiosis of FVCA and AI carries
Frontiers in Surgery 06
untapped potential for improving patient healthcare and

advancing this revolutionary surgical approach.
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