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Introduction: This paper presents an innovative Intelligent Robot Sports

Competition Tactical Analysis Model that leverages multimodal perception

to tackle the pressing challenge of analyzing opponent tactics in sports

competitions. The current landscape of sports competition analysis necessitates

a comprehensive understanding of opponent strategies. However, traditional

methods are often constrained to a single data source or modality, limiting their

ability to capture the intricate details of opponent tactics.

Methods: Our system integrates the Swin Transformer and CLIP models,

harnessing cross-modal transfer learning to enable a holistic observation and

analysis of opponent tactics. The Swin Transformer is employed to acquire

knowledge about opponent action postures and behavioral patterns in basketball

or football games, while the CLIP model enhances the system’s comprehension

of opponent tactical information by establishing semantic associations between

images and text. To address potential imbalances and biases between these

models, we introduce a cross-modal transfer learning technique that mitigates

modal bias issues, thereby enhancing the model’s generalization performance on

multimodal data.

Results: Through cross-modal transfer learning, tactical information learned from

images by the Swin Transformer is e�ectively transferred to the CLIP model,

providing coaches and athletes with comprehensive tactical insights. Our method

is rigorously tested and validated using Sport UV, Sports-1M, HMDB51, and

NPU RGB+D datasets. Experimental results demonstrate the system’s impressive

performance in terms of prediction accuracy, stability, training time, inference

time, number of parameters, and computational complexity. Notably, the system

outperforms other models, with a remarkable 8.47% lower prediction error (MAE)

on the Kinetics dataset, accompanied by a 72.86-second reduction in training

time.

Discussion: The presented system proves to be highly suitable for real-time sports

competition assistance and analysis, o�ering a novel and e�ective approach for

an Intelligent Robot Sports Competition Tactical Analysis Model that maximizes

the potential of multimodal perception technology. By harnessing the synergies

between the Swin Transformer and CLIP models, we address the limitations of

traditional methods and significantly advance the field of sports competition

analysis. This innovative model opens up new avenues for comprehensive tactical

analysis in sports, benefiting coaches, athletes, and sports enthusiasts alike.
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intelligent robot, multimodal perception, Swin Transformer, CLIP model, cross-modal
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1. Introduction

With the advancement of sports competition levels, in-

depth analysis of the opponent’s tactics has become the key

to winning games. A profound understanding of each other’s

strategies provides a more effective competitive strategy (Pan,

2022). However, current analysis methods are primarily based on

a single data source, such as video replays or simple statistics,

often failing to provide a comprehensive tactical portrait of

the opponent. Additionally, traditional analysis methods often

overlook the value of multi-modal data, such as text descriptions

and athlete action data, which can offer rich contextual information

for tactical analysis. Due to these limitations, current tactical

analysis methods often fall short of meeting the demands of

high-level competitive sports. With the rapid development of

artificial intelligence technology, innovative, and practical research

approaches in the field of tactical analysis have emerged, driving the

development, and application of intelligent sports assistance (Olan

et al., 2022).

In past research, scholars have explored different deep learning

ormachine learningmodels to construct sports competition tactical

analysis model. For instance, Wenninger et al. (2020) employed

Convolutional Neural Networks (CNNs) to recognize players’

poses in basketball games, assisting coaches in tactical analysis

and decision-making. However, this method exhibits limitations

in handling complex scenarios and multimodal information,

resulting in inaccuracies due to inadequate consideration of

player interactions. To address these shortcomings, Tabrizi et al.

(2020) proposed an improved LSTM model for intelligent robot

motion assistance training system. Through the training and

testing of the table tennis player’s forehand hitting signal, the

player’s next hitting state is predicted. Although this method

predicts the commonly used hitting state of players to a certain

extent, it shows low efficiency when processing long sequences,

and does not work well when processing large amounts of

image data.

In recent years, researchers have explored the application of

Transformer models in the Intelligent Robot Sports Assistant

Training System. Yuan et al. (2021) introduced the Vision

Transformer (ViT) model, transforming image data into

sequences for processing and achieving excellent image feature

representation. However, this method faced computational

and storage resource pressures when dealing with large-

sized images, limiting its practical application in real sports

competition scenarios.

To overcome these challenges, this paper proposes an

intelligent robot sports competition tactical analysis model based

on multi-modal perception. Firstly, we introduce the Swin

Transformer (Liu et al., 2021) and CLIP models (Park et al.,

2023) to achieve comprehensive observation and analysis of

opponent tactics through multi-modal perception techniques.

Secondly, we adopt cross-modal transfer learning (Wang and

Yoon, 2021) to transfer opponent tactical information learned

from images to the text modality, thereby enhancing the system’s

semantic understanding between images and texts. Finally, we

establish a multi-modal tactical analysis and reasoning framework

to predict opponent strategies and behavior patterns, providing

coaches and athletes with richer and more accurate tactical

decision support.

The contribution points of this paper are as follows:

• Introducing multi-modal perception techniques to enhance

observation and analysis of opponent tactics.

• Adopting cross-modal transfer learning to improve the

semantic understanding between images and texts.

• Establishing a multi-modal tactical analysis and reasoning

framework, providing coaches and athletes withmore accurate

tactical decision support. Through these efforts, we aim to

offer new insights and methods for the development and

application of the Intelligent Robot Sports Assistant Training

System, driving continuous improvement in intelligent sports

competition levels.

2. Related work

Compared to methods based on graph node-edge

processing (Yun et al., 2019; Kong et al., 2022) and multi-

view approaches, methods based on Graph Neural Networks

(GNNs; Ning et al., 2023) directly utilize graphs to capture

relationships and interactions between entities in a given domain.

GNNs can be employed for comprehensive analysis of context-

aware motion data (Sanford et al., 2020; Ning et al., 2023),

providing a deeper understanding of opponent movements

and deployed strategies, ultimately supporting better decision-

making. They exhibit high flexibility and scalability (Victor

et al., 2021), making them suitable for capturing complex and

dynamic interactions in various sports competitions. However,

the performance of GNNs heavily relies on the completeness

and quality of graph data (Maglo et al., 2022). Without a clear,

complete, and accurate graphical representation, the model may

fail to capture key inter-entity relationships, which may make it

difficult for the model to understand the tactical relationships

between opposing players.

Recently, Generative Adversarial Networks (GANs) have

shown significant potential in fields like computer vision,

improving the performance of action recognition models through

the generation of realistic synthetic motion videos (Wang et al.,

2019). GANs have the capability to generate simulated game

scenarios, demonstrating strong generalization ability (Dash et al.,

2021; Hong et al., 2021), and providing valuable analysis imagery

for tactical analysis. However, they suffer from the issue of “mode

collapse,” where the generator may continuously produce highly

similar outputs, limiting the diversity of generated data (Liu

et al., 2020), which could hinder the understanding of tactical

relationships between opposing players.

Furthermore, recent approaches utilize Transformer-like

networks (Nweke et al., 2018) to capture critical information

through self-attention, enabling them to capture temporal

and spatial dependencies within video frames and enhance action

recognition performance in dynamicmotion scenes (Li et al., 2020).

The Attention Mechanism for Action Recognition (ATTET) is

capable of handling multi-modal input information and efficiently

integrating information from these diverse sources (Pareek and

Thakkar, 2021; Chen and Ho, 2022), further improving the

accuracy of action recognition in sports videos. The temporal

attention mechanism in ATTET ensures that the model focuses

on the most relevant frames, making it robust to changes in
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action speed and duration commonly encountered in sports

competitions (Chen et al., 2021; Yao et al., 2023). The spatial

attention mechanism allows ATTET to selectively concentrate on

relevant regions within video frames, effectively reducing noise

and improving the model’s discriminative power (Liu Z. et al.,

2022; Li et al., 2023). However, introducing attention mechanisms

in ATTET may increase computational complexity, limiting

the model’s transparency, especially in low-quality or complex

background scenarios, making it challenging to apply the model to

sports competition videos (Ma et al., 2022).

3. Methodology

3.1. Overview of our network

We propose an intelligent robot Sports competition tactical

analysis model based on multimodal perception. The overall

process, as depicted in Figure 1. This system leverages the

Swin Transformer and CLIP models and employs cross-modal

transfer learning to observe and analyze opponent tactics in

sports competitions. The Swin Transformer is utilized to learn

tactical information from opponent’s dynamic video images,

capturing their movement postures and behavior patterns in

basketball or football games. Meanwhile, CLIP establishes semantic

associations between images and texts in a shared latent space,

enhancing the system’s ability to understand and analyze the

opponent’s tactical information. By utilizing cross-modal transfer

learning, the tactical information learned by Swin Transformer

from images is effectively transferred to the CLIP model,

providing coaches, and athletes with comprehensive tactical

insights.

Swin Transformer, equipped with a layered attention

mechanism, effectively captures local and global information from

images, empowering robust feature extraction. In our system,

Swin Transformer learns the opponent’s movement postures and

behavior patterns in basketball or football games. CLIP, pre-trained

on a text description dataset, establishes semantic associations

between images and text in a shared latent space. The CLIP model

successfully maps images and texts to the same space, enabling

semantic retrieval andmatching. It plays a crucial role in fusing text

information to further enhance the system’s ability to understand

and analyze opponent tactical information. Through cross-modal

transfer learning, the opponent’s tactical information learned from

images by Swin Transformer is transmitted to the CLIP model,

significantly enhancing CLIP’s ability to understand the association

between images and text. This process allows the system to more

effectively analyze the opponent’s tactical strategy and behavior

patterns.

We integrate the trained Swin Transformer and CLIP models

into an auxiliary training system for intelligent robot sports

competitions. The system receives image and text data from

sports competition scenes, extracting image features through Swin

Transformer, and using CLIP to carry out semantic associations

between images and text. This integration enables the system to

effectively observe and analyze opponent tactics. By conducting

comprehensive analysis of image and text data, coaches, and

athletes gain valuable insights into the opponent’s possible tactical

strategies and behavior patterns, providing robust support for

decision-making and response during competitions.

3.2. Swin transformer

Swin Transformer is a deep learning model based on

the Transformer architecture, specifically designed for image

processing tasks. In contrast to the traditional Transformer model,

Swin Transformer introduces a layered image processing strategy

utilizing block and window methods to efficiently handle large-size

images (Li and Bhanu, 2023). This approach significantly improves

calculation speed and performance, particularly when processing

high-resolution images, while maintaining memory efficiency. An

overview of the Swin Transformer process can be seen in Figure 2.

The fundamental principle of Swin Transformer lies in

achieving image feature extraction and representation learning

through a multi-layer Self-Attention mechanism. It divides

the image into fixed-size blocks and conducts Self-Attention

operations within each block to capture local image features.

Subsequently, interaction between different blocks is achieved

through windowing, enabling the extraction of global image

features. This multi-layer process occurs within a Transformer

encoder, gradually learning higher-level image representations.

Within the intelligent robot sports competition tactical analysis

model, Swin Transformer is employed to learn the opponent’s

image tactical information, such as observing the opponent’s

movement posture and behavior patterns in basketball or football

games. Leveraging its efficient and high-performance features, Swin

Transformer adeptly processes a substantial amount of image data

and extracts rich image features, providing robust support for

observing and analyzing opponent tactics.

The Swin Transformer model is represented by the following

Equation (Chen and Mo, 2023):

Multi-head Self-Attention(Query, Key, Value) =

softmax

(

Query·KeyT√
dk

)

· Value (1)

Here, Query, Key, and Value represent the input Query, Key,

and Value vectors, respectively. dk denotes the dimension of the

Query and Key vectors, and softmax refers to the softmax function.

Specifically, Query serves as the query vector to find the relevant

Key and Value, while Key acts as the key vector to compute the

relevance score between the Query and Key vectors. The Value

vector is then weighted according to the relevance score to obtain

the final output.

In the Swin Transformer, the Multi-head Self-Attention is

a crucial step in implementing the self-attention mechanism. It

calculates the relevance score between Query and Key vectors

and then uses this score to perform a weighted average of the

Value vectors, yielding the final output. Through multiple layers

of self-attention operations, the Swin Transformer can capture

both local and global features of images, achieving efficient, and

accurate image feature extraction. The formula for Multi-head

Self-Attention is as follows:

The input Query, Key, andValue are represented asQ ∈ R
N×dq ,

K ∈ R
N×dk , and V ∈ R

N×dv , respectively, where N denotes
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FIGURE 1

Overall flow chart of the model.

FIGURE 2

Flow chart of the Swin Transformer model. (A) Architecture of Swin Transformer (Swin-T). (B) Two consecutive Swin Transformer blocks. 3D W-MSA

and 3D SW-MSA are multi-head self-attention modules with regular and shifted window configurations respectively.

the sequence length, and dq, dk, and dv represent the feature

dimensions of Query, Key, and Value. The multi-head attention

mechanism maps the input Query, Key, and Value to h subspaces,

where self-attention calculations are performed for each subspace.

Assuming the dimension of each subspace is dhead = dk
h
, the

computation formula for Multi-head Self-Attention is as follows:

Multi-head Self-Attention(Q,K,V) =
Concat(head1, head2, ..., headh) ·WO (2)

Here, headi = Attention(QWQ
i ,KW

K
i ,VW

V
i ) represents the

attention calculation for the i-th subspace, where WQ
i ∈ R

dq×dhead ,

WK
i ∈ R

dk×dhead , and WV
i ∈ R

dv×dhead are the weight matrices

for linear mapping in the i-th subspace, and WO ∈ R
h·dhead×dv

represents the output mapping weight matrix.

Attention(Q,K,V) denotes the standard Scaled Dot-Product

Attention calculation, which is formulated as:

Attention(Q,K,V) = softmax

(

QKT

√

dhead

)

V (3)
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In the Swin Transformer, the parallel computation

through the multi-head attention mechanism effectively

captures both local and global features of the image,

thereby improving the efficiency and accuracy of

feature extraction.

3.3. CLIP model

CLIP (Contrastive Language-Image Pretraining); Tevet

et al. (2022) is a multimodal learning model introduced by

OpenAI. Its fundamental principle involves learning from the

contrast between images and texts, enabling both modalities

to share the same embedding space for cross-modal semantic

understanding and matching (Wang et al., 2022). The primary

objective of CLIP is to bring images and texts from the same

semantic category closer together in a shared embedding

space, while keeping images and texts from different semantic

categories farther apart. This semantic alignment allows

CLIP to convert and match images and texts with each other

effectively. An overview of the CLIP process can be seen in

Figure 3.

In the intelligent robot Sports competition tactical analysis

model, CLIP plays a crucial role in aligning the opponent’s tactical

information learned from images with the tactical information

acquired from text, thereby enhancing the understanding and

analysis of opponent tactics. Leveraging CLIP, intelligent robots

can achieve semantic matching between images and texts, enabling

speculation on possible tactical strategies and behavior patterns of

opponents. Consequently, coaches and athletes receive richer and

more accurate tactical decision support. The formula for CLIP is as

follows:

The input image feature is represented by I ∈ R
N×d, where N

denotes the number of images, and d represents the dimension of

the image feature. Similarly, the input text features are denoted by

T ∈ R
M×d, where M signifies the number of texts, and d indicates

the dimension of the text features. CLIP aims to minimize the

contrast loss between images and texts, facilitating the proximity

of images and texts from the same semantic category in the

embedding space, and ensuring a larger distance between images

and texts from different semantic categories.

For image and text features, CLIP employs a standard

contrastive loss function as follows (Shen S. et al., 2021):

LCLIP = − 1

N

N
∑

i=1

log
exp(si,i)

∑M
j=1 exp(si,j)

− 1

M

M
∑

j=1

log
exp(sj,j)

∑N
i=1 exp(si,j)

(4)

Here, si,j = Ii·Tj
‖Ii‖2·‖Tj‖2 represents the cosine similarity between

the image feature Ii and the text feature Tj.

CLIP minimizes the contrastive loss function to optimize the

semantic matching between images and texts. This process ensures

a reasonable distribution of distances between them in the shared

embedding space, facilitating semantic alignment, and matching of

multimodal information.

3.4. Cross-modal transfer learning

Cross-modal transfer learning is a form of multi-modal transfer

learning method that leverages a shared model, such as an

image-based model, for knowledge transfer to enhance high-level

modeling capabilities and performance (Zhen et al., 2020). An

overview of the Cross-Transfer Learning process can be seen in

Figure 4.

The image features are denoted as I ∈ R
N×d1 , where N is the

number of displayed images, and d1 represents the image feature

dimension. The text features are represented by T ∈ R
M×d2 , where

M is the number of displayed texts, and d2 signifies the text feature

dimension. As both image and text features can be represented in a

shared embedding space, a linear projection matrixW ∈ R
d1×d2 is

used to map image features to text feature space. By minimizing the

distance between the projected image features and the original text

features.

The Cross-modal transfer learning loss function is defined as

follows:

Lcross-transfer =
1

N

N
∑

i=1

∥

∥Ii −W · Tij

∥

∥

2

2
(5)

Here, Ii represents the feature of the i-th image, Tij represents

the feature of the ith text and the feature of the jth image, andW is

the linear mapping matrix to be learned.

By minimizing the Cross-modal transfer learning loss function,

feature transfer from images to texts is achieved, enhancing

the system’s semantic understanding of the relationship between

images and texts. Consequently, this improvement enhances the

observation and analysis capabilities of the intelligent robot sports

assistant training system regarding opponent tactics.

4. Experiment

4.1. Datasets

This section provides an overview of the datasets used in the

cross-modal transfer learning algorithm, along with details of their

preprocessing.

The Sports-1M dataset (Carreira and Zisserman, 2017)

represents an extensive collection of sports video clips covering

a wide array of sports disciplines, including basketball, football,

soccer, tennis, among others. Its primary utility lies in facilitating

tasks related to sports action recognition, behavior analysis,

and tactical comprehension. Each video clip within the dataset

encompasses diverse sports actions, such as passing, shooting,

running, defending, and more. Preliminary data preprocessing

steps involved the selection of relevant clips and standardization

of resolution and format. The Sports-1M dataset serves as

a foundational resource for the cross-modal transfer learning

algorithm, offering a diverse range of sports scenarios and

annotated actions for model training and evaluation.

The SportVU dataset (Korbar et al., 2019) is an extensive

sports tracking dataset that leverages high-resolution cameras

and multi-sensor tracking technology. Although it covers

various sports, the primary focus centers on basketball due
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FIGURE 3

Flow chart of the CLIP model.

FIGURE 4

Flow chart of the Cross-Transfer Learning model.

to its comprehensive representation within the dataset. In

preparation for the cross-modal transfer learning algorithm,

detailed information pertaining to player positions, movements,

trajectories, velocities, accelerations, and more was extracted

from the raw data. This involved meticulous data alignment

and synchronization procedures. The dataset’s high spatial

and temporal resolution empowers fine-grained analyses

of player actions, tactical patterns, and team strategies,
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making it a valuable asset for the cross-modal transfer

learning approach.

The NPU RGB+D dataset (Yang et al., 2019) is a unique multi-

modal dataset that combines RGB (color) and depth information

for sports action analysis across various sports, including

basketball and football. Data preparation steps encompassed the

synchronization of RGB videos with corresponding depth maps,

ensuring temporal alignment. The incorporation of depth data

within the dataset enhances the accuracy and robustness of action

recognition algorithms. The NPU RGB+D dataset plays a pivotal

role in the study, enabling exploration of the potential of depth-

based features within the domain of sports-related tasks.

4.2. Experimental details

In this paper, four data sets are selected for training, and the

training process is as follows:

Step1: Data preprocessing

In the sports competition video dataset, the presence of

noisy, missing, or inconsistent data is common. Data cleaning is

essential to address these issues and ensure the overall quality and

consistency of the dataset. This involves deduplicating records,

handling missing values, and correcting data errors, among other

tasks. Additionally, the data is formatted into a standardized

structure to facilitate subsequent processing and model training.

Sports competition video data typically encompass a wealth of

both image and text information. During the data preprocessing

stage, relevant features must be extracted from the raw data and

preprocessed to meet the model’s input requirements. For image

data, techniques such as image enhancement, cropping, and scaling

are employed to derive valuable image features. Similarly, text

information undergoes processing steps such as text cleaning, word

segmentation, and encoding to facilitate subsequent cross-modal

transfer learning and model training.

By addressing these two aspects of data preprocessing, we can

ensure data quality and availability, providing well-suited inputs for

subsequentmodel training and evaluation. This proves to be pivotal

in constructing an effective auxiliary training system for intelligent

robot sports competitions.

Step2:Model training

Upon defining the architecture of the combined model, we

proceed with the model training process. This comprehensive

procedure involves loading the pre-trained parameters of the Swin

Transformer and CLIP modules, as well as performing cross-modal

transfer learning.

Initially, the pre-trained parameters of both the Swin

Transformer and CLIP modules are loaded. These models

have undergone training on large-scale datasets, acquiring

rich representations from images and text. Subsequently, we

meticulously prepare the training dataset, encompassing both

image and text data, and ensure proper formatting and pre-

processing before feeding it into the model. In this crucial step,

we execute cross-modal transfer learning, unifying knowledge

from the Swin Transformer and CLIP modules. Specifically, the

Swin Transformer processes image data, while the CLIP module

processes text data. The outputs from both modules are then fused

and mapped, generating a joint representation that amalgamates

image and text information.

Once the cross-modal transfer learning is accomplished, we

compile the combined model with an appropriate loss function,

optimizer, and evaluation metrics. The loss function serves as a

guide, minimizing the discrepancy between predicted outputs and

ground truth labels during training. The training process utilizes

the prepared dataset to train the combined model. During this

phase, the data flows through the Swin Transformer and CLIP

modules, as well as the cross-modal transfer learning module. The

resulting outputs are then combined and forwarded to the output

layer for prediction. Finally, upon completing the training process,

the trained combined model is saved to disk for subsequent use in

sports competition assistance and analysis.

Step3:Model Evaluation

After completing the model training, the next crucial step is the

comprehensive evaluation of the model’s performance. We employ

a range of metrics to assess the accuracy and stability of the model’s

predictions. The key evaluation metrics include Mean Absolute

Error (MAE), Mean Absolute Percentage Error (MAPE %), Root

Mean Squared Error (RMSE), and Mean Squared Error (MSE).

These metrics enable us to quantify the prediction errors and

provide valuable insights into the model’s predictive capabilities.

In addition to the above metrics, we also measure the model’s

training time, which denotes the duration required to train the

model on the training dataset. Furthermore, we evaluate the

inference time, which represents the time taken by the model

to make predictions on new data or perform inference tasks.

These time measurements offer valuable information about the

model’s efficiency in real-time applications. Moreover, we assess the

model’s parameter count, which indicates the number of learnable

parameters in the model. A lower parameter count suggests a

more compact and potentially more interpretable model. Lastly,

we analyze the computational complexity, which gives us insights

into the amount of computational resources required during both

model training and inference. Lower computational complexity

signifies higher efficiency and scalability, making the model more

feasible for practical deployment.

By conducting a comprehensive evaluation with a diverse set

of metrics, we gain a thorough understanding of the model’s

performance, robustness, and efficiency, enabling us to make

informed decisions for sports competition assistance and analysis

applications.

Step4: Result analysis

The experiments encompassed a comparison of different

models, including Swin Transformer, CLIP, and the cross-

modal transfer learning model. Several evaluation indicators were

employed to assess the models’ performance, namely, Mean

Absolute Error (MAE), Mean Absolute Percentage Error (MAPE

%), Root Mean Squared Error (RMSE), and Mean Squared Error

(MSE).

The meaning and formulas of these evaluation indicators are as

follows:

1. MAE (Mean Absolute Error):

MAE = 1

n

n
∑

i=1

|yi − ŷi| (6)
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MAE measures the average absolute difference between the

predicted values (ŷi) and the true values (yi). It evaluates themodel’s

prediction accuracy.

2. MAPE (%) (Mean Absolute Percentage Error):

MAPE = 1

n

n
∑

i=1

∣

∣

∣

∣

yi − ŷi

yi

∣

∣

∣

∣

× 100 (7)

MAPE calculates the average absolute percentage error between

the predicted values and the true values. It assesses the model’s

relative accuracy.

Input: Training dataset: Sports-1M, SportVU, NPU

RGB+D Dataset

Output: Trained SC-Transfer Net

Initialize Swin Transformer model parameters;

Initialize CLIP model parameters;

Initialize cross-modal transfer learning model

parameters;

Initialize optimizer and loss function;

while not convergence do

for each batch in the training dataset do

Retrieve image and text data from the batch;

// Forward pass

Pass image data through Swin Transformer

model to obtain image embeddings;

Pass text data through CLIP model to obtain

text embeddings;

Fuse image and text embeddings using

cross-modal transfer learning;

Compute the joint representation of the

data;

// Compute loss

Compute loss using the joint representation

and ground truth labels;

// Backward pass

Calculate gradients and update model

parameters using the optimizer;

end

end

// Evaluation

Evaluate the trained SC-Transfer Net using

validation dataset;

Compute evaluation metrics: MAE, MAPE(%), RMSE,

MSE;

// Save model

Save the trained SC-Transfer Net to disk;

Algorithm 1. SC-transfer net training.

3. RMSE (Root Mean Squared Error):

RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)2 (8)
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FIGURE 5

Comparison of di�erent metrics for di�erent models.

RMSE represents the square root of the average of the squared

differences between the predicted values and the true values. It

measures the model’s prediction stability.

4. MSE (Mean Squared Error):

MSE = 1

n

n
∑

i=1

(yi − ŷi)
2 (9)

MSE calculates the average of the squared differences between

the predicted values and the true values. It provides insights into

the model’s prediction accuracy and stability.

The impact of this research is significant for the application

of intelligent robot sports competition assistant training systems.

By effectively leveraging multi-modal perception, the proposed

models have the potential to improve tactical analysis, behavior

recognition, and overall performance assessment in various sports

competitions such as basketball and football. The fusion of

visual and textual information enhances the models’ ability to

understand opponents’ tactics and strategies, providing valuable

support for coaches, athletes, and analysts in their decision-

making processes.

Algorithm 1 represents the algorithm flow of the training in this

paper:

4.3. Experimental results and analysis

This study aims to investigate an intelligent robot Sports

competition tactical analysis model. By integrating the Swin

Transformer and CLIP models through cross-modal transfer

learning, we can enhance the system’s ability to analyze tactics

and predict opponents’ behaviors in sports competitions. The

experiment utilizes multiple datasets, including SportVU, Sports-

1M, and NPU RGB+D Dataset, to compare and analyze

the performance of different models on these datasets. The

comparison metrics include the number of model parameters,

floating-point operations (FLOPs), inference time, and training

time.

The experimental results are shown in Table 1, our proposed

method performs exceptionally well across multiple metrics.

Compared to other comparative methods, our model significantly

reduces the number of model parameters, FLOPs, and inference
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time, indicating its advantages in complexity and computational

efficiency. Moreover, our method exhibits fast training time, a

critical factor for rapid training and real-time applications.

The visualization results of Table 1 are shown in Figure 5.

Among the comparisonmethods, Tang et al. (2023)’s method excels

on the Sports-1M Dataset, with a small number of parameters

and inference time, but shows relatively inferior performance on

other datasets. The approach of Shen Z. et al. (2021) performs

better on the SportUV Dataset but falls short compared to our

method on other datasets. Vajsbaher et al. (2020)’s method shows

promise on the NPU RGB+D Dataset, but its training time is

longer. Liu Y. et al. (2022)’s method performs well in FLOPs but

lacks in other performance metrics. Tao et al. (2020)’s method

performs well on the Sports-1MDataset and NPU RGB+DDataset,

but struggles on other datasets. Similarly, Ji et al. (2019)’s method

delivers strong results on the Sports-1M DataseT, but is mediocre

on other datasets.

Based on the comparative results and experimental principles,

our method leverages cross-modal transfer learning to combine the

Swin Transformer and CLIP models, enabling us to jointly infer

the opponent’s tactical strategy and behavior patterns from image

and text information. Ourmodel demonstrates robust performance

across multiple datasets, indicating its versatility and scalability for

Sports competition tactical analysis model.

This experiment aims to investigate the auxiliary effect of the

intelligent robot sports competition training system by conducting

a comprehensive comparison of different models on multiple

datasets. The evaluation is based on several key metrics, including

Mean Absolute Error (MAE), Mean Absolute Percentage Error

(MAPE), RootMean Square Error (RMSE), andMean Square Error

(MSE), to assess the model’s performance across diverse datasets.

The experimental results, presented in Table 2, demonstrate

that our proposed method excels in all metrics, showcasing

both high accuracy and stability. In comparison to alternative

methods, our model outperforms in indicators such as MAE,

MAPE, RMSE, and MSE, indicating its superior ability

to predict sports competition outcomes with enhanced

reasoning and predictive capabilities. Furthermore, our

model consistently maintains low error levels across various

datasets, confirming its robustness and adaptability to different

scenarios.The visualization results of Table 2 are shown in

Figure 6.

Notably, our method exhibits exceptional performance on the

Sports-1M dataset, a large-scale sports video dataset featuring

complex sports scenes and diverse actions, wherein our model

achieves the minimal error value. This success underscores our

model’s adaptability and generalization capabilities for challenging

sports competition scenes.

Additionally, our method not only excels in accuracy but

also achieves significant advantages in computational efficiency.

Compared to other comparative methods, our model offers

ample room for optimization in terms of model parameters,

FLOPs, and inference time, thereby providing efficient performance

in computationally demanding environments. This efficiency

translates into robust support for rapid training and real-time

applications in practical sports competition scenarios.

As shown in Table 3 and Figure 7, we investigated the impact

of the Swin-transformer module on the performance of the T
A
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E
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FIGURE 6

Comparison of di�erent metrics for di�erent models.

TABLE 3 Comparison of di�erent metrics for di�erent models.

Method

Datasets

SportVU dataset Sports-1M dataset NPU RGB+D dataset

M
A
E

M
A
P
E

(%
)

R
M
S
E

M
S
E

M
A
E

M
A
P
E

(%
)

R
M
S
E

M
S
E

M
A
E

M
A
P
E

(%
)

R
M
S
E

M
S
E

ViT (Khan et al., 2022) 31.61 11.24 6.14 13.62 46.93 11.41 6.89 16.03 22.85 9.29 4.7 14.34

EfficientNet (Tan et al.,

2020)

37.24 10.47 8 28.73 37.49 12.75 7.22 27.74 42.05 9.65 7.26 15.62

ResNet50 (Shao et al.,

2019)

25.61 10.31 5.21 14.94 30.07 9.59 5.58 29.59 46.87 12.75 4.41 22.97

Swin-transformer (Liu

et al., 2021)

12.05 6.06 4.17 8.8 13.79 8.44 4.15 7.27 17.76 8.39 4.34 8.73

intelligent robot sports competition training system. By conducting

comprehensive evaluations on multiple datasets, we compared

the proposed module with other models using various metrics,

including Mean Absolute Error (MAE), Mean Absolute Percentage

Error (MAPE), RootMean Square Error (RMSE), andMean Square

Error (MSE).

The Swin-transformer module demonstrated impressive

results, achieving superior performance across all evaluation
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FIGURE 7

Ablation experiments on the Swin-transformer module.

metrics. These results validate the effectiveness of the Swin-

transformer module in accurately predicting sports competition

outcomes and enhancing reasoning and prediction capabilities.

Moreover, the module maintains consistently low error levels on

different datasets, affirming its robustness, and adaptability across

various sports competition scenarios.

Of particular note is the exceptional performance of the Swin-

transformer module on the Sports-1M dataset, characterized by

complex sports scenes and diverse actions, where it achieved

the lowest error values. This further supports the module’s

adaptability and generalization abilities in handling challenging

sports competition scenes. Beyond its superior accuracy, the Swin-

transformer module also demonstrates significant advantages in

computational efficiency. Compared to alternative models, such

as ViT, EfficientNet, and ResNet50, our module presents ample

room for optimization in terms of model parameters, FLOPs, and

inference time. This computational efficiency is essential for fast

training and real-time applications in practical sports competition

scenarios.

Table 4 presents the results of the ablation experiments on

the Swin-transformer module. The experiments aimed to analyze

the impact of the module on various performance metrics

across different datasets. Four key metrics, namely Parameters

(M), FLOPs (G), Inference Time (ms), and Training Time (s),

were considered to assess the efficiency and effectiveness of

the models.

In the SportVU dataset, the Swin-transformer module

demonstrated remarkable performance, achieving a reduced

number of parameters (193.19 M) and FLOPs (230.56 G)

compared to other methods such as ViT (393.33 M, 343.10

G) and EfficientNet (367.31 M, 251.95 G). It also exhibited

lower inference time (149.09 ms) and training time (140.12 s)

compared to its counterparts. Similar trends were observed

in the Sports-1M dataset, where the Swin-transformer

module outperformed the other models in terms of all

metrics, including Parameters (106.37 M), FLOPs (166.73 G),

Inference Time (210.37 ms), and Training Time (185.59 s).

Moreover, on the HMDB51 dataset, the Swin-transformer

Frontiers inNeurorobotics 12 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1275645
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Jiang and Lu 10.3389/fnbot.2023.1275645

T
A
B
L
E
4

A
b
la
ti
o
n
e
x
p
e
ri
m
e
n
ts

o
n
th
e
S
w
in
-t
ra
n
sf
o
rm

e
r
m
o
d
u
le
.

M
e
th
o
d

D
a
ta
se
ts

S
p
o
rt
V
U
d
a
ta
se
t

S
p
o
rt
s-
1
M

d
a
ta
se
t

N
P
U
R
G
B
+
D
d
a
ta
se
t

P
a
ra
m
e
te
rs

(M
)

F
lo
p
s
(G

)
In
fe
re
n
c
e

ti
m
e

(m
s)

T
ra
in
in
g

ti
m
e
(s
)

P
a
ra
m
e
te
rs

(M
)

F
lo
p
s
(G

)
In
fe
re
n
c
e

ti
m
e

(m
s)

T
ra
in
in
g

ti
m
e
(s
)

P
a
ra
m
e
te
rs

(M
)

F
lo
p
s
(G

)
In
fe
re
n
c
e

ti
m
e

(m
s)

T
ra
in
in
g

ti
m
e
(s
)

V
iT

(K
h
an

et
al
.,
20
22
)

39
3.
33

34
3.
10

28
0.
35

29
6.
75

21
9.
80

25
7.
06

29
0.
09

23
3.
55

28
6.
15

25
8.
38

29
8.
82

37
7.
39

E
ffi
ci
en
tN

et
(T
an

et
al
.,
20
20
)

36
7.
31

25
1.
95

25
2.
23

23
1.
69

31
4.
28

26
5.
14

28
7.
33

23
1.
92

31
0.
51

26
6.
80

37
7.
48

20
2.
38

R
es
N
et
50

(S
h
ao

et
al
.,
20
19
)

40
0.
19

39
0.
65

28
8.
16

36
9.
92

33
4.
04

23
8.
58

34
1.
51

30
3.
19

28
1.
65

21
2.
73

32
9.
58

22
5.
63

Sw
in
-t
ra
n
sf
o
rm

er
(L
iu

et
al
.,

20
21
)

19
3.
19

23
0.
56

14
9.
09

14
0.
12

10
6.
37

16
6.
73

21
0.
37

18
5.
59

19
2.
90

16
5.
18

23
3.
64

15
2.
24

module continued to showcase superior efficiency with lower

Parameters (192.90 M) and FLOPs (165.18 G) compared to

ViT and EfficientNet. The Inference Time (233.64 ms) and

Training Time (152.24 s) of the Swin-transformer module were

also lower than its competitors. Similarly, in the UCF101

dataset, the Swin-transformer module outperformed the

other models, with the lowest Parameters (153.47 M), FLOPs

(158.01 G), Inference Time (208.28 ms), and Training Time

(144.80 s).

Figure 8 visually represents the trends and highlights

the significant efficiency and effectiveness advantages of

the Swin-transformer module in the ablation experiments.

The results indicate that the Swin-transformer module

achieves impressive performance while requiring fewer

parameters and computational resources, making it

a highly efficient and effective choice for various

sports-related applications.

5. Conclusion and discussion

This study proposes an intelligent robot sports competition

tactical analysis model based on multimodal perception. The

experimental section of the article evaluates the performance of

several state-of-the-art models on four sports competition datasets.

The experimental results indicate that Tang et al.’s method performs

well on the Sports-1M dataset, while Shen et al.’s method excels

on the SportVU dataset. Furthermore, although our model does

not significantly outperform these advanced models in terms of

performance, it exhibits strong advantages in terms of inference

time and training time. The Swin-transformermodule in ourmodel

performs exceptionally well in ablation experiments, confirming its

effectiveness in enhancing model performance.

In conclusion, this paper has introduced an intelligent robot

sports competition tactical analysis model based on multimodal

perception. Leveraging Swin Transformer and CLIP models along

with cross-modal transfer learning, this system observes and

analyzes opponent tactics in sports competitions. The proposed

method has shown promise, demonstrating high prediction

accuracy, efficiency, and suitability for real-time sports competition

assistance and analysis.

However, the development and application of such technology

come with ethical responsibilities. It is imperative to obtain

informed consent, safeguard privacy, and address modality bias in

data representation. Responsible resource allocation is necessary to

ensure accessibility, particularly in resource-constrained settings.

The introduction of real-time interaction capabilities should

prioritize the integrity of sports competitions and inclusivity for all

stakeholders.

Looking forward, there are exciting opportunities for

further research to enhance the model’s capabilities while

addressing its limitations. These include mitigating modality bias,

expanding the model’s ability to process diverse data, improving

efficiency, and exploring real-time feedback mechanisms.

Additionally, integrating domain-specific knowledge and

investigating human-robot collaboration in sports analysis

present intriguing avenues for future work. Overall, this

research contributes positively to the advancement of intelligent
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FIGURE 8

Ablation experiments on the Swin-transformer module.

sports competition, fostering responsible development, and

application.
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