
Dynamic patterns of beta diversity
in the Anthropocene:
incorporating moderators into
dissimilarity-based models

Shuyin Li1,2†, Qingyi Luo3,4†, Meng Zhang1, Zheng Zhou1 and
Ruiwen Li1*
1Yangtze River Basin Ecological Environment Monitoring and Scientific Research Center, Yangtze River
Basin Ecological Environment Supervision and Administration Bureau, Ministry of Ecology and
Environment, Wuhan, China, 2Department of Transdisciplinary Science and Engineering, Tokyo Institute
of Technology, Tokyo, Japan, 3State Key Laboratory of Freshwater Ecology and Biotechnology, Institute
of Hydrobiology, Chinese Academy of Sciences, Wuhan, China, 4College of Advanced Agricultural
Sciences, University of Chinese Academy of Sciences, Beijing, China

KEYWORDS

biodiversity, ecosystem functioning, ecological processes, generalized dissimilarity
model, Mantel tests

1 Introduction

Biodiversity plays a crucial role in enhancing resource use efficiency, ecosystem
functioning, and stability of ecological processes in the Anthropocene (Balvanera et al.,
2006; Cardinale et al., 2006). However, human activities and biological invasions have led to
widespread loss of biodiversity on Earth, posing threats to aspects such as food and medicine
supply and ecosystem functioning regulation (McGeoch et al., 2010; Diaz et al., 2019).
Therefore, accurately measuring biodiversity and predicting its temporal and spatial changes
have been central research focuses in ecology (Solow and Polasky, 1994; Cardinale et al.,
2012). Through continuous efforts by ecologists, methods for measuring biodiversity and
analytical techniques have been constantly evolving and improving (Solow and Polasky,
1994; Legendre and Legendre, 2012). The development and refinement of these methods
have enhanced our scientific understanding of life diversity on Earth and facilitated the
conservation and management of biodiversity.

Among numerous methods for measuring and analyzing biodiversity, the dissimilarity-
based models [DM; e.g., the Mantel tests (MT) and generalized dissimilarity model (GDM)]
are the most commonly used for analyzing and predicting the spatiotemporal turnover
patterns of communities (Xu et al., 2022). The Mantel test can assess the linear correlation of
community changes with environmental variation (Mantel, 1967). Smouse et al. (1986)
extended the statistical methods of MT, allowing for multivariate regression and correlation
analysis, thus enhancing the applicability and flexibility of MT. Blanchet et al. (2008)
discussed the use of forward selection in MT to identify the most important explanatory
variables, improving the interpretability and explanatory power of MT results. GDM can
explore the non-linear regression between community distance and ecological distance (e.g.,
environmental and geographic distances), detecting the extent of community changes along
environmental gradients and informing us about the contribution of each important
environmental variable (Ferrier et al., 2007). GDM’s applications in the analysis of
biodiversity time series data (Dornelas et al., 2014) and the assessment of regional
biodiversity (Ferrier et al., 2007) fully demonstrate its value in predicting spatiotemporal
turnover patterns of community composition, enhancing our understanding of biodiversity
patterns and processes. However, GDMmay involve uncertainties in handling diversity data,
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which can arise from spatial autocorrelation, data gaps, or
measurement errors (Woolley et al., 2017).

In this opinion article, we propose a conceptual framework by
expanding the capabilities of DMs to incorporate mediators, aiming to
overcome the intrinsic limitations that hinder the exploration of
dynamic patterns in beta diversity with robust empirical support.
While existing DMs excel at unveiling associations between
community composition and environmental or spatial factors, they
typically fall short in directly identifying and elucidating the roles of
moderators and their underlying mechanisms. Researchers often rely

on independent models for various moderating factors (e.g., different
geographic regions, seasons, or biological assemblages), rather than
integrating these moderating influences into a unified analytical model
(Ferrier et al., 2007). Mere numerical comparisons among the outcomes
of these independent DMs do not inherently convey the significance of
the moderating factors. Therefore, our approach responds to the
pressing need for models that align with our proposed conceptual
framework, offering a comprehensive understanding of the intricate
ecological mechanisms at play within beta diversity patterns and
addressing this research frontier with rigor and innovation.

FIGURE 1
Flow chart to show the analytic procedures (Innovations in this study are marked in blue).
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2 Integration of moderators into the
model

The comprehensive DM workflow consists of six key steps
(Figure 1). First, data collection (Step 1) entails the gathering of
biodiversity data from various locations, including site-specific
details and species composition information. Next, a dissimilarity
matrix (Step 2) is generated, employing appropriate dissimilarity
metrics like the Bray-Curtis distance to quantify the differences in
species composition across these locations. To delve deeper into
ecological patterns, environmental data (e.g., temperature,
precipitation, and habitat characteristics) and geographic
coordinates (latitude and longitude or other spatial identifiers)
are gathered for constructing environmental and spatial distance
matrices (Step 3), effectively measuring disparities in environmental
factors and spatial distances. Subsequently, statistical modeling
techniques (Step 4) are applied, employing DM methodologies.
Once the modeling analysis is complete, model evaluation (Step
5) comes into play, encompassing the assessment of the constructed
DM, which includes evaluating model fit, predictive performance,
and potential biases or errors, thereby ensuring the reliability and
integrity of the analysis. Finally, results are interpreted (Step 6) to
decipher how environmental factors influence species composition
disparities and how spatial distance shapes species distribution
patterns.

In the phase of applying the methodologies as they stand today,
DMs construct the relationship between biological dissimilarity and
environmental and/or spatial distance in the following manner:

ya,b � ∑fi xi,a, xi,b( ) (1)

where the function fi(xi,a, xi,b) serves as a versatile tool capable of
capturing either linear or nonlinear effects arising from the distance
between the variable xi in samples a and b. These variables x
represent a wide range of factors, including but not limited to
intercepts, environmental conditions, and spatiotemporal factors.
The primary objective is to unveil the intricate relationships that
underpin beta diversity (represented as y) between two distinct
samples, which may vary across different regions or seasons. This
modeling process allows us to decipher the complex interplay
between ecological variables and beta diversity patterns, offering
valuable insights into the dynamics of biodiversity in various
contexts.

Incorporating moderators into the DMs represents a significant
advancement in our understanding of ecological relationships. In
this context, the model formulates the intricate relationship between
biological dissimilarity and environmental and/or spatial distance as
follows:

ya,b � ∑
i

∑
j

fi,j xi,a, xi,b, zj( ) (2)

where the function fi,j(xi,a, xi,b, zj) assumes a pivotal role of the
moderator zj and these moderators represent various factors such as
differing geographical regions and distinct biological assemblages.
These moderators serve as dynamic agents, introducing influences
that intricately interact with variables x. In doing so, they modulate
and fine-tune the effects of x on beta diversity (denoted as y). This
innovative approach enables a more comprehensive exploration of
the multifaceted relationships underlying biodiversity patterns,

allowing us to decipher how different areas and biological
assemblages influence the dynamics of beta diversity across
diverse ecosystems.

Regarding the steps dedicated to model fitting and the critical
phase of significance testing, our approach harmonizes seamlessly
with the established framework. The process of model fitting
remains consistent with the previous one when employing this
framework. The model fitting can be achieved using the
Iteratively Re-weighted Least Squares (IRLS) algorithm, However,
it’s in the domain of significance testing that our method introduces
a valuable innovation.

While staying true to the core principles of the original DMs,
we augment our approach by incorporating a permutation
procedure that is different from the original procedure. To
overcome the problem of lack of independence between site
pairs, the original significance testing is performed using a
random permutation procedure, which involves comparing the
deviance explained by the fitted model with the deviance calculated
when either individual or all predictor variables are randomly
shuffled among the samples (Mokany et al., 2022). Rather than
that, the procedure proposed in this article involves the systematic
reshuffling of sample order, encompassing sites or time points,
within a single matrix at each level of the moderator. For example,
when taking elevation as a moderator, the samples could be re-
permuted according to the elevation at which the samples were
collected to obtain different matrices corresponding to each
elevation. These matrices are then used to assess the
significance of the effect of variables x on beta diversity at
different elevations. This innovative permutation methodology
equips us with a potent tool to rigorously assess the statistical
significance of our findings. Importantly, it achieves this while
preserving the fundamental integrity of the model fitting process,
ensuring that our results are robust and reliable. By combining the
strengths of the original DM with this novel permutation
technique, we enhance the depth and precision of our
ecological analyses, advancing our capacity to unveil critical
insights into the complex relationships shaping biodiversity
patterns across diverse ecosystems.

3 Summary

Expanding upon our data collection methods, which encompass
field surveys and remote sensing, our proposed framework plays a
pivotal role in advancing our understanding of dynamic beta-
diversity patterns in the Anthropocene. This progress is achieved
by enhancing the capabilities of DMs through the incorporation of
moderating variables, including but not limited to those related to
spatiotemporal factors and biological traits. These moderating
variables exert significant influence over the intricate interplay
between environmental and biotic dissimilarities, ultimately
shaping the dynamics of beta diversity. The innovation
embedded within this conceptual framework not only amplifies
the applicability of DMs but also propels scientific inquiry forward
with a solid foundation of empirical evidence. Consequently, this
advancement holds significant potential for strengthening the
development of dependable management and conservation
strategies in a rapidly changing world. In doing so, it contributes
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to the sustainability of our ecosystems and fosters a harmonious
coexistence between humans and the environment.
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