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Objective: Objectively and efficiently measuring physical activity is a common
issue facing the fields of medicine, public health, education, and sports
worldwide. In response to the problem of low accuracy in predicting energy
consumption during human motion using accelerometers, a prediction model
for asynchronous energy consumption in the human body is established through
various algorithms, and the accuracy of the model is evaluated. The optimal
energy consumption prediction model is selected to provide theoretical
reference for selecting reasonable algorithms to predict energy consumption
during human motion.

Methods: A total of 100 subjects aged 18–30 years participated in the study.
Experimental data for all subjects are randomly divided into the modeling
group (n = 70) and validation group (n = 30). Each participant wore a triaxial
accelerometer, COSMED Quark pulmonary function tester (Quark PFT), and
heart rate band at the same time, and completed the tasks of walking (speed
range: 2 km/h, 3 km/h, 4 km/h, 5 km/h, and 6 km/h) and running (speed range:
7 km/h, 8 km/h, and 9 km/h) sequentially. The prediction models were built
using accelerometer data as the independent variable and the metabolic
equivalents (METs) as the dependent variable. To calculate the prediction
accuracy of the models, root mean square error (RMSE) and bias were used,
and the consistency of each prediction model was evaluated based on
Bland–Altman analysis.

Results: The linear equation, logarithmic equation, cubic equation, artificial
neural network (ANN) model, and walking-and-running two-stage model were
established. According to the validation results, our proposed walking-
and-running two-stage model showed the smallest overall EE prediction
error (RMSE = 0.76 METs, Bias = 0.02 METs) and the best performance in
Bland–Altman analysis. Additionally, it had the lowest error in predicting EE
during walking (RMSE = 0.66 METs, Bias = 0.03 METs) and running (RMSE =
0.90 METs, Bias < 0.01 METs) separately, as well as high accuracy in predicting
EE at each single speed.
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Conclusion: The ANN-based walking-and-running two-stage model established
by separating walking and running can better estimate the walking and running EE,
the improvement of energy consumption prediction accuracy will be conducive to
more accurate to monitor the energy consumption of PA.

KEYWORDS

physical activity, METs, artificial neural network, tri-axis accelerometer, energy
consumption, metabolic prediction model, predicting energy expenditure, high accuracy

1 Introduction

Physical activity (PA) deficiency has become the fourth leading
cause of death in the world. About 5million people die of PA deficiency
every year (WHO, 2020). Positive PA is closely related to health; for
example, moderate physical activity (MPA) is inversely proportional to
the occurrence of depression (Dishman et al., 2021). Proper PA can help
reduce the risk of abnormal blood lipids, improve the levels of
cholesterol and high-density lipoprotein cholesterol, and promote
the development of blood indicators in a healthy direction (Delavar
et al., 2011; Montesi et al., 2013). There is a dose–effect relationship
between PA and health.Wen et al. found that 90 min of MPA per week
(or 15 min per day) can significantly reduce the risk of death related to
all causes, cancer, cardiovascular disease, and diabetes (Wen et al.,
2011). The WHO recommends that adults engage in MPA for more
than 30 min at least 5 times a week, or vigorous physical activity (VPA)
for more than 20 min at least 3 times a week (Bull et al., 2020).

Objective measurement1 of PA is an essential basis for
monitoring whether one has reached the recommended levels.
Currently, wearable devices based on triaxial accelerometers are the
primary means of objectively measuring PA. According to the
2023 Global Fitness Trend Survey Report by the American Sports
Medical Association, wearable technology is ranked first. However,
numerous studies have shown that wearable devices are ineffective in
predicting EE to meet the needs of consumers. A meta-analysis of
158 articles, which included Apple, Fitbit, Garmin, Mio, Misfit, Polar,
Samsung, Withings, and Xiaomi commercial wearable devices,
demonstrated that none of the products can effectively predict EE
(Fuller et al., 2020).

The accuracy of estimating EE using three-axis accelerometers
primarily depends on the establishment of a prediction model based on
the relationship between three-axis acceleration data of the
accelerometer and METs. This involves calculating the various
intensities of physical activity and then determining EE using the
model. Building a prediction model between acceleration data and
METs is crucial to the accuracy of the estimation. Currently, there are
many models used to predict physical activity based on triaxial
accelerometers. Initially, the most widely established models were
linear equations, with the linear equations developed by Freedson
being the most classic. The equation is based on z-axis acceleration:
METs = 1.439008 + 0.000795 × ACz, which is widely accepted among
scholars (Freedson et al., 1998).

As research progresses, the nonlinear equations developed by
Campbell et al. has been increasingly utilized in the creation of EE
prediction models. This equation employs a multiple stepwise
regression method to analyze various factors and establish the
nonlinear equation EEact (k) � aN × (k)1 + bN × V(k)p2, where
a and b, and p1 and p2 represent the coefficients associated with
height and weight, respectively (Campbell et al., 2002). Couter et al.
proposed the establishment of subsection equations based on linear or
nonlinear equations to enhance the accuracy of EE monitoring. The
findings indicate that the difference between the measured and
predicted values of the subsection equations is significantly smaller
compared to other types of equations (Crouter et al., 2006).

With the development of AI, machine learning, as a subset of AI, has
received extensive attention in recent years. Taking the features extracted
from acceleration data as the input variables, through a series of machine-
learning algorithms, such as the ANN model (Mackintosh et al., 2016),
random forest (Ellis et al., 2014), support vector machine (Liu et al., 2011)
etc., the functional relationship with the output variables is obtained
(i.e., themachine-learningmodel is generated).Mackintosh established an
ANNmodel through the characteristic values of themean and variance of
the accelerometer within 15 s and evaluated the model. The results
showed that there was no significant difference between the predicted
value and measured value, and that the accuracy of the MET prediction
was better than that of Freedson’s linear EE prediction equation for
children (Mackintosh et al., 2016). Ellis established a regression forest
based on the wrist accelerometer and proved that it effectively improved
the accuracy of the model prediction (Ellis et al., 2014).

This study was aimed at the problem of the dependence of the
accuracy of the three-axis accelerometer in the estimation of the EE
of human motion on the built prediction model. Using acceleration
data collected from wrist accelerometers, we constructed multiple
prediction models for EE during walking and running and evaluated
their accuracies. Based on the evaluation, we selected the superior
model to provide a theoretical reference for choosing an appropriate
EE prediction model for walking and running. At the same time, it is
conducive to promoting the scientific development of sports.

2 Materials and methods

2.1 Participants

A total of 100 students aged 18–30, including 50 men and
50 women. Experimental data for all participants were recruited and
randomly assigned to either the modeling group (n = 70) or the
validation group (n = 30) while maintaining gender balance in each
group. The gender, height, weight, BMI, and body fat ratio of the
participants are shown in Table 1. All participants completed a Physical

1 The original data is available at https://figshare.com/projects/Raw_data_
of_accelerometer_and_MET_values/178782 and the code is available at
https://github.com/zjxcode666/Predicting-Energy-Expenditure-Based-
on-a-Wristwear-Three-axis-Accelerometer.
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Activity Readiness Questionnaire (PAR-Q) and pre-exercise health
screening questionnaire and provided signed informed consent.
Inclusion criteria required no restrictions on sports participation and
the ability to complete the physical activities of the experimental tests.
All of the procedures in this study were performed in accordance with
the Declaration of Helsinki. The study was approved by the Review
Committee of the Capital University of Physical Education and Sports.

2.2 Experimental design

Prior to the experiment, participants were asked to refrain from
strenuous exercise for 24 h, and avoid consuming any food or drink
containing caffeine. The experiment was conducted 1.5–2 h after a
meal. Upon arrival at the laboratory, participants rested for at least
10 min, during which their height, weight, and body composition were
measured. Triaxial accelerometers, a QUARK PFT, and heart rate
monitors were attached to participants for the sitting, walking, and
running experiments. For the walking experiment, participants walked
on a treadmill at speeds of 2 km/h, 3 km/h, 4 km/h, 5 km/h, and 6 km/
h, with a uniform step frequency and natural arm swing. For the
running experiment, the participants ran on the treadmill at speeds of
7 km/h, 8 km/h, and 9 km/h, with a uniform step frequency and arms
bent at the elbows and clenched fists while naturally swinging their arms
back and forth. The walking and running tests were each performed for
4 min with rest periods between the different speeds. Figure 1 shows the
flow of the study design and framework.

2.3 Experimental equipment

2.3.1 Triaxial accelerometer
The digital attitude sensor used in this study was the WT901SDCL

model with storage function, manufactured by China Shenzhen Weite
Intelligent Technology Co., Ltd., as shown in Figure 2. It had dimensions
of 51.3 mm × 36mm × 15mm and a battery capacity of 200mAh, and
could sample at frequencies ranging from 0.1 Hz to 200 Hz with
acceleration options of ±2/4/8/16 g. The module incorporated high-
precision gyroscopes, accelerometers, and geomagnetic field sensors, and
had a built-in rechargeable battery. Measured data were recorded on an
SD card inside themodule. The module supported a serial TTL interface
for flexible connectivity options, and the serial port rate was adjustable
from 2,400 bps to 921,600 bps. The accelerometer data were analyzed
using the MiniIMU.exe software. Before the experiment, the sampling
frequency was set to 100 Hz (Migueles et al., 2017), and the sensor was
secured to the non-dominant wrist with a wrist strap.

2.3.2 Quark PFT
In this study, the Quark PFT system (Cosmed, Italy) was used as

the gold standard for measuring energy expenditure (METs). The
Quark PFT is an advanced pulmonary function tester for gas-
exchange analysis (VO2, VCO2). It ensures the accuracy and
reliability of lung gas exchange and analysis, whether during
exercise tests or rest periods, even during high-intensity exercise,
using high-quality components and an ultrafast analyzer. The Quark
PFT is a fixed system that utilizes both successive breathing and
mixing chamber sampling technology, and has been scientifically
verified for use in a wide range of exercise intensities. Before the
experiment, the Quark PFT was calibrated using the flow sensor and
standard gas, and participants’ information such as height, weight,
and age were recorded on the Quark PFT for further analysis. The
subjects wore the oxygen mask, and the tightness of the mask was
adjusted and fixed with a head cap. After the mask was checked for
airtightness, the data recording started.

2.4 Statistical analysis

The original acceleration data was preprocessed and the ANN
model was established using Python 3.8. The relationship
between acceleration data and METs was analyzed using SPSS
26.0, and the regression models for EE prediction were
established using curve estimation. The accuracy of EE
prediction under different models was compared by
calculating the RMSE and Bias and measuring the consistency
based on the Bland-Altman plot. The formulas used for
calculating RMSE and Bias were as follows:

RMSE �
���������������������������∑ METsforecast −METsmeasured( )2

N

√

Bias � ∑ METsforecast −METsmeasured( )/METsmeasured

N
.

3 Data preprocessing and model
construction

3.1 Data preprocessing of multiple
regression equations

The original acceleration data was preprocessed using Python
3.8. The processing of acceleration data includes three steps: Kalman

TABLE 1 Characteristics of participants (mean ± SD).

Total (n = 100) Modeling (n = 70) Validation (n = 30)

Age (years) 24.4 ± 1.6 24.2 ± 1.6 24.7 ± 1.6

Height (m) 1.7 ± 0.08 1.7 ± 0.08 1.7 ± 0.09

Body mass (kg) 64.0 ± 10.6 64.0 ± 10.2 64.8 ± 11.6

BMI (kg/m2) 22.0 ± 2.1 22.0 ± 2.1 22.1 ± 2.2

Body fat rate (%) 21.6 ± 6.5 21.5 ± 6.7 22.0 ± 6.2

Note: SD, standard deviation; m, meter; kg, kilogram; BMI, body mass index.
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filtering, correction gravity trend, and calculation of the vector
magnitude (VM) of three-axis acceleration.

3.1.1 Kalman filtering
The original acceleration data were processed using a Kalman

filter, a versatile autoregressive filter often used for state estimation
in dynamic multivariable systems. This filter is capable of estimating
uncertain information and predicting the state at the next moment,
even in the presence of noise interference, and can identify
correlations between multiple variables that might otherwise be
imperceptible. In this study, the data processed using the Kalman
filter were less volatile and more stable.

3.1.2 Correction of gravity trend
In the experiment, we found that the accelerometer produced a

small value even in the static state, which was attributed to the
influence of gravity. Each axis was affected by the component of
gravity. Following the suggestion of reference (Sekine et al., 2000),
the acceleration data filtered by the three axes should be de-trended
simultaneously. The formula is Xt�Xt −Xt−5~t. Figure 3 presents a
comparison chart of the individual x-axis acceleration before and
after the trend removal. Because the acceleration was generated in
two directions, the processed acceleration in this study was closer to
zero, which could effectively remove the gravity trend.

3.1.3 Calculation of VM
Considering that wrist movement occurs in multiple axes, a

single axis is insufficient to characterize the motion. Therefore, we
combine the three-axis acceleration data into a composite
acceleration called VM. The formula for calculating VM is:
VM � ����������

x2 + y2 + z2
√

. The data synthesis method of the ActiGraph
accelerometer is the integral value of the acceleration in every
minute (i.e., counts/min). In this study, the mean value was used
to replace the integral value (i.e., the mean value of the VM in 1 min,
expressed as Mean). Corresponding Mean, and METs one by one to
form multiple regression equations database.

3.2 Construction of regression equations

METs will increase with the increase in the Mean; however, when
the Mean increases to a certain value, the METs will gradually slow
down and conform to the characteristics of the logarithmic equation.
Therefore, based on the established linear equation, we also established
a logarithmic equation. In the regression equation, R2 represents the
goodness of fit of themodel. The larger the R2, the better the goodness of
fit. SEE represents the standard error of the estimate of the model. The
smaller the SEE, the better the prediction result of the regression
equations. By comparing the R2 and SEE, the cubic equation with
the larger R2 and SEE is selected from the established multiple
regression equations. Therefore, a linear equation, logarithmic
equation, and cubic equation were established in this study. The
equation expressions are shown in Table 2.

3.3 Construction of ANN model

3.3.1 Selection of indicators
In this study, a feedforward ANN with a single hidden layer was

adopted, which was mainly composed of an input layer, hidden layer,
and output layer. In the process of establishing the input layer, there
aremultiple ways to extract input features and select window size. The
input feature is obtained by first calculating the vector of magnitude
(VM) of the original threeaxis acceleration data, and the features are
then extracted from VM sequence with fixed window. The window is
the fixed interval of the feature extraction. To determine the input

FIGURE 1
Research structure chart.

FIGURE 2
Accelerometer appearance.
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features of the ANN model, the RMSE was compared under three
windows (10 s, 30 s, 60 s), and 9 indicators were finally selected: the
mean, sd, max, min, and 10th, 25th, 50th, 75th, and 90th percentiles of
the VM sequence in the 60 s window. The number of neurons in the
hidden layer was determined by adjusting the parameters, and the
output was the predicted METs using ANN.

3.3.2 Data normalization
To avoid unnecessary numerical computing and reduce the

network training time, the input data are normalized:

x_std � (x–x_min )/(x_max –x_min ), where x represents the
original data, x_std represents the data after the normalization
operation, and the values of x_std range from 0 to 1.

3.3.3 Parameters of the model
The model parameters mainly include weight attenuation, the

number of hidden neurons, and the number of iterations. In order to
determine the optimal parameters, all the weights are attenuated
between 0.1 and 0.9, and the number of hidden neurons is iterated
between 1 and 30. The number of iterations is determined through
model training. During the training process, when the number of
iterations is 2,000, the model has converged. Finally, 2,000 iterations
are used as the standard to stop the training to prevent overtraining.
The weight attenuation and hidden neurons are adjusted using RMSE.
When the weight attenuation is 0.8 and the number of hidden neurons
is 8, the RMSE does not increase, the model achieves the optimal
accuracy, and the ANNmodel is finally established (Model 4). Figure 5
shows the ANN model.

3.4 Construction of walking-and-running
two-stage model

3.4.1 Construction basis
This study developed separate EE prediction models for walking

and running by modeling them separately. However, in order to build
separate models for walking and running, it is necessary to have a
good classification of these two activities. Through observation of the
data, it was found that there was a large difference in the independent
variable "Mean” between walking and running in the regression
equation data preprocessing process. Figure 3 shows the scatter

FIGURE 3
Regression equations expression of x-axis acceleration before and after trend removal.

FIGURE 4
Mean scatter at different paces. Mean: Independent variables in
linear regression equations.

TABLE 2 Expressions of regression equations.

Model Name Expression R2 SEE

Model 1 Linear equation METs = 8.33 Mean + 3.36 0.856 0.96

Model 2 Logarithmic equation METs = 2.56 × ln (Mean) + 10.04 0.889 0.84

Model 3 Cubic equation METs = 29.65 Mean3 − 52.67 Mean2 + 33.46 Mean + 1.22 0.891 0.83

Note: R2, R-Squared, commonly used to measure the fit of regression; SEE, standard error of estimate.
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plot of Mean at various walking and running speeds. This study used
the ROC curve method to classify Mean into two categories: walking
and running. The ROC curve, also known as the “receiver operating
characteristic curve,” is a curve that reflects the relationship between
sensitivity and specificity. The entire graph is divided into two parts, and
the area under the curve (AUC) of the part below the curve is used to
indicate the prediction accuracy. The higher the AUC value, the higher
the prediction accuracy. The maximum Youden index was used to find
the cut-off point of Mean for walking and running, and the final cut-off
point was determined to beMean = 0.23375 (AUC = 1). Figure 4 shows
themean scatter at different paces. This cut-off point was then validated
with a validation group, and the results showed that this method
achieved 100% accuracy in classifying walking and running, laying
the foundation for the development of the next two-stage model.

3.4.2 Description of model
In this study, walking and running were separated. Based on the

above modeling method of the ANN model, by adjusting the
attenuation weight and number of hidden neurons, the ANN

walking model achieved the best overall accuracy when the weight
attenuationwas 0.8 and the number of hidden neurons was 9.When the
weight attenuation was 0.7 and the number of hidden neurons was 4,
the ANN running model achieved the best overall accuracy. Finally, the
ANN walking model and ANN running model were established
separately from walking and running [that is, the walking-and-
running two-stage model based on the ANN (Model 5)]. The model
construction diagram is shown in Figure 5.

4 Result

4.1 Overall prediction error of models

We compared the RMSE and Bias of EE prediction under five
models. The smaller the RMSE and Bias values, the smaller the error
between the predicted and measured METs. As shown in Figure 6,
the RMSE and Bias under walking-and-running two-stage model
were the smallest: 0.76 METs and 0.02 METs, respectively.

FIGURE 5
Diagram of two-stage model walking and running. ANN, Artificial Neural Network; VM, Vector Magnitude.

FIGURE 6
Overall RMSE and Bias comparison diagram of model. RMSE, Root Mean Square Error.
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Based on the Bland–Altman plot, the consistency between the
predicted METs of the five models and measured METs was further
analyzed. As shown in Figure 7, the middle solid line represents the
average value of the difference, and the two dotted lines represent the
upper and lower lines of the 95% consistency limit. The fewer the points
in the figure outside the dotted lines, the higher the consistency between
the predicted and measured METs, and the more accurate the
prediction. The five models have 22, 21, 24, 26, and 21 points
outside the consistency interval, accounting for 4.58%, 4.38%, 5.00%,
5.42%, and 4.38% of the total points, respectively. The predicted METs
of the logarithmic equation and walking-and-running two-stage model
were highly consistent with the measured METs.

4.2 Prediction error ofmodel forwalking and
running

Figure 8 shows the RMSE and Bias of walking and running
under five models. By comparing the RMSE of walking and running,
we found that the walking and running model can obtain the
smallest error in walking (RMSE = 0.66 METs) and running
(RMSE = 0.90 METs). By comparing the Bias of walking and
running, the lowest Bias was obtained by walking-and-running
two-stage model (Bias = 0.03 METs). In running, the linear
equation, logarithmic equation, ANN model, and walking-
andrunning model had lower Bias values (Bias <0.01 METs). In
summary, the error of the walking and running in the two-step
walking-and-running model was smaller than those of the other four
models.

4.3 Prediction error of the models under
different speeds

Figure 9 shows the mean value of measured METs (x-axis) and
predicted METs (y-axis). The reference line is y = x, and each point

represents the mean value of the METs at different speeds. In the
figure, the closer that the point is to the reference line, the smaller the
prediction error of the model. The numbers of points on the
reference lines of the linear equation, logarithmic equation, cubic
equation, ANN model, and walking-and-running two-stage model
were 3, 3, 3, 4, and 5, respectively. The walking-and-running two-
stage model can obtain the maximum number of points on the
reference line and the smallest error.

Next, we describe the comparison of the predicted METs and
measured METs of five models at different walking/running speeds,
by comparing the RMSE and Bias of the predictions. According to
Tables 3, 4, the linear equation model had 3 speeds with prediction
errors exceeding 10%, the logarithmic equation model had 2, the
cubic equation model had 2, and the ANNmodel had 2. In contrast,
the walking-and-running two-stage model had prediction errors
below 10% for all speeds, with the highest error being 7%.
Furthermore, the EE prediction error is within 5% for five
different speeds. When comparing the RMSE for each speed,
except for the speeds of 4 km/h and 5 km/h, the walking-and-
running two-stage model had the lowest RMSE for the other
6 speeds. In summary, the walking-and-running two-stage model
had better EE prediction accuracy than the other four models at
different walking/running speeds.

5 Discussion

The accuracy of the EE prediction of the model was verified
through the validation group data. The results showed that the
walking-and-running two-stage model established by dividing
walking and running into two stages exhibited good EE
prediction accuracy, whether in overall prediction, walking and
running separately, or at various walking speeds. The walking-
and-running two-stage model performed better than other
models established in this study. This can also indicate that
establishing a single exercise energy consumption algorithm for

FIGURE 7
Bland–Altman plots of predicted and measured METs.
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physical activity, and then comparing physical activity with its
energy consumption algorithm through classification, can
effectively improve the accuracy of energy consumption
prediction for physical activity. The improvement of energy
consumption prediction accuracy is conducive to more accurate
monitoring of sports energy consumption, selecting appropriate
exercise measures based on one’s own situation, participating in
sports more scientifically, and promoting physical health.

5.1 Accuracy analysis of model EE prediction

The linear equation showed the lowest accuracy in predicting EE
among all the models. By wearing accelerometers on both wrists,
Montoy compared the linear equation with the ANN model. The
results showed that the two linear equations had lower correlations
and higher RMSE than the ANN model (Montoye et al., 2017).
Although the initial model established in the field of
accelerationbased energy consumption prediction was a linear
model, with the continuous progress of research and the constant
changes in the wearing position, the linear equation established by
the wrist-worn accelerometer has significant errors in predicting EE.
The applicability of the linear equation in wrist model construction
is poor.

The accuracy of logarithmic and cubic equations for EE
prediction is better than that of linear equation, showing lower
RMSE and Bias in overall prediction errors, and good performance
in consistency measurements. The logarithmic equation performs
better than the ANN model in all three indicators, indicating good
prediction accuracy. Combining the validation results of walking
and running separately and at various speeds, the logarithmic
equation has higher EE prediction accuracy and more stable
performance, especially during the running phase, with RMSE
lower than that of the cubic equation and the ANN model, and
Bias less than 0.001 METs. Considering that the oxygen uptake
gradually increases to a maximum and then remains constant during
exercise, the accuracy of EE prediction during running by the
logarithmic equation is affirmed. When evaluating the cubic
equation, according to its graph and expression, as the speed
increases, the Mean value gradually increases, and METs
gradually tends to be stable. However, when the Mean is greater
than 0.59, the energy consumption gradually increases again, and

the rate of increase gradually becomes larger. Therefore, although
the cubic equation exhibits good energy consumption prediction
accuracy in this study, caution should be exercised when using it in
practical applications.

The difference between this study and the research of other
scholars is that the overall prediction accuracy of the ANN model
built in this study was 0.90 METs, which was not lower than the
logarithmic equation and cubic equation. The excessive noise in the
original data may have had a certain impact on the modeling. In this
study, we also established the ANN model through the data after
noise reduction and trend removal in the regression equation;
however, the results show that the RMSE did not decrease.
Staudenmayer established an ANN model and verified the
models of other scholars, indicating that the ANN model is
better than the equation model in EE prediction (Staudenmayer
et al., 2009). In this study, the accuracy of the ANN model in
predicting the walking EE was higher than those of the logarithmic
equation and cubic equation in the verification of the accuracy of the
walking–running EE prediction. At the same time, based on the
ANN model, the accuracy of the EE prediction is the best in all
models through the walking-and-running two-phase model
established by separating the walking and running.

5.2 Analysis of model construction mode

5.2.1 ANN model input-layer index selection
The construction of the ANN model was based on the original

acceleration andMET data. The nine features of the input layer were
determined through a literature review; however, this does not mean
that the accuracy of the model could not be improved after the
inclusion or replacement of other features. Rothney extracted the
median, skewness, kurtosis, and other features from the original data
in the input layer, and the built model had good prediction accuracy
(Mackintosh et al., 2016). Ruch constructed the model by
incorporating the acceleration count, VM, steps, and inclination
of the three axes, and it also had a good prediction performance
(Ruch et al., 2013). However, the selection of features in this study
was performed by summarizing the methods of feature extraction in
most studies. The mean value reflects the concentration trend of the
dataset, the standard deviation reflects the dispersion degree of the
dataset, the maximum value and minimum value reflect the extreme

FIGURE 8
Comparison between RMSE and Bias for walking and running. RMSE: Root Mean Square Error.
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values of the dataset, the percentile is used to measure the data
position, the 25th, 50th, and 75th are commonly used in the
description of the box diagram, and the 10th and 90th refer to
the low and high values in unit time in a stable state during signal
processing, respectively. In this study, the ANN model was
established by incorporating nine features. The results showed
that the ANN model was more accurate in predicting the
walking EE, and that the accuracy of the walking-and-running
two-stage model was better than those of the other models built
in this study.

5.2.2 Establishment of EE model with walking
speed as independent variable

In the experiment, Brooks established an EE prediction model
based on wearing hip-mounted CSV accelerometers and walking on
horizontal terrain. The results showed that the speed-based energy
consumption model was more accurate than the CSA-based energy
consumption model (Brooks et al., 2005). In this study, we also
attempted to construct the model based on the acceleration data and
adding walking speed as an independent variable. The results
showed that adding walking speed as an independent variable
improved the accuracy of both the regression equation and the
ANNmodel for predicting energy consumption, and was lower than
the walking-and-running two-stage model constructed in this study.
However, considering that in practical applications, this model is
only limited to predicting EE on a treadmill with known walking
speed, but requires accurate prediction of walking speed in a free
state. This study also attempted to use 9 features of ANN as input
variables and walking speed as output variable to predict walking
speed using an ANN model, but did not achieve satisfactory results.
In addition, walking speed can be predicted by a mobile phone or a
sports bracelet, and this study used multiple mobile apps to conduct
experiments on a treadmill, but found that the predicted speed had a
certain deviation from the actual speed of the treadmill, especially at
faster or slower speeds.

Therefore, this study did not construct a model with walking
speed as an independent variable, but adding walking speed as an
independent variable can improve the accuracy of EE prediction for
various walking speeds.

FIGURE 9
Mean value distribution of predicted METs and measured METs at various walking speeds. Measured METs, Average value of measured METs;
Predicted METs, Predict the average value of METs.

TABLE 3 Error table of EE prediction under single step speed (RMSE).

Speed Model 1 Model 2 Model 3 Model 4 Model 5

RMSE RMSE RMSE RMSE RMSE

2 0.91 0.67 0.63 0.55 0.40

3 0.84 0.85 0.80 0.65 0.46

4 0.51 0.54 0.51 0.60 0.63

5 0.58 0.62 0.64 0.59 0.71

6 1.29 0.94 0.97 0.96 0.94

7 1.16 0.90 0.89 1.08 0.89

8 1.29 0.88 0.88 1.14 0.81

9 1.40 1.03 1.08 1.31 0.98

Note: EE, energy expenditure; RMSE, root mean square error.
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5.2.3 Selection of window size of ANN model
Trost points out that the ANN window size has a certain impact on

the accuracy of the EEprediction. Thewindow size increases from10 s to
60 s, the Bias decreases from 0.3METs to 0.2 METs, and the RMSE
decreases from 1.1 METs to 0.9METs, which is the most significant in a
variety of physical activities (Trost et al., 2012). As the window size
increases from 10 s to 60 s, the Bias decreases from 0.6 METs to
0.2METs, and the RMSE decreases from 1.1 METs to 0.7METs
(Trost et al., 2012). In the selection of the model window, the index
is selected through the 60 s window. In addition, the 10 s and 30 s
windows are also tried to select the index. According to the results of the
correlation analysis, the correlation between the Mean and METs under
the 10 s and 30 s windows was reduced, and the correlation under the
10 s window was the lowest. ANNmodels are established based on 10 s
and 30 s windows, and the RMSE under different windows are obtained.
The results show that the RMSE under the 10 s (RMSE = 0.99METs)
and 30 s (RMSE = 0.93METs) windows were bigger than the RMSE
under the 60 s (RMSE = 0.90METs) window, which is consistent with
Trost’s experimental results (Trost et al., 2012). To improve the accuracy
of the EE prediction in various speeds, the 60 s window was selected.

5.3 Limitations

The subjects of this study were college students aged
18–30 years, and the effectiveness in other age groups has not yet
been verified. The experiment was carried out on a treadmill, which
is limited by the experimental environment and conditions and lacks
the verification of asynchronous speed and EE in real life. In this
study, we only conducted the establishment of the EE prediction
model for walking and running and did not conduct experiments for
other sports. In future experiments, we will further establish EE
prediction models for other sports.

5.4 Future outlook

In addition, the walking-and-running two-stage model was the
optimal model in this study; however, its calculation process is
relatively complex, and to obtain the accurate classification of
walking and running, a large number of computations need to be

implemented. However, in future research, we hope to classify
physical activity, establish the EE prediction models of various
physical activity types, and create an EE algorithm corresponding
to physical activity that will be called the physical-activity-type
recognition algorithm, which can be used as a method to
improve the accuracy of model EE prediction.

5.4.1 EE prediction algorithm based on physical-
activity-type recognition

In recent years, with the continuous development of artificial
intelligence, PA-type recognition based on accelerometers has
become a research hotspot. In future research, through the EE
prediction experiment of a single sports event, we hope to
establish the corresponding EE prediction model, and to establish
an algorithm library of EE prediction models through multiple
sports. In application, different sports events can be classified
through the PA-type recognition algorithm, and then different
EE prediction models can be established, constantly improving
the accuracy of the EE prediction.

5.4.2 Monitoring motion load based on
acceleration data

Themonitoring of the external loads of athletes using accelerometers
is simple, noninvasive, and the operation is easy. Based on the prediction
model of the EE of a single sports item, it can be applied in sports training
to monitor the exercise load and to establish a scientific exercise load
evaluation system to achieve a reasonable combination of training and
rest and reduce the occurrence of sports injuries.

6 Conclusion

Through the processing of original data, the establishment of
various models, and the verification of the accuracies of the EE
predictions of the models, we found that the construction method
of the EE prediction model affects the accuracy of the three-axis
accelerometer in the estimation of the EE of human motion. In
estimating the accuracy of walking and running EE prediction, the
ANN-based walking-and-running two-stage model established by
separating walking and running is superior to the other models
built in this study, can better estimate the walking and running

TABLE 4 Error table of EE prediction under single step speed (Bias).

Speed Model 1 Model 2 Model 3 Model 4 Model 5

Bias Bias Bias Bias Bias

2 0.28 ± 0.13 0.13 ± 0.18 0.14 ± 0.16 0.13 ± 0.14 0.05 ± 0.12

3 0.23 ± 0.13 0.20 ± 0.17 0.19 ± 0.16 0.16 ± 0.13 0.06 ± 0.12

4 0.09 ± 0.11 0.05 ± 0.14 0.04 ± 0.13 0.09 ± 0.14 0.07 ± 0.15

5 −0.07 ± 0.09 −0.04 ± 0.12 −0.05 ± 0.12 0.00 ± 0.13 0.02 ± 0.16

6 −0.19 ± 0.09 −0.09 ± 0.12 −0.09 ± 0.13 −0.10 ± 0.12 −0.06 ± 0.13

7 0.02 ± 0.12 0.06 ± 0.10 0.07 ± 0.09 0.03 ± 0.13 0.07 ± 0.09

8 0.00 ± 0.14 0.00 ± 0.10 0.00 ± 0.10 0.00 ± 0.12 0.00 ± 0.09

9 −0.02 ± 0.14 −0.05 ± 0.09 −0.03 ± 0.10 −0.02 ± 0.13 −0.04 ± 0.08
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EE. The improvement of energy consumption prediction accuracy is
conducive to more accurate monitoring of sports energy
consumption, selecting appropriate exercise measures based on
one’s own situation, participating in sports more scientifically, and
promoting physical health.
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