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Efficient and accurate detection and providing early warning for citrus psyllids is

crucial as they are the primary vector of citrus huanglongbing. In this study, we

created a dataset comprising images of citrus psyllids in natural environments

and proposed a lightweight detection model based on the spatial channel

interaction. First, the YOLO-SCL model was based on the YOLOv5s

architecture, which uses an efficient channel attention module to perform

local channel attention on the inputs in the recursive gated convolutional

modules to achieve a combination of global spatial and local channel

interactions, improving the model’s ability to express the features of the critical

regions of small targets. Second, the lightweight design of the 21st layer C3

module in the neck network of the YOLO-SCLmodel and the small target feature

information were retained to the maximum extent by deleting the two

convolutional layers, whereas the number of parameters was reduced to

improve the detection accuracy of the model. Third, with the detection

accuracy of the YOLO-SCL model as the objective function, the black widow

optimization algorithm was used to optimize the hyperparameters of the YOLO-

SCL model, and the iterative mechanism of swarm intelligence was used to

further improve the model performance. The experimental results showed that

the YOLO-SCL model achieved a mAP@0.5 of 97.07% for citrus psyllids, which

was 1.18% higher than that achieved using conventional YOLOv5s model.

Meanwhile, the number of parameters and computation amount of the YOLO-

SCL model are 6.92 M and 15.5 GFlops, respectively, which are 14.25% and 2.52%

lower than those of the conventional YOLOv5s model. In addition, after using the

black widow optimization algorithm to optimize the hyperparameters, the

mAP@0.5 of the YOLO-SCL model for citrus psyllid improved to 97.18%,

making it more suitable for the natural environments in which citrus psyllids

are to be detected. The experimental results showed that the YOLO-SCL model

has good detection accuracy for citrus psyllids, and the model was ported to the

Jetson AGX Xavier edge computing platform, with an average processing time of

38.8 ms for a single-frame image and a power consumption of 16.85 W. This

study provides a new technological solution for the safety of citrus production.

KEYWORDS
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1 Introduction

Citrus is one of the most popular fruits in the world with

numerous economic benefits (Liu et al., 2019). However, citrus

huanglongbing (HLB) is a highly transmissible citrus disease that is

difficult to prevent and control. HLB often leads to orchard yield

reduction or even extinction, thereby affecting the safe citrus

production. HLB is caused by the bast parasitic gram-negative

bacterium Candidatus Liberibacter asiaticus (CLas) (Ma et al.,

2022). HLB has a latent period, and its early yellowing symptoms

are similar to fruit tree deficiencies (Jiao, 2016), making it difficult to

diagnose accurately by hand. Currently, HLB is primarily diagnosed

using polymerase chain reaction (PCR) detection technology (Bao

et al., 2020; Wang et al., 2022b), but the low content and

nonuniform distribution of CLas in plants lead to false-negative

results of conventional PCR detection (Liang et al., 2018). Some

studies have used near-infrared spectroscopy (Liu et al., 2016),

hyperspectral remote sensing (Lan et al., 2019; Yang et al., 2021),

and laser-induced breakdown spectroscopy (Yang et al., 2022) to

diagnose HLB by analyzing the phenotype of the diseased plants

and the degree of elemental uptake by the plants. However, these

methods are complex, time-consuming, and difficult to meet large-

scale management needs of orchards. Unlike the above studies,

which are essentially based on HLB detection, this study explores

the use of machine vision technology for detecting the primary

vector of HLB, i.e., citrus psyllid, from the perspective of pest

detection, which can provide early warning for orchard prevention

and control.

In recent years, researchers have used machine vision technology

to conduct a series of studies in the field of orchard pest detection.

Wang et al. (Wang et al., 2021c) implemented the classification and

localization of candidate bounding boxes in a real-time citrus-pest

detection system, which can quickly detect red spiders and aphids with

a detection accuracy of 91.0% and 89.0%, respectively, and an average

processing speed as low as 286 ms for single-frame images. Shi et al.

(Shi et al., 2023) proposed an adaptive spatial feature fusion-based

lightweight detection model for citrus pests in the Papilionidae family.

They integrated multiple optimization methods such as an adaptive

spatial feature fusion module and an efficient channel attention

mechanism into the YOLOX model, and achieved a higher than

95.76% mAP0.5 and an improvement in inference speed of 29 FPS

over YOLOv7-x. Khanramaki et al. (Khanramaki et al., 2021)

proposed a deep learning–based integrated classifier for detecting

three citrus pests and achieved a 99.04% classification accuracy by

developing an integrated classifier to detect citrus leafminer, sooty

mold, and pulvinaria by considering the diversity of classification

network level, feature level, and data level. Peng et al. (Peng et al.,

2022) proposed a lychee pest detection model based on a lightweight

convolutional neural network ShuffleNetV2 model, using the SimAM

attention mechanism, Hardswish activation function, and migration

learning method; the model detected 13 lychee pests, including

Tessaratoma papillosa, with an accuracy of 84.9%. Ye et al. (Ye

et al., 2021) proposed a multifeature fusion-based method for litchi

pest detection, using the median filtering method for feature
Frontiers in Plant Science 02
extraction of pests. The detection of three problems, namely,

Tessaratoma papillosa, leaf rollers, and Pyrops candelaria, was

achieved with a 95.35% accuracy by training the backpropagation

network. Pang et al. (Pang et al., 2022) proposed an improved

YOLOv4 target detection model that detected seven orchard insect

pests, including Gryllotalpidae, with an average accuracy of 92.86%

and a detection time of 12.22 ms for a single-frame image by

optimizing the Nelder–Mead simplex algorithm and training

method, as well as augmenting the training data. Li et al. (Li et al.,

2023) proposed a pest detection model for passion fruit orchards

based on the YOLOv5 model, employing the convolutional block

attention module and mix-up data enhancement algorithm to detect

12 insect pests, including Bactrocera dorsalis Hendel, with an average

accuracy of 96.51% and detection time of 7.7 ms. Zhang et al. (Zhang

et al., 2022) proposed an orchard pest detection model that combines

the YOLOv5 model and GhostNet and can detect seven orchard pests,

such as chrysomelids, with a 1.5% increase in mAP0.5compared

to YOLOv5.

In summary, machine vision technology has good feasibility in

detecting orchard pests. However, the existing technology only

excels in pest classification, and the presence of missed detections

and false positives in the detection of pests, particularly for citrus

psyllids, which have tiny bodies at the millimeter level and pose

challenges to the effectiveness of target detection algorithms. To

address this issue, this study developed a dataset of citrus psyllids in

a natural environments and proposed a lightweight detection model

based on spatial channel interaction(YOLO-SCL). The main

research work includes:
(1) In the recursive gated convolutions (ɡnConv), an efficient

channel attention module is used for the feature maps

after channel mixing to enhance the interactions between

the local channels, achieve the interplay between global

spatial interactions and local channel interactions,

improve the feature representation of the model for

critical regions, and enhance the contextual semantic

information.

(2) The C3 module in the neck network is operated by

deleting the convolutional layers to maximally retain the

detailed feature information of the small targets and

effectively improve the model detection performance.

(3) The black widow optimization algorithm (BWOA) is used

to optimize hyperparameters of the YOLO-SCL model,

making the optimized hyperparameters more suitable for

the citrus psyllids detection task, as the optimal settings of

the model hyperparameters are not always the same in

different studies.
This study is outlined as follows: Section 2 presents the dataset

construction; Section 3 introduces the design associated with the

YOLO-SCL model; Section 4 outlines the BWOA algorithm utilized

for optimizing hyperparameters of the YOLO-SCL model; Section 5

provides a detailed analysis of experimental results; and finally, in

Section 6, we discuss and conclude our study.
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2 Dataset description

2.1 Background

The experimental data for this study were mainly collected from

the experimental base of the citrus orchard of South China

Agricultural University (Guangzhou, Guangdong, China), and the

collection period was from June to December 2022. Considering

that the phototropic behavior of adult psyllids is remarkably

affected by light intensity (Yuan et al., 2020), the collection

periods were primarily selected from 10:00 to 11:30 and 14:30 to

16:00 under natural light environment on sunny days, and the

shooting tools included a mirrorless interchangeable-lens camera

(SONY Alpha 6400 APS-C) and a hand-held camera (Xiaomi Mi 9,

Honor 30), and the shooting distance was 50–100 cm. The image

resolutions were 900 × 900 pixels (Figure 1).
2.2 Citrus psyllid dataset construction

The adult citrus psyllids was approximately 3 mm long, and the

resolution of the psyllids in the captured images was less than 32 ×

32 pixels, which was classified as a tiny target according to the target

definition of the MS COCO dataset (Gao et al., 2021). The

constructed citrus psyllid dataset has 2660 original images. The

annotated dataset was categorized into the training (2,128 images)

and validation sets (532 images) at a ratio of 8:2. The dataset was

expanded to 7,980 images by adding salt-pepper noise, adjusting

brightness, photoflipping, and other data enhancement methods.

The dataset was annotated using the Labelimg tool, with 11,043

adult psyllid targets.
3 Lightweight YOLO-SCL detection
model design

Figure 2 shows the overall flow of the proposed lightweight

YOLO-SCL detection model for citrus psyllids, using YOLOv5 as

the baseline model. First, an improved (ɡnConv) (19th layers) was

added to the neck network to achieve long-distance modeling

between features, improve feature representation in critical

regions, and help the model resist complex background

information. Second, the C3 module in the neck network was

lightened to avoid too much loss of small target detail

information while reducing the number of model parameters.

Table 1 shows the specific parameters of the YOLO-SCL model.
3.1 Improved recursive gated convolutions
based on spatial channel interactions

Transformer architecture was initially designed for natural

language processing tasks (Vaswani et al., 2017). The vision

transformer model (Dosovitskiy et al., 2020) was proposed to

show that a vision model constructed only from transformer
Frontiers in Plant Science 03
blocks and patch embedding layers can achieve performance

comparable to those of convolutional neural networks. Unlike the

convolutional kernel aggregation of the neighboring features

approach, the visual transformer blends spatial elements using a

multihead attention mechanism to achieve suitable modeling of

spatial interactions in visual data. However, the quadratic

complexity of the multihead self-attention mechanism remarkably

limits its application, particularly in downstream tasks with high-

resolution feature maps. The ɡnConv (Rao et al., 2022) implements
B

A

FIGURE 1

Example of citrus psyllid dataset. (A) Mirrorless interchangeable-lens
camera. (B) hand-held camera.
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spatial interactions using simple operations such as convolution

and fully connected. Unlike the second-order interactions of the

multiple attention mechanism, the ɡnConv module implements

spatial interactions in an arbitrary order (Figure 3). The ɡnConv
module enables the global spatial interaction through dot product

operations, effectively overcoming the effect of complex

backgrounds on target detection in citrus psyllids detection tasks.

Therefore, in this study, we used the ɡnConv module and modified

it for long-range feature modeling and feature representation in

critical regions.

The ɡnConv module implements global spatial interaction of

features to establish long-range dependencies, but only performs

simple channel blending of the input feature maps, ignoring

interchannel interaction. While the channel attention mechanism

can effectively improve the performance and screening features of

deep learning networks, this study uses the channel attention

module to enhance the ɡnConv module. Among the channel

attention modules, the squeeze-and-excitation (SE) module (Hu

et al., 2018) alters the feature dimensions, affecting the SE module’s

performance. In contrast, the efficient channel attention (ECA)

module (Wang et al., 2020) is a highly efficient and lightweight local

channel interaction strategy that is improved on the SE module. The

ECA module avoids feature dimensionality reduction and uses

some parameters to achieve a significant performance

improvement. In this study, the ECA module was added to the

ɡnConv module (ɡnConv ECA module) (Figure 4). Using the ECA

module to perform local channel interaction on feature maps after

channel blending in the ɡnConv module improves the

representation of the critical feature areas in the ɡnConv module.
Frontiers in Plant Science 04
The improved recursive gated convolution (ɡnConv ECA)

module combines the global spatial and local channel

interactions. The ɡnConv ECA module inputs feature maps in the

following steps:

(1) First, a set of features M0 and Ni are obtained by channel

blending through a linear projection layer.

MHW�C0
0 ,NHW�C0

0 ,…,NHW�Cn−1
n−1

h i
= ym(x) (1)

(2) This set of features is then passed through the ECA module

to obtain a new set of features M+
0 and N+

i.

M+HW�C0
0 ,N+HW�C0

0 ,…,N+HW�Cn−1
n−1

h i

= ECA MHW�C0
0 ,NHW�C0

0 ,…,NHW�Cn−1
n−1

h i� �
(2)

(3) Gated convolution is performed recursively using the

following equation,

Mi+1 = DConvi(Ni)⊙Gi(Mi)=S   (3)

Gi =
Identity, i = 0

Linear(Ci−1,Ci), 1 ≤ i ≤ n − 1

(
(4)

where DConvi is a set of deep convolutional layers, Gi is the way

of matching dimensions between different orders, and S is the

scaling value to adjust the training stability. The formula for the

ECA module in Eq. (2) is shown in Eq. (5).

y∼ = s (j(y))⊗ y (5)
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FIGURE 2

Schematic of citrus psyllid lightweight YOLO-SCL detection model.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1276833
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lyu et al. 10.3389/fpls.2023.1276833
where s is the Sigmoid activation function, f is a 1 × k one-

dimensional convolution, and y is the input feature map.
3.2 C3 module lightweight design

The main role of the convolutional layer is to extract image

features. An appropriate increase in the number of convolution

operations for images containing large targets can obtain richer

semantic information, whereas in images containing small targets,

successive convolution operations may cause too much loss of detail

information of some of the small targets, leading to unsatisfactory

results of the task, whereas in images containing small targets,

successive convolution operations may cause too much loss of detail

information of some of the small targets, leading to unsatisfactory

results of the task.

In images with small targets, successive convolution operations

may cause too much loss of detailed information on some of the
Frontiers in Plant Science 05
small targets, leading to unsatisfactory task results. The citrus

psyllids accounts for a tiny proportion of the image pixels,

resulting in the loss of some of its detailed feature information as

the number of network layers increases. In the neck network of the

YOLO-SCL model, the 17th, 21st, and 24th layer C3 modules detect

small, medium, and large targets, respectively. Based on the

deepening of layers, their degree of retaining the detailed feature

information of small targets decreases sequentially. Therefore, to

retain more feature information of small targets, this study

improved the 21st layer C3 module in the neck network of the

YOLO-SCL model by deleting convolutional layers. Figure 5

illustrates the C3 module before and after the improvement.
4 Hyperparameter optimization of the
YOLO-SCL detection model

Considering the impact of hyperparameter settings on the

performance of the detection model (Akay et al., 2022), this study

adopts BWOA (F.Pena et al . , 2020) to optimize the

hyperparameters of the YOLO-SCL detection model. By

leveraging the optimization iteration mechanism based on swarm

intelligence, this study rapidly converged and obtained optimal
TABLE 1 YOLO-SCL model specific parameters table.

From Params Module Arguments

-1 3520 Conv [3, 32, 6, 2, 2]

-1 18560 Conv [32, 64, 3, 2]

-1 18816 C3 [64, 64, 1]

-1 73984 Conv [64, 128, 3, 2]

-1 115712 C3 [128, 128, 2]

-1 295424 Conv [128, 256, 3, 2]

-1 625152 C3 [256, 256, 3]

-1 1180672 Conv [256, 512, 3, 2]

-1 1182720 C3 [512, 512, 1]

-1 656896 SPPF [512, 512, 5]

-1 131584 Conv [512, 256, 1, 1]

-1 0 Upsample –

[-1, 6] 0 Concat [1]

-1 361984 C3 [512, 256, 1, False]

-1 33024 Conv [256, 128, 1, 1]

-1 0 Upsample –

[-1, 4] 0 Concat [1]

-1 90880 C3 [256, 128, 1, False]

-1 147712 Conv [128, 128, 3, 2]

-1 73059 ɡnConv ECA [128]

[-1, 14] 0 Concat [1]

-1 132096 Light C3 [256, 256, False]

-1 590336 Conv [256, 256, 3, 2]

[-1, 10] 0 Concat [1]

-1 1182720 C3 [512, 512, 1, False]
FIGURE 3

Recursive Gated Convolutions.
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hyperparameter combinations, thereby improving the performance

of the model. This approach also addresses the issue of overreliance

on experience in manual parameterization.

BWOA is inspired by the behavior of black widow spiders, and

the algorithmic model mainly consists of in-web movement and

pheromone control strategies for black widow spider groups.

Figure 6 illustrates the movement strategy within the spider web,

including both linear and spiral movement modes, which can be

characterized by the formula shown in Eq. (6).

xi(t + 1) =
xgbest(t) −mxr1 (t), if   rand ≤ 0:3

xgbest(t) − cos  (2pb)xi(t) in     other     case

(
(6)

where t is the current iteration number of the algorithm, xi(t) is

the ith spider individual, xgbest(t) denotes the optimal spider

individual of the current population, and xr1(t) denotes a randomly

selected spider individual in the current population, rl ≠ i. The control

parameter m for the linear movement mode is a random floating-
Frontiers in Plant Science 06
point number in an interval of [0.4,0.9], and the control parameter b
for the spiral movement mode is a random floating-point number in

an interval of [−1,1].

Second, the pheromone plays a crucial role in determining the

state of individual spiders. During the mating process of male and

female spiders, the spider that receives more nutrients exhibits

better fecundity, resulting in a higher pheromone value that

represents higher fecundity, which means higher fertility. The

pheromone value for the ith spider individual in BWOA is

calculated as shown in Eq. (7).

phermonei =
fitnessmax − fitnessi
fitnessmax − fitnessmin

(7)

where fitnessi denotes the adaptation value of the ith spider

individual, and fitnessmax and fitnessmin represent the worst and

optimal adaptation values of the current population, respectively.

Therefore, the range of pheromone values for spider individuals is
FIGURE 4

Improved Recursive Gated Convolutions based on spatial channel interaction.
FIGURE 5

C3 module before and after improvement in the neck network.
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[0,1]. In addition, if the pheromone value of spider individual i is not

greater than 0.3, the position will be updated, as shown in Eq. (8).

xi(t) = xgbest(t) +
1
2
½xr1 − ( − 1)s � xr2 (t)� (8)

where xr1(t), xr2(t) denote randomly selected spider individuals

in the current population, r1≠ r2≠ i; s takes values in the set {0,1}.
Frontiers in Plant Science 07
Figure 7 shows the flowchart of hyperparameter optimization of

the detection model based on BWOA, and the computational

steps include:
1) Data division: the dataset is collected and divided into

training and validation sets.

2) Initialization of parameters and population: the parameters

related to the algorithm are set, including the number of

populations N, maximum number of iterations T, upper

and lower bounds (ub and lb) of the hyperparameters, and

the position of the population is initialized. Each individual

represents a set of hyperparameters.

3) Calculation of fitness: after checking whether the position of

an individual is out of bounds, each individual in the

population is brought into the trained model to calculate

the fitness value and each pheromone. The historical

optimal individual xgbest is updated.

4) Hyperparameter optimization: each searching individual in

the population updates the positional information

according to the pheromone size using Eqs. (6) and (8),

respectively, and updates the number of iterations (t = t + 1)

and individual pheromones.

5) Algorithm termination: the algorithm terminates when the

termination conditions are met, and the optimized

hyperparameters xgbest are used to train the model and

obtain the final model.
FIGURE 6

Black widow spider movement strategy.
FIGURE 7

Flowchart of hyperparameter optimization of detection model based on BWOA algorithm.
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5 Experimental results and analysis

5.1 Experimental environment and model
evaluation metrics

The YOLO-SCL model was created based on the deep learning

framework pytoch1.12.0, and all model training was performed in

Windows 10 with an Intel(R) Core(TM) i7-8700 CPU @ 3.20 GHz

3.19 GHz and a GPU of NVIDIA GeForce RTX 2080 Ti.

During training, each model uses stochastic gradient descent

and cosine annealing to reduce the learning rate. To save

computational resources, the epoch and batch sizes were set to

300 and 16, respectively, and an early stopping strategy was set to

stop the training early if the model performance did not improve

after 100 iterations.

In this study, typical evaluation metrics such as size, giga

floating-point operations per second (GFlops), precision (P),

recall (R), average precision (AP), and the mean average precision

(mAP) were used to verify the performance of the target detection

model. The calculation formulas are as follows.

P =
TP

TP + FP
(9)

R =
TP

TP + FN
(10)

AP =
Z 1

0
P(R)dR (11)

mAP =
1
n on

i=1APi
� �

(12)

where true positives(TP) are the number of correctly detected

targets, false positives (FP) are the number of samples in which

annotation boxes were generated but in the wrong position or

incorrectly labeled in the category, false negatives are the number of

samples in which no annotation boxes were generated in the target.

AP is equal to the area under the accuracy-recall curve, and mAP is

the average of the AP in different categories. In this study, citrus

psyllid is category 1, and the value of n is 1.
5.2 Benchmark model performance
analysis

To achieve efficient and accurate detection of citrus psyllids

small targets in complex environments, this study evaluated the

performance of different YOLOv5 detection models based on the

constructed citrus psyllid dataset. The experimental results are

shown in Table 2. Among the different models tested, YOLOv5n

had the lowest number of parameters and computations. However,

its mAP@0.5 is lower than those of the YOLOv5s, YOLOv5m,

YOLOv5l, and YOLOv5x models by 0.73%, 0.72%, 0.94%, and

1.16%, respectively. The mAP@0.5 of the YOLOv5m model is

slightly lower than that of the YOLOv5s model, but the number

of parameters and computations are approximately 2.97 and 3.03
Frontiers in Plant Science 08
times that of the YOLOv5s model. The mAP@0.5 of the YOLOv5l

and YOLOv5x models are 0.21% and 0.43% higher than that of the

YOLOv5s model, respectively. However, the number of parameters

and computations amount of the YOLOv5l model is approximately

6.57 and 6.81 times that of the YOLOv5s model, and the number of

parameters and computations amount of the YOLOv5x model is

approximately 12.28 and 12.83 times more than the YOLOv5s

model, respectively. Considering the number of parameters and

computations, and mAP@0.5, YOLOv5s was chosen as the baseline

model for the citrus psyllid detection task in this study.
5.3 Analysis of the results of the
ablation experiment

To achieve efficient and accurate detection of citrus psyllids

small targets, ablation experiments were conducted on the

constructed citrus psyllid dataset to analyze the importance of

each module. The ɡnConv, ɡnConv ECA, and lightweight C3

(Light C3) modules were added to the model step-by-step to form

several improved models, using the YOLOv5s model as the baseline

model. The results of the experiments are shown in Table 3.

Table 3 shows that the model detection accuracy is improved by

adding ɡnConv, ɡnConv ECA, and Light C3 modules. This is because

the ɡnConv module implements global spatial interactions,

constructing long-distance dependencies that better represent

critical regions’ features. The ɡnConv ECA module combines

global spatial interactions with local channel interactions to further

improve the model’s ability to extract critical regions for accurate

detection. The Light C3 module improves the C3 module by

lightweight it, which retains the details of the small targets to a

certain extent and achieves the purpose of reducing the number of

model parameters, which helps to improve the model’s performance

and reduce the amount of computation.

The mAP@0.5 and mAP@0.5:.95 of Model 1 (YOLOv5s+

ɡnConv model) and Model 2 (YOLOv5s+ ɡnConv ECA model)

are improved by 0.69%, 0.90% and 1.69%, 2.88%, respectively,

compared with the baseline model, which indicates that the global

spatial interaction mechanism effectively improves the model’s

detection of the target and that the ɡnConv ECA module

incorporates the local channel interaction, which makes the target

detection accuracy further enhanced. Model 3 (YOLOv5s+Light C3

model) not only has 1.70M fewer parameters than the baseline

model but also has mAP@0.5 and mAP@0.5:.95 is 0.69% and 1.53%
TABLE 2 Detection results of different variants of the YOLOv5 model on
the citrus psyllid dataset.

Model Size (M) GFlops mAP@0.5 (%)

YOLOv5n 1.9 4.2 95.16

YOLOv5s 7.02 15.9 95.89

YOLOv5m 20.87 48.2 95.88

YOLOv5l 46.1 108.2 96.10

YOLOv5x 86.22 204.6 96.32
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higher than the baseline model, indicating that the lightweight C3

module can effectively reduce the loss of the target feature

information and ensure the improved detection accuracy while

reducing the number of model parameters. Finally, the mAP@0.5 of

model 4 (YOLOv5s+Light C3+ ɡnConv ECA model) reaches

97.07%, which is 1.18% higher than the baseline model, and both

are higher than the other improved models.
5.4 Comparative analysis with other
detection models

In this section, the proposed YOLO-SCL model is compared with

mainstream single-stage target detection models, including the

YOLOv4-CSP (Wang et al., 2021a), YOLOX (Ge et al., 2021),

YOLOR-p6 (Wang et al., 2021b), YOLOv7 (Wang et al., 2022a),

YOLOv8 (Reis et al., 2023) models, and transformer-based end-to-

end detection model DETR (Carion et al., 2020). Table 4 shows the

test results, highlighting the advantage of YOLO-SCL model in terms

of the number of parameters, computational load, and mAP

compared to other control detection models. The improved

architecture combining the ɡnConv and lightweight C3 modules

effectively improves the feature representation of the model for target

regions. This addresses the problem of the model losing semantic

information for small targets as the layers deepen. The DETR model

benefits from the transformer’s self-attention mechanism, and its

mAP@0.5 is higher than that of the YOLOX and YOLOR-p6 models

by 0.01% and 0.29%, respectively. However, compared with the

YOLO-SCL model, the mAP@0.5 and mAP@0.5:.95 of the DETR

model is lower than that of the YOLO model by 3.64% and 4.01%.

The parameters and computations are 5.31 and 6.54 times higher

than those of the YOLO-SCL model. The YOLOv4-CSP model,
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which is an improved model based on YOLOv4, obtained 94.56%

mAP@0.5 and 50.41% mAP@0.5:.95 on the citrus psyllid detection

task but was still 2.51% and 3.02% lower than the YOLO-SCL model.

The YOLOv7model mAP@0.5 is higher than other detectionmodels.

However, it is 1.23% lower than that of the YOLO-SCL model mAP@

0.5 and 3.35% lower than that of the YOLO-SCL model mAP@

0.5:.95, and the number of parameters and the amount of

computation of the YOLOv7 model is much larger than that of the

YOLO-SCL model. The YOLOv8 model mAP@0.5 is 1.86% lower

than that of the YOLO-SCL model. However, it is 0.53% higher than

the YOLO-SCL model mAP@0.5:.95. In summary, the proposed

YOLO-SCL model has a parameter count of 6.92 M, which is easy to

deploy on a mobile platform, and the model has the highest mAP@

0.5, making it more suitable for the task of citrus psyllids detection in

natural environments.

Figure 8 shows the iterative curves of mAP@0.5 and mAP@

0.5:.95 during the training process of the YOLO series of detection

models. The mAP@0.5 and mAP@0.5:.95 curves of the YOLOv5s,

YOLOX, and proposed YOLO-SCL models almost intersect at the

50th epoch. The detection accuracy of the YOLOv5s and YOLOX

models rapidly improves at the early stage. In contrast, the YOLO-

SCL model steadily improves at the later stage and achieves results

superior to those of the YOLOv5s, YOLOX and YOLOv8 models.

The mAP@0.5 and mAP@0.5:.95 curves of the YOLOv7, YOLOv4-

CSP, and YOLOR-p6 models are considerably inferior to that of the

proposed YOLO-SCL model. For these three models, the curves

fluctuate more with poor robustness than that of the

proposed model.

Figure 9 shows the results of the YOLO series of detection

models. The proposed YOLO-SCL model demonstrated effective

detection of a higher number of citrus psyllids in complex

backgrounds than that of other models, thereby improving
TABLE 3 Results of ablation experiments on the citrus psyllid dataset.

Methods Baseline gnConv gnConv ECA Light C3 Size (M) GFlops mAP @0.5 (%) mAP@0.5:.95 (%)

YOLOv5s
Model 1
Model 2
Model 3
Model 4

√

√

√

√

√

√

√

√

√

√

7.02
7.09
7.10
6.85
6.92

15.9
16.0
16.2
15.2
15.5

95.89
96.58
96.79
96.57
97.07

50.78
52.47
53.66
52.31
53.43
“√” that the component is selected for use into model YOLOv5.
TABLE 4 Comparison of the performance of the latest models on the citrus psyllid dataset.

Methods Size (M) GFlops mAP@0.5 (%) mAP@0.5:.95 `(%)

YOLOv4-CSP 52.50 119.7 94.56 50.41

YOLOX 8.94 26.76 93.42 48.67

YOLOR-p6 36.8 80.6 93.14 49.46

YOLOv7 37.2 105.1 95.84 50.08

YOLOv8 11.2 28.6 95.21 53.96

DETR 36.74 101.4 93.43 49.42

YOLO-SCL 6.92 15.5 97.07 53.43
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detection accuracy. Under the conditions of low light and blurred

individual psyllid due to filming problems, the improved model

exhibited accurate identification with a low leakage rate, indicating

that the ɡnConv ECA module enhances the model’s ability to

express features in critical areas, making it highly efficient in

extracting target features in complex backgrounds. Meanwhile,

the lightweight C3 module retains the feature information of

small targets to a certain extent, contributing to better target

localization and identification of the model, thereby reducing the

number of missed and false citrus psyllids detections.
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5.5 Hyperparameter optimization of the
detection model based on BWOA

In this study, 25 hyperparameter combinations of the YOLO-

SCL model were used as the optimization objects. Based on the

optimization iterative mechanism of swarm intelligence, the

characteristics of BWOA, such as few control parameters and fast

optimization rate, were used to map the hyperparameters into

individual feasible solutions of BWOA and obtain the optimal

hyperparameter combinations that are suitable for citrus psyllid
B

A

FIGURE 8

mAP@0.5 and mAP@0.5:.95 iteration curves of training results on different models. (A) mAP@0.5. (B) mAP@0.5:.95.
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detection tasks. The control parameters included 50 epochs, 100

iteration numbers, and 10 iteration numbers. The hyperparameter

optimization results are shown in Tables 5 and Table 6 compares

the detection results before and after optimization. Table 6 shows

that before and after the optimization of hyperparameters, the

precision, recall, mAP@0.5, and mAP@0.5:.95 were improved by

1.44%, 1.60%, 0.11%, and 0.75%, respectively, indicating that the

optimization of hyperparameters can effectively improve the

precision of the detection of citrus psyllids, and further improve

the performance of the model.

Figure 10 shows the iterative curves of mAP@0.5 and mAP@

0.5:.95 of the YOLO-SCL model training process before and after

optimization. The mAP@0.5 and mAP@0.5:.95 curves of the

optimized model in the first 10 epochs have large fluctuations,

indicating that the optimization of the hyperparameter

combination affects the stability of the detection model. However,

the iterative curve gradually stabilized as the epoch increased, and

better detection accuracy was obtained.
5.6 Lightweight C3 module
grad-cam analysis

In this study, lightweight experiments are performed on the C3

modules in layers 17, 20, and 23 of the YOLOv5s model neck

network, and the results are shown in Table 7. The YOLOv5s model

lightened for the 17th layer C3 module has 0.48% lower mAP@0.5
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and 0.50% lower mAP@0.5:.95 than the baseline model YOLOv5s,

and this lightning operation affects the performance of the baseline

model. The mAP@0.5 of the YOLOv5s model lightened for the 20th

and 23rd C3 modules are 0.68% and 0.82% higher than that of the

YOLOv5s model, respectively, while the mAP@0.5:.95 of the 20th

lightened YOLOv5s model are 1.63% higher than that of the 23rd

lightened YOLOv5s model. Therefore, in this study, we chose to

improve the 21st layer C3 module of the YOLO-SCL model.

To further verify that the lightweight C3 module can reduce the

loss of detailed feature information of small targets by deleting the

convolutional layers, this study uses the Grad-CAM method to

analyze the attention focused on the target with different

improvements in the 20th layer of the C3 module. Figure 11 shows

the Grad-CAM thermograms of the several YOLOv5s+Light C3

models trained on the citrus psyllid dataset and the 20th layer of

the YOLOv5s model. Figs. b(left), c(left) and d(left) show that the

YOLOv5s and YOLOv5s+Light C3(-1×CBS) models lose the feature

information of the target to a certain extent, which affects the model’s

performance of detecting the target, whereas the YOLOv5s+Light

C3(-2×CBS) model not only retains the feature information of the

target but also improves the attention to the target. Figs. b(right), c

(right), and d(right) show that the YOLOv5s and YOLOv5s+Light

C3(-1×CBS) models exhibit a more diffuse attention area and

are more affected by the complex environment, whereas the

YOLOv5s+Light C3(-2×CBS) model focuses more on the target.

The comprehensive experimental results show that by lightening

the C3 module and deleting the convolutional layer, the feature
B

C

D

E

F

G

A

FIGURE 9

Test results of different models on the test images. The test results from top to bottom are YOLOv4-CSP, YOLOR-p6, YOLOv7, YOLOX, YOLOv8,
YOLOv5s, and YOLO-SCL. Red boxes indicate missed detections, and blue boxes indicate false detections. (A) YOLOv4-CSP. (B) YOLOR-p6.
(C) YOLOv7. (D) YOLOX. (E) YOLOv8. (F) YOLOv5s. (G) YOLO-SCL.
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information of the tiny target is retained to the maximum extent, and

the attention is more focused on the target, improving the detection

accuracy of the target.
5.7 Detection model porting deployment
based on NVIDIA JETSON AGX XAVIER
embedded platform

In this study, the YOLO-SCL model porting deployment was

performed using NVIDIA Jetson AGX Xavier edge computing
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platform based on the ARM architecture. The Jetson AGX Xavier

edge computing platform is 100 × 87 mm in size, has a GPU of 512

cores, a CPU of 8 cores, and 32 GB of storage. The system of this

platform is Ubuntu 18.04.

To facilitate the porting of the YOLO-SCL model, a runtime

environment was configured on a Jetson AGX Xavier to debug the

hardware performance of the platform, specifically the deep

learning gas pedal engine. The model porting and deployment

results are shown in Figure 12, demonstrating that the average

processing time of a single-frame image is 38.8 ms, and the power

consumption is 16.85 W.
TABLE 5 Results before and after hyperparameter optimization.

Hyperparameter Before Optimization After Optimization (lb, ub)

Lr0 0.001 0.04185 (0.00005, 0.1)

Lrf 0.01 0.14641 (0.01, 1.0)

Momentum 0.937 0.70022 (0.6,0. 98)

Weight decay 0.0005 0.00014 (0.0, 0.001)

Warmup epochs 3.0 1.16490 (0.0, 5.0)

Warmup momentum 0.8 0.07027 (0.0, 0.95)

Warmup bias lr 0.1 0.01957 (0.0, 0.2)

Box 0.05 0.02334 (0.02, 0.2)

Cls 0.5 0.63575 (0.2, 4.0)

Cls pw 1.0 0.58352 (0.5, 2.0)

Obj 1.0 1.59100 (0.2, 4.0)

Obj pw 1.0 0.58352 (0.5, 2.0)

Anchor t 4.0 3.64620 (2.0, 8.0)

Hsv h 0.015 0.02919 (0.0, 0.1)

Hsv s 0.7 0.03530 (0.0, 0.9)

Hsv v 0.4 0.01103 (0.0, 0.9)

Degrees 0.0 0.05874 (0.0, 45.0)

Translate 0.1 0.29687 (0.0, 0.9)

Scale 0.5 0.01554 (0.0, 0.9)

Shear 0.0 3.26980 (0.0, 10.0)

Flipud 0.0 0.13026 (0.0, 1.0)

Mosaic 1.0 0.02767 (0.0, 1.0)

Mixup 0.0 0.09442 (0.0, 1.0)

Copy pasts 0.0 0.21605 (0.0, 1.0)

anchors – 2.40950 (2.0, 10.0)
TABLE 6 Comparison of detection results before and after hyperparameter optimization.

P(%) R(%) mAP@0.5(%) mAP@0.5:.95(%)

Before Optimization 93.73 92.35 97.07 53.43

After Optimization 95.17 93.95 97.18 54.18
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6 Conclusions and analyses

6.1 Discussion

The mAP@0.5 results of the YOLO-SCL model on the citrus

psyllids detection task were better than those of the other six target

detection models, from the prediction result graphs, the YOLO-SCL

model effectively solved the missed and false problems that

occurred in the other six models. The above results show that the
B

A

FIGURE 10

The mAP@0.5 and mAP@0.5.95 curves of the YOLO-SCL model training process before and after hyperparameter optimization. (A) mAP@0.5.
(B) mAP@0.5:.95.
TABLE 7 Experimental results of lightweight C3 modules at layers 17,
20, and 23 in the neck network of the YOLOv5s model.

Methods mAP@0.5 (%) mAP@0.5:.95 (%)

YOLOv5s+Light C3(17) 95.41 50.28

YOLOv5s+Light C3(20) 96.57 52.31

YOLOv5s+Light C3(23) 96.71 50.68
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improved architecture combining the ɡnConv and lightweight C3

modules effectively improves the feature representation of the

model for target regions. In the follow-up work, attempts will be

made to apply the improved approach to different target detection

models for citrus psyllid detection tasks as well as to apply the

YOLO-SCL model to more tasks in other fields.
6.2 Conclusions

In this study, a YOLO-SCL model for detecting citrus psyllids in

natural environments was proposed to improve the detection

accuracy of citrus psyllids in response to problems such as the

difficulty of accurately detecting small targets and complex

background interference. First, the ɡnConv module based on

spatial channel interaction was proposed to improve the model’s

detection accuracy for small targets; the module is realized through
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the combination of global spatial and local channel interactions.

Second, to maximize the retention of small target feature

information, the 21st layer of the C3 module in the YOLO-SCL

model was lightened and improved, making the model more target-

aware. In addition, optimization of the hyperparameters in the

YOLO-SCL model using BWOA. The main conclusions are

as follows:
i. The YOLO-SCL model achieved 97.07% mAP@0.5 and

53.43% mAP@0.5:.95 with a model parameter count and

computation of 6.92 M and 15.5 GFlops, respectively. The

model considerably improved the detection of citrus

psyllids and was ported and deployed on the edge

computing platform with an average processing time of

38.8 ms and power consumption of 16.85 W for a single-

frame image. In addition, optimization of the

hyperparameters in the YOLO-SCL model using BWOA
B

C

D

A

FIGURE 11

Grad-CAM thermograms of the YOLOv5s+Light C3 model trained on the citrus psyllid dataset and YOLOv5s model layer 20. (A) Original Picture.
(B) YOLOv5s. (C) YOLOv5s+Light C3(-1×CBS). (D) YOLOv5s+Light C3(-2×CBS).
FIGURE 12

Jetson AGX Xavier edge computing platform model porting deployment detection results.
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Fron
resulted in higher mAP@0.5 and mAP@0.5:.95 of 97.18%

and 54.18%, respectively.

ii. Compared with the other six detection models, the YOLO-

SCL model achieved the highest mAP@0.5. The YOLO-

SCL model is 6.92 M and 15.5 GFlops, which are 14.25%

and 2.52% lower than those of the conventional YOLOv5s

model, respectively. The above data show that the

improved model has achieved better performance in

recognition accuracy and efficiency.

iii. This study discusses citrus psyllids detection in natural

environments; the above results show that the YOLO-SCL

model performs well on the citrus psyllid detection task

and provides some values for studying different small

target detection tasks.
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