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1. Introduction

The original results obtained in this work are connected to the geometric function theory, and they
were obtained using methods based on subordination and with the help of a g-calculus operator. The
main notions that define the context of the research are first presented.

Let H be the class of analytic functions in the open unit disc D := {¢ € C : |g| < 1}.
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A notable subclass of H is denoted by H[a, n] and contains functions f € H of the form

f(§)=a+a, 6" +ams +... (seD).

Another remarkable subclass of H is denoted by A(n) and consists of functions f € H of the form

o0

f)=¢+ Z ass”, ¢ €D, (1.1)
v=n+1
withn € N = {1,2,...} and written as A = A(1).
The subclass of A represented by

()
1)

denotes the class of convex functions in the unit disk D.

The notion of subordination [1-3] is characterized by the following:

If f and 7 are analytic in D, f is said to be subordinate to #, denoted by f(g) < #i(s), if there exists an
analytic function w; with @w(0) = 0 and |@w(s)| < 1 for all ¢ € D, such that f(¢) = A(w(s)). Moreover,
if the function 7 is univalent in D, then the following equivalence holds:

K:{feA:Re( +1)>O,f(0):0,f’(0)¢0,geD},

() <n(s) & f(0) =n(0) and f(A) C(A).

For a function f € A(n) and a function # of the form

W) =g+ Y by’ seD,

d=n+1

the well-known convolution product is defined as:

(o9

(f ¥ 1)(s) =+ ) ahys”, s €D.
P=n+1

Many studies involving the g-derivative and the g-integral operators described by Jackson [4, 5]
have emerged in recent years due to the multiple applications of those operators in various branches
of mathematics and other related fields. A comprehensive review regarding the quantum calculus
apects applied in the geometric function theory was done [6], and Kanas and Raducanu [7] presented
the g-analogue of the Ruscheweyh differential operator and looked into some of its features by
utilizing the concept of convolution. Aldweby and Darus [8], Mahmood and Sokol [9] and others
analyzed many types of analytical functions defined by the g-analogue of the Ruscheweyh differential
operator. Multivalent analytic functions were investigated involving the g-difference operator [10],
and bi-univalent analytic functions are investigated under a similar operator in [11]. Analytic
functions were investigated in a conic domain using g-calculus [12] and applications of the
subordination concept and g-calculus were given [13—15]. The Faber polynomial expansion method
was applied on bi-univalent functions using a g-integral operator [16], and the g-derivative linked
Gegenbauer polynomials for certain bi-univalent functions [17]. Close-to-convex functions were
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investigated in association with g-Srivastava-Attiya in operator [18], an extended g-analogue of
multiplier transformation was used for subordination and superordination studies [19] and g-analogue
of the Choi-Saigo-Srivastava operator was associated for the study presented [20].

The pleasant results recently obtained by combining the aforementioned quantum calculus
components into the geometric function theory are what inspired the introduction of the new findings
in this study. We were motivated to further explore the g-analogue of the multiplier transformation
after reading about its applications in the definition of new subclasses of univalent functions, as well
as after taking into account recent findings involving another quantum calculus operator and the
classical theories of differential subordination and superordination [21-23].

The studies presented above motivated the use of the linear extended multiplier operator, which was
recently defined using certain quantum calculus means [24] for the investigations applying the theories
of differential subordination and superordiantion presented in this paper connected to new classes of
analytic functions.

The fundamental concepts of the g-calculus, created by Jackson [4] and relevant to our research,
will now be discussed. This method can also be applied to higher dimensional domains.

Jackson [4, 5] defined the g-derivative operator D, of a function f:

f(g) = £(5)

qu(g) = aqf(g) = (q — 1)5'

, (O<g<l1, ¢#0).

As a remark, for a function f written as (1.1), it implies

Dyf(s) = D, (g ) aﬁd’) =1+ > [Plyas’", (1.2)
d=n+1 P=n+1
where [9], is the g-bracket of 9, that is
[9], := l-q" _ 1+ﬁiqk [0], := 0
q 1= q < ’ q >

and
lim [¥], = 9.
g—1-

The definition of the g-number shift factorial for every nonnegative integer ¢ is

[ﬁ,q]!::{ ) if 9=0,
[1,9]12,9](3.4].....[9,¢q], if 9eN.

Wang et al. [20] the notion of the g-derivative and the concept of the convolution, the g-analogue
Choi-Saigo-Srivastava operator Ig’ﬂ A > A,

7 ,f(8) := f(&) * Farip(s), s €D (@ > -1, B> 0), (1.3)
where

FyB+0-Dla+1) , _ o [B.qlo-

)
« =¢+ Y olar g, <D
Frar1p(8) =¢ ﬂzz; BT (a5 ¢ =< 4 [a+ 1,4l Y
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where (£, gl is the g-generalized Pochhammer symbol for § > 0 defined by

8.1 {1, if 9=0,
sqly = .
Bl, B+1],...[B+9—-1],, if deN.
Thus,
Laf©)=¢ Z aﬂq]ﬂlaﬂg seD, (1.4)
9=2
while

I5,f(§) = ¢Dyf(s) and I, f(s) = f(s).

In [24], an extended multiplier operator was defined applying the operator Izﬁ as follows:

Definition 1. [24] For u > 0 and T > —1, with the aid of the operator Igﬁ, we will define the new
linear extended multiplier q-Choi-Saigo-Srivastava operator D;":g(;;, 7): A — A as follows:

DY, 1) f () =D 41, Df(S) = f(s),

D06 =(1 = a6 + e (1,10)
) o0 18,41 T+1+,u([19]q—1) }
‘“;[[aﬂ 2];1 T+1 ]aﬁg?’

DU, 1 f(6) = DY 41, 1) (Dl (. 1) (), m > 1,
whereu >0, 7> -1, meNy, a>-1,>0and 0 < g < 1.

If f € A has the form (1.1) from (1.4) and the above definition, it follows that

© [ 1B, qlo-1 T+1+,u([l9]q—

D™ (u, =¢+
M f(S) =g ; W —

)] ass’, ¢ e D. (1.5

From (1.3) and (1.5), we find that

Dy, 1) f(s) =
(125£(6) % 99..6)) % ... (I 4 £(6) * 9.(9))| * f(s).

j—times
where

PP
R (M=)l —g¢)

We note that

m N Bo-1 T+1+/l(19—1)m 9
llmD w1 f(6) = L nf(§) =¢ ( - ass’, ¢ €D. (1.6)
sW DI ©) = Log. DS Z; (@ + Dy T+1 !
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Assuming that 4,7 € H, suppose
Or,s5,1;¢) : G xD — C.
If A satisfies the first order differential subordination

D(A(S), sA(5); §) < fi(s), (1.7)

then A is called to be a solution of the differential subordination in (1.7). The function x is called a
dominant of the solutions of the differential subordination in (1.7) if A(¢) < x(g) for all the functions
A satisfying (1.7). A dominant % is said to be the best dominant of (1.7) if %(s) < () for all the
dominants x.

If the following first order differential superordination is met by A,

h(s) < D(A(s), s (5); 6), (1.8)

then A is called to be a solution of the differential superordination in (1.8). The function x is called
a subordinant of the solutions of the differential superordination in (1.8) if %(¢) < A(s) for all the
functions A satisfying (1.8). A subordinant % is said to be the best subordinant of (1.8) if x(g) < %(s)
for all the subordinants x.

Miller and Mocanu [25] obtained sufficient conditions on the functions 7, ¥ and ® for which the
following implication holds:

h(s) < D), s (€);6) = #(s) < AS).

Using the results presented [25], Bulboaca [26] investigated several classes of first-order differential
superordinations and also considered superordination preserving integral operators [27]. Ali et al. [28]
developed on Bulboacd’s results and obtained sufficient conditions for specific normalized analytic

functions f(¢) to satisfy
sf' ()
()
where x; and %, are univalent functions in D normalized with %;(0) = »,(¢) = 1.
The function f(g) defined by (1.1) is said to be a member of the class denoted by S of starlike
functions with respect to symmetric points if it satisfies the following condition:

" { sf ()
()= f(=¢)
The class S was introduced by Sakaguchi [29] as a subclass of close-to-convex functions, and, hence,
univalent in D. It is also known that the class of convex functions and the class of odd starlike functions,
with respect to the origin, are also included in S’ [29, 30].

%1(5) < < %(5),

}>O,§€D.

Using this class as inspiration, Aouf et al. [31] developed and investigated the class S, 7(1,1) of
functions n-starlike with respect to symmetric points, consisting of functions f € A with ay < 0 for
¥ > 2, and satisfying the inequality

% { D" f(¢)
D"f(¢) = D"f(=¢)

}>O,g€D,
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where D" is the Sdldgean operator [32].
The classes defined in [30,31] are generalized by the following new class of functions, defined in

this paper by applying the Dg,’q(,u, 7)f(¢) operator seen in Definition 1. The new class is introduced
here as follows:

Definition 2. The function f € A(n) complying
D) f(§) = Dy, 1) f(=¢) #0, ¢ eD"=D\{0), (1.9)

qu

is said to belong to the class N (1,6, C, D) if the following subordination condition is satisfied:

)
25
1
( +")[ D) f(6)— DI (;m)f(—g)]

) [g(D 5 F () = D, r)f(—g»’]( 26 '
N D70 07@) D i) )\ DG nf @ = D nfs)
1+Cg

< —,
1+ Dg

n € C0<o6<1,-1<D<C<lLu>20,r>-1,meNy,a>-1,6>0and0<qg< 1.

Using specific values for the parameters u, 7, @, 8 and ¢ the following subclasses appear:
(i) For ¢ — 17, the class 5"” .(11,6,C, D) is obtained as follows:

2¢ ’
g™t (n,6,C, D) = A(n) : (1
w571 ) {f € A(n) : ( +n)(£ﬁﬁ(ﬂa7)f(§) _1:%(/1,7)]‘(—5‘))

B [s*(ﬂ"ﬁ(ﬂ SOF(S) = Loy, D f(=6)) )( 2% )‘5
N2, w0 f© - L0 f(=9) N\ L00unf() - L0 D f (=)

1+Cg
1+ Dg

with the operator £ ﬁ(y 7)f(s) given by (1.7);
(ii) For ¢ — 17and m = 0, the class N7°(n, C, D) is obtained and rectifies the class introduced by
Muhammad and Marwan [33] as follows:

o
N, C,D) : = {f cAm): (1+7) (L)

f(©) = f(=¢)
. (g(f'(g) - f’(—g»)( 26 )5 _1+Cs
f©) = f=¢) J\f(&)-f(=¢)] 1+Dg|

The study exposed in this research tries to connect the special class of analytic functions with
coeflicients defined by the g-analogue operator with the differential subordination and superordination
theory. As a result, certain sharp differential subordination and superordination results are investigated
in the following theorems and corollaries for the functions belonging to the class N7 (17, 6, C, D).
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2. Materials and methods

In order to prove the new differential subordination and superordination findings, the following
known results will be used.

Definition 3. [3] (Definition 2.2b., p. 21). Denote by g the set of all functions f (¢) that are analytic
and injective on D \ E(f), where

E(f)=1{{:{ <€D and Eigglf(c) = oo},

and are such that f'({) # 0 for { € D \ E(f).

Lemma 1. [3] (Theorem 3.1b., p. 71). Let h be a convex function in D with h(0) = a and let y € C
with Re(y) > 0. If p € H[a,n] and

sp'(s)

p(s) + < h(s), 2.1)

then
S

fmmwwm<mg

0

p(s) < q(s) = Y

The function q is convex and is the best dominant of (2.1).

Lemma 2. [34] (Lemma 2.2., p. 3). Let q be univalent in D with q(0) = 1. Let £, € C with ¢ # 0,
and suppose that

Re(l + 59 (g)) > max {O; —Reé}, ceD.
q'(s) ¢

If Ais analytic in D and

EAQ) + s A'(§) < éq(s) + v5q (), (2.2)

then A(g) < q(s), and q is the best dominant of (2.2).
From [25] (Theorem 6, p. 820), we could easily obtain the following lemma:

Lemma 3. Let g be convexinD and A # 0, withRe (1) > 0. If g € H[q(0), 11Ng such that g(¢)+A5g’(s)
is univalent in D, then

() + Asq'(s) < §(s) + 468 () (2.3)

implies q(¢) < g(s) and q is the best subordinant of (2.3).

Lemma 4. [35]. Let ¥ be analytic and convex inD and 0 < A < 1. If f, g € A such that f(¢) < F(s)
and g(s) < F(s), then

Af(¢) + (1 = Dg(s) < F(s).
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3. Results

The remainder of this paper assumes, unless otherwise stated, 7 € C,0 <6 < 1,-1 < D < C <
Luy>0,7r>-1,me Ny,a > -1,>0,0 < g < 1 and all the powers are understood as principle
values.

Theorem 1. Consider f € X" (n, 6, C, D) and n € C* = C\{0}, § > 0 satisfying Ren > 0. Then,

,pu
2 0 2 1
1
mgq > g <q(s) = i‘fﬂu(é/rm)_ldu< +Cg,
D, 5, 1) f(S) = Dy g (1, T f(=5) m 1 + Dgu 1 + D¢
and q is convex q € H[1,n] and is the best dominant.
Proof. Define the function w(g) by
) s
S
w(§) = | = T , (¢ eD). (3.1)
(Da,ﬁ 4, DF(S) = D, T)f(—g)]

This function w(s) € H complies w(0) = 1. Differentiating (3.1) with respect to ¢ logarithmically, we
have

o
2¢
I+
(e (DZggw, G T)f(—g))
) (g(Dz’gw, /() —Dﬁﬁ(m)f(—g))’)[ 26 ’
N D) - Dl f(—9) )\ Dl 0f ) - D 0 f ()
_ n_. 1+Cg
= w(o)+ 5S¢ (¢) < [+ D¢ (3.2)
Since
D f©) =5+ > xos”  and DIguf(-¢) = —c+ > xa(-1’s",
9=n+1 I=n+1
where, i
| Bl TH! +u([0]q - 1)
Xo = [C¥+1,6]]0_1’ p—— ag =n+1,
we have
2 2
A) = — - = =
Dw,ﬁ(y,r)f(g) - D(y,ﬁ(l'l"r)f(_g) 2§. + Z Xﬁ[l + (_1)ﬁ]gﬂ
U=n+1
_ 1
1+ i PsS*

s=n
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with
_ Xsall +(=1)7]
Ps = ,$>n
2
Moreover,
U(s) = —— = 1+an§’
1+ Z J Jj=1

with unknowns n;, j > 1, we have

1= 400" + i + )+ 116 + 17267 + .. F 16"+ i+ L),

and equating the corresponding coefficients it follows that

M =12 = e M1 =0, 0= —Pns Nusl = —Prtls eeeeees .

Hence

UG) =1+ Y nis’ € H[1,nl.

Jj=n

Applying (3.1), the following can be written as
w=U’ with Ue€H[1,n].
By employing the well-known binomial power expansion formula, we obtain

w = U° € H[1,n].

Now, from the subordination in (3.2) and using Lemma 1 for y = %, the desired result is obtained.

Using in Theorem 1 the assumption ¢ — 17, the following corollary emerges:

Corollary 1. Consider f € 377 (1,6,C, D) andn € C* = C\{0}, 6 > 0 with Ren > 0. Then,

1

o
( m % m ) <q(s) = i fﬂu(é/m)_ldu < L Cg‘,
L5, D f(9) = L5, 1 f(=5) m.J 1+ Deu 1+ D¢

and q is convex g € H[1,n] and is the best dominant.

Remark 1. From Theorem I the following inclusion relation can be written:

NI07(1,6,C, D) € NI"7(0,6,C. D), 1 € C with Ren > 0.

Furthermore, the following inclusion relation holds for the class Nzﬁ’;(n, 0,C, D):

Theorem 2. Ifn;,n € Rsuchthat0 <ny <m,and -1 < Dy < D, < C, <Cy <1, then

N4 (12,6, Ca, Do) € N4 (11,6, Cy, Dy).

aB.u aB.u

(3.3)
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Proof. If f € Nzg;(nz,d C,,D,), since —1 < D; < D, < C, < Cy < 1, it is easy to show that

J
2¢
1
(e "2)[D’"’qw, Df(s) - DA, r)f(—g)]
[gwwﬁ(u,r)f(g) DI, ) f(=6)) ]( 26 ’
-2

D, 1) f(6) = D, 1) (=) )\ DL, 1)f(6) = Dir(u, 7) £ (=)
1+Cys 1+Cig

< , 34
1 +D2§‘ 1 +D1§' ( )

thatis f € N%’;(m,é C1, D)), hence, the assertion in (3.3) holds for n; = 1,.
If 0 < 1, < 1, and considering Remark 1 and (3.4), it follows f € N”””(O 6,C1, D)), that is

[ _ 2 _ ] _1+Ge 53)
Diya(u, Df () = Diau, 1) f(=s)) 1+ Dig

A simple computation shows that

26

)
1
( +”1)( DI, 1 f(S) - DI 1 f = g)J
) [ga) 4, Df(S) = DI, D f(—6)) ][ 26 )‘5
"D G016 - DI f (=) )\ D D f(6) - Dl 0 (=)

0
Uil 2¢
1= 3.6
( nz)[DZ;w,r)f(g)—Dg’;w,r)f(—o) T (36)

)
m 2¢
Lla
- [( +"2)[ T D) — DL D - g)]
) [g(Dz;Bw,ﬂf(g)—Daﬁw,f)ﬂ—g)) ][ 2¢ ]‘5
P\ DI G0 f6) - Dl 0 f (=) )\ D D f(6) = Dl 0 (=)

Moreover,
0< m
m2
and the function iﬁ‘g with —1 < Dy < C; <1 is analytic and convex in D. Considering relation (3.6),
using the subordination results given by (3.4) and (3.5) and using Lemma 4, we deduce that

)
2¢
1
(em) [D;",gou, D(s) - DI, T)f(—g)]
) [gw’"’q(u Df ) - ’;igw,ﬂf(—g))’)( 26 '
M DG @) - DG f(—e) )\ Dl f(e) - DI, 1 f (=)

1+Ci¢
1+D1§,

that is f S quT(nl, 0, Cl, D])

aBu

<

O
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Using in Theorem 2 the assumption ¢ — 17, the following corollary emerges:

Corollary 2. Ifn;,n, € RsuchthatO <ny <myand -1 <D, <D, <Cy <C| <1, then

Sm»"' (TIZ’ 5’ CZ’ DZ) - 322’#(771,65 CI’DI)‘

aB.u

Example 1. Use C; = 1 and Dy = —1 in Theorem 2 and Corollary 2 . Let ny, n, € R such that
0<n <mand -1 < D, < C, < 1.We obtain

(i) If f €N (1,6, Ca, Dy), then

a,B.u
Re (1 + )[ 2% ]6
M\ DT D7) - DI D (—5)
) (g(DZ;w, 0)(6) = Dy, Df(=6)) )[ 26 )‘5
"D @) = Dl f (=) )\ D 0 f(s) — DIt (=)
> 0, ¢eD;
(ll) f € 3:;1’;’#(772, 0, Cz, Dz), then
2¢ 0
R 1
¢ {( ) [L;",ﬁw, &) - Ly, T)f(—g))
i (gu::ﬁ,,w, DF(S) = L7, D f (=) J( 2% )5
"L 0 f©) - L9 N\ L DFS) — Loy 1 f (=)
> 0, ¢eD.

Theorem 3. Consider q € K, with q(0) = 1, n € C* such that

Re(l + 4 (9)) > max {o; —Re(é)}. (3.7)
q'(s) n
If f € A(n) complies (1.9) and the following subordination is satisfied:
o
2¢
1
e (Df,;?(ﬂ’ Df(§) - Dyg(u. 1 f (—g))
) (g(Dz’g(u, 0)(6) = Dy, Df(=6)) )[ 26 ’
N D) - Do) )\ Dl nf©) - Drdu 0/ (—¢)
< q(9)+ ggq/ 3} (3.8)
then 5
2¢
[Dii’gw,ﬂf(g) D T)f(—c)) <)

and q(g) is the best dominant of (3.8).
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Proof. The function f € A(n) is assumed to comply (1.9), hence, the function defined by (3.1) satisfies
w € H, with w(0) = 1. As done for proving Theorem 1, differentiating (3.1) with respect to ¢ gives

that (3.8) is equivalent to
n
0

Thus, by Lemma 2, for§ = 1 and ¢ = g we get w(s) < q(s), and q(s) is the best dominant of (3.8). O

w(s) + 1w () < qls) + ggq’ (s).

Taking g(¢) = }:gi with —1 < D < C < 1 in Theorem 3, the following corollary holds:

I +Re( )} 59

1—Re(

)

Corollary 3. Let n € C* such that

}SDSO or OSDSmin{l;—

I (I >

If f € A(n) complies (1.9) and the following subordination is satisfied:

6
2
1 +n)( - S )
D, 51, D) () = Dy (1, 7) f(=6)
(g(Dg’g (. T)f(S) = Dird(u, ) f(=6)) ) [ 2¢ )‘5
-n m m m m
Dl Df (@) - Dl f(—¢) )\ DI f () - Dt ) (—¢)
< G nC-Dy (3.10)
1+Ds  6(1+ Dg)
then 5
( 2 ) PREe
Dy, 1) f(¢) = Dig(u, 0 f(=s)) 1+ Dg
and } LC)Z is the best dominant of (3.10).
Proof. For g(g) = %, the condition in (3.7) reduces to
1-D
Re——> > max {o; —Re(é)}, ¢ eD. G.11)
1+ Dg n

Since

: 1 - Dg D i —1<D<0
f{R cceDy =4 ¢
m{el+Dg ¢ } {ng, if 0<D<I,

it is easy to check that (3.11) holds, if and only if, the assumption in (3.9) is satisfied whenever —1 <
D<1. m|

Using in Theorem 3 the assumption ¢ — 17, the next corollary is obtained:

Corollary 4. Let g € K, with g(0) = 1, n € C*. Suppose that q complies (3.7). If f € A(n) satisfies the
subordination

2¢ )6
L w0 f ) — L0 (=)

(1+77)(
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B (g(llaﬂ(u Of(S) = L 5(u, T)f(—g))/)( 2 )‘S
L L) Lo D) )\ B 6)~ Lo )

< q(¢) + qu (5), (3.12)
then
SEREToEs
Ly, D f () = L7 s, D (=)
and q(s) is the best dominant of (3.12).

0
) <4(s)

Theorem 4. Let n € C*,Ren > 0 and q € K, with g(0) = 1. Let f € A(n) such that

2¢
(D'S,Zf(ﬂ, f(§) = D5, 1) f(=)

s
) € H[q(0),1] N g, (3.13)

and ,consider the function

2¢

o
1
( +")(D;”£</J,T>f@> D (u, T f(— g))

) [g(D’"’q(,u Df(9) = Dyiu, r)f(—g))’]( 26 )5 G
D, 0 f() = DLg(u, D f(=¢)  J\ Dy, 1)f(s) = Dy, 1) f (=) '
that is univalent in D. If
n 2¢ ’
21¢q 1
q() + 559 (&) < (1 + n)(D%(#’T)f(g) _D%(#,T)f(_g)]
) [ (D, D)) - Z’;’(M,T)f(—g))')( 2¢ )‘5 515)
N D @) - Dl 0 f (=) )\ D, 0 f(s) - Dt ) f (=) |

then
26

B
DG (8) - DI, T)f(—g))
and q(¢) is the best dominant of (3.14).

q(s) < (

Proof. Considering that the function w is defined by (3.1), we know that w € H[g(0), m], and using
(3.14) we have that w € H[g(0), 1] N ¢. As in the proof of Theorem 1, differentiating (3.1) with respect
to ¢ we get

q(s) + gm'(f;) < w(s) + ggw'(g)-

Then, by applying Lemma 3 for A = 1, the desired result is obtained. O

Using in Theorem 4 the assumption g(¢) = 1+C§

written:

with —1 < D < C < 1 the next corollary can be
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Corollary 5. Letn € C*,Ren > 0. If f € A(n) such that the assumptions in (3.13) and (3.14) hold and
satisfy the subordination

1+Cs n(C-D)

2¢
= 1
T+Ds Toasper ~F ”)(D';igw,ﬂf(g)

0
aﬁ(:u T)f( §))

2¢

[g(Dm’q(,u D) = Dy, 1) f(=6))
. (3.16)

0

DA, 1) f(6) = Dy, 1) f(=5) ]( D5, 1) f(§) = Dy, ) f(— 9))
then

1+Cg

<
1+ D¢ ( Dy, 0 f(e) -
and =5 s the best dominant of (3.16).

1+Dg

25

9
Zl;(/'l, T)f(_g))

Using in Theorem 4 the assumption ¢ — 17, the next result can be derived:

Corollary 6. Letn € C*,Ren > 0 and g € K with qg(0) = 1. Let f € A(n) such that

2¢
(Lﬁﬁ(ﬂ, 0f($) = Ly 5w, D f(=¢)

[
) € H[g(0), 11N g, (3.17)

and consider the function

2¢ 0
1
( +”)( i Df(e) - LG - g))

_ (g('La,ﬁ(ﬂ’ T)f(g) Laﬁ(ﬂ’ T)f( g)) ]( 25‘ )6
N L w0 f© - L 0f9) N\ L) - Ll 0f(s)

(3.18)
that is univalent in D. If

2¢ °
L7 0f ()~ L4 T)f(—S‘))

q(s) + ggq’(o <(1+ n(

(3.19)

(L1 Df(S) — giﬁwx)f(—g))’]( 2 )5
-n

Lﬁﬁ(ﬂ? T)f(g) L:ﬁﬁ(lh T)f(—§) -E?;lg(# T)f(g) -E(,,g()u’ T)f(_g)
then

2 ’
L0 6) — Ly r)f(—g))

and q(¢) is the best dominant of (3.17).

q(s) < (

Combining Theorems 3 and 4, the following sandwich-type theorem can be stated.
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Theorem 5. Let q1,q, € K, with ¢1(0) = ¢2(0) = 1, and let n € C*,Ren > 0. If f € A(n) such that the
assumptions in (3.13) and (3.14) hold, then

2¢ ]6
Dya(u D f(s) = Dygu, 1) f(=6)

a1(s) + ggq'](g) <T(e)=(1+ n)[

) (gwﬁg(u, 7)£(5) = D, T)f(—r;))')[ 2% )5
N DG 0@ - Dl f (=) )\ Dl 0 f(s) - D, D f (=)
(3.20)
< o)+ ggq'z(g)

implies that

25
DD f(6) — D, 0 f(—¢)
and g, and q, are respectively the best subordinant and best dominant of (3.20).
Combining Corollaries 4 and 6, the following sandwich-type result is stated.

Corollary 7. Let q,,q, € K with q;(0) = ¢2(0) = 1, and let n € C*, Ren > 0. If f € A(n) such that the
assumptions in (3.17) and (3.18) hold, then

0
q1(¢) < D(g) = [ ) < q2(9)

2 ’
Lgﬁ(ﬂa T)f(g) - Lgﬁ(ﬂ’ T)f(_g)]

1(5) + ggq'l(g) <T(s)=(1+ n)[

_ [S‘(-Egﬁ(/l’ T)f(g) - -Egﬁ(ﬂ’ T)f(_g)), ) ( 25‘ )6
N L f©) - L f(=9) \ L0 0 f @) = L2 D f (=)
(3.21)
< 0:() + 754:(6)

implies that

26
L0 f©) — L1 D f(—¢)
and q; and q, are respectively the best subordinant and best dominant of (3.21).
Using ¢; = ¢* withO <r; <r, <1, i = 1,2 in Theorem 5 and Corollary 7, the following examples
are constructed:

Example 2. (i) Let n € C* with Ren > 0. If f € A(n) such that the assumptions in (3.13) and (3.14)
hold, then

5
QI(§)<6(§):( ) < q2(s),

(1 ¥ gg‘) & < Y(g) < (1 N gg) 0 = S < D) <€, (0O<r<r<l)

where [’ and ® are given in Theorem 5, and "¢ and e"**are, respectively, the best subordinant and the
best dominant.
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(ii) If f € A(n) such that the assumptions in (3.17) and (3.18) hold, then

(1 + gg) ¢S < T(g) < (1 + gg) € = < D)< e, O<r<rn<l

where T and ® are given in Corollary 7, and €' and e"*are, respectively, the best subordinant and
the best dominant.

Theorem 6. If f € x;’fﬁ‘{’;(o, 0,1 =20, -1)withO <o < 1, then f € N:ﬁ;(ﬂ, 0,1 -20,-1) for || <R,

1
2.9 "
R:[\/m;’ +1—@] . (3.22)

Proof. For f € X""7(0,6,1 — 20, —1) with 0 < o < 1, let the function w be defined by

where

B
6
2] (I-0)w(e)+0, c€D (3.23)
1. M = -0 9 . .
Dy a0 f(s) = Dy (u, 1) f(=6)
Then the function w is analytic in D with w(0) = 1, and since f € xzﬁz(o’ 5,1 — 20, —1) is equivalent
to )
[ ¢ )<1+(1—20')g
DA, 1) f($) = Dy, ) f(=6) l-¢

it follows that Rew(s) > 0.
As in the proof of Theorem 1, since f € N;jg;;(o, 0,1 —20,—1) with 0 < o < 1, we deduce that

o
( mn.q Zg m,q ) € H[l, I’l],
DI, 1) f(8) = DI, 1) f(=5)

and from the relation (3.23), we get w € H[1, n]. Therefore, the following estimate holds

2mr"Rew(s)

[sw' @) « =51 Isl=r <1

that represents the result of Shah [36] (the inequality (6), p. 240, for « = 0), which generalizes
Lemma 2 [37].
Simple calculations demonstrate that

)
2¢
-« {“ o [Dzﬁw, ETGECRT T)f(—g)]
s(D 5w, 1) f(6) = Dy, ) f(=6)) 26 6
_"( Dy 1)f(6) = Dy 1S (=6) )[Dzsgw, D7) - Dl ) f<_g)) - ff}
= w(§)+g§w'(§),
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hence, we have

1
R
e{l_

0
25
1
o [( ' n) [DZ;(:“» T)f(g) - DZL;I(/J’ T)f(_g))

[g(D;'igw, () = Dl 1) f(=5)) ] ( 2¢ ]‘5
-n m, m, m, m, -0
DI 0 f(6) - D30 f(~¢) )\ DI 0 f(s) — D, 1 f ()
2 |n|mr™
> Rea)(g‘) [1 - m] , |§'| =r< 1, (324)
and the righthand side of (3.24) is positive provided that r < R, where R is given by (3.22). O
Theorem 7. Suppose that f € N7 (1,6,C, D), letn € C* withRen 2 0 and =1 < D < C < 1. Then,
the following inequalities hold:
©)
1 6
° f—l Gl omtgy < Re( - % -
m) 1= Du DM, D) f(5) = DL, 1) f(~¢)
1
0 1+ Cu
— | ———u'"™a D. 2
< nnf1+Duu U, ¢€ (3.25)

0

(i) For [¢] = r < 1, we have

1
1 =5
2r if—l +Cruu(5/"”)_1du <
nJ 1+ Dru
0

1

s [1-C

< Zr[— f —”‘u“/ﬂ"ﬂdu] . (3.26)
nmJ 1—-Dru

0

DI, Df(s) = D, T f (=)

=

All these inequalities are the best possible.
Proof. Applying the results given by Theorem 1 for the hypothesis of this theorem, we obtain that

1
0

)
2 1+C
[ g s 7 ] <q(g) = — f Mu“/"’”‘ldz,t, (3.27)
D, (1, ) f(§) = D, g (1, 1 f(=6) g 1 + Dgu

and the convex function g € H[1, n] is the best dominant.
Therefore,

2¢ 0
Re| — 7 o <
D, (1, T)f(S) = D s (1, 1) f(=6) o |mnJ 1+ Dgu

1
0 1+C
supRe [_ f _ T ESU -1 u]
0
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and

2¢

D;n:/;}(ﬂ’ T)f(g) - DZ;/;](IJ’ T)f(_g)

In addition, since

26

D;n,g(ﬂ’ T)f(g) - Dzlﬁq(ﬂ’ T)f(_g)

we get
D20 f(6) -
while
25
D0 f($) = DI, 1) f(=5)
AIMS Mathematics

1

infRe i f —1 ~ Cou u®m=1 gy
seD nmJ 1—Dgu

1
0 1-C
— % [ infRe [ LZ=8H) omn-1 g,
nn J €D 1 - Dgu
0

ceD (TN 1+ Dgu
5 ( 1+Cou 6/mm)-1
f sup du
m J cpll+ Dgu
0

1

ifﬂ G-ty el = r < 1.,
nm J 1+ Dur

0

=

1 -

0 1+C
D) f(= r;)’>2r _fﬂu(a/nm—ldu ’
nn

1+ Dru

E

1
inf |-> f L= Cg” w1 gy,
0

9 inf 1~ Cou u®m=1qy
nn J seb|1 — Dgu
1
) 1-C
2| ey, (e = < 1,
nn 1 — Dur
0
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implies that

1
m, 1-Cru (sm-
Da,,g(ﬂ"l')f(?) (,U 7)f (- S')‘ < 27”[ fm (/) ldu]

0

=

The inequalities of (3.25) and (3.26) are the best possible because the subordination in (3.27) is sharp.
O

Using in Theorem 7 the assumption ¢ — 17, we state the corollary:

Corollary 8. Suppose that f € 5';’,;#(77, 0,C, D), letn e C* withRen > 0and —1 < D < C < 1. Then,
(1)

1 o
_ - - du < R
nnJA—DJt g e.qywﬂﬂ@—L@wmveo

0

1+Du

(ii) For || = r < 1, we have

|
=

1
%leiﬂwww] L7 Tf() = L7y 7V f ()|

nJ 1+ Dru
0

1
< 2 9 f ﬂu(é/nm—ldu
nmJ 1—-Dru

0

=

All these inequalities are the best possible.

Using in Theorem 7 the assumptions ¢ — 1~ and m = 0, we obtain the corollary:

Corollary 9. Suppose that f € N™(n,C, D), letn € C* withRen > 0 and —1 < D < C < 1. Then,
()

1 1
i fﬂu(é/nn)—ldu < Re( 2 ) f +Cu 1 01m— 1du ceD
m 1 = Du f(©) = f(=¢) mJ 1+Du"

(ii) For || = r < 1, we have

1 _
oy ifl-i-cmu(‘s/””)‘]du
nn 1+ Dru
0

All these inequalities are the best possible.

Sl

1
1 5
0 1-C
<1f(©) = f(=9)l < 2r[—f mu(‘s/””)‘du} .
nn 1 — Dru

0
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4. Conclusions

There has been a resurgence of interest in the study of g-series and g-polynomials and related
topics, which has a history dating back to the 19th century as a result of the creation of quantum
groups and their applications in mathematics and physics beginning in 1980. This study introduces
the class 877"/ (n, 6, C, D)) of normalized analytic functions by using the linear extended multiplier g-
Choi-Saigo-Srivastava operator in the open unit disk D given by Definition 1. Some applications of
the theory of differential subordination differential superordination, and sandwich-type results were
obtained here for the class Ngﬁ’;(n, 0, C, D)) with interesting corollaries obtained when particularizing
the parameters of the defined class.

Future investigations can be done on the newly defined class considering coefficient estimates [38,
39]. The classes obtained in this paper can be investigated using the newer theories of strong and fuzzy
differential subordination and superordination [19,40]. Also, new classes of other types of functions
could be investigated using the same linear extended multiplier g-Choi-Saigo-Srivastava operator like

it is done for bi-univalent functions [41] or for meromorphic functions [42,43].
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