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Abstract: Synthesizing hyperspectral images (HSI) from an ordinary camera has been accomplished
recently. However, such computation models require detailed properties of the target camera, which
can only be measured in a professional lab. This prerequisite prevents the synthesizing model from
being installed on arbitrary cameras for end-users. This study offers a calibration-free method for
transforming any camera into an HSI camera. Our solution requires no controllable light sources
and spectrometers. Any consumer installing the program should produce high-quality HSI without
the assistance of optical laboratories. Our approach facilitates a cycle-generative adversarial network
(cycle-GAN) and sparse assimilation method to render the illumination-dependent spectral response
function (SRF) of the underlying camera at the first part of the setup stage. The current illuminating
function (CIF) must be identified for each image and decoupled from the underlying model. The
HSI model is then integrated with the static SRF and dynamic CIF in the second part of the stage.
The estimated SRFs and CIFs have been double-checked with the results by the standard laboratory
method. The reconstructed HSIs have errors under 3% in the root mean square.

Keywords: spectral response function (SRF); current illuminating function (CIF); hyperspectral
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1. Introduction

Hyperspectral images (HSI) can be derived from ordinary RGB cameras [1–6]. However, existing
methods require detailed optical properties of the underlying camera, which can only be measured in
a laboratory with expensive equipment, preventing ordinary users from using a plug-and-play webcam
immediately.

This study proposes a calibration-free and illumination-independent method, as shown in Figure 1,
to facilitate ordinary users’ instant use of an arbitrary camera. Our algorithm can transform an ordinary
webcam into an expensive HSI camera without the help of additional hardware. Mathematically, the
forward transformation, mapping from high-dimensional HSI images to low-dimensional RGB images,
is relatively easy, compared to the reverse one, mapping from low- to high-dimensional.

Figure 1. The setup and usage scenarios for any camera.

However, both the forward and reverse transformations involve a device-dependent response
function for the underlying camera. In previous methods, the camera and light source must remain
the same, and the spectral response function (SRF) of a camera and the current illuminating function
(CIF) of the ambiance must be identified separately by specific equipment, such as standardized light
sources, color-checkers, and spectrometers. The images used in the training database must match the
same camera and light source. Such limitations prevent the algorithm from being plug-and-play.

Hyperspectral technology has been widely used in different fields [7]. Although HSI imaging
possess tremendous advantages in wide fields of applications, the extremely high acquisition cost
(US$40 thousand or above) limits the suitable applications and usage scenarios. Existing computation
methods converting RGB to HSI can significantly broaden the applicability of HSI.

In this study, a semi-finished model, independent of devices and illumination, is shipped with the
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installation package, as shown in the Model part of Figure 1. Before use, a setup step is performed
without additional hardware to extract the SRF of the underlying camera, as shown in step 1 in Figure
1. During each usage, the ambient CIF must be estimated for each taken image, as shown in step 2
in Figure 1. The final reconstruction with SRF and CIF then projects RGB images to the device and
illumination-independent HSI.

To accumulate sparse projection kernels of hyperspectral signatures in terms of many hyperspectral
priors, we render the camera SRF through a most probable algorithm. As shown in Figure 2, at the
setup step, two parametric tasks are accomplished automatically without the involvement of users. SRF
and CIF are estimated by uploading random images taken by the target camera to the cloud. There is
no need to involve a calibration step for ordinary users. We develop a triangular generative adversarial
assimilation comprising two different methods in supervising and unsupervised learning, each with
advantages, pulling each other up to make a high-precision reconstruction.

Figure 2. During setup, two parametric tasks are accomplished automatically without the
involvement of users. SRF and CIF are estimated by uploading random images taken by the
target camera to the cloud.

2. Relation to prior research

Despite the extensive studies in reconstructing HSI from RGB images, numerous challenges remain
unsolved. This study seeks to close three research gaps. Existing studies require a laboratory-calibrated
camera, and the training is only bound to that specific camera. Our results contribute to the online
retrieval of SRF and the SRF independent training offline.

Much research has contributed to reverse mapping from the low-dimensional RGB space to the
high-dimensional hyperspectral space [1, 4, 6, 8, 9]. However, gaps still exist.

The essence of the forward problem is a spatial convolution between incident image spectral and
camera optics [10]. The properties of camera spectral response functions have been studied extensively
[11]. The reverse mapping in algebraic or iterative approximation methods is sufficient as long as the
camera response function can be correctly acquired before applying the algorithms [4, 6]. The reverse
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mapping in kernel representation is prevalent and stable [1, 8, 9]. Statistical inference methods have
been reported effective in enhancing the accuracy of the reverse mapping [2, 3].

With the assistance of additional hardware, the recovered image can be more accurate [5, 12–14].
However, such assistance does not fit the goal of this study. Therefore, the last piece of the puzzle
for the HSI reconstruction is still acquiring camera response functions without the help of expensive
instruments.

The second research gap leads to a challenge in algorithm design. Because the central part of the
forward problem involves the convolution in the camera SRF, the training algorithm may only retrieve
the function mapping if the SRF is determined at the training phase. On the other hand, estimating
the SRF is difficult if we do not have the pairs of images with input RGB and output HSI [15]. Our
problem is to retrieve the HSI without training pairs and a system model. The original generative
adversarial network (GAN) requires a pair of images (x, y) for discriminator D and generator G to
evaluate minG maxD V(D,G) = Ex≈pdata(x)

[
log D(x|y)

]
+ Ez≈pz(z)

[
log 1 − D(G(z|y))

]
. Thanks to modern

progress of the maximum likelihood theorems and the sparse variation of the GAN, “double unknown
retrieval” of those above has become possible [16–18]. One of the advantages of cycleGAN over
standard GANs is that the training data need not be paired. This implies that, in our situation, only the
images (RGB, HSI) are sufficient for estimating the output SRFs. The idea of conditional and cyclic
adversarial networks with image-to-image translation has successfully solved the problem of double
unknown retrieval [19].

When the training data are not completely paired, the latent space reconstruction becomes the key
part of the double unknown retrieval [20–22]. Convolution particle filters have been proven effective
in estimating unknown parameters in state-space [23].

The generative network synthesizes the SRFs based on a predictive distribution conditioned on the
correctness of the recovery of the original RGB values [19,24]. When the projection to the latent space
is not linear, some studies apply advanced algorithms to address the nonlinearity issue [25].

The third gap in the challenges of HSI reconstruction is the interference of versatile illumination
conditions. Many studies tried to decouple the influence of illuminations. Despite the simplicity, an
accurate spectral reflectance reconstruction must come with a spectral estimation of illumination [13].
Some solve the issue at the tristimulus value space (RGB or CIE XYZ) by collecting images of multi-
conditional illumination [26–28]. On the other hand, CIE XYZ starts from the spectral response of
illumination; and, nevertheless, they primarily focus on the color appearance for our bare eyes, not the
spectral reflectance of objects. Therefore, a research gap exists in decoupling the influence of unknown
illumination for spectral response estimation algorithms.

The sparse assimilation algorithm can reconstruct the parameters from limited observations [29].
However, most iterative algorithms are computationally intensive. Thus, they are not suitable for
applying online and a tractable algorithm is needed for computational feasibility. We use hierarchical
Bayesian learning and Metropolis-Hastings algorithms in the algorithm [30, 31] to estimate joint
probability densities. Therefore, this study exploits an assimilation method adapted to online
computation.
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3. Methods

3.1. Problem description

As shown in Figure 3, a camera with response function SRF Rϕ(λ, i) takes a spectral reflectance
input h( j, λ) for wavelength λ ∈ [1,N] and produces the tristimulus values c( j, i) for i ∈ [RGB]or[1, 3],
and the j ∈ [1, n] is the j-th dataset pair in the database. The 24-patches’ color-checker pixels have
been arranged into a column vector for ease of dimension expression.

Figure 3. The forward projection, dichromatic reflection model (DRM), from object
reflectance to the RGB values.

The forward problem is stated as a dichromatic reflection model (DRM)

h(λ) = E(λ)ρ(λ),∀λ,

c( j, i) =
∑
λ

h( j, λ)R(λ, i),∀ j, i, (3.1)

or,

Cn×3 = Hn×NRN×3, for the j-th image in the database. (3.2)

where the matrix form is a collection of the indexes such that Cn×3 = {c( j, i)} j∈[1,n],i∈[1,3].
By the representation theorem, we can find coefficients w̃(k, k′)k,k′∈[1,m] = W̃ for taking m basis such

that the RGB images C can be approximated by

Cn×3 ≈ W̃n×mΨm×NRϕN×3. (3.3)

The DRM (3.2) becomes

W̃ΨRϕ = HRϕ (3.4)

Therefore,

H = W̃Ψ (3.5)

As discussed in the previous section, many methods exist to estimate the ill-posed back projection,
but challenges still exist. Our problem is an inverse one. Given the tristimulus values C, we want to
reconstruct the H. Because the dimension of H is much higher than that of C, the inverse project is
ill-posed. Our method requires no pre-built calibration and prevents over-fitting after training.
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3.2. Retrieving CIF from the white block

The CIF is estimated from the images of the white block of the color checker. The illumination
light e is converted to electric signals through the camera response eϕ, and, therefore, e(λ) =

∑
i eϕ(λ, i).

Utilizing the above-mentioned method, the CIF can be decomposed by a set of kernel functions. We
have

e(λ) =
∑

i

eϕ(λ, i) =
∑
i,k

γi,kbk(λ, i),∀λ ∈ [1,N], (3.6)

where bk(λ) is the k-th basis for the CIF, and γi,k is the coefficient.

3.3. Retrieving SRF by cycleGAN

Classical generative adversarial network applications use neural networks entirely for classification
and regression applications. Such modeling suffers from the convergence problem. In our method, we
use optical models as generators and neural networks as discriminators to maximize the knowledge
of prior model information for the stochastic process of Lambert reflectance (Eq 3.2), which is
implemented through a Monte Carlo radiative simulation. Through collected priors, the discriminator
can distinguish between successful or unsuccessful generations. Therefore, the cyclic iteration can
converge fast and accurately estimate the latent sparse space with sparse converging metrics.

We hybridize a statistical generator and neural network discriminator to maximize the usage of prior
model information for the stochastic process. Our generator can also take environment conditions as
covariates in the random process and is robust to anti-symmetric station distribution.

A standard GAN comprises a generator G and a discriminator D [32]. The model G and D can be
neural networks or any mathematical functions, as long as the optimization (3.7) with Lagrangian η
has solutions.

G∗ = arg min
G

max
D

LGAN(G,D) + ηLl1(G). (3.7)

The standard loss functions have the form

LGAN(G,D) = EZ,Z′[log D(Z,Z′)] + EZ,Z1[log(1 − D(Z,G(Z,Z1)))], (3.8)
Ll1(G) = EZ,Z′,Z1[∥Z′ −G(Z,Z1)∥1]. (3.9)

The GAN used in this study is a type of cycleGAN, which contains 2 generators and 2
discriminators, as shown in Figure 4. Our cycleGAN takes two sets of images as input and obtains the
output containing the corresponding SRF. The observation Z contains the pair C3 = (R,G, B) and H33

33-band HSI images. The subscripts 3 and 33 represent the number of bands for the variables, and they
can be ignored if the meaning is clear. The latent estimation represents the SRF Z′ = (R′33,H

′
33,C

′
3).

In the target domain, the Z′ is compared to a small set of collected SRFs Z1 = R133, which are only
served as shape templates. The re-estimated image pairs are Z′′ = (C′′3 ,H

′′
33), where C′′3 = H′33R′33, H′33

is the coefficients of GZZ′ , and H′′33 is the direct output of GZ′Z.
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Figure 4. The generator and discriminator design in the cycleGAN. Systemically, we
want to derive SRFs from the image pairs. Therefore, the observation Z contains the pair
C3 = (R,G, B) and H33 33-band HSI image. The latent estimation represents the SRF
Z′ = (R′33,H

′
33,C

′
3). In the target domain, the Z′ are compared to a small set of collected

SRFs Z1 = (R133,H33,C3), where the R133 are only served as shape templates. The re-
estimated image pairs are Z′′ = (C′′3 ,H

′′
33), where C′′3 = H′33R′33, H′33 is the output of GZZ′ ,

and H′′33 is the output of GZ′Z. The models in the cycleGAN are GZZ′ , DZ′Z1, GZ′Z and DZZ′′ ,
respectively. When the cycleGAN converges, the error between Z and Z′′ will be minimized.

The models in the cycleGAN are GZZ′ , DZ′Z1, GZ′Z, and DZZ′′ , respectively. The cycleGAN model
takes C3 and H33 as input dataset. We first prepare a set of (RGB,HSI) pairs for different color patches
and a known camera (e.g., CIE 1964). Because we expected the same color patch to produce the
same HSI image through different cameras, we prepared additional image pairs by taking the image of
the target unknown camera as RGB and the HSI of the known camera as the HSI. We also need small
samples of normal SRFs Z1 = R133 as a target template to prevent multiple solutions that are dissimilar
to normal SRFs.

The generator GZZ′ is a reverse model, which takes Z = (H,C) in the source domain and outputs
Z′ = (R′,H′,C′) in the target domain. During the generation, GZZ′ synthesizes SRFs Z′ = R′, which
is equivalent to applying a perturbation ∆ such that R′ = R∆ without violating the modality (Eq 3.10)
and positiveness (Eq 3.11) constraints.{

Ri(λk+1) > Ri(λk), k = 1, . . . ,mi − 1,
Ri(λk+1) ≤ Ri(λk), k = mi, . . . , 33,

(3.10)

Ri(λk) ≥ 0, k = 1, . . . , 33, (3.11)

where i = {1, 2, 3} is the RGB channel, mi is a predefined mode number (peak location) for channel i,
and λk is the wavelength at each band. To integrate the constraints (3.10) to the loss function of the
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first discriminator D(Z′,Z1), the constraints can be written in a form of violation score.

ζd =
∑

i=1,2,3

∑
k=1,...,33

sgn(k − mi) {Ri(λk+1) − Ri(λk)} − Ri(λk), (3.12)

where sgn(s) = {1,−1} if s > 0 and s ≤ 0, respectively.
The synthesized SRFs Z′ will be rejected by DZ′Z1 if they are dissimilar to normal SRFs Z1 = R133.

The discriminator DZ′Z1 is directly formed by a residual neural network (ResNet34). The network
adds some jump connections that skip internal layers to avoid the vanishing gradient problem and the
accuracy saturation problem. The construction of ResNet repeats a fixed pattern several times in which
the strided convolution downsampler jumps, bypassing every 2 convolutions.

The GZ′Z is the forward model, which generates the re-estimated image pairs Z′′ = (C′′3 ,H
′′
33). The

C′′3 is directly applied to the estimated SRF R′ from the high-dimensional H′33. The re-estimated RGB
images are computed as C′′3 = H′33R′33, where H′33 is the one of the output of GZZ′ . The re-estimated
HIS images H′′33 are the output of GZ′Z taking input from C′3, another output of GZZ′ .

Finally, a ResNet34 DZZ′′ , which takes the original images Z and the re-estimated images Z′′, rejects
those having large errors. The discriminator DZ′Z1 uses probability-based loss function, and DZZ′′ uses
a simple loss function in the mean squared error (mse) between the expected and predicted outputs.

The loss functions for the two discriminators are expressed in scores

D(Z′,Z1) = (pd − 1)2 + p2
d + η1

(R′ − R1)2

R′
+ η2ζd, (3.13)

D(Z,Z′′) =
(C −C′′)2

C
+

(H − H′′)2

H
, (3.14)

where pd is the probability output of the discriminator (Z′,Z1), and η1 and η2 are the scaling factors
controlling the involvement of the similarity and constraints, respectively. When the cycleGAN
converges, the error scores (3.13) and (3.14) between Z′ and Z1, Z and Z′′, respectively, will be
minimized (The convergence trend of the scores can be referred in Figure 9).

3.4. Reconstructing HSI by back projection

To increase the accuracy of back projection, we use a kernel method to decompose the HSI
and tristimulus RGB images. The estimated projection over the kernels can further minimize
the reconstruction errors [33]. We decompose the HSI in the DRM (3.2) into a set of kernels
ψ(λ, λ′)λ=1,··· ,N,λ′=1,··· ,N ,

h(x, j, λ) =
∑
λ′

H̃(x, j, λ)ψ(λ, λ′),∀x = [1, n], j = [1,m],

or
H( j)n×N =H̃( j)n×NΨN×N . (3.15)

At the training stage, images are indexed by j ∈ [1,m]. We aim to find a set of kernels H̃( j) =
{h̃(x, j, λ)}x∈[1,n],λ∈[1,N] that can span the tristimulus space.

H̃ can be estimated by Yule-Walker equation [34] or a Nadaraya-Watson kernel estimator [35].
The kernels Ψ are chosen in the reproducing kernel Hilbert space, guaranteeing that the basis vectors
exist [33].
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By the representation theorem, the tristimulus values can be approximated by the transformed
kernels

∑
λ h̃(x, j, λ)R(λ, i) and the coefficients w̃(x, x′)x,x′∈[1,nm] = W̃ such that

C(x, j, i) ≈
∑
λ

w̃(x, x)h̃(x, j, λ)R(λ, i), for x ∈ [1, n], j ∈ [1,m], i ∈ [1, 3]. (3.16)

We decompose an RGB image by approximating

C( j)n×3 ≈ W̃( j)n×NΨN×NRN×3. (3.17)

Together with the DRM (3.2), this implies that

H( j)n×N ≈ W̃( j)n×NΨN×N . (3.18)

Because the back projection W̃ may not align with the direction of the covariance of Ψ( j)R, we
need to make additional assumptions in l1 space. Assuming the tristimulus space is far smaller than
one of the HSI space, the sparse partial least square regression partitions the space into two disjoint
subspaces such that H = (H1,H2) spanned by relevant (H1) and irrelevant variables (H2) [36,37]. Such
partition effectively isolates uncorrelated basis in the latent space.

We aim to find a set of coefficients that maximize the span of hyperspectral space and also try to
avoid over-fitting. The goal is that

max
µ

min
W̃
||C − W̃ΨRϕ||

2 + µ
{

1−α
2 ||W̃||22 + α||W̃||1

}
. (3.19)

The challenge of the ill-posed problem is to invert a near-singular problem. The regularization
methods in (3.19) with a positive perturbation in l1 can suppress over-fitting effectively.

To avoid over-fitting, we further generalize the problem with an elastic net (3.19) in the Least
Absolute Shrinkage and Selection Operator (Lasso) term [38] with Lasso penalty α with l1 and l2

norms, || · ||1, || · ||2.
Optimization (3.19) pushes the coefficients to zero if the covariates are insignificant due to the

l1 properties. The reconstruction efficiency increases when transformation manifests the sparsity
properties [39]. The optimization (3.19) is regulated by the Lasso penalty (α = 1) or the ridge
penalty (α = 0), and it takes advantage of the sparse l1 norm in evaluating solutions for the ill-posed
problem [40].

If α = 0, the optimization in (3.19) reduces to an ordinary generalized matrix inverse, which serves
as a comparison basis. The least-square estimation in the objective creates a significant variance when
covariates exhibit multicollinearity.

Ridge regression performs optimization to compensate for the multicollinearity problem by finding
a balance between variance and bias [41]. The ridge penalty effectively reduces the variance of
the identified coefficients [42, 43]. The experiments demonstrate that the lasso and ridge estimation
effectively reconstruct the HSI without over-fit.

Due to the properties of the l1 space, an optimization (e.g., minx ||x||1, s.t. (3.19)) should possess
minimal non-zero solutions, and yield strong reconstruction performance if several sparsity properties,
such as restricted isometry and incoherence properties, are satisfied [39, 40, 44]. In our multivariate
transformation matrix Ψi, the lasso penalty tends to reduce the coefficients of less important covariates
to zero, thus generating more zero solutions and fitting our assumption about the hyperspectral space.
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The ill-posed back projection from C to H still contains errors. We propose a machine learning
model to further close the gap. In the training step, we aim to solve a model g such that the error

||H j − g(W̃ j)Ψ||2 (3.20)

is minimized. This study employs an ensemble of regression learners, including random forest
regression, and supports vector regression.

At the query stage, we are ready to retrieve the HSI from the decomposition matrix W̃ of the RGB
images Cq.

Hq = g(W̃Ψ) (3.21)

4. Analysis

Our method is robust to a wide range of SRFs. An experiment is designed to prove our algorithm.
The reconstructed HSIs by our method are almost identical between the measured SRF and the
estimated SRF. Despite the quality of the SRF, the reconstructed HSIs are always of high quality.

4.1. Retrieving algorithm in standard conditions

We first apply our algorithm in the standard CIE 1964 camera spectral response function (Figure
5 (a)). Our algorithm uses 33 bands from 400 nm to 720 nm. Based on the normal visible spectrum
range, the 3-color images have been transformed into 33-color images. The reconstructed hyperspectral
images match the original ground truth HSI closely (Figure 5 (b)).

(a) SRF (b) HSI

Figure 5. (a) The standard CIE 1964 camera spectral response function. (b) A sample of
reconstructed HSIs in 460, 550 and 620 nm bands using the standard CIE 1964 SRF. The
entire HSI contains 33 bands from 400 nm to 720 nm. The errors between the original and
the reconstructed images are insignificant according to the visual representation. Few pixels
have errors approximating to 0.05. Please refer to Table 1 for the summarized root mean
square errors. (image source: [45])
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4.2. With known SRF and CIF (requiring a spectrometer)

To evaluate the effectiveness of our method, we designed the experiments to compare the results of
standard laboratory camera calibration and ambient light conditions. We bought a low-cost camera
(under US$30) from the Internet and set-up for laboratory calibration. The environment should
mimic the one that consumer users have. A Macbeth color-checker with 24 patches, in Figure 6 (c),
was used. The spectral response (λ) of light from these patches was measured by a spectrometer
(PhotoResearchTM PR-670). The first two subgraphs (a) and (b) in Figure 6 show the light source and
reflectance spectrum of patches and the blue patch of the color checker. As shown in the subgraph (d)
in Figure 6, we fit the coefficients of the standard basis to estimate the actual SRF. With the measured
SRF, we reconstruct a high-fidelity HSI in Figure 7. The error maps show small errors between the
ground truth and reconstructed images. The quantitative errors are articulated in Table 1.

(a) (b) (c)

(d)

Figure 6. (a) The spectral response of the light source illuminates the experiment. (b) The
color checker. (c) The spectral response of the blue patch at the (1,2) position of the color
checker. (d) The fitted coefficients of the measured response.
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Figure 7. A sample of reconstructed HSI in 460, 550 and 620 nm bands using the measured
SRF. The entire HSI contains 33 bands from 400 nm to 720 nm. The errors between the
original and the reconstructed images are insignificant based on the visual representation.
Few pixels have errors approximating to 0.05. Please refer to Table 1 for the summarized
root mean square errors.

Table 1. Average prediction accuracy between the original and reconstructed HSI

method SRF rmse rrmse

ours CIE 0.029766 0.069987
Measured 0.037874 0.098941
Generated 0.038611 0.12115

[1] CIE 0.052838 0.1111
Measured 0.04472 0.15981
Generated 0.08846 0.16791

rmse=root mean squared error; rrmse=relative root mean squared error.

4.3. With unknown SRF and CIF

To achieve the goal of being calibration-free, autonomous generating of SRF should be
implemented. Without any help of additional hardware, we iteratively generated an SRF by the

AIMS Mathematics Volume 8, Issue 11, 27989–28009.
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cycleGAN (Figure 8). Through samples in the iteration in Figure 9, the cycleGAN converges promptly.
Despite the slight non-smoothness in the spectral response in R-G-B bands, the reconstruction accuracy
is still high. The error maps in Figure 10 still exhibit tiny errors.

As shown in Table 1, the generated SRFs by cycleGAN are accurate. The rmse (root mean squared
error) and rrmse (relative root mean squared error) were 0.038 and 0.12, respectively. The convergence
is relatively straightforward because the dimension in the latent space is the same as the HSI bands.
The estimated SRFs are effective according to the low rmse, both by our kernel projection method or
the dictionary learning method in [1].

To further visualize the performance of our reconstruction and generation algorithms, we show the
original and the synthesized picture from the recovered HSI side-by-side in Figure 11. It is evident that
the two pictures are almost identical, which implies that the reconstructed HSI is sufficiently accurate.

Figure 8. The generated SRF by our algorithm.

AIMS Mathematics Volume 8, Issue 11, 27989–28009.



28002

(a) iteration=50

(b) iteration=4000

(c) trends

Figure 9. (a) A sample of large error from the early iteration. (b) A sample of small error
from the final iteration. (c) Score changes of (3.13) and (3.14) in the process of converging.
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Figure 10. A sample of reconstructed HSI in 460, 550 and 620 nm bands using the
generated SRF in Figure 8. The entire HSI contains 33 bands from 400 nm to 720 nm.
The errors between the original and the reconstructed images are insignificant based on the
visual representation. Not many pixels have errors approximating to 0.05. Please refer to
Table 1 for the summarized root mean square errors.

Figure 11. Using the generated SRF in Figure 8, the HSI was reconstructed in Figure 10.
For better illustration, the RGB images were compared side-by-side between the original
picture (left) and the synthesized picture from the recovered HSI (right). The detailed error
maps in HSI were shown in Figure 10.
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(a)

(b)

(c)

Figure 12. The error maps by other projection method [1]. (a) The HSI by other methods
with CIE SRF. (b) The HSI by other methods with measured SRF. (c) The HSI by other
methods with our generated SRF.
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4.4. Discussion

The proposed method is superior to existing methods because it does not require laboratory
measurement of SRF for a new camera. The experiments demonstrate that our automatic estimated
SRFs are almost identical to the laboratory measurement.

Our generated SRFs are accurate and effective. The reconstructed HSIs with generated SRFs have
low rmse, both by our kernel projection method and the existing method. We compared our result to
an existing method [1] (Figure 12 and the second row of Table 1).

Our learning process, however, has errors. The reconstructed HSIs from a 30-dollar webcam will not
be as accurate as a 40-thousand-dollar camera. In Figure 10, the comparison of RGB shows a large 3%
mse error. The maximal errors happened when the images appeared to be reflected by highlights. The
highlighted parts are sensitive to unknown artifacts and cause the model confusion in the reconstruction
process.

Fortunately, the target application scenarios mainly need cheap solutions and do not care much
about accuracy. Moreover, noises, such as modeling errors and light source disturbance, influence the
accuracy of SRF identification and HSI reconstruction.

5. Conclusions

This research contributes to deep reverse analytics by integrating an automatic calibration
procedure. This paper offers two contributions targeting HSI reconstruction. The estimated SRFs and
CIFs match the results measured by the standard laboratory method, and the estimated HSIs achieve
less than 3% errors in rmse. Therefore, our method possesses apparent advantages compared to other
methods. Experimental results in real examples demonstrated the effectiveness of our method.

Limitations and future research

Our proposed algorithms work under several assumptions. We assume noise has no significant effect
on the reconstruction process. In the future, we can use noise representation in the latent space. We
will consider the spatial interaction effects resulting from the optical system in the future. In this study,
we assume the exposure for each photo-transistor is independent. Therefore, we convert a picture to a
1D array in the model learning process to save computation time. In the future, we will use 2D array
modeling.
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