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Abstract: In this article, we test whether solutions of second-order delay functional differential
equations oscillate. The considered equation is a general case of several important equations, such as
the linear, half-linear, and Emden-Fowler equations. We can construct strict criteria by inferring new
qualities from the positive solutions to the problem under study. Furthermore, we can incrementally
enhance these characteristics. We can use the criteria more than once if they are unsuccessful the
first time thanks to their iterative nature. Sharp criteria were obtained with only one condition that
guarantees the oscillation of the equation in the canonical and noncanonical forms. Our oscillation
results effectively extend, complete, and simplify several related ones in the literature. An example
was given to show the significance of the main results.
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1. Introduction

Currently, the oscillation theory of differential equations with delay arguments, which is known as
delay differential equations (DDEs), is a very active research area. This is because DDEs cover a wider
field of applications than ordinary differential equations. For example, we find that the importance of
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this type of differential equation is evident when interpreting most of the mathematical models used
to predict and analyze many scientific phenomena in life, such as dynamic systems, neural network
models, electrical engineering, and epidemiology [1–3]. In epidemiology, we find that the DDEs are
used to determine the time required for cell infection and the production of new viruses, as well as the
period of infection, and the stages of the virus life cycle (see [4]). On the other hand, second-order
DDEs are the most prevalent and visible, as they can be used to explain many phenomena in biology,
physics, and engineering by mathematically modeling these phenomena. One of these models is the
voltage control model of oscillating neurons in neuroengineering, see [5,6]. We also refer the reader to
the works [7, 8] for models from biological mathematics in which oscillation and/or delay actions can
be expressed using cross-diffusion terms.

As it is widely known to most researchers in this field, the credit for the emergence of the theory of
oscillation of differential equations is due to Sturm [9], in 1836, when he invented his famous method
for deducing the oscillatory properties of solutions of a particular differential equation from those
known for another equation. Then, Kneser [10] completed the work in this field in 1893 and deduced
the types of solutions known by his name until now. In 1921, Fite [11] provided the first results that
included the oscillation of differential equations with deviating arguments. Since then, a significant
amount of research has been done to improve the field of knowledge. We suggest the monographs
written by Agarwal et al. [12–14], Dosly and Rehak [15], and Gyori and Ladas [16] for an overview of
the most important contributions.

In this work, we study the oscillation of solutions of the second-order quasi-linear DDE with several
delays (

ϱ (ℓ)
(
y′ (ℓ)

)α)′
+

m∑
i=1

ρi (ℓ) yβ (φi (ℓ)) = 0, (1.1)

where ℓ ≥ ℓ0, and we also assume the following:

(H1) α and β are quotients of odd positive integers;
(H2) ϱ ∈ C1 ([ℓ0,∞) , (0,∞)) and

π (ℓ) :=
∫ ∞

ℓ

ϱ−1/α (s) ds,

with π (ℓ0) < ∞;
(H3) ρi ∈ C ([ℓ0,∞) , (0,∞)) , φi ∈ C1 ([ℓ0,∞) , (0,∞)) , φi(ℓ) ≤ ℓ, φ′i(ℓ) ≥ 0, and limℓ→∞ φi (ℓ) = ∞, for

all i = 1, 2, ...,m.

For the solution of (1.1), we consider a real-valued function y ∈ C ([ℓ∗,∞) ,R) , ℓ∗ ≥ ℓ0 with the
properties that ϱ · (y′)α is differentiable and satisfies (1.1) on [ℓ∗,∞). We consider only those solutions
y of (1.1) which satisfy sup {|y (ℓ)| : ℓ ≥ ℓ∗} > 0 for all ℓ ≥ ℓ∗. A solution y of (1.1) is said to be
oscillatory if it has arbitrarily large zeros. Otherwise, it is called nonoscillatory.

In this paper, we first review some studies that contributed to the development of the oscillation
theory of second-order differential equations. Then, we provide new monotonic properties for the
positive solutions and use them to obtain the new sharpest oscillatory criteria for (1.1). Finally, we
state basic oscillation theorems that achieve the objective of the paper and an example to illustrate the
importance of the study results.
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2. Literature review

Among the recent contributions that had an impact on the improvement of the oscillation criteria of
second-order non-canonical delay differential equations are those of Dzurina and Jadlovska [17–19].
This improvement is reflected in the neutral differential equations, which we see in the works [20–
24]. On the other hand, for canonical neutral equations, Jadlovska [25], Moaaz et al. [26], and Li
and Rogovchenko [27, 28] developed improved criteria to ensure the oscillation of neutral differential
equations. When the rate of development depends on both the present and the future of a phenomenon,
we can model it using advanced differential equations. Agarwal et al. [29], Chatzarakis et al. [30, 31],
and Hassan [32] studied the oscillatory behavior of solutions to chapters of advanced second-order
differential equations.

The development of approaches, techniques or criteria for studying the oscillation of second-order
DDEs influences the study of the oscillation of equations of higher order, especially even-order, see for
example, Li and Rogovchenko [33, 34] and Moaaz et al. [35–37].

In 2000, Koplataze et al. [38] studied the oscillation of the second-order linear DDE

y′′ (ℓ) + ρ (ℓ) y (φ (ℓ)) = 0, (2.1)

and proved that one of the following conditions is sufficient to ensure the oscillation of the solutions of
(2.1):

lim inf
ℓ→∞

∫ ℓ

φ(ℓ)

(
φ (s) +

∫ φ(s)

ℓ0

ξφ (ξ) ρ (ξ) dξ
)
ρ (s) ds >

1
e

(2.2)

or

lim sup
ℓ→∞

∫ ℓ

φ(ℓ)

(
φ (s) +

∫ φ(s)

ℓ0

ξφ (ξ) ρ (ξ) dξ
)
ρ (s) ds > 1.

These results are considered improvements on the results of Koplatadze [39] and Wei [40].
Chatzarakis and Jadlovska [41] considered a more general equation, the second-order half-linear

DDE (
ϱ (ℓ)

(
y′ (ℓ)

)α)′
+ ρ (ℓ) yα (φ (ℓ)) = 0, (2.3)

in the canonical form, where R (ℓ) =
∫ ℓ
ℓ0
ϱ−1/α (s) ds → ∞ as ℓ → ∞. They extended and improved

the results of Koplatadze et al. [38] by introducing a new sequence of constants {γk} as follows: γn ∈

(0, 1/e] ,

γ1 = lim inf
ℓ→∞

∫ ℓ

φ(ℓ)
ρ (s) Rα (φ (s)) ds,

and

γn+1 = lim inf
ℓ→∞

∫ ℓ

φ(ℓ)
ρ (s) Rαn (φ (s)) ds, n ≥ 1

where

Rn (ℓ) = R (ℓ) +
ς (γn)
α

∫ ℓ

φ(ℓ)
R (s) Rα (φ (s)) ρ (s) ds

and ς (θ) is the smallest positive root of the transcendental equation ς = eθς, 0 < θ < 1/e. And obtained
that equation (2.3) is oscillatory if

γn > 1, (2.4)

AIMS Mathematics Volume 8, Issue 11, 28051–28070.



28054

for some n ∈ N. Note that, in the linear case at α = 1, the previous criterion reduces to (2.2) at
n = 2. Dzurina and Jadlovska [17] studied the same equation but with another approach in an attempt
to improve the previous results. The criterion in [17] is considered as a simplified version of the works
of Marik [42].

In 2019, Dzurina et al. [18] improved condition (2.4) by presenting new criteria for oscillation of
(2.3). They proved that if

lim inf
ℓ→∞

1
π (ℓ)

(∫ ℓ

ℓ0

πα+1 (s) ρ (s) ds
)1/α

> α,

then (2.3) is oscillatory.
Very recently, there was a research area about how to get sharper results for the oscillation of (2.3).

Accordingly, Dzurina [19] established the following sharpest oscillation result for (2.3):

lim inf
ℓ→∞

ϱ1/α (ℓ) πα+1 (ℓ) ρ (ℓ) > max {c (ν) : 0 < ν < 1} , (2.5)

where c (ν) = ανα (1 − ν) λ−αν∗ and

λ∗ = lim inf
ℓ→∞

π (φ (ℓ))
π (ℓ)

< ∞.

Chatzarakis et al. [43] generalized the works of Dzurina [19] and studied the canonical form for the
Euler-type half-linear differential equation with several delays(

ϱ (ℓ)
(
y′ (ℓ)

)α)′
+

m∑
i=1

ρi (ℓ) yα (φi (ℓ)) = 0. (2.6)

According to the results in [43], the oscillation of (2.6) is guaranteed according to the condition

1
α

lim inf
ℓ→∞

ϱ1/α (ℓ) R (φi (ℓ)) R (ℓ) ρi (ℓ) > 0

for i = 1, 2, ...,m,

R (ℓ) =
∫ ℓ

ℓ0

1
ϱ1/α (s)

ds,

and
λ∗i = lim inf

ℓ→∞

R (ℓ)
R (φi (ℓ))

= ∞.

We note that criteria (2.2) and (2.4) need to ensure that the function φ (ℓ) is nondecreasing.
By comparing these results obtained in the previous literature with our results, we find that what
distinguishes this paper is:

1. Different exponents of the first and second terms of the studied differential equation α and β affect
our results and give them a wider field of application.

2. Our results work in the case of multiple delay arguments (φi (ℓ) , i = 1, 2, ...,m), which do not
require bounded conditions for these arguments.

3. The generality of our results allows us to apply them to a variety of differential equations,
including ordinary (φi (ℓ) = ℓ), linear (α = β = 1), half-linear (α = β), and Emden-Fowler
equations.
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3. Main results

This section presents and proves some introductory lemmas that are required to conclude the main
results that achieve the objectives of this paper. First of all, let us define the following notations for
convenience: The class S stands for all positive decreasing solutions of (1.1) for sufficiently large ℓ,

φ (ℓ) = max {φi (ℓ) , i = 1, 2, ...,m} , (3.1)

and

Ω (ℓ) =


k1 if β < α;
1 if β = α;
k2π

β−α (ℓ) if β > α,
(3.2)

where k1 and k2 are any positive constants. The approach taken in this study is based on the assumption
that there are µ∗ and λ∗ which are defined by

µ∗ =
1
α

lim inf
ℓ→∞

ϱ1/α (ℓ) πα+1 (ℓ)Ω (ℓ)
m∑

i=1

ρi (ℓ) (3.3)

and
λ∗ = lim inf

ℓ→∞

π (φ (ℓ))
π (ℓ)

.

Furthermore, for arbitrary fixed µ and λ, there exists ℓ1 ≥ ℓ0, such that

µ ≤
1
α
ϱ1/α (ℓ) πα+1 (ℓ)Ω (ℓ)

m∑
i=1

ρi (ℓ) (3.4)

for 0 < µ < µ∗ and

λ ≤
π (φ (ℓ))
π (ℓ)

, (3.5)

for 1 ≤ λ ≤ λ∗, eventually.

Lemma 3.1. Assume that y ∈ S. Then

yβ−α (ℓ) ≥ Ω (ℓ) .

Proof. Let y ∈ S. Then there are three possibilities:
(1) β < α: from the nonincreasing monotonicity of y (ℓ), it is easy to see that there exists a positive
constant C1, such that

y (ℓ) ≤ C1,

which implies that
yβ−α (ℓ) ≥ Cβ−α1 = k1;

(2) β = α: it is obvious that
yβ (ℓ) = yα (ℓ) ,

then
yβ−α (ℓ) = 1;
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(3) β > α: it is clear from the decreasing monotonicity of ϱ (y′)α that there is a positive constant C2,
such that

ϱ (ℓ)
(
y′ (ℓ)

)α
≤ −C2 < 0,

then

y′ (ℓ) ≤
(
−C2

ϱ (ℓ)

)1/α

.

By integrating the above inequality from ℓ to∞, we get

−y (ℓ) ≤ −C1/α
2 π (ℓ) .

Hence, we conclude that
yβ−α (ℓ) ≥ C

β
α−1
2 πβ−α (ℓ) = k2π

β−α (ℓ) .

As a result, we get yβ−α (ℓ) ≥ Ω (ℓ). This completes the proof. □

Lemma 3.2. Assume that ∫ ∞

ℓ1

1
ϱ1/α (u)

∫ u

ℓ1

Ω (s)
m∑

i=1

ρi (s) ds

1/α

du = ∞, (3.6)

holds. Then, for (1.1), each solution y oscillates or tends to zero.

Proof. Contrarily, assume that y is a positive solution of (1.1) for sufficiently large ℓ. From (1.1), we
obtain (

ϱ (ℓ)
(
y′ (ℓ)

)α)′
= −

m∑
i=1

ρi (ℓ) yβ (φi (ℓ)) ≤ 0.

So, the function y′ has a fixed sign, which means that it is eventually either greater than or less than
zero. Firstly, let y′ (ℓ) < 0. Then, the decreasing monotonicity of y (ℓ) implies that there exists a non
negative constant C3 ≥ 0 where limℓ→∞ y (ℓ) = C3. Assume on contrary that y(ℓ) ≥ C3 > 0. But since

(
ϱ (ℓ)

(
y′ (ℓ)

)α)′
≤ −yβ (φ (ℓ))

m∑
i=1

ρi (ℓ) ,

≤ −yβ (ℓ)
m∑

i=1

ρi (ℓ) ,

since φ (ℓ) defined as in (3.1). Now the monotonicity of y(ℓ) implies that

(
ϱ (ℓ)

(
y′ (ℓ)

)α)′
≤ −yα (ℓ)Ω (ℓ)

m∑
i=1

ρi (ℓ)

≤ −C3Ω (ℓ)
m∑

i=1

ρi (ℓ) .

Taking lim for both sides as ℓ → ∞ yields a contradiction, implying that C3 = 0. Now, assume that
y′ (ℓ) > 0. Let us define

Z (ℓ) = ϱ (ℓ) y−β (φi (ℓ))
(
y′ (ℓ)

)α . (3.7)
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Then, Z(ℓ) > 0. Differentiating (3.7), we obtain

Z′ (ℓ) =
(ϱ (ℓ) (y′ (ℓ))α)′

yβ (φi (ℓ))
− βϱ (ℓ)φ′i (ℓ)

(y′ (ℓ))α y′ (φi (ℓ))
(y (φi (ℓ)))β+1 (3.8)

= −

m∑
i=1

ρi (ℓ) − βφ′i (ℓ) Z (ℓ)
y′ (φi (ℓ))
y (φi (ℓ))

≤ −

m∑
i=1

ρi (ℓ) .

Integrating (3.8) from ℓ1 to ℓ, we have

Z (ℓ) ≤ Z (ℓ1) −
∫ ℓ

ℓ1

m∑
i=1

ρi (s) ds.

However, (3.6) implies that
∫ ℓ
ℓ1

m∑
i=1
ρi (ℓ) ds → ∞, which contradicts with our assumption that Z(ℓ) > 0.

As a result, the probability that y′ (ℓ) > 0 is impossible, and this completes the proof. □

Lemma 3.3. Let µ∗ > 0. Assume that y (ℓ) is a positive solution of (1.1) for sufficiently large ℓ. Then
(I) y ∈ S tends to zero as ℓ → ∞;
(II) (y/π)′ ≥ 0, eventually.

Proof. From Lemma 3.2, we can deduce the proof of (I)-part if∫ ∞

ℓ1

1
ϱ1/α (u)

∫ u

ℓ1

Ω (s)
m∑

i=1

ρi (s) ds

1/α

du = ∞.

So, by using the condition (3.4), it is obvious that

αµϱ−1/α (ℓ) π−(α+1) (ℓ) ≤ Ω (ℓ)
m∑

i=1

ρi (ℓ) . (3.9)

Integrating (3.9) from ℓ1 to u, we get∫ u

ℓ1

Ω (s)
m∑

i=1

ρi (s) ds ≥ µ
∫ u

ℓ1

α

ϱ1/α (s) πα+1 (s)
ds,

Integrating once more from ℓ1 to ℓ, yields to∫ ℓ

ℓ1

1
ϱ1/α (u)

∫ u

ℓ1

Ω (s)
m∑

i=1

ρi (s) ds

1/α

du

≥ α
√
µ

∫ ℓ

ℓ1

ϱ−1/α (u)
[
α

∫ u

ℓ1

1
ϱ1/α (s) π(α+1) (s)

ds
]1/α

du

= α
√
µ

∫ ℓ

ℓ1

ϱ−1/α (u)
[

1
πα (u)

−
1

πα (ℓ1)

]1/α

du.

From (H2), we can conclude that the function π−α (ℓ) is infinite, i.e., limℓ→∞ π−α (ℓ) = ∞. So, for any
constant C4 ∈ (0, 1), there is

π−α (ℓ) − πα (ℓ1) ≥ Cα4π
−α (ℓ)
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for sufficiently large ℓ. As a result∫ ℓ

ℓ1

1
ϱ1/α (u)

∫ u

ℓ1

Ω (s)
m∑

i=1

ρi (s) ds

1/α

du ≥ C4
α
√
µ

∫ ℓ

ℓ1

ϱ−1/α (u) π (u)du

= ln(
π (ℓ1)
π (ℓ)

)C4 α
√
µ

which tends to∞ as ℓ → ∞. Then, we obtain∫ ∞

ℓ1

1
ϱ1/α (u)

∫ u

ℓ1

Ω (s)
m∑

i=1

ρi (s) ds

1/α

du = ∞, (3.10)

and this completes the proof of this part.
(II)-part is verified as follows, by using the monotonicity of ϱ (ℓ) (y′ (ℓ))α , we have

y (ℓ) ≥ −

∞∫
ℓ

ϱ−1/α (s)ϱ1/α (s) y′ (s) ds

≥ −ϱ1/α (ℓ) y′ (ℓ)

∞∫
ℓ

ϱ−1/α (s)ds

= −ϱ1/α (ℓ) π (ℓ) y′ (ℓ) ,

i.e., (
y (ℓ)
π (ℓ)

)′
=

y′ (ℓ) π (ℓ) + ϱ−1/α (ℓ) y (ℓ)
π2 (ℓ)

≥ 0.

The proof is complete. □

The result illustrated in (I)-part of Lemma 3.3 can be improved by defining a sequence {µn} as

µ0 =
α
√
µ∗,

µn =
µ0λ

µn−1
∗

α
√

1 − µn−1

, (3.11)

for any n ∈ N. It is simple to conclude through induction that for every value of n ∈ N, µ j < 1, and
j = 0, 1, 2, ..., n, then there exists µn+1 satisfies that

µn+1 = lnµn > µn, (3.12)

where ln is defined by

l0 =
λ
µ0
∗

α
√

1 − µ0

,

and

ln+1 = λ
µ0(ln−1)
∗

α

√
1 − µn

1 − lnµn
,

for any n ∈ N0.
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Remark 3.4. Since the definition of λ∗ and (H2) states that λ∗ ≥ 1, it is obvious that l0 > 1, which
implies that ln > 1 too for any n ∈ N0.

Theorem 3.5. Let (H1)-(H3), µ∗ > 0, and λ∗ < ∞ hold . If y ∈ S, then y (ℓ) /πµn (ℓ) is eventually
decreasing for any n ∈ N0.

Proof. Let y be a positive solution of (1.1) and (3.4) holds for every ℓ ≥ ℓ1. By integrating (1.1) under
the area (ℓ1, ℓ), we obtain

−ϱ (ℓ)
(
y′ (ℓ)

)α
+ ϱ (ℓ1)

(
y′ (ℓ1)

)α
=

∫ ℓ

ℓ1

m∑
i=1

ρi (s) yβ (φi (s)) ds. (3.13)

The (I)-part of Lemma 3.3 and condition (3.1) imply that y (ℓ) is a positive decreasing function and
hence y (ℓ) ≤ y (φ (ℓ)). Consequently,

−ϱ (ℓ)
(
y′ (ℓ)

)α
≥ −ϱ (ℓ1)

(
y′ (ℓ1)

)α
+

∫ ℓ

ℓ1

yβ (φ (s))
m∑

i=1

ρi (s) ds (3.14)

≥ −ϱ (ℓ1)
(
y′ (ℓ1)

)α
+

∫ ℓ

ℓ1

yβ (s)
m∑

i=1

ρi (s) ds,

via Lemma 3.1, we have
yβ (ℓ) = yβ−α (ℓ) yα (ℓ) ≥ Ω (ℓ) yα (ℓ) . (3.15)

Substituting from the previous inequality into (3.14), we obtain

−ϱ (ℓ)
(
y′ (ℓ)

)α
≥ −ϱ (ℓ1)

(
y′ (ℓ1)

)α
+

∫ ℓ

ℓ1

Ω (s) yα (s)
m∑

i=1

ρi (s) ds (3.16)

≥ −ϱ (ℓ1)
(
y′ (ℓ1)

)α
+ yα (ℓ)

∫ ℓ

ℓ1

Ω (s)
m∑

i=1

ρi (s) ds.

Using (3.4) in the above inequality, yields

−ϱ (ℓ)
(
y′ (ℓ)

)α
+ ϱ (ℓ1)

(
y′ (ℓ1)

)α
≥ µαyα (ℓ)

∫ ℓ

ℓ1

1
ϱ1/α (s) πα+1 (s)

ds.

Now, by completing the integration, we obtain

−ϱ (ℓ)
(
y′ (ℓ)

)α
≥ −ϱ (ℓ1)

(
y′ (ℓ1)

)α
+ µyα (ℓ)

[
π−α (ℓ) − π−α (ℓ1)

]
≥ −ϱ (ℓ1)

(
y′ (ℓ1)

)α
+ µ

(
y (ℓ)
π (ℓ)

)α
− µ

yα (ℓ)
πα (ℓ1)

.

Once more, (I)-part of Lemma 3.3 implies that y (ℓ) tends to zero as ℓ → ∞. Consequently, there exists
ℓ2 ∈ [ℓ1,∞) where

−ϱ (ℓ1)
(
y′ (ℓ1)

)α > µ yα (ℓ)
πα (ℓ1)

.

And so,

−ϱ (ℓ)
(
y′ (ℓ)

)α > µ ( y (ℓ)
π (ℓ)

)α
. (3.17)
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Then
−ϱ1/α (ℓ) y′ (ℓ) π (ℓ) > α

√
µy (ℓ) = σ0µ0y (ℓ) ,

where σ0 = α
√
µ/µ0 stands for any constant in (0, 1). Furthermore,(

y (ℓ)
π
α√µ (ℓ)

)′
=

y′ (ℓ) π α
√
µ (ℓ) + α

√
µϱ−1/α (ℓ) π α

√
µ−1 (ℓ) y (ℓ)

π2 α
√
µ (ℓ)

(3.18)

=
π
α√µ−1 (ℓ)
π2 α
√
µ (ℓ)

(
y′ (ℓ) π (ℓ) + α

√
µϱ−1/α (ℓ) y (ℓ)

)
≤ 0,

for any ℓ ≥ ℓ2. Using that y/π α
√
µ is decreasing and integrating (1.1) from ℓ2 to ℓ, we get

−ϱ (ℓ)
(
y′ (ℓ)

)α
+ ϱ (ℓ2)

(
y′ (ℓ2)

)α
=

∫ ℓ

ℓ2

yβ (φ (s))
m∑

i=1

ρi (s) ds.

But ∫ ℓ

ℓ2

yβ (φ (s)) ds ≥
(

y (ℓ)
π
α√µ (ℓ)

)α ∫ ℓ

ℓ2

πα
α√µ (φ (s))Ω (s) ds

=

(
y (ℓ)
π
α√µ (ℓ)

)α ∫ ℓ

ℓ2

(
π (φ (s))
π (s)

)α α√µ
πα

α√µ (s)Ω (s) ds.

Then

−ϱ (ℓ)
(
y′ (ℓ)

)α
≥ −ϱ (ℓ2)

(
y′ (ℓ2)

)α
+

(
y (ℓ)
π
α√µ (ℓ)

)α ∫ ℓ

ℓ2

(
π (φ (s))
π (s)

)α α√µ
πα

α√µ (s)Ω (s)
m∑

i=1

ρi (s) ds.

As a result of (3.4), we get

−ϱ (ℓ)
(
y′ (ℓ)

)α
≥ −ϱ (ℓ2)

(
y′ (ℓ2)

)α (3.19)

+µ

(
y (ℓ)
π
α√µ (ℓ)

)α ∫ ℓ

ℓ2

α
(
π(φ(s))
π(s)

)α α√µ
ϱ1/α (s) πα+1−α α

√
µ (s)

ds

= −ϱ (ℓ2)
(
y′ (ℓ2)

)α
+
µλα

α√µ

1 − α
√
µ

(
y (ℓ)
π
α√µ (ℓ)

)α [ 1

πα(1− α
√
µ) (ℓ)

−
1

πα(1− α
√
µ) (ℓ2)

]
.

Next, we are going to prove that y/π α
√
µ+σ for any σ > 0. By using the fact that π α

√
µ (ℓ) tends to zero as

ℓ approaches infinity, which implies that there exists a positive constant

C5 ∈


α

√
1 − α
√
µ

λ
α√µ

, 1
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for ℓ3 ≥ ℓ2 such that
1

πα(1− α
√
µ) (ℓ)

−
1

πα(1− α
√
µ) (ℓ2)

>
Cα5

πα(1− α
√
µ) (ℓ)

.

Using the previous inequality in (3.19), provides

−ϱ (ℓ)
(
y′ (ℓ)

)α
≥

C5
α
√
µλ

α√µ

α

√
1 − α
√
µ

y (ℓ)
π (ℓ)


α

and so,
−ϱ1/α (ℓ) π (ℓ)y′ (ℓ) ≥

(
α
√
µ + σ

)
y (ℓ), (3.20)

where

σ = α
√
µ

 C5 λ
α√µ

α

√
1 − α
√
µ
− 1

 > 0.

Therefore, from (3.20), we conclude that(
y (ℓ)

π
α√µ+σ (ℓ)

)′
≤ 0, ℓ ≥ ℓ3,

i.e., y (ℓ) /π α
√
µ+σ (ℓ) is eventually decreasing. Thus, for ℓ ≥ ℓ4, ℓ4 ∈ [ℓ3,∞) ,

−ϱ (ℓ2)
(
y′ (ℓ2)

)α
−
µλα

α√µ

1 − α
√
µ

(
y (ℓ)
π
α√µ (ℓ)

)α 1

πα(1− α
√
µ) (ℓ2)

> 0.

Using the above inequality and returning to (3.19), we get

−ϱ (ℓ)
(
y′ (ℓ)

)α
≥ −ϱ (ℓ2)

(
y′ (ℓ2)

)α
+


α
√
µλ

α√µ

α

√
1 − α
√
µ

y (ℓ)
π (ℓ)


α

−
µ

1 − α
√
µ
λα

α√µ

(
y (ℓ)
π
α√µ (ℓ)

)α 1

πα(1− α
√
µ) (ℓ2)

≥
µ

1 − α
√
µ
λα

α√µ

(
y (ℓ)
π (ℓ)

)α
>

µ

1 − α
√
µ
λα

α√µyα,

further,

−ϱ1/α (ℓ) y′ (ℓ) >
α
√
µ

α

√
1 − α
√
µ
λ
α√µ y (ℓ)
π (ℓ)

= σ1µ1
y (ℓ)
π (ℓ)
, ℓ ≥ ℓ4,

where σ1 is an arbitrary constant from (0, 1) approaching 1 if µ→ µ∗, λ→ λ∗, and

σ1 =
α

√√√√
µ
(
1 − α
√
µ∗

)
µ∗

(
1 − α
√
µ
) λ α√µ
λ
α√µ
∗

.
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Hence, ( y
πσ1µ1

)′
< 0.

Moreover, we can use mathematical induction to prove that( y
πσnµn

)′
< 0,

eventually for each n ∈ N0, σn stands for any constant in (0, 1) tending to 1 if µ→ µ∗ and λ→ λ∗, and
defined as

σ0 =
α

√
µ

µ∗

and

σn+1 = σ0
α

√
1 − µn

1 − σnµn

λσnµn

λ
µn
∗

, n ∈ N0.

Finally, we claim that y/πµn is decreasing by showing that y/πσn+1µn+1 is decreasing as well for any
n ∈ N0. So, by using that σn+1 is an arbitrary constant tending to 1 and (3.12), we get

σn+1µn+1 > µn.

As a result,
−ϱ1/α (ℓ) y′ (ℓ) π (ℓ) > σn+1µn+1y (ℓ) > µny (ℓ) ,

eventually for any n ∈ N0. And so, ( y
πµn

)′
< 0.

The proof is complete. □

4. Applications in oscillation theory

Now, we will present some oscillation theorems for (1.1).

Theorem 4.1. Assume that α = β and

λ∗ = lim inf
ℓ→∞

π (φ (ℓ))
π (ℓ)

< ∞. (4.1)

If

lim inf
ℓ→∞

ϱ1/α (ℓ) πα+1 (ℓ)
m∑

i=1

ρi (ℓ) > max
{
c (ν) = ανα (1 − ν) λ−αν∗ : 0 < ν < 1

}
, (4.2)

then, every solution of equation (1.1) is oscillatory.

Proof. Assume that y is a positive solution of (1.1). From (4.2), we obtain that µ∗ > 0, which guarantees
the fulfillment of (3.6), and this, in turn, excludes the existence of increasing positive solutions of (1.1).
Now, from (II)-part of Lemma 3.3 and Theorem 3.5, we obtain that y/π is nondecreasing and y/πµn is
decreasing, eventually for any n ∈ N0 and

µn < 1.
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Thus, we can conclude that the sequence {µn} defined as in (3.11) is bounded from above and increasing
for

µ0 < µ1 < µ2 < ... < µn < µn+1,

which means that the sequence {µn} is convergent and has a finite limit

0 < lim
n→∞
µn = ν < 1,

where the positive constant ν stands for the smaller root of the characteristic equation

c (ν) = ανα (1 − ν) λ−αν∗ = lim inf
ℓ→∞

ϱ1/α (ℓ) πα+1 (ℓ)
m∑

i=1

ρi (ℓ) , (4.3)

see [12]. But, from (4.2), it is obvious that the previous equation has no positive solutions. This is a
contradiction and completes the proof. □

Corollary 4.2. For c (ν) defined as in (4.2), let us define

c (νmax) = max {c (ν)} , (4.4)

for any ν ∈ (0, 1) . So, according to some calculations, we obtain

νmax =


α
α+1 for λ∗ = 1,

−

√
(η+α+1)2−4αη+η+α+1

2η for λ∗ , 1 and η = ln λ∗.

Theorem 4.3. Assume that
lim inf
ℓ→∞

π (φ (ℓ))
π (ℓ)

= ∞. (4.5)

If

lim inf
ℓ→∞

ϱ1/α (ℓ) πα+1 (ℓ)Ω (ℓ)
m∑

i=1

ρi (ℓ) > 0,

then, every solution of equation (1.1) is oscillatory.

Proof. Contrarily, assume that y is a positive solution of (1.1) on [ℓ1,∞) with y (φ (ℓ)) > 0 for all
ℓ ≥ ℓ1. Since µ∗ > 0, which guarantees the fulfillment of (3.6), and this, in turn, excludes the existence
of increasing positive solutions of (1.1), as proven in the (I)-part of Lemma 3.3. However, (4.5) implies
that there exists a sufficiently large ℓ for any C6 > 0 satisfying

π (φ (ℓ))
π (ℓ)

≥ Cµ
−1/α

6 .

Integrating (1.1) from ℓ2 to ℓ, yields

−ϱ (ℓ)
(
y′ (ℓ)

)α
= −ϱ (ℓ2)

(
y′ (ℓ2)

)α
+

∫ ℓ

ℓ2

yβ (φi (s))
m∑

i=1

ρi (s) ds
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≥ −ϱ (ℓ2)
(
y′ (ℓ2)

)α
+

∫ ℓ

ℓ2

yβ (φ (s))
m∑

i=1

ρi (s) ds

≥ −ϱ (ℓ2)
(
y′ (ℓ2)

)α
+

∫ ℓ

ℓ2

yα (φ (s))Ω (φ (s))
m∑

i=1

ρi (s) ds,

and so,

−ϱ (ℓ)
(
y′ (ℓ)

)α
≥ −ϱ (ℓ2)

(
y′ (ℓ2)

)α
+

∫ ℓ

ℓ2

yα (φ (s))Ω (s)
m∑

i=1

ρi (s) ds.

Now, exactly as in the proof of Theorem 3.5, it is easy to get that
(
y/π α

√
µ
)′
< 0 for any ℓ large enough.

By using this monotonicity in the previous inequality, we obtain

−ϱ (ℓ)
(
y′ (ℓ)

)α
≥ −ϱ (ℓ2)

(
y′ (ℓ2)

)α
+Cα6 yα (ℓ)

∫ ℓ

ℓ2

Ω (s)
m∑

i=1

ρi (s) ds.

Combining with (3.19), we arrive at

−ϱ (ℓ)
(
y′ (ℓ)

)α
≥ −ϱ (ℓ2)

(
y′ (ℓ2)

)α
+ µCα6 yα (ℓ)

∫ ℓ

ℓ2

αϱ−1/α (s)
πα+1 (s)

ds

= −ϱ (ℓ2)
(
y′ (ℓ2)

)α
+ µCα6 yα (ℓ)

[
π−α (ℓ) − π−α (ℓ2)

]
.

But since limℓ→∞ y (ℓ) = 0 as in (I)-part of Lemma 3.3, there is ℓ3 ≥ ℓ2 such that

−ϱ (ℓ2)
(
y′ (ℓ2)

)α
−
µCα6
πα (ℓ2)

yα (ℓ) > 0.

Implies that

−ϱ (ℓ)
(
y′ (ℓ)

)α > µ (C6y (ℓ)
π (ℓ)

)α
,

i.e.,

−ϱ (ℓ)
(
y′ (ℓ)

)α > (
C7y (ℓ)
π (ℓ)

)α
for C7 > 0, C7 = µ

1
αC6. Thus ( y

πC7

)′
< 0.

Given that C6 stands for any arbitrary constant and therefore C7 does too, this leads to a contradiction
with the (II)-part of Lemma 3.3. This completes the proof. □

AIMS Mathematics Volume 8, Issue 11, 28051–28070.



28065

Corollary 4.4. For the linear case, where α = β = 1, we can obtain the same previous oscillation
property of (1.1) to the following canonical equation:

(̃
ϱ (ℓ) x′ (ℓ)

)′
+

m∑
i=1

ρ̃i (ℓ) x (φi (ℓ)) = 0, ℓ ≥ ℓ0 > 0, (4.6)

where ϱ̃ and ρ̃i are continuous positive functions, and

ϱ̂ (ℓ) =
∫ ℓ

ℓ0

1
ϱ̃ (s)

ds→ ∞ as ℓ → ∞.

Based on this, we can deduce the following results:

Theorem 4.5. Assume that

δ∗ = lim inf
ℓ→∞

ϱ̂ (ℓ)
ϱ̂ (φ (ℓ))

< ∞.

If

lim inf
ℓ→∞

ϱ̃ (ℓ) ϱ̂ (ℓ) ϱ̂ (φ (ℓ))
m∑

i=1

ρ̃i (ℓ) > max
{
ν (1 − ν) δ−ν∗ : 0 < ν < 1

}
,

then , every solution of equation (4.6) is oscillatory.

Proof. As in the proof of [36, Theorem 4], we can simply show that the noncanonical equation (1.1)
with α = β = 1 and the canonical equation (4.6) are equivalent, where

y (ℓ) =
x (ℓ)
ϱ̂ (ℓ)
,

π (ℓ) =
∫ ∞

ℓ

ds
ϱ̃ (ℓ) ϱ̂2 (ℓ)

=
1
ϱ̂ (ℓ)
,

ϱ (ℓ) = ϱ̃ (ℓ) ϱ̂2 (ℓ) ,

and
m∑

i=1

ρi (ℓ) =
m∑

i=1

ρ̃i (ℓ) ϱ̂ (ℓ) ϱ̂ (φ (ℓ)) .

The rest of the proof is exactly same as the proof of Theorem 4.1. So, for

lim inf
ℓ→∞

π (φ (ℓ))
π (ℓ)

= lim inf
ℓ→∞

ϱ̂ (ℓ)
ϱ̂ (φ (ℓ))

< ∞,

the condition (4.2) becomes

lim inf
ℓ→∞

ϱ (ℓ) π2 (ℓ)
m∑

i=1

ρi (ℓ) = lim inf
ℓ→∞

ϱ̃ (ℓ) ϱ̂2 (ℓ)
1
ϱ̂2 (ℓ)

m∑
i=1

ρ̃i (ℓ) ϱ̂ (ℓ) ϱ̂ (φ (ℓ))

= lim inf
ℓ→∞

ϱ̃ (ℓ) ϱ̂ (ℓ) ϱ̂ (φ (ℓ))
m∑

i=1

ρ̃i (ℓ)

> max
{
ν (1 − ν) δ−ν∗ : 0 < ν < 1

}
.

The proof is complete. □
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Theorem 4.6. Let

lim inf
ℓ→∞

ϱ̂ (ℓ)
ϱ̂ (φ (ℓ))

= ∞.

If

lim inf
ℓ→∞

ϱ̃ (ℓ) ϱ̂ (ℓ) ϱ̂ (φ (ℓ))
m∑

i=1

ρ̃i (ℓ) > 0,

then (4.6) is oscillatory.

Proof. Proceeding exactly as in the proof of Theorem 4.3 with the equivalent noncanonical
representation of (4.6), we can verify the proof and so we omit it. □

Example 4.1. Consider the DDE with several delays(
ℓα+1 (

x′ (ℓ)
)α)′
+ ρ0

m∑
i=1

xα (aiℓ) = 0, (4.7)

where ρ0 ∈ (1,∞) and ai ∈ (0, 1] for i = 1, 2, ...,m. Since φi (ℓ) = aiℓ, we let

a = max {ai : i = 1, 2, ...,m} ,

and ϱ (ℓ) = ℓα+1. Thus, we get π (ℓ) = αℓ−1/α. By applying Theorem 4.1, we obtain

λ∗ = lim inf
ℓ→∞

(
π (aℓ)
π (ℓ)

)α
=

1
a
< ∞

and

lim inf
ℓ→∞

ϱ1/α (ℓ) πα+1 (ℓ)
m∑

i=1

ρi (ℓ) = ρ0lim inf
ℓ→∞

ℓ1+1/α
(
α

ℓ1/α

)α+1

= ρ0α
α+1.

Therefore, (4.7) is oscillatory if
ρ0α

α+1 > c (νmax) ,

where c (νmax) is defined as in (4.4). In contrast, conditions (2.2) and (2.5) in [19,38] cannot be applied
to (4.7). Now, for the linear case where α = 1. Equation (4.7) reduced to(

ℓ2x′ (ℓ)
)′
+ ρ0

m∑
i=1

x (aiℓ) = 0, (4.8)

which is equivalent to the canonical equation

x′′ (ℓ) +
ρ0

aℓ2

m∑
i=1

x (aiℓ) = 0,

where ϱ̃ (ℓ) = 1 and ϱ̂ (ℓ) = ℓ → ∞ as ℓ → ∞. By applying Theorem 4.5, we get

δ∗ = lim inf
ℓ→∞

ϱ̂ (ℓ)
ϱ̂ (φ (ℓ))

=
1
a
< ∞
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and

lim inf
ℓ→∞

ϱ̃ (ℓ) ϱ̂ (ℓ) ϱ̂ (φ (ℓ))
m∑

i=1

ρ̃i (ℓ) = ρ0,

then equation (4.8) is oscillatory if
ρ0 > c (νmax) .

Example 4.2. Consider the following linear DDE(
ℓ2y′ (ℓ)

)′
+ ρ0y (ℓγ) = 0, (4.9)

where ℓ ≥ ℓ0 > 0, α = β = 1, γ ∈ (0, 1), and ρ0 ∈ (0,∞). (H1)-(H3) are easily satisfied, and with some
calculations, we can get that

m∑
i=1

ρi (ℓ) = ρ0, φ (ℓ) = ℓγ, π (ℓ) =
1
ℓ
, Ω (ℓ) = 1,

λ∗ = lim inf
ℓ→∞

ℓ1−γ = ∞,

and
µ∗ = ρ0 > 0.

Hence, Theorem 4.3 ensures that every solution of (4.9) oscillates.
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