Research article

Well-posedness and stabilization of a type three layer beam system with Gurtin-Pipkin's thermal law

Soh Edwin Mukiawa*

Department of Mathematics, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia

* Correspondence: Email: mukiawa@uhb.edu.sa.

Abstract

The goal of this work is to study the well-posedness and the asymptotic behavior of solutions of a triple beam system commonly known as the Rao-Nakra beam model. We consider the effect of Gurtin-Pipkin's thermal law on the outer layers of the beam system. Using standard semigroup theory for linear operators and the multiplier method, we establish the existence and uniqueness of weak global solution, as well as a stability result.

Keywords: Rao-Nakra; triple-layer beam beam; Gurtin-Pipkin conduction; well-posedness; stability analysis
Mathematics Subject Classification: 35B35, 35B40, 35D30, 35D35, 93D20

1. Introduction

In the present work, we consider the Rao-Nakra (three layer) beam system, where the top and the bottom layers of the beam are subjected to Gurtin-Pipkin's thermal law, namely

$$
\begin{cases}\rho_{1} h_{1} u_{t t}-E_{1} h_{1} u_{x x}-k\left(-u+v+\alpha w_{x}\right)+\delta_{1} \theta_{x}=0, & \text { in }(0, \pi) \times \mathbb{R}_{+}, \tag{1.1}\\ \rho_{3} h_{3} v_{t t}-E_{3} h_{3} v_{x x}+k\left(-u+v+\alpha w_{x}\right)-\delta_{1} \theta+\delta_{2} \vartheta_{x}=0, & \text { in }(0, \pi) \times \mathbb{R}_{+}, \\ \rho h w_{t t}+E I w_{x x x x}-\alpha k\left(-u+v+\alpha w_{x}\right)_{x}+\delta_{3} w_{t}=0, & \text { in }(0, \pi) \times \mathbb{R}_{+}, \\ \rho_{4} \theta_{t}-\beta_{1} \int_{0}^{+\infty} g_{1}(s) \theta_{x x}(x, t-s) d s+\delta_{1}\left(u_{x t}+v_{t}\right)=0, & \text { in }(0, \pi) \times \mathbb{R}_{+}, \\ \rho_{5} \vartheta_{t}-\beta_{2} \int_{0}^{+\infty} g_{2}(s) \vartheta_{x x}(x, t-s) d s+\delta_{2} v_{x t}=0, & \text { in }(0, \pi) \times \mathbb{R}_{+}\end{cases}
$$

with the following boundary conditions:

$$
\begin{cases}u_{x}(0, t)=v_{x}(0, t)=w(0, t)=w_{x x}(0, t)=\theta(0, t)=\vartheta(0, t)=0, & t \geq 0, \tag{1.2}\\ u(\pi, t)=v(\pi, t)=w(\pi, t)=w_{x x}(\pi, t)=\theta_{x}(\pi, t)=\vartheta_{x}(\pi, t)=0, & t \geq 0,\end{cases}
$$

and the initial data

$$
\left\{\begin{array}{lr}
u(x, 0)=u_{0}(x), v(x, 0)=v_{0}(x), w(x, 0)=w_{0}(x), & x \in(0, \pi), \tag{1.3}\\
u_{t}(x, 0)=u_{1}(x), v_{t}(x, 0)=v_{1}(x), w_{t}(x, 0)=w_{1}(x), & x \in(0, \pi), \\
\theta(x,-t)=\theta_{0}(x, t), \vartheta(x,-t)=\vartheta_{0}(x, t), & x \in(0, \pi), t>0 .
\end{array}\right.
$$

The relaxation functions g_{1} and g_{2} are positive non-increasing functions to be specified later. The stabilization of Rao-Nakra beam systems has gathered much interest from researchers recently, and a great number of results have been established. The Rao-Nakra beam model is a beam system that takes into account the motion of two outer face plates (assumed to be relatively stiff) and a sandwiched compliant inner core layer, see [1-5] for Rao-Nakra, Mead-Markus and multilayer plates or sandwich models. The basic equations of motion of the Rao-Nakra model are derived thanks to the EulerBernoulli beam assumptions for the outer face plate layers, the Timoshenko beam assumptions for the sandwich layer and a "no slip" assumption for the motion along the interface. Suppose $h(j), j=1,2,3$ is the thickness of each layer in the beam of length π, see Figure 1 and $h=h(1)+h(2)+h(3)$ the total thickness of the beam.

Figure 1. Triple layer beam.
Assuming the Kirchhoff hypothesis is imposed on the outer layers of beam and in addition, there is a continuous, piecewise linear displacements through the cross-sections, Liu et al. [6] gave a detailed derivation of following laminated beam system:

$$
\left\{\begin{array}{l}
\rho_{1} h_{1} u_{t t}-E_{1} h_{1} u_{x x}-\tau=0, \tag{1.4}\\
\rho_{1} I_{1} y_{t t}^{1}-E_{1} I_{1} y_{x x}^{1}-\frac{h_{1}}{2} \tau+G_{1} h_{1}\left(w_{x}+y^{1}\right)=0, \\
\rho h w_{t t}+E I w_{x x x x}-G_{1} h_{1} k\left(w_{x}+y^{1}\right)_{x}-G_{3} h_{3}\left(w_{x}+y^{3}\right)_{x}-h_{2} \tau_{x}=0, \\
\rho_{3} h_{3} v_{t t}-E_{3} h_{3} v_{x x}+\tau=0, \\
\rho_{3} I_{3} y_{t t}^{3}-E_{3} I_{3} y_{x x}^{3}-\frac{h_{3}}{2} \tau+G_{3} h_{3}\left(w_{x}+y^{3}\right)=0,
\end{array}\right.
$$

where $x \in(0, \pi), t>0,\left(u, y^{1}\right),\left(v, y^{3}\right)$ represent longitudinal displacement and shear angle of the bottom and top layers plates. The transverse displacement of the beam is represented by w, and τ is the shear stress of the core layer. Also, for $j=1,2,3$ (from bottom to top layer), $E_{j}, G_{j}, I_{j}, \rho_{j}>0$ are Young's modulus, shear modulus, moments of inertia and density respectively for each layer. Moreover, in $(1.4)_{3}$, we have that $\rho h=\rho_{1} h_{1}+\rho_{2} h_{2}+\rho_{3} h_{3}$ and $E I=E_{1} I_{1}+E_{3} I_{3}$. By neglecting the rotary inertia in top and bottom layers of the beam, we obtain $\rho_{1} I_{1}=\rho_{3} I_{3}=0$ in (1.4) $)_{4}$
and $(1.4)_{5}$. Furthermore, if we neglect the transverse shear, this leads to the Euler-Bernoulli hypothesis $w_{x}+y^{1}=w_{x}+y^{3}=0$. Assuming that the core layer consists of a material that is linearly elastic with the stress-strain relationship $\tau=2 G_{2} \varepsilon$, where the shear strain ε is defined by

$$
\varepsilon=\frac{1}{2 h_{2}}\left(-u+v+\alpha w_{x}\right) \text { where } \alpha=h_{2}+\frac{h_{1}+h_{2}}{2} .
$$

Thus, we arrive at the following Rao-Nakra beam model [1], given by

$$
\left\{\begin{array}{l}
\rho_{1} h_{1} u_{t t}-E_{1} h_{1} u_{x x}-k\left(-u+v+\alpha w_{x}\right)=0 \tag{1.5}\\
\rho_{3} h_{3} v_{t t}-E_{3} h_{3} v_{x x}+k\left(-u+v+\alpha w_{x}\right)=0 \\
\rho h w_{t t}+E I w_{x x x x}-\alpha k\left(-u+v+\alpha w_{x}\right)_{x}=0
\end{array}\right.
$$

where $k=\frac{G_{2}}{h_{2}}, G_{2}=\frac{E_{2}}{2(1+v)}$ and $-1<v<\frac{1}{2}$ is the Poisson ratio. Furthermore, when the extensional motion of the outer layers is neglected, system (1.4) takes the form of the two-layer laminated beam system derived by Hansen and Spies [7]. Li et al. [8] showed that system (1.5) is unstable if only one of the equations is damped. When two of the three equations in (1.5) were damped, the authors in [8] proved a polynomial stability. For recent results in literature, Méndez et al. [9] considered (1.5) with with Kelvin-Voigt damping and studied the well-posedness, lack of exponential decay and polynomial decay. Feng and Özer [10] looked at a nonlinearly damped Rao-Nakra beam system and established the global attractor with finite fractal dimension. Feng et al. [11] studied the stability of Rao-Nakra sandwich beam with time-varying weight and time-varying delay. Mukiawa et al. [12] considered (1.5) with viscoelastic damping on the first equation and heat conduction govern by Fourier's law and proved the well-posedness and a general decay result. Also, Raposo et al. [13] coupled (1.5) with MaxwellCattaneo heat conduction established the well-posedness. For more results related Rao-Nakra beam system with frictional, delay or thermal damping, see [14-20] and the references therein.

An interesting tool used by Mathematician in stabilizing beam models such as the Laminated and Timoshenko beam systems is the Gurtin-Pipkin's thermal law, see [21], with constitutive equation

$$
\begin{equation*}
\beta q(t)+\int_{0}^{\infty} g(s) \theta_{x}(x, t-s) d s=0 \tag{1.6}
\end{equation*}
$$

where $\theta=\theta(x, t)$ is the temperature difference, $q=q(x, t)$ is the heat flux, β is a coupling constant coefficient and the relaxation g is a summable convex $L^{1}([0,+\infty))$ function with unit mass. For results related to (1.6), Dell'Oro and Pata [22] studied

$$
\begin{cases}\rho_{1} u_{t t}-k\left(u_{x}+v\right)_{x}=0, & \text { in }(0, \pi) \times \mathbb{R}_{+}, \tag{1.7}\\ \rho_{2} v_{t t}-b v_{x x}+k\left(u_{x}+v\right)+\delta \theta_{x}=0, & \text { in }(0, \pi) \times \mathbb{R}_{+}, \\ \rho_{3} \theta_{t}-\frac{1}{\beta} \int_{0}^{\infty} h(s) \theta_{x x}(x, t-s) d s+\delta v_{x t}=0, & \text { in }(0, \pi) \times \mathbb{R}_{+}\end{cases}
$$

and proved an exponential stability result if and only if $\chi_{h}=0$, where

$$
\chi_{h}=\left(\frac{\rho_{1}}{k \rho_{3}}-\frac{\beta}{h(0)}\right)\left(\frac{\rho_{1}}{k}-\frac{\rho_{2}}{b}\right)-\frac{\beta}{h(0)} \frac{\rho_{1} \delta^{2}}{k b \rho_{3}} .
$$

For similar results with Gurtin-Pipkin's thermal law, see [23-28] and references therein. As clearly elaborated in [22], the Fourier's and Cattaneo's (second sound) thermal law can be recovered from (1.6) by defining the memory function g in (1.6) as

$$
\begin{equation*}
g_{\delta}(s)=\frac{1}{\delta} h\left(\frac{s}{\delta}\right), \quad \delta>0 \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{\tau}(s)=\frac{\beta}{\tau} e^{-s_{\tau}^{\beta}}, \tau>0 \tag{1.9}
\end{equation*}
$$

respectively. A closely related thermal law to the Gurtin-Pipkin's thermal law is the Coleman-Gurtin's heat conduction law, see [29], with constitutive equation given by

$$
\begin{equation*}
\beta q(t)+(1-\eta) \theta_{x}+\eta \int_{0}^{\infty} \mu(s) \theta_{x}(x, t-s) d s=0, \quad \eta \in(0,1) \tag{1.10}
\end{equation*}
$$

where $\eta=1$ and $\eta=0$ correspond to the Gurtin-Pipkin's and Fourier thermal laws, respectively. This entails replacing $(1.7)_{3}$ with

$$
\begin{equation*}
\rho_{3} \theta_{t}-\frac{(1-\eta)}{\beta} \theta_{x x}-\frac{\eta}{\beta} \int_{0}^{\infty} \mu(s) \theta_{x x}(x, t-s) d s+\delta v_{x t}=0, \text { in }(0, \pi) \times \mathbb{R}_{+} . \tag{1.11}
\end{equation*}
$$

We should note here that systems govern by Coleman-Gurtin's thermal lawa (1.10) gain additional dissipation from the term $-\frac{(1-\eta)}{\beta} \theta_{x x}$ and thus less difficult to handle compare to systems with GurtinPipkin's thermal law (1.6).

Our main focus of this paper is to investigate the well-posedness and the asymptotic behavior of solutions of system (1.1)-(1.3). We mote here that, the rotational inertia term $w_{x x t t}$ which should be in $(1.1)_{3}$ of the original models is neglected in the present model. However, the result in this paper is not affected by the absent of this term. Also, since the thermal coupling in system (1.1)-(1.3) is not strong enough to achieve exponential stability, a viscous damping term w_{t} is added to $(1.1)_{3}$. The rest of work is organized as follows: In Section 2, we state some assumptions and set up our problem (1.1)-(1.3) in appropriate spaces. In Section 3, we prove the existence and uniqueness result for the system (1.1)-(1.3). In Section 4, we study the asymptotic behavior of solution of system (1.1)-(1.3).

2. Assumptions, problem transformation and functional setting

2.1. Assumptions on the kernels

For the relaxation functions g_{1} and g_{2}, we assume the following:

Assumption (A_{0}):

$\left(a_{0}\right) g_{1}, g_{2}:[0,+\infty) \longrightarrow(0,+\infty)$ are non-increasing $C^{2}([0,+\infty))$ and convex summable functions satisfying

$$
\begin{equation*}
\lim _{s \rightarrow+\infty} g_{i}(s)=0 \text { and } \int_{0}^{+\infty} g_{i}(s) d s=1, i=1,2 . \tag{2.1}
\end{equation*}
$$

$\left(b_{0}\right)$ There exists $\xi_{i}>0, i=1,2$ such that

$$
\begin{equation*}
-g_{i}^{\prime \prime}(s) \leq \xi_{i}\left(g_{i}^{\prime}(s)\right), \quad \forall s \geq 0, i=1,2 \tag{2.2}
\end{equation*}
$$

By setting

$$
\begin{equation*}
\mu_{1}(s)=-g_{1}^{\prime}(s) \text { and } \mu_{2}(s)=-g_{2}^{\prime}(s), \tag{2.3}
\end{equation*}
$$

assumption $\left(A_{0}\right)$ ensues the following:
Assumption (A_{1}):
$\left(a_{1}\right) \mu_{1}, \mu_{2}:[0,+\infty) \longrightarrow(0,+\infty)$ are non-increasing $C^{1}([0,+\infty))$ and convex summable functions satisfying

$$
\begin{equation*}
\mu_{0 i}=\int_{0}^{+\infty} \mu_{i}(s) d s=g_{i}(0)>0, \text { and } \int_{0}^{+\infty} s \mu_{i}(s) d s=1, i=1,2 . \tag{2.4}
\end{equation*}
$$

$\left(b_{1}\right)$ There exists $\xi_{i}>0, i=1,2$ such that

$$
\begin{equation*}
\mu_{i}^{\prime}(s) \leq-\xi_{i} \mu_{i}(s), \forall s \geq 0, i=1,2 . \tag{2.5}
\end{equation*}
$$

2.2. Problem transformation

Due to the work of Dafermos [30], we define new functions for the relative past history of θ and ϑ as follows:

$$
\sigma, \zeta:(0, \pi) \times \mathbb{R}_{+} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}
$$

define by

$$
\begin{equation*}
\sigma=\sigma(x, t, s):=\int_{t-s}^{t} \theta(x, r) d r \text { and } \zeta=\zeta(x, t, s):=\int_{t-s}^{t} \vartheta(x, r) d r . \tag{2.6}
\end{equation*}
$$

On account of the boundary conditions (1.2), we have

$$
\sigma(0, t, s)=\sigma_{x}(\pi, t, s)=\zeta(0, t, s)=\zeta_{x}(\pi, t, s)=0
$$

and routine calculation gives

$$
\left\{\begin{array}{lr}
\sigma_{t}+\sigma_{s}-\theta=0, & \text { in }(0, \pi) \times\left(\mathbb{R}_{+} \times \mathbb{R}_{+}\right. \tag{2.7}\\
\zeta_{t}+\zeta_{s}-\vartheta=0, & \text { in }(0, \pi) \times \mathbb{R}_{+} \times \mathbb{R}_{+} \\
\sigma(x, t, 0)=\zeta(x, t, 0)=0, & \text { in }(0, \pi) \times \mathbb{R}_{+}, \\
\sigma(x, 0, s)=\int_{0}^{s} \theta_{0}(x, r) d r:=\sigma_{0}(x, s), & \text { in }(0, \pi) \times \mathbb{R}_{+} \\
\zeta(x, 0, s)=\int_{0}^{s} \vartheta_{0}(x, r) d r:=\zeta_{0}(x, s), & \text { in }(0, \pi) \times \mathbb{R}_{+}
\end{array}\right.
$$

where σ_{0} and ζ_{0} represent the history of θ and ϑ respectively. Also, using direct computations, we have

$$
\begin{align*}
& \int_{0}^{+\infty} g_{1}(s) \theta_{x x}(x, t-s) d s \\
= & \left.\lim _{a \rightarrow+\infty} g_{1}(s) \int_{t-s}^{t} \theta_{x x}(x, r) d r\right|_{s=0} ^{s=a}-\int_{0}^{+\infty} g_{1}^{\prime}(s) \int_{t-s}^{t} \theta_{x x}(x, r) d r d s \tag{2.8}\\
= & \int_{0}^{+\infty} \mu_{1}(s) \sigma_{x x}(x, t, s) d s .
\end{align*}
$$

Similarly, we get

$$
\begin{equation*}
\int_{0}^{+\infty} g_{2}(s) \vartheta_{x x}(x, t-s) d s=\int_{0}^{+\infty} \mu_{2}(s) \zeta_{x x}(x, t, s) d s \tag{2.9}
\end{equation*}
$$

On account of (2.6)-(2.9), system (1.1)-(1.3) takes the form

$$
\left\{\begin{array}{lr}
\rho_{1} h_{1} u_{t t}-E_{1} h_{1} u_{x x}-k\left(-u+v+\alpha w_{x}\right)+\delta_{1} \theta_{x}=0, & \text { in }(0, \pi) \times \mathbb{R}_{+}, \tag{2.10}\\
\rho_{3} h_{3} v_{t t}-E_{3} h_{3} v_{x x}+k\left(-u+v+\alpha w_{x}\right)-\delta_{1} \theta+\delta_{2} \vartheta_{x}=0, & \text { in }(0, \pi) \times \mathbb{R}_{+}, \\
\rho h w_{t t}+E I w_{x x x x}-\alpha k\left(-u+v+\alpha w_{x}\right)_{x}+\delta_{3} w_{t}=0, & \text { in }(0, \pi) \times \mathbb{R}_{+}, \\
\rho_{4} \theta_{t}-\beta_{1} \int_{0}^{+\infty} \mu_{1}(s) \sigma_{x x}(x, t, s) d s+\delta_{1}\left(u_{x t}+v_{t}\right)=0, & \text { in }(0, \pi) \times \mathbb{R}_{+}, \\
\sigma_{t}+\sigma_{s}-\theta=0, & \text { in }(0, \pi) \times \mathbb{R}_{+} \times \mathbb{R}_{+}, \\
\rho_{5} \vartheta_{t}-\beta_{2} \int_{0}^{+\infty} \mu_{2}(s) \zeta_{x x}(x, t, s) d s+\delta_{2} v_{x t}=0, & \text { in }(0, \pi) \times \mathbb{R}_{+} \\
\zeta_{t}+\zeta_{s}-\vartheta=0, & \text { in }(0, \pi) \times \mathbb{R}_{+} \times \mathbb{R}_{+}
\end{array}\right.
$$

with the boundary conditions

$$
\left\{\begin{array}{lr}
u_{x}(0, t)=v_{x}(0, t)=w(0, t)=w_{x x}(0, t)=\theta(0, t)=\vartheta(0, t), & t \geq 0, \tag{2.11}\\
u(\pi, t)=v(\pi, t)=w(\pi, t)=w_{x x}(\pi, t)=\theta_{x}(\pi, t)=\vartheta_{x}(\pi, t)=0, & t \geq 0, \\
\sigma(0, t, s)=\sigma_{x}(\pi, t, s)=\zeta(0, t, s)=\zeta_{x}(\pi, t, s)=0, & s, t \in \mathbb{R}_{+}, \\
\sigma(x, t, 0)=\zeta(x, t, 0)=0, & x \in(0, \pi), t \in \mathbb{R}_{+}
\end{array}\right.
$$

and the initial data

$$
\left\{\begin{array}{lr}
u(x, 0)=u_{0}(x), v(x, 0)=v_{0}(x), w(x, 0)=w_{0}(x), & x \in(0, \pi), \tag{2.12}\\
u_{t}(x, 0)=u_{1}(x), v_{t}(x, 0)=v_{1}(x), w_{t}(x, 0)=w_{1}(x), & x \in(0, \pi), \\
\theta(x,-t)=\theta_{0}(x, t), \vartheta(x,-t)=\vartheta_{0}(x, t) & x \in(0, \pi), t>0, \\
\sigma(x, 0, s)=\sigma_{0}(x, s), \zeta(x, 0, s)=\zeta_{0}(x, s), & x \in(0, \pi), s>0
\end{array}\right.
$$

Setting $\Psi=(u, \varphi, v, \psi, w, \phi, \theta, \sigma, \vartheta, \zeta)^{T}$, with $\varphi=u_{t}, \psi=v_{t}$ and $\phi=w_{t}$. Then, the semi-group formulation of system (2.10)-(2.12) is given by the Cauchy problem

$$
(P)\left\{\begin{array}{l}
\Psi_{t}+\mathcal{A} \Psi=0 \tag{2.13}\\
\Psi(0)=\Psi_{0}
\end{array}\right.
$$

where $\Psi_{0}=\left(u_{0}, u_{1}, v_{0}, v_{1}, w_{0}, w_{1}, \theta_{0}, \sigma_{0}, \vartheta_{0}, \zeta_{0}\right)^{T}$ and the linear operator \mathcal{A} is defined by

$$
\mathcal{A} \Psi=\left(\begin{array}{c}
-\varphi \\
-\frac{E_{1}}{\rho_{1}} u_{x x}-\frac{k}{\rho_{1} h_{1}}\left(-u+v+\alpha w_{x}\right)+\frac{\delta_{1}}{\rho_{1} h_{1}} \theta_{x} \\
-\psi \\
-\frac{E_{3}}{\rho_{3}} v_{x x}+\frac{k}{\rho_{3} h_{3}}\left(-u+v+\alpha w_{x}\right)-\frac{\delta_{1}}{\rho_{3} h_{3}} \theta+\frac{\delta_{2}}{\rho_{3} h_{3}} \vartheta_{x} \\
-\phi \\
\frac{E I}{\rho h} w_{x x x x}-\frac{\alpha k}{\rho h}\left(-u+v+\alpha w_{x}\right)_{x}+\frac{\delta_{3}}{\rho h} \phi \\
-\frac{\beta_{1}}{\rho_{4}} \int_{0}^{+\infty} \mu_{1}(s) \sigma_{x x}(x, s) d s+\frac{\delta_{1}}{\rho_{4}}\left(\varphi_{x}+\psi\right) \\
\sigma_{s}-\theta \\
-\frac{\beta_{2}}{\rho_{5}} \int_{0}^{+\infty} \mu_{2}(s) \zeta_{x x}(x, s) d s+\frac{\delta_{2}}{\rho_{5}} \psi_{x} \\
\zeta_{s}-\vartheta
\end{array}\right) .
$$

2.3. Functional spaces

Let \langle,$\rangle and \|$.$\| denote the inner product and the norm in L^{2}(0, \pi)$ respectively and we define following Sobolev spaces:

$$
\begin{aligned}
& H_{a}^{1}:=\left\{\varpi \in H^{1}(0, \pi) / \varpi(0)=0\right\}, H_{b}^{1}:=\left\{\varpi \in H^{1}(0, \pi) / \varpi(\pi)=0\right\}, \\
& H_{a}^{2}:=\left\{\varpi \in H^{2}(0, \pi) / \varpi_{x} \in H_{a}^{1}\right\}, H_{b}^{2}:=\left\{\varpi \in H^{2}(0, \pi) / \varpi_{x} \in H_{b}^{1}\right\}, \\
& H_{*}^{2}:=H^{2}(0, \pi) \cap H_{0}^{1}(0, \pi),
\end{aligned}
$$

where H_{*}^{2} is equip with the inner product

$$
\langle\varpi, \hat{\varpi}\rangle_{H_{*}^{2}}=\left\langle\varpi_{x x}, \hat{\varpi}_{x x}\right\rangle
$$

and norm

$$
\|\varpi\|_{H_{*}^{2}}^{2}=\left\|\varpi_{x x}\right\|^{2} .
$$

It is easy to check that $\left(H_{*}^{2},\|\cdot\|_{H_{*}^{2}}^{2}\right)$ is a Banach space and the norm $\|.\|_{H_{*}^{2}}^{2}$ is equivalent to the usual norm in $H^{2}(0, \pi)$. Next, we introduce the weighted-Hilbert space of $H_{a}^{1}(0, \pi)$-real valued functions on $(0,+\infty)$ by

$$
L_{\mu}^{2}:=L_{\mu}^{2}\left(\mathbb{R}_{+} ; H_{a}^{1}(0, \pi)\right)
$$

where

$$
L_{\mu}^{2}\left(\mathbb{R}_{+} ; H_{a}^{1}(0, \pi)\right)=\left\{\varpi: \mathbb{R}_{+} \longrightarrow H_{a}^{1}(0, \pi) / \int_{0}^{+\infty} \mu(s)\left\|\varpi_{x}(s)\right\|^{2} d s<\infty\right\}
$$

and equip them with the inner product

$$
(\varpi, \hat{\varpi})_{L_{\mu}^{2}}:=\int_{0}^{+\infty} \mu(s)\left\langle\varpi_{x}(s), \hat{\varpi}_{x}(s)\right\rangle d s,
$$

and norm

$$
\|\varpi\|_{L_{\mu}^{2}}^{2}=\int_{0}^{+\infty} \mu(s)\left\|\varpi_{x}(s)\right\|^{2} d s
$$

Also, we define

$$
\mathcal{D}\left(L_{\mu}^{2}\right):=\left\{\varpi \in L_{\mu}^{2} / \varpi_{s} \in L_{\mu}^{2} \text { and } \lim _{s \rightarrow 0}\left\|\varpi_{x}(s)\right\|=0\right\} .
$$

Now, we introduce the phase space of our problem given by

$$
\mathcal{H}:=H_{b}^{1} \times L^{2} \times H_{b}^{1} \times L^{2} \times H_{*}^{2} \times L^{2} \times L^{2} \times L_{\mu_{1}}^{2} \times L^{2} \times L_{\mu_{2}}^{2}
$$

and equipped it with the inner product

$$
\begin{aligned}
& \langle(u, \varphi, v, \psi, w, \phi, \theta, \sigma, \vartheta, \zeta),(\hat{u}, \hat{\varphi}, \hat{v}, \hat{\psi}, \hat{w}, \hat{\phi}, \hat{\theta}, \hat{\sigma}, \hat{\vartheta}, \hat{\zeta})\rangle_{\mathcal{H}} \\
:= & E_{1} h_{1}\left\langle u_{x}, \hat{u}_{x}\right\rangle+\rho_{1} h_{1}\langle\varphi, \hat{\varphi}\rangle+k\left\langle\left(-u+v+\alpha w_{x}\right),\left(-\hat{u}+\hat{v}+\alpha \hat{w}_{x}\right)\right\rangle \\
& +E_{3} h_{3}\left\langle v_{x}, \hat{v}_{x}\right\rangle+\rho_{3} h_{3}\langle\psi, \hat{\psi}\rangle+E I\left\langle w_{x x}, \hat{w}_{x x}\right\rangle+\rho h\langle\phi, \hat{\phi}\rangle+\rho_{4}\langle\theta, \hat{\theta}\rangle \\
& +\beta_{1}\langle\sigma, \hat{\sigma}\rangle_{L_{\mu_{1}}}^{2}+\rho_{5}\langle\vartheta, \hat{\vartheta}\rangle+\beta_{2}\left\langle\zeta, \hat{\zeta}_{L_{L_{2}}}^{2}\right.
\end{aligned}
$$

and norm

$$
\begin{aligned}
\|\Psi\|_{\mathcal{H}}^{2}= & \|(u, \varphi, v, \psi, w, \phi, \theta, \sigma, \vartheta, \zeta)\|_{\mathcal{H}}^{2} \\
:= & E_{1} h_{1}\left\|u_{x}\right\|^{2}+\rho_{1} h_{1}\|\varphi\|^{2}+k\left\|\left(-u+v+\alpha w_{x}\right)\right\|^{2} \\
& +E_{3} h_{3}\left\|v_{x}\right\|^{2}+\rho_{3} h_{3}\|\psi\|^{2}+E I\left\|w_{x x}\right\|^{2}+\rho h\|\phi\|^{2} \\
& +\rho_{4}\|\theta\|^{2}+\beta_{1}\|\sigma\|_{L_{\mu_{1}}^{2}}^{2}+\rho_{5}\|\vartheta\|^{2}+\beta_{2}\|\zeta\|_{L_{\mu_{2}}^{2}}^{2},
\end{aligned}
$$

for any $\Phi=(w, \varphi, v, \psi, u, \phi, \theta, \sigma, \vartheta, \zeta)^{T} \in \mathcal{H}$.
The domain of the linear operator \mathcal{A} in (2.13) is defined as follows:

$$
\mathcal{D}(\mathcal{A}):=\left\{\begin{array}{ll}
(u, \varphi, v, \psi, w, \phi, \theta, \sigma, \vartheta, \zeta) \in \mathcal{H} & \begin{array}{l}
u, v \in H_{b}^{2} \cap H_{b}^{1}, \varphi, \psi \in H_{b}^{1}, \\
w \in H^{4} \cap H_{*}^{2}, \phi \in H_{*}^{2}, \\
\sigma \in \mathcal{D}\left(L_{\mu_{1}}^{2}\right), \theta \in H_{a}^{1}, \\
\zeta \in \mathcal{D}\left(L_{\mu_{2}}^{2}\right), \vartheta \in H_{a}^{1}, \\
\left(-u+v+\alpha w_{x}\right) \in H_{a}^{1} \cap H_{b}^{1}, \\
\int_{0}^{+\infty} \mu_{1}(s) \sigma(s) d s \in H^{2} \cap H_{a}^{1} \\
\int_{0}^{+\infty} \mu_{2}(s) \zeta(s) d s \in H^{2} \cap H_{a}^{1}, \\
w_{x x}(0)=w_{x x}(\pi)=0 .
\end{array}
\end{array}\right\} .
$$

Remark 2.1. (1) Due to (2.5), we can deduce that

$$
\begin{equation*}
\left\langle-\varpi_{s}, \varpi\right\rangle_{L_{\mu_{i}}^{2}} \leq-\frac{\xi_{i}}{2}\|\varpi\|_{L_{\mu_{i}}^{2}}^{2}, \quad \forall \varpi \in \mathcal{D}\left(L_{\mu_{i}}^{2}\right), i=1,2 . \tag{2.14}
\end{equation*}
$$

(2) Using Hölder's and Young's inequalities, we have that

$$
\begin{equation*}
\int_{0}^{+\infty} \mu_{i}(s)\left\|\varpi_{x}(s)\right\| d s \leq \sqrt{g_{i}(0)}\|\varpi\|_{L_{\mu_{i}}^{2}}, i=1,2 . \tag{2.15}
\end{equation*}
$$

3. Well-posedness

In this section, we establish the existence and uniqueness of global weak solution to the system (2.10)-(2.12).

3.1. Needed lemmas for well-posedness

Lemma 3.1. The linear operator $\mathcal{A}: \mathcal{D}(\mathcal{A}) \subset \mathcal{H} \rightarrow \mathcal{H}$ defined in (2.13) is monotone.
Proof. Let $\Psi=(u, \varphi, \nu, \psi, w, \phi, \theta, \sigma, \vartheta, \zeta) \in \mathcal{D}(\mathcal{F})$, then using integration by parts and the boundary conditions (2.11), we have

$$
\begin{aligned}
\langle\mathcal{A} \Psi, \Psi\rangle_{\mathcal{H}}= & \delta_{3}\|\phi\|^{2}+\beta_{1} \int_{0}^{+\infty} \mu_{1}(s)\left\langle\sigma_{x s}(s), \sigma_{x}(s)\right\rangle d s+\beta_{2} \int_{0}^{+\infty} \mu_{2}(s)\left\langle\zeta_{x s}(s), \zeta_{x}(s)\right\rangle d s \\
= & \delta_{3}\|\phi\|^{2}+\frac{\beta_{1}}{2} \int_{0}^{+\infty} \mu_{1}(s) \frac{d}{d s}\left(\left\|\sigma_{x}(s)\right\|^{2}\right) d s+\frac{\beta_{2}}{2} \int_{0}^{+\infty} \mu_{2}(s) \frac{d}{d s}\left(\left\|\zeta_{x}(s)\right\|^{2}\right) d s \\
= & \delta_{3}\|\phi\|^{2}-\frac{\beta_{1}}{2} \int_{0}^{+\infty} \mu_{1}^{\prime}(s)\left\|\sigma_{x}(s)\right\|^{2} d s+\left.\frac{\beta_{1}}{2} \lim _{a \rightarrow+\infty} \mu_{1}(s)\left\|\sigma_{x}(s)\right\|^{2}\right|_{s=0} ^{s=a} \\
& -\frac{\beta_{2}}{2} \int_{0}^{+\infty} \mu_{2}^{\prime}(s)\left\|\zeta_{x}(s)\right\|^{2} d s+\left.\frac{\beta_{2}}{2} \lim _{a \rightarrow+\infty} \mu_{2}(s)\left\|\zeta_{x}(s)\right\|^{2}\right|_{s=0} ^{s=a} .
\end{aligned}
$$

From (2.5) and (2.6), we obtain

$$
\left.\lim _{a \rightarrow+\infty} \mu_{1}(s)\left\|\sigma_{x}(s)\right\|^{2}\right|_{s=0} ^{s=a}=\left.\lim _{a \rightarrow+\infty} \mu_{2}(s)\left\|\zeta_{x}(s)\right\|^{2}\right|_{s=0} ^{s=a}=0
$$

Therefore,

$$
\langle\mathcal{A} \Psi, \Psi\rangle_{\mathcal{H}}=\delta_{3}\|\phi\|^{2}-\frac{\beta_{1}}{2} \int_{0}^{+\infty} \mu_{1}^{\prime}(s)\left\|\sigma_{x}(s)\right\|^{2} d s-\frac{\beta_{2}}{2} \int_{0}^{+\infty} \mu_{2}^{\prime}(s)\left\|\zeta_{x}(s)\right\|^{2} d s \geq 0
$$

Therefore, \mathcal{A} is monotone.
Lemma 3.2. The linear operator $\mathcal{A}: \mathcal{D}(\mathcal{A}) \subset \mathcal{H} \rightarrow \mathcal{H}$ defined in (2.13) maximal, that is $\mathfrak{\Re}(I+\mathcal{A})=$ \mathcal{H}.

Proof. Given $F=\left(k^{1}, k^{2}, k^{3}, k^{4}, k^{5}, k^{6}, k^{7}, k^{8}, k^{9}, k^{10}\right) \in \mathcal{H}$, we look for a unique solution

$$
\Psi=(u, \varphi, v, \psi, w, \phi, \theta, \sigma, \vartheta, \zeta) \in \mathcal{D}(\mathcal{A})
$$

such that Ψ solves the stationary problem

$$
\begin{equation*}
\Psi+\mathcal{A} \Psi=F \tag{3.1}
\end{equation*}
$$

System (3.1) is equivalent to

$$
\left\{\begin{array}{lr}
u-\varphi=k^{1}, & \text { in } H_{b}^{1}, \tag{3.2}\\
\rho_{1} h_{1} \varphi-E_{1} h_{1} u_{x x}-k\left(-u+v+\alpha w_{x}\right)+\delta_{1} \theta_{x}=\rho_{1} h_{1} k^{2}, & \text { in } L^{2}, \\
v-\psi=k^{3}, & \text { in } H_{b}^{1}, \\
\rho_{3} h_{3} \psi-E_{3} h_{3} v_{x x}+k\left(-u+v+\alpha w_{x}\right)-\delta_{1} \theta+\delta_{2} \vartheta_{x}=\rho_{3} h_{3} k^{4}, & \text { in } L^{2}, \\
w-\phi=k^{5}, & \text { in } H_{*}^{2}, \\
\left(\rho h+\delta_{3}\right) \phi+E I w_{x x x x}-\alpha k\left(-u+v+\alpha w_{x}\right)_{x}=\rho h k^{6}, & \text { in } L^{2}, \\
\rho_{4} \theta-\beta_{1} \int_{0}^{+\infty} \mu_{1}(s) \sigma_{x x}(x, s) d s+\delta_{1}\left(\varphi_{x}+\psi\right)=\rho_{4} k^{7}, & \text { in } L^{2}, \\
\sigma+\sigma_{s}-\theta=k^{8}, & \text { in } L_{\mu_{1}}^{2} \\
\rho_{5} \vartheta-\beta_{2} \int_{0}^{+\infty} \mu_{2}(s) \zeta_{x x}(x, s) d s+\delta_{2} \psi_{x}=\rho_{5} k^{9}, & \text { in } L^{2}, \\
\zeta+\zeta_{s}-\vartheta=k^{10}, & \text { in } L_{\mu_{2}}^{2} .
\end{array}\right.
$$

By multiplying (3.2) $)_{8}$ and (3.2) ${ }_{10}$ by e^{r} and integrating the results over ($0, s$), we arrive at

$$
\begin{align*}
& \sigma(s)=\left(1-e^{-s}\right) \theta+\int_{0}^{s} e^{r-s} k^{8}(r) d r \\
& \zeta(s)=\left(1-e^{-s}\right) \vartheta+\int_{0}^{s} e^{r-s} k^{10}(r) d r \tag{3.3}
\end{align*}
$$

From (3.2),$(3.2)_{3}$ and (3.2) $)_{5}$, we get

$$
\begin{equation*}
u-k^{1}=\varphi, \quad v-k^{3}=\psi \text { and } w-k^{5}=\phi \tag{3.4}
\end{equation*}
$$

respectively. Substituting (3.4) and (3.3) into (3.2) $2,(3.2)_{4},(3.2)_{6},(3.2)_{7}$ and (3.2) ${ }_{9}$ leads to

$$
\begin{cases}\rho_{1} h_{1} u-E_{1} h_{1} u_{x x}-k\left(-u+v+\alpha w_{x}\right)+\delta_{1} \theta_{x}=\underbrace{\rho_{1} h_{1}\left(k^{1}+k^{2}\right),}_{f^{1}} & \text { in } L^{2}, \tag{3.5}\\ \rho_{3} h_{3} v-E_{3} h_{3} v_{x x}+k\left(-u+v+\alpha w_{x}\right)-\delta_{1} \theta+\delta_{2} \vartheta_{x}=\underbrace{\rho_{3} h_{3}\left(k^{3}+k^{4}\right)}_{f^{2}}, & \text { in } L^{2}, \\ \rho h w+E I w_{x x x x}-\alpha k\left(-u+v+\alpha w_{x}\right)_{x}=\underbrace{\delta_{3} k^{5}+\rho h\left(k^{5}+k^{6}\right),}_{f^{3}} & \text { in } L^{2}, \\ \rho_{4} \theta-C_{\beta_{1}, \mu_{1}} \theta_{x x}+\delta_{1}\left(u_{x}+v\right) \\ =\underbrace{\delta_{1}\left(k_{x}^{1}+k^{3}\right)+\rho_{4} k^{7}+\beta_{1} \int_{0}^{+\infty} \mu_{1}(s)\left(\int_{0}^{s} e^{r-s} k_{x x}^{8}(r) d r\right) d s,}_{f^{4}} & \text { in } H^{-1}, \\ \rho_{5} \vartheta-C_{\beta_{2}, \mu_{2}} \vartheta_{x x}+\delta_{2} v_{x} \\ \underbrace{\delta_{2}^{3}+\rho_{5} k^{9}+\beta_{2} \int_{0}^{+\infty} \mu_{2}(s)\left(\int_{0}^{s} e^{r-s} k_{x x}^{10}(r) d r\right) d s}_{2}, & \text { in } H^{-1},\end{cases}
$$

where

$$
C_{\beta_{i}, \mu_{i}}=\beta_{i} \int_{0}^{+\infty} \mu_{i}(s)\left(1-e^{-s}\right) d s>0, i=1,2 .
$$

Now, we observe that last terms in f^{4} and f^{5} are in $H^{-1}(0, \pi)$. Indeed, since $k^{8} \in L_{\mu_{1}}^{2}$, we have for any

$$
\varpi \in H_{a}^{1}(0, \pi), \text { with }\left\|\varpi_{x}\right\| \leq 1,
$$

that

$$
\begin{aligned}
\mid\left\langle\int_{0}^{+\infty} \mu_{1}(s)\left(\int_{0}^{s} e^{r-s} k_{x x}^{8}(r) d r\right) d s, \varpi\right\rangle & =\left|\left\langle\int_{0}^{+\infty} \mu_{1}(s)\left(\int_{0}^{s} e^{r-s} k_{x}^{8}(r) d r\right) d s, \varpi_{x}\right\rangle\right| \\
& \leq \int_{0}^{+\infty} \mu_{1}(s) e^{-s}\left(\int_{0}^{s} e^{r}\left\|k_{x}^{8}(r)\right\| d r\right) d s \\
& =\int_{0}^{+\infty} e^{r}\left\|k_{x}^{8}(r)\right\|\left(\int_{r}^{+\infty} e^{-s} \mu_{1}(s) d s\right) d r \\
& =\leq \int_{0}^{+\infty} \mu_{1}(r) e^{r}\left\|k_{x}^{8}(r)\right\| \int_{r}^{+\infty} e^{-s} d s d r \\
& =\int_{0}^{+\infty} \mu_{1}(r)\left\|k_{x}^{8}(r)\right\| d r<\infty
\end{aligned}
$$

In the same way, we get that

$$
\int_{0}^{+\infty} \mu_{2}(s)\left(\int_{0}^{s} e^{r-s} k_{x x}^{10}(r) d r\right) d s \in H^{-1}(0, \pi)
$$

Next, we consider the Banach space $\mathbb{H}:=H_{b}^{1} \times H_{b}^{1} \times H_{*}^{2} \times L^{2} \times L^{2}$ and equip it with the norm

$$
\begin{aligned}
\|(u, v, w, \theta, \vartheta)\|_{\mathbb{H}}^{2}= & \rho_{1} h_{1}\|u\|^{2}+E_{1} h_{1}\left\|u_{x}\right\|^{2}+k\left\|\left(-u+v+\alpha w_{x}\right)\right\|^{2}+\rho_{3} h_{3}\|v\|^{2}+E_{3} h_{3}\left\|v_{x}\right\|^{2} \\
& +\rho h\|w\|^{2}+E I\left\|w_{x x}\right\|^{2}+\rho_{4}\|\theta\|^{2}+\rho_{5}\|\vartheta\|^{2} .
\end{aligned}
$$

On the account of the weak formulation of (3.5), we consider the bilinear form \mathcal{B} on $\mathbb{H} \times \mathbb{H}$ and linear form \mathcal{L} on \mathbb{H}, define as follows:

$$
\begin{aligned}
& \mathcal{B}\left((u, v, w, \theta, \vartheta),\left(u^{*}, v^{*}, w^{*}, \theta^{*}, \vartheta^{*}\right)\right) \\
&:= \rho_{1} h_{1}\left\langle u, u^{*}\right\rangle+E_{1} h_{1}\left\langle u_{x}, u_{x}^{*}\right\rangle+k\left\langle\left(-u+v+\alpha w_{x}\right),\left(-u^{*}+v^{*}+\alpha w_{x}^{*}\right)\right\rangle \\
& \quad+\rho_{3} h_{3}\left\langle v, v^{*}\right\rangle+E_{3} h_{3}\left\langle v_{x}, v_{x}^{*}\right\rangle+\rho h\left\langle w, w^{*}\right\rangle+E I\left\langle w_{x x}, w_{x x}^{*}\right\rangle \\
& \quad+\rho_{4}\left\langle\theta, \theta^{*}\right\rangle+C_{\eta, \beta_{1}, \mu_{1}}\left\langle\theta_{x}, \theta_{x}^{*}\right\rangle+\rho_{5}\left\langle\vartheta, \vartheta^{*}\right\rangle+C_{\eta, \beta_{2}, \mu_{2}}\left\langle\vartheta_{x}, \vartheta_{x}^{*}\right\rangle,
\end{aligned}
$$

and

$$
\begin{aligned}
\mathcal{L}\left(\left(u^{*}, v^{*}, w^{*}, \theta^{*}, \vartheta^{*}\right)\right):= & \left\langle\rho_{1} h_{1}\left(k^{1}+k^{2}\right), u^{*}\right\rangle+\left\langle\rho_{3} h_{3}\left(k^{3}+k^{4}\right), v^{*}\right\rangle+\left\langle\delta_{3} k^{5}+\rho h\left(k^{5}+k^{6}\right), u^{*}\right\rangle \\
& +\left\langle\delta_{1}\left(k_{x}^{1}+k^{3}\right)+\rho_{4} k^{7}, \theta^{*}\right\rangle+\left\langle\beta_{1} \int_{0}^{+\infty} \mu_{1}(s)\left(\int_{0}^{s} e^{r-s} k_{x}^{8}(r) d r\right) d s, \theta_{x}^{*}\right\rangle \\
& +\left\langle\delta_{2} k_{x}^{3}+\rho_{5} k^{9}, \vartheta^{*}\right\rangle+\left\langle\beta_{2} \int_{0}^{+\infty} \mu_{2}(s)\left(\int_{0}^{s} e^{r-s} k_{x}^{10}(r) d r\right) d s, \vartheta_{x}^{*}\right\rangle,
\end{aligned}
$$

for every $(u, v, w, \theta, \vartheta),\left(u^{*}, v^{*}, w^{*}, \theta^{*}, \vartheta^{*}\right) \in \mathbb{H}$. Routine computations, using Cauchy-Schwarz, Young's and Poincare's inequalities shows that \mathcal{B} is a bounded and coercive bilinear form on $\mathbb{H} \times \mathbb{H}$, and \mathcal{L} is a bounded linear form on \mathbb{H}. Therefore, using Lax-Milgram theorem, there exists a unique ($u, v, w, \theta, \vartheta$) \in \mathbb{H} such that

$$
\mathcal{B}\left((u, v, w, \theta, \vartheta),\left(u^{*}, v^{*}, w^{*}, \theta^{*}, \vartheta^{*}\right)\right)=\mathcal{L}\left(\left(u^{*}, v^{*}, w^{*}, \theta^{*}, \vartheta^{*}\right)\right), \forall\left(u^{*}, v^{*}, w^{*}, \theta^{*}, \vartheta^{*}\right) \in \mathbb{H} .
$$

From (3.4), it follows that

$$
\varphi \in H_{b}^{1}, \psi \in H_{b}^{1} \text { and } \phi \in H_{*}^{2} .
$$

Then, using standard regularity theory, it follows from (3.5), that

$$
u, v \in H_{b}^{2} \cap H_{b}^{1}, w \in H^{4} \cap H_{*}^{2}, \quad \theta, \vartheta \in H^{2} \cap H_{a}^{1} .
$$

Since $u, v \in H_{b}^{1}, w, k^{6} \in H_{*}^{2}$ and $k^{6} \in L^{2}$, it easy to see from (3.5) $)_{3}$ that w satisfy

$$
w_{x x}(0)=w_{x x}(\pi)=0 .
$$

Also, from (3.3), substituting θ and ϑ, we see that

$$
\sigma \in \mathcal{D}\left(L_{\mu_{1}}^{2}\right), \quad \zeta \in \mathcal{D}\left(L_{\mu_{2}}^{2}\right)
$$

Finally, from $(3.2)_{7}$ and (3.2) $)_{9}$, using regularity theory, we get that

$$
\int_{0}^{+\infty} \mu_{1}(s) \sigma(s) d s, \int_{0}^{+\infty} \mu_{2}(s) \zeta(s) d s \in H^{2} \cap H_{a}^{1}
$$

Thus, $\Psi=(u, \varphi, v, \psi, w, \phi, \theta, \sigma, \vartheta, \zeta) \in \mathcal{D}(\mathcal{A})$ and satisfies (3.1). That is, the operator \mathcal{A} is maximal.

3.2. Well-posedness Result

Theorem 3.1. Suppose $\Psi_{0}=\left(u_{0}, u_{1}, v_{0}, v_{1}, w_{0}, w_{1}, \theta_{0}, \sigma_{0}, \vartheta_{0}, \zeta_{0}\right) \in \mathcal{H}$ is given and condition $\left(A_{1}\right)$ holds, then the Cauchy problem (2.13) has a unique weak global solution

$$
\Psi \in C([0,+\infty), \mathcal{H})
$$

Furthermore, if $\Psi_{0}=\left(u_{0}, u_{1}, v_{0}, v_{1}, w_{0}, w_{1}, \theta_{0}, \sigma_{0}, \vartheta_{0}, \zeta_{0}\right) \in \mathcal{D}(\mathcal{A})$, then the solution is in the class

$$
\Psi \in \mathcal{C}([0, \infty), \mathcal{D}(\mathcal{A})) \cap \mathcal{C}^{1}([0, \infty), \mathcal{H})
$$

Proof. On account of Lemmas 3.1 and 3.2 applying the Hille-Yosida theorem, we have that \mathcal{A} is a generator of a C_{0}-semigroup of contractions $\mathcal{S}(t)=e^{\mathscr{A} t}, t \geq 0$, on \mathcal{H}. By the semigroup theory for linear operators (Pazy [31]), we get that

$$
\Psi(t)=\mathcal{S}(t) \Psi_{0}, t \geq 0
$$

on \mathcal{H} is a unique solution satisfying problem (2.13).

4. Stability result

In this section, we study the stability of solution of (2.10)-(2.12). The energy functional associated to the solution $\Psi=\left(u, u_{t}, v, v_{t}, w, w_{t}, \theta, \sigma, \vartheta, \zeta\right)$ of system (2.10)-(2.12) is defined by

$$
\begin{align*}
\mathcal{E}(t)= & \frac{1}{2}\left[\rho_{1} h_{1}\left\|u_{t}\right\|^{2}+\rho_{3} h_{3}\left\|v_{t}\right\|^{2}+\rho h\left\|w_{t}\right\|^{2}+E_{1} h_{1}\left\|u_{x}\right\|^{2}+E_{3} h_{3}\left\|v_{x}\right\|^{2}+E I\left\|w_{x x}\right\|^{2}\right] \\
& +\frac{1}{2}\left[k\left\|\left(-u+v+\alpha w_{x}\right)\right\|^{2}+\rho_{4}\|\theta\|^{2}+\beta_{1}\|\sigma\|_{L_{\mu_{1}}}^{2}+\rho_{5}\|\vartheta\|^{2}+\beta_{2}\|\zeta\|_{L_{\mu_{2}}^{2}}^{2}\right], \quad \forall t \geq 0 . \tag{4.1}
\end{align*}
$$

4.1. Needed lemmas for stability

Lemma 4.1. Under the conditions of Theorem 3.1, the energy functional (4.1) satisfies

$$
\begin{equation*}
\mathcal{E}^{\prime}(t)=-\delta_{3}\left\|w_{t}\right\|^{2}+\frac{\beta_{1}}{2} \int_{0}^{+\infty} \mu_{1}^{\prime}(s)\left\|\sigma_{x}(s)\right\|^{2} d s+\frac{\beta_{2}}{2} \int_{0}^{+\infty} \mu_{2}^{\prime}(s)\left\|\zeta_{x}(s)\right\|^{2} d s \leq 0, \forall t \geq 0 \tag{4.2}
\end{equation*}
$$

Proof. Multiplication in $L^{2}(0, \pi)$ the Eq $(2.10)_{1},(2.10)_{2},(2.10)_{3},(2.10)_{4}$ and $(2.10)_{6}$ by $u_{t}, v_{t}, w_{t}, \theta$ and ϑ respectively, follow by multiplying $(2.10)_{5}$ and $(2.10)_{7}$ by σ and ζ in $L_{\mu_{1}}^{2}$ and $L_{\mu_{2}}^{2}$ respectively, then using integration by parts and the boundary conditions (2.11), we have

$$
\begin{gather*}
\frac{1}{2} \frac{d}{d t}\left[\rho_{1} h_{1}\left\|u_{t}\right\|^{2}+E_{1} h_{1}\left\|u_{x}\right\|^{2}\right]-\left\langle k\left(-u+v+\alpha w_{x}\right), u_{t}\right\rangle-\delta_{1}\left\langle\theta, u_{x t}\right\rangle=0, \tag{4.3}\\
\frac{1}{2} \frac{d}{d t}\left[\rho_{3} h_{3}\left\|v_{t}\right\|^{2}+E_{3} h_{3}\left\|v_{x}\right\|^{2}\right]+\left\langle k\left(-u+v+\alpha w_{x}\right), v_{t}\right\rangle-\delta_{1}\left\langle\theta, v_{t}\right\rangle-\delta_{2}\left\langle\vartheta, v_{x t}\right\rangle=0, \tag{4.4}\\
\frac{1}{2} \frac{d}{d t}\left[\rho h\left\|w_{t}\right\|^{2}+E I\left\|w_{x x}\right\|^{2}\right]+\left\langle k\left(-u+v+\alpha w_{x}\right), \alpha w_{x t}\right\rangle+\delta_{3}\left\|w_{t}\right\|^{2}=0, \tag{4.5}\\
\frac{1}{2} \frac{d}{d t}\left[\rho_{4}\|\theta\|^{2}\right]+\beta_{1} \int_{0}^{+\infty} \mu_{1}(s)\left\langle\sigma_{x}(s), \theta_{x}(t)\right\rangle d s+\delta_{1}\left\langle\theta,\left(u_{x t}+v_{t}\right)\right\rangle=0, \tag{4.6}\\
\frac{1}{2} \frac{d}{d t}\left[\beta_{1}\|\sigma\|_{L_{\mu_{1}}^{2}}^{2}\right]-\frac{\beta_{1}}{2} \int_{0}^{+\infty} \mu_{1}^{\prime}(s)\left\|\sigma_{x}(s)\right\|^{2} d s-\beta_{1} \int_{0}^{+\infty} \mu_{1}(s)\left\langle\sigma_{x}(s), \theta_{x}(t)\right\rangle d s=0, \tag{4.7}\\
\frac{1}{2} \frac{d}{d t}\left[\rho_{5}\|\vartheta\|^{2}\right]+\beta_{2} \int_{0}^{+\infty} \mu_{2}(s)\left\langle\zeta_{x}(s), \vartheta_{x}(t)\right\rangle d s+\delta_{2}\left\langle\vartheta, v_{x t}\right\rangle=0, \tag{4.8}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left[\beta_{2}\|\zeta\|_{L_{\mu_{2}}^{2}}^{2}\right]-\frac{\beta_{2}}{2} \int_{0}^{+\infty} \mu_{2}^{\prime}(s)\left\|\zeta_{x}(s)\right\|^{2} d s-\beta_{1} \int_{0}^{+\infty} \mu_{2}(s)\left\langle\zeta_{x}(s), \vartheta_{x}(t)\right\rangle d s=0 \tag{4.9}
\end{equation*}
$$

Addition of (4.3)-(4.9) leads to

$$
\begin{equation*}
\mathcal{E}^{\prime}(t)=-\delta_{3}\left\|w_{t}\right\|^{2}+\frac{\beta_{1}}{2} \int_{0}^{+\infty} \mu_{1}^{\prime}(s)\left\|\sigma_{x}(s)\right\|^{2} d s+\frac{\beta_{2}}{2} \int_{0}^{+\infty} \mu_{2}^{\prime}(s)\left\|\zeta_{x}(s)\right\|^{2} d s \leq 0 \tag{4.10}
\end{equation*}
$$

Therefore, the energy \mathcal{E} is non-increasing and bounded above by $\mathcal{E}(0)$. Also, the computations here are done for regular solution. However, the result remains true for weak solution by density argument.

Lemma 4.2. Let $\Psi=\left(u, u_{t}, v, v_{t}, w, w_{t}, \theta, \sigma, \vartheta, \zeta\right) \in \mathcal{H}$ be the solution of system (2.10)-(2.12) given by Theorem 3.1, then the functional G_{1} defined by

$$
G_{1}(t)=\rho_{1} h_{1}\left\langle u_{t}, u\right\rangle+\rho_{3} h_{3}\left\langle v_{t}, v\right\rangle+\rho h\left\langle w_{t}, w\right\rangle+\frac{\delta_{3}}{2}\|w\|^{2}
$$

satisfies the estimate

$$
\begin{align*}
G_{1}^{\prime}(t) \leq & -\frac{E_{1} h_{1}}{2}\left\|u_{x}\right\|^{2}-\frac{E_{3} h_{3}}{2}\left\|v_{x}\right\|^{2}-E I\left\|w_{x x}\right\|^{2}-k\left\|\left(-u+v+\alpha w_{x}\right)\right\|^{2} \tag{4.11}\\
& +\rho_{1} h_{1}\left\|u_{t}\right\|^{2}+\rho_{3} h_{3}\left\|v_{t}\right\|^{2}+\rho h\left\|w_{t}\right\|^{2}+C\|\theta\|^{2}+C\|\vartheta\|^{2}, \forall t \geq 0
\end{align*}
$$

Proof. Differentiation of G_{1} gives

$$
\begin{aligned}
G_{1}^{\prime}(t)= & \rho_{1} h_{1}\left\langle u_{t}, u\right\rangle+\rho_{3} h_{3}\left\langle v_{t t}, v\right\rangle+\rho h\left\langle w_{t}, w\right\rangle+\delta_{3}\left\langle w_{t}, w\right\rangle \\
& +\rho_{1} h_{1}\left\|u_{t}\right\|^{2}+\rho_{3} h_{3}\left\|v_{t}\right\|^{2}+\rho h\left\|w_{t}\right\|^{2} .
\end{aligned}
$$

Using Eq $(2.10)_{1},(2.10)_{2}$ and $(2.10)_{3}$, then applying integration by parts over $(0, \pi)$ and making use of the boundary conditions (2.11) leads to

$$
\begin{aligned}
G_{1}^{\prime}(t)= & -E_{1} h_{1}\left\|u_{x}\right\|^{2}-E_{3} h_{3}\left\|v_{x}\right\|^{2}-E I\left\|w_{x x}\right\|^{2}-k\left\|\left(-u+v+\alpha w_{x}\right)\right\|^{2} \\
& +\delta_{1}\left\langle u_{x}, \theta\right\rangle+\delta_{1}\langle v, \theta\rangle+\delta_{2}\left\langle v_{x}, \vartheta\right\rangle+\rho_{1} h_{1}\left\|u_{t}\right\|^{2}+\rho_{3} h_{3}\left\|v_{t}\right\|^{2}+\rho h\left\|w_{t}\right\|^{2}
\end{aligned}
$$

Applying Young's and Poincaré's inequalities, we obtain

$$
\begin{aligned}
G_{1}^{\prime}(t) \leq & -\frac{E_{1} h_{1}}{2}\left\|u_{x}\right\|^{2}-\frac{E_{3} h_{3}}{2}\left\|v_{x}\right\|^{2}-E I\left\|w_{x x}\right\|^{2}-k\left\|\left(-u+v+\alpha w_{x}\right)\right\|^{2} \\
& +\rho_{1} h_{1}\left\|u_{t}\right\|^{2}+\rho_{3} h_{3}\left\|v_{t}\right\|^{2}+\rho h\left\|w_{t}\right\|^{2}+C\|\theta\|^{2}+C\|\vartheta\|^{2}
\end{aligned}
$$

Lemma 4.3. Let $\Psi=\left(u, u_{t}, v, v_{t}, w, w_{t}, \theta, \sigma, \vartheta, \zeta\right) \in \mathcal{H}$ be the solution of system (2.10)-(2.12) given by Theorem 3.1, then the functional G_{2} defined by

$$
G_{2}(t)=-\rho_{1} h_{1} \rho_{4}\left\langle\theta, \widehat{u}_{t}(t)\right\rangle, \text { where } \widehat{u}_{t}(t)=\int_{0}^{x} u_{t}(y, t) d y d x
$$

satisfies, for any $\epsilon_{1}>0$ and $\epsilon_{2}>0$, the the estimate

$$
\begin{align*}
G_{2}^{\prime}(t) \leq & -\frac{\rho_{1} h_{1} \delta_{1}}{2}\left\|u_{t}\right\|^{2}+\epsilon_{1}\left\|u_{x}\right\|^{2}+\epsilon_{2}\left\|\left(-u+v+\alpha w_{x}\right)\right\|^{2} \\
& +C\left\|v_{t}\right\|^{2}+C\|\sigma\|_{L_{\mu_{1}}^{2}}^{2}+C\left(1+\frac{1}{\epsilon_{1}}+\frac{1}{\epsilon_{2}}\right)\|\theta\|^{2}, \forall t \geq 0 . \tag{4.12}
\end{align*}
$$

Proof. Differentiation of G_{2}, using $(2.10)_{1}$ and $(2.10)_{4}$, integration by parts and boundary conditions (2.11), we arrive at

$$
\begin{aligned}
G_{2}^{\prime}(t) & =-\rho_{1} h_{1} \rho_{4}\left\langle\theta, \widehat{u}_{t t}(t)\right\rangle-\rho_{1} h_{1} \rho_{4}\left\langle\theta_{t}, \widehat{u}_{t}(t)\right\rangle \\
& =-\rho_{1} h_{1} \delta_{1}\left\|u_{t}\right\|^{2}-\rho_{4} E_{1} h_{1}\left\langle\theta, u_{x}\right\rangle+\rho_{1} h_{1} \delta_{1}\left\langle v_{t}, \widehat{u}_{t}(t)\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& -\rho_{4} k\left\langle\theta,\left(-u+\widehat{v+} \alpha w_{x}\right)\right\rangle+\rho_{3} \delta_{1}\|\theta\|^{2} \\
& +\rho_{1} h_{1} \beta_{1}\left\langle u_{t}, \int_{0}^{+\infty} \mu_{1}(s) \sigma_{x}(., t, s) d s\right\rangle .
\end{aligned}
$$

Using Cauchy-Schwarz, Young's and Poincaré's inequalities yields

$$
\begin{aligned}
G_{2}^{\prime}(t) \leq & -\rho_{1} h_{1} \delta_{1}\left\|u_{t}\right\|^{2}+\epsilon_{1}\left\|u_{x}\right\|^{2}+\frac{\left(\rho_{4} E_{1} h_{1}\right)^{2}}{4 \epsilon_{1}}\|\theta\|^{2}+\frac{3 \rho_{1} h_{1} \delta_{1}}{4}\left\|v_{t}\right\|^{2} \\
& +\frac{\rho_{1} h_{1} \delta_{1}}{4}\left\|u_{t}\right\|^{2}+\epsilon_{2}\left\|\left(-u+v+\alpha w_{x}\right)\right\|^{2}+\frac{\left(\rho_{4} k\right)^{2}}{4 \epsilon_{2}}\|\theta\|^{2} \\
& +\rho_{3} \delta_{1}\|\theta\|^{2}+\frac{\rho_{1} h_{1} \delta_{1}}{4}\left\|u_{t}\right\|^{2}+\frac{3 \rho_{1} h_{1} \beta_{1}^{2}}{4 \delta_{1}}\|\sigma\|_{L_{\mu_{1}}^{2}}^{2} .
\end{aligned}
$$

Thus, we obtain (4.12).
Lemma 4.4. Let $\Psi=\left(u, u_{t}, v, v_{t}, w, w_{t}, \theta, \sigma, \vartheta, \zeta\right) \in \mathcal{H}$ be the solution of system (2.10)-(2.12) given by Theorem 3.1, then the functional G_{3} defined by

$$
G_{3}(t)=-\rho_{3} h_{3} \rho_{5}\left\langle\vartheta, \widehat{v}_{t}(t)\right\rangle, \text { where } \widehat{v}_{t}(t)=\int_{0}^{x} v_{t}(y, t) d y
$$

satisfies, for any $\epsilon_{3}>0$ and $\epsilon_{4}>0$, the estimate

$$
\begin{align*}
G_{3}^{\prime}(t) \leq & -\frac{\rho_{3} h_{3} \delta_{2}}{2}\left\|v_{t}\right\|^{2}+\epsilon_{3}\left\|v_{x}\right\|^{2}+\epsilon_{4}\left\|\left(-u+v+\alpha w_{x}\right)\right\|^{2} \\
& +C\|\theta\|^{2}+C\|\zeta\|_{L_{\mu_{2}}^{2}}^{2}+C\left(1+\frac{1}{\epsilon_{3}}+\frac{1}{\epsilon_{4}}\right)\|\vartheta\|^{2}, \forall t \geq 0 . \tag{4.13}
\end{align*}
$$

Proof. Differentiation of G_{3}, using $(2.10)_{2}$ and $(2.10)_{5}$, integration by parts and boundary conditions (2.11), we arrive at

$$
\begin{aligned}
G_{3}^{\prime}(t)= & -\rho_{3} h_{3} \rho_{5}\left\langle\vartheta, \widehat{v}_{t t}(t)\right\rangle-\rho_{3} h_{3} \rho_{5}\left\langle\vartheta_{t}, \widehat{v}_{t}(t)\right\rangle \\
= & -\rho_{3} h_{3} \delta_{2}\left\|v_{t}\right\|^{2}-\rho_{5} E_{3} h_{3}\left\langle\vartheta, v_{x}\right\rangle-\rho_{5} \delta_{1}\langle\vartheta, \widehat{\theta}(t)\rangle+\rho_{5} k\left\langle\vartheta,\left(-u+\widehat{v+} \alpha w_{x}\right)\right\rangle \\
& +\rho_{5} \delta_{2}\|\vartheta\|^{2}+\rho_{3} h_{3} \beta_{2}\left\langle v_{t}, \int_{0}^{+\infty} \mu_{2}(s) \zeta_{x}(., t, s) d s\right\rangle .
\end{aligned}
$$

Applying Cauchy-Schwarz, Young's and Poincare's inequalities, we have

$$
\begin{aligned}
G_{3}^{\prime}(t) \leq & -\rho_{3} h_{3} \delta_{2}\left\|v_{t}\right\|^{2}+\epsilon_{3}\left\|v_{x}\right\|^{2}+\frac{\left(\rho_{5} E_{3} h_{3}\right)^{2}}{4 \epsilon_{3}}\|\vartheta\|^{2}+\frac{\rho_{5} \delta_{1}}{2}\|\theta\|^{2} \\
& +\frac{\rho_{5} \delta_{1}}{2}\|\vartheta\|^{2}+\epsilon_{4}\left\|\left(-u+v+\alpha w_{x}\right)\right\|^{2}+\frac{\left(\rho_{5} k\right)^{2}}{4 \epsilon_{4}}\|\vartheta\|^{2} \\
& +\rho_{5} \delta_{2}\|\vartheta\|^{2}+\frac{\rho_{3} h_{3} \delta_{2}}{4}\left\|v_{t}\right\|^{2}+\frac{3 \rho_{3} h_{3} \beta_{2}^{2}}{4 \delta_{2}}\|\zeta\|_{L_{\mu_{2}}^{2}}^{2} .
\end{aligned}
$$

Hence, we get (4.13).

Lemma 4.5. Let $\Psi=\left(u, u_{t}, v, v_{t}, w, w_{t}, \theta, \sigma, \vartheta, \zeta\right) \in \mathcal{H}$ be the solution of system (2.10)-(2.12) given by Theorem 3.1, then the functional G_{4} defined by

$$
G_{4}(t)=-\rho_{4}\left\langle\theta, \int_{0}^{+\infty} \mu_{1}(s) \sigma(., t, s) d s\right\rangle,
$$

satisfies, for any $\epsilon_{5}>0$ and $\epsilon_{6}>0$, the estimate

$$
\begin{align*}
G_{4}^{\prime}(t) \leq & -\frac{\rho_{4} g_{1}(0)}{2}\|\theta\|^{2}+\epsilon_{5}\left\|u_{t}\right\|^{2}+\epsilon_{6}\left\|v_{t}\right\|^{2}-C \int_{0}^{+\infty} \mu_{1}^{\prime}(s)\left\|\sigma_{x}(s)\right\|^{2} d s \tag{4.14}\\
& +C\left(1+\frac{1}{\epsilon_{5}}+\frac{1}{\epsilon_{6}}\right)\|\sigma\|_{L_{\mu_{1}}^{2}}^{2}, \forall t \geq 0 . \tag{4.15}
\end{align*}
$$

Proof. Differentiating G_{4} with respect to t, using $(2.10)_{4}$ and $(2.10)_{5}$, integration by parts and the boundary conditions (2.11) and recalling (2.4), we get

$$
\begin{aligned}
G_{4}^{\prime}(t)= & -\rho_{4}\left\langle\theta_{t}, \int_{0}^{+\infty} \mu_{1}(s) \sigma(., t, s) d s\right\rangle-\rho_{4}\left\langle\theta, \int_{0}^{+\infty} \mu_{1}(s) \sigma_{t}(., t, s) d s\right\rangle \\
= & -\rho_{4} g_{1}(0)\|\theta\|^{2}+\beta_{1}\left\|\int_{0}^{+\infty} \mu_{1}(s) \sigma_{x}(., t, s) d s\right\|^{2} \\
& -\delta_{1}\left\langle u_{t}, \int_{0}^{+\infty} \mu_{1}(s) \sigma_{x}(., t, s) d s\right\rangle+\delta_{1}\left\langle v_{t}, \int_{0}^{+\infty} \mu_{1}(s) \sigma_{x}(., t, s) d s\right\rangle \\
& +\rho_{4}\left\langle\theta, \int_{0}^{+\infty} \mu_{1}(s) \sigma_{s}(., t, s) d s\right\rangle .
\end{aligned}
$$

Making use of Cauchy-Schwarz and Young's inequalities, we have

$$
\begin{gather*}
\beta_{1}\left\|\int_{0}^{+\infty} \mu_{1}(s) \sigma_{x}(., t, s) d s\right\|^{2} \leq C\|\sigma\|_{L_{\mu_{1}}^{2}}^{2}, \tag{4.16}\\
\left|-\delta_{1}\left\langle u_{t}, \int_{0}^{+\infty} \mu_{1}(s) \sigma_{x}(., t, s) d s\right\rangle\right| \leq \epsilon_{5}\left\|u_{t}\right\|^{2}+\frac{C}{\epsilon_{5}}\|\sigma\|_{L_{\mu_{1}}^{2}}^{2}, \text { for any } \epsilon_{5}>0, \tag{4.17}\\
\left|\delta_{1}\left\langle v_{t}, \int_{0}^{+\infty} \mu_{1}(s) \sigma_{x}(., t, s) d s\right\rangle\right| \leq \epsilon_{6}\left\|v_{t}\right\|^{2}+\frac{C}{\epsilon_{6}}\|\sigma\|_{L_{\mu_{1}}^{2}}^{2}, \text { for any } \epsilon_{6}>0 \tag{4.18}
\end{gather*}
$$

Also, using integration by parts with respect to s, we get

$$
\begin{align*}
& \left|\rho_{4}\left\langle\theta, \int_{0}^{+\infty} \mu_{1}(s) \sigma_{s}(., t, s) d s\right\rangle\right| \\
= & \left|-\rho_{4}\left\langle\theta, \int_{0}^{+\infty} \mu_{1}(s) \sigma^{\prime}(., t, s) d s\right\rangle\right| \tag{4.19}\\
\leq & C\|\theta\|\left(-\int_{0}^{+\infty} \mu_{1}^{\prime}(s)\left\|\sigma_{x}\right\|^{2} d s\right)^{\frac{1}{2}} \\
\leq & \frac{\rho_{4} g_{1}(0)}{2}\|\theta\|^{2}-C \int_{0}^{+\infty} \mu_{1}^{\prime}(s)\left\|\sigma_{x}(s)\right\|^{2} d s .
\end{align*}
$$

On account of (4.16)-(4.19), we obtain

$$
\begin{aligned}
G_{4}^{\prime}(t) \leq & -\frac{\rho_{4} g_{1}(0)}{2}\|\theta\|^{2}+\epsilon_{5}\left\|u_{t}\right\|^{2}+\epsilon_{6}\left\|v_{t}\right\|^{2}-C \int_{0}^{+\infty} \mu_{1}^{\prime}(s)\left\|\sigma_{x}(s)\right\|^{2} d s \\
& +C\left(1+\frac{1}{\epsilon_{5}}+\frac{1}{\epsilon_{6}}\right)\|\sigma\|_{L_{\mu_{1}}^{2}}^{2} .
\end{aligned}
$$

Lemma 4.6. Let $\Psi=\left(u, u_{t}, v, v_{t}, w, w_{t}, \theta, \sigma, \vartheta, \zeta\right) \in \mathcal{H}$ be the solution of system (2.10)-(2.12) given by Theorem 3.1, then the functional G_{5} defined by

$$
G_{5}(t)=-\rho_{5}\left\langle\vartheta, \int_{0}^{+\infty} \mu_{2}(s) \zeta(., t, s) d s\right\rangle,
$$

satisfies for any $\epsilon_{7}>0$, the estimate

$$
\begin{equation*}
G_{5}^{\prime}(t)(t) \leq-\frac{\rho_{5} g_{2}(0)}{2}\|\vartheta\|^{2}+\epsilon_{7}\left\|v_{t}\right\|^{2}-C \int_{0}^{+\infty} \mu_{2}^{\prime}(s)\left\|\zeta_{x}(s)\right\|^{2} d s+C\left(1+\frac{1}{\epsilon_{7}}\right)\|\zeta\|_{L_{\mu_{2}}^{2}}^{2}, \forall t \geq 0 . \tag{4.20}
\end{equation*}
$$

Proof. Differentiation of G_{5} with respect to t, using $(2.10)_{6}$ and $(2.10)_{7}$, integration by parts and the boundary conditions (2.11), and recalling (2.4), we get

$$
\begin{aligned}
G_{5}^{\prime}= & -\rho_{5}\left\langle\vartheta_{t}, \int_{0}^{+\infty} \mu_{2}(s) \zeta(., t, s) d s\right\rangle-\rho_{5}\left\langle\vartheta, \int_{0}^{+\infty} \mu_{2}(s) \zeta_{t}(., t, s) d s\right\rangle \\
= & -\rho_{5} g_{1}(0)\|\vartheta\|^{2}+\beta_{2}\left\|\int_{0}^{+\infty} \mu_{2}(s) \zeta_{x}(., t, s) d s\right\|^{2} \\
& -\delta_{2}\left\langle v_{t}, \int_{0}^{+\infty} \mu_{2}(s) \zeta_{x}(., t, s) d s\right\rangle+\rho_{5}\left\langle\vartheta, \int_{0}^{+\infty} \mu_{2}(s) \zeta_{s}(., t, s) d s\right\rangle
\end{aligned}
$$

Using similar estimations as in (4.16)-(4.19) leads to (4.20).

4.2. Main stability result

The main stability result of this work is the following:
Theorem 4.1. Let $\Psi_{0}=\left(u_{0}, u_{1}, v_{0}, v_{1}, w_{0}, w_{1}, \theta_{0}, \sigma_{0}, \vartheta_{0}, \zeta_{0}\right) \in \mathcal{D}(\mathcal{A})$ be given. Suppose condition $\left(A_{1}\right)$ holds, then the energy functional $\mathcal{E}(t)$ defined in (4.1) decays exponentially. That is, there exists positive constants M and λ such that

$$
\begin{equation*}
\mathcal{E}(t) \leq M e^{-\lambda t}, \forall t \geq 0 . \tag{4.21}
\end{equation*}
$$

Proof. We set

$$
\begin{equation*}
L(t):=N \mathcal{E}(t)+N_{1} G_{1}(t)+N_{2} G_{2}(t)+N_{3} G_{3}(t)+N_{4} G_{4}(t)+N_{5} G_{5}(t), \quad t \geq 0, \tag{4.22}
\end{equation*}
$$

for some $N, N_{1}, N_{2}, N_{3}, N_{4}, N_{5}>0$ to be specified later. Direct computations, applying Young's, Cauchy-Schwarz and Poincaré's inequalities gives

$$
\begin{equation*}
\tilde{b}_{1} \mathcal{E}(t) \leq L(t) \leq \tilde{b}_{2} \mathcal{E}(t), \quad t \geq 0, \tag{4.23}
\end{equation*}
$$

for some positive constants \tilde{b}_{1} and \tilde{b}_{2}. Now, using Lemmas 4.1 and 4.2-4.6, we get

$$
\begin{align*}
L^{\prime}(t) \leq & -\left[\frac{\rho_{1} h_{1} \delta_{1}}{2} N_{2}-\rho_{1} h_{1} N_{1}-\epsilon_{5} N_{4}\right]\left\|u_{t}\right\|^{2}-\left[\delta_{3} N-\rho h N_{1}\right]\left\|w_{t}\right\|^{2} \\
& -\left[\frac{\rho_{3} h_{3} \delta_{2}}{2} N_{3}-\rho_{3} h_{3} N_{1}-C N_{2}-\epsilon_{6} N_{4}-\epsilon_{7} N_{5}\right]\left\|v_{t}\right\|^{2} \\
& -\left[\frac{E_{1} h_{1}}{2} N_{1}-\epsilon_{1} N_{2}\right]\left\|u_{x}\right\|^{2}-\left[\frac{E_{3} h_{3}}{2} N_{1}-\epsilon_{3} N_{3}\right]\left\|v_{x}\right\|^{2}-E I N_{1}\left\|w_{x x}\right\|^{2} \\
& -\left[k N_{1}-\epsilon_{2} N_{2}-\epsilon_{4} N_{3}\right]\left\|\left(-u+v+\alpha w_{x}\right)\right\|^{2} \\
& -\left[\frac{\rho_{4} g_{1}(0)}{2} N_{4}-C N_{1}-C N_{2}\left(1+\frac{1}{\epsilon_{1}}+\frac{1}{\epsilon_{2}}\right)-C N_{3}\right]\|\theta\|^{2} \tag{4.24}\\
& +\left[C N_{2}+C N_{4}\left(1+\frac{1}{\epsilon_{5}}+\frac{1}{\epsilon_{6}}\right)\right]\|\sigma\|_{L_{\mu_{1}}^{2}}^{2}-\left[\frac{\beta_{1}}{2} N-C N_{4}\right] \int_{0}^{+\infty} \mu_{1}^{\prime}(s)\left\|\sigma_{x}(s)\right\|^{2} d s \\
& -\left[\frac{\rho_{5} g_{2}(0)}{2} N_{5}-C N_{1}-C N_{3}\left(1+\frac{1}{\epsilon_{3}}+\frac{1}{\epsilon_{4}}\right)\right]\|\vartheta\|^{2} \\
& +\left[C N_{3}+C N_{5}\left(1+\frac{1}{\epsilon_{7}}\right)\right]\|\zeta\|_{L_{\mu_{2}}^{2}}^{2}-\left[\frac{\beta_{2}}{2} N-C N_{5}\right] \int_{0}^{+\infty} \mu_{2}^{\prime}(s)\left\|\zeta_{x}(s)\right\|^{2} d s .
\end{align*}
$$

From (2.5), we have that

$$
\mu_{i}(s) \leq-\frac{1}{\xi_{i}} \mu_{i}^{\prime}(s), \quad i=1,2 .
$$

Also, by choosing

$$
\begin{gathered}
N_{1}=1, \epsilon_{1}=\frac{E_{1} h_{1}}{4 N_{2}}, \epsilon_{2}=\frac{k}{4 N_{2}}, \epsilon_{3}=\frac{E_{3} h_{3}}{4 N_{3}}, \epsilon_{4}=\frac{k}{4 N_{3}}, \\
\epsilon_{5}=\frac{\rho_{1} h_{1} \delta_{1}}{4 N_{4}}, \epsilon_{6}=\frac{\rho_{3} h_{3} \delta_{2}}{8 N_{4}}, \epsilon_{7}=\frac{\rho_{3} h_{3} \delta_{2}}{8 N_{5}},
\end{gathered}
$$

then (4.24) takes the form

$$
\begin{align*}
L^{\prime}(t) \leq & -\left[\frac{\rho_{1} h_{1} \delta_{1}}{4} N_{2}-\rho_{1} h_{1}\right]\left\|u_{t}\right\|^{2}-\left[\frac{\rho_{3} h_{3} \delta_{2}}{4} N_{3}-C N_{2}-\rho_{3} h_{3}\right]\left\|v_{t}\right\|^{2} \\
& -\left[\delta_{3} N-\rho h\right]\left\|w_{t}\right\|^{2}-\frac{E_{1} h_{1}}{4}\left\|u_{x}\right\|^{2}-\frac{E_{3} h_{3}}{4}\left\|v_{x}\right\|^{2} \\
& -E I\left\|w_{x x}\right\|^{2}-\frac{k}{2}\left\|\left(-u+v+\alpha w_{x}\right)\right\|^{2} \\
& -\left[\frac{\rho_{4} g_{1}(0)}{2} N_{4}-C N_{2}\left(1+\frac{4 N_{2}}{E_{1} h_{1}}+\frac{4 N_{2}}{k}\right)-C N_{3}-C\right]\|\theta\|^{2} \tag{4.25}\\
& -\left[\frac{\beta_{1} \xi_{1}}{2} N-C \xi_{1} N_{4}-\left(C N_{2}+C N_{4}\left(1+\frac{4 N_{4}}{\rho_{1} h_{1} \delta_{1}}+\frac{8 N_{4}}{\rho_{3} h_{3} \delta_{2}}\right)\right)\right]\|\sigma\|_{L_{\mu_{1}}^{2}}^{2} \\
& -\left[\frac{\rho_{5} g_{2}(0)}{2} N_{5}-C N_{3}\left(1+\frac{4 N_{3}}{E_{3} h_{3}}+\frac{4 N_{3}}{k}\right)-C\right]\|\vartheta\|^{2} \\
& -\left[\frac{\beta_{2} \xi_{2}}{2} N-C \xi_{2} N_{5}-\left(C N_{3}+C N_{5}\left(1+\frac{8 N_{5}}{\rho_{3} h_{3} \delta_{2}}\right)\right)\right]\|\zeta\|_{L_{\mu_{2}}^{2}}^{2} .
\end{align*}
$$

Next, we specified the rest of the parameters. First, we choose N_{2} large such that

$$
\frac{\rho_{1} h_{1} \delta_{1}}{4} N_{2}-\rho_{1} h_{1}>0 .
$$

Second, we select N_{3} large enough such that

$$
\frac{\rho_{3} h_{3} \delta_{2}}{4} N_{3}-C N_{2}-\rho_{3} h_{3}>0 .
$$

Thirdly, we choose N_{4} and N_{5} large enough such that

$$
\frac{\rho_{4} g_{1}(0)}{2} N_{4}-C N_{2}\left(1+\frac{4 N_{2}}{E_{1} h_{1}}+\frac{4 N_{2}}{k}\right)-C N_{3}-C>0
$$

and

$$
\frac{\rho_{4} h_{2}(0)}{2} N_{5}-C N_{3}\left(1+\frac{8 N_{3}}{k}+\frac{4 N_{3}}{b}\right)-C>0 .
$$

Finally, we choose N very large so that (4.23) remain valid and

$$
\begin{aligned}
\delta_{3} N-\rho h> & 0, \frac{\beta_{1} \xi_{1}}{2} N-C \xi_{1} N_{4}-\left(C N_{2}+C N_{4}\left(1+\frac{4 N_{4}}{\rho_{1} h_{1} \delta_{1}}+\frac{8 N_{4}}{\rho_{3} h_{3} \delta_{2}}\right)\right)>0 \\
& \frac{\beta_{2} \xi_{2}}{2} N-C \xi_{2} N_{5}-\left(C N_{3}+C N_{5}\left(1+\frac{8 N_{5}}{\rho_{3} h_{3} \delta_{2}}\right)\right)>0
\end{aligned}
$$

Thus, we obtain

$$
\begin{align*}
L^{\prime}(t) \leq & -\gamma_{0}\left[\left\|u_{t}\right\|^{2}+\left\|v_{t}\right\|^{2}+\left\|w_{t}\right\|^{2}+\left\|u_{x}\right\|^{2}+\left\|v_{x}\right\|^{2}+\left\|w_{x x}\right\|^{2}\right] \\
& -\gamma_{0}\left[\left\|\left(-u+v+\alpha w_{x}\right)\right\|^{2}+\mid \theta\left\|^{2}+\right\| \sigma\left\|_{L_{\mu_{1}}^{2}}^{2}+\right\| \vartheta\left\|^{2}+\right\| \zeta \|_{L_{\mu_{2}}^{2}}^{2}\right] \tag{4.26}
\end{align*}
$$

for some $\gamma_{0}>0$. Recalling (4.1), it follows from (4.26) that

$$
\begin{equation*}
L^{\prime}(t) \leq-\gamma_{1} \mathcal{E}(t), \forall t \geq 0, \tag{4.27}
\end{equation*}
$$

for some $\gamma_{1}>0$. Using (4.23), we obtain

$$
\begin{equation*}
L^{\prime}(t) \leq-\gamma_{2} L(t), \forall t \geq 0, \tag{4.28}
\end{equation*}
$$

for some $\gamma_{2}>0$. Integrating (4.28) over $(0, t)$ yields for some $\gamma_{3}>0$

$$
\begin{equation*}
L(t) \leq L(0) e^{-\gamma_{3} t}, \forall t \geq 0 . \tag{4.29}
\end{equation*}
$$

Hence, the exponential estimate of the energy functional $\mathcal{E}(t)$ in (4.21) follows from (4.29) by using (4.23). This completes the proof.

5. Conclusions

In this work, we investigated the the effect of Gurtin-Pipkin's thermal law on the outer layers of the Rao-Nakra beam model. Using standard semi-group theory for linear operators and the multiplier method, the well-posedness and a stability result of solutions of the triple beam system have been established.

Use of AI tools declaration

The author declares he has not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgment

The author acknowledges the technical and financial support from the Ministry of education and the University of Hafr Al Batin, Saudi Arabia. This research work was funded by Institutional fund projects \# IFP-A-2022-2-1-04.

Conflict of interest

The author declares no potential conflict of interest.

References

1. Y. V. K. S. Rao, B. C. Nakra, Vibrations of unsymmetrical sandwich beams and plates with viscoelastic cores, J. Sound Vibr., 34 (1974), 309-326. https://doi.org/10.1016/S0022-460X(74)80315-9
2. D. J. Mead, S. Markus, The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions, J. Sound Vibr., 10 (1969), 163-175. https://doi.org/10.1016/0022-460X(69)90193-X
3. M. J. Yan, E. H. Dowell, Governing equations for vibrating constrained-layer damping sandwich plates and beams, J. Appl. Mech., 39 (1972), 1041-1047. https://doi.org/10.1115/1.3422825
4. S. W. Hansen, Several related models for multilayer sandwich plates, Math. Models Methods Appl. Sci., 14 (2004), 1103-1132. https://doi.org/10.1142/S0218202504003568
5. A. Ö. Özer, S. W. Hansen, Uniform stabilization of a multilayer Rao-Nakra sandwich beam, Evolution Equ. Control Theory, 2 (2013), 695-710. https://doi.org/10.3934/eect.2013.2.695
6. Z. Liu, S. A. Trogdon, J. Yong, Modeling and analysis of a laminated beam, Math. Comput. Model., 30 (1999), 149-167. https://doi.org/10.1016/S0895-7177(99)00122-3
7. S. W. Hansen, R. D. Spies, Structural damping in a laminated beam due to interfacial slip, J. Sound Vibr., 204 (1997), 183-202. https://doi.org/10.1006/jsvi.1996.0913
8. Y. F. Li, Z. Y. Liu, Y. Wang, Weak stability of a laminated beam, Math. Control Relat. Fields, 8 (2018), 789-808. https://doi.org/10.3934/mcrf. 2018035
9. T. Q. Méndez, V. C. Zannini, B. W. Feng, Asymptotic behavior of the RaoNakra sandwich beam model with Kelvin-Voigt damping, Math. Mech. Solids, 2023. https://doi.org/10.1177/10812865231180535
10. B. W. Feng, A. Ö. Özer, Long-time behavior of a nonlinearly-damped three-layer RaoNakra sandwich beam, Appl. Math. Optim., 87 (2023), 19. https://doi.org/10.1007/s00245-022-09931-7
11. B. W. Feng, C. A. Raposo, C. A. Nonato, A. Soufyane, Analysis of exponential stabilization for Rao-Nakra sandwich beam with time-varying weight and time-varying delay: Multiplier method versus observability, Math. Control Relat. Fields, 13 (2023), 631-663. https://doi.org/10.3934/mcrf. 2022011
12. S. E. Mukiawa, C. D. Enyi, J. D. Audu, Well-posedness and stability result for a thermoelastic Rao-Nakra beam model, J. Therm. Stresses, 45 (2022), 720-739. https://doi.org/10.1080/01495739.2022.2074931
13. C. A. Raposo, O. P. V. Villagran, J. Ferreira, E. Pişkin, Rao-Nakra sandwich beam with second sound, Part. Differ. Equ. Appl. Math., 4 (2021), 100053. https://doi.org/10.1016/j.padiff.2021.100053
14. Z. Y. Liu, B. P. Rao, Q. Zheng, Polynomial stability of the Rao-Nakra beam with a single internal viscous damping, J. Differ. Equ., 269 (2020), 6125-6162. https://doi.org/10.1016/j.jde.2020.04.030
15. S. W. Hansen, O. Y. Imanuvilov, Exact controllability of a multilayer Rao-Nakra plate with free boundary conditions, Math. Control Relat. Fields, 1 (2011), 189-230. https://doi.org/10.3934/mcrf.2011.1.189
16. S. W. Hansen, O. Imanuvilov, Exact controllability of a multilayer Rao-Nakra plate with clamped boundary conditions, ESAIM Control Optim. Calc. Var., 17 (2011), 1101-1132. https://doi.org/10.1051/cocv/2010040
17. S. W. Hansen, R. Rajaram, Simultaneous boundary control of a Rao-Nakra sandwich beam, in: Proceedings of the 44th IEEE Conference on Decision and Control, 2005, 3146-3151. https://doi.org/10.1109/CDC.2005.1582645
18. S. W. Hansen, R. Rajaram, Riesz basis property and related results for a Rao-Nakra sandwich beam, Conf. Publ., 2005 (2005), 365-375.
19. R. Rajaram, Exact boundary controllability result for a Rao-Nakra sandwich beam, Syst. Control Lett., 56 (2007), 558-567. https://doi.org/10.1016/j.sysconle.2007.03.007
20. C. A. Raposo, Rao-Nakra model with internal damping and time delay, Math. Morav., 25 (2021), 53-67. https://doi.org/10.5937/MatMor2102053R
21. M. E. Gurtin, A. C. Pipkin, A general theory of heat conduction with finite waves peeds, Arch. Rational Mech. Anal., 31 (1968), 113-126. https://doi.org/10.1007/BF00281373
22. F. Dell'Oro, V. Pata, On the stability of Timoshenko systems with Gurtin-Pipkin thermal law, J. Differ. Equ., 257 (2014), 523-548. https://doi.org/10.1016/j.jde.2014.04.009
23. A. Fareh, Exponential stability of a Timoshenko type thermoelastic system with Gurtin-Pipkin thermal law and frictional damping, Commun. Fac. Sci. Univ. Ank. Ser. Al Math. Stat., 71 (2022), 95-115. https://doi.org/10.31801/cfsuasmas. 847038
24. W. J. Liu, W. F. Zhao, On the stability of a laminated beam with structural damping and Gurti-Pipkin thermal law, Nonlinear Anal. Model. Control, 26 (2021), 396-418. https://doi.org/10.15388/namc.2021.26.23051
25. T. A. Apalara, O. B. Almutairi, Well-posedness and exponential stability of swelling porous with Gurtin-Pipkin thermoelasticity, Mathematics, 10 (2022), 1-17. https://doi.org/10.3390/math10234498
26. M. Khader, B. Said-Houari, On the decay rate of solutions of the Bresse system with Gurtin-Pipkin thermal law, Asymptot. Anal., 103 (2017), 1-32. https://doi.org/10.3233/ASY-171417
27. D. Hanni, B. W. Feng, K. Zennir, Stability of Timoshenko system coupled with thermal law of Gurtin-Pipkin affecting on shear force, Appl. Anal., 101 (2022), 5171-5192. https://doi.org/10.1080/00036811.2021.1883591
28. F. Dell'Oro, On the stability of Bresse and Timoshenko systems with hyperbolic heat conduction, J. Differ. Equ., 281 (2021), 148-198. https://doi.org/10.1016/j.jde.2021.02.009
29. B. D. Coleman, M. E. Gurtin, Equipresence and constitutive equations for rigid heat conductors, Z. Angew. Math. Phys., 18 (1967), 199-208. https://doi.org/10.1007/BF01596912
30. C. M. Dafermos, An abstract Volterra equation with applications to linear viscoelasticity, J. Differ. Equ., 7 (1970), 554-569. https://doi.org/10.1016/0022-0396(70)90101-4
31. A. Pazzy, Semigroups of linear operators and application to partial differential equations, New York: Springer, 1983. https://doi.org/10.1007/978-1-4612-5561-1

AIMS Press

© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

