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1. Introduction

In the present work, we consider the Rao-Nakra (three layer) beam system, where the top and the
bottom layers of the beam are subjected to Gurtin-Pipkin’s thermal law, namely

ρ1h1utt − E1h1uxx − k(−u + v + αwx) + δ1θx = 0, in (0, π) × R+,
ρ3h3vtt − E3h3vxx + k(−u + v + αwx) − δ1θ + δ2ϑx = 0, in (0, π) × R+,
ρhwtt + EIwxxxx − αk(−u + v + αwx)x + δ3wt = 0, in (0, π) × R+,

ρ4θt − β1

∫ +∞

0
g1(s)θxx(x, t − s)ds + δ1(uxt + vt) = 0, in (0, π) × R+,

ρ5ϑt − β2

∫ +∞

0
g2(s)ϑxx(x, t − s)ds + δ2vxt = 0, in (0, π) × R+

(1.1)

with the following boundary conditions:ux(0, t) = vx(0, t) = w(0, t) = wxx(0, t) = θ(0, t) = ϑ(0, t) = 0, t ≥ 0,
u(π, t) = v(π, t) = w(π, t) = wxx(π, t) = θx(π, t) = ϑx(π, t) = 0, t ≥ 0,

(1.2)
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and the initial data
u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ (0, π),
ut(x, 0) = u1(x), vt(x, 0) = v1(x), wt(x, 0) = w1(x), x ∈ (0, π),
θ(x,−t) = θ0(x, t), ϑ(x,−t) = ϑ0(x, t), x ∈ (0, π), t > 0.

(1.3)

The relaxation functions g1 and g2 are positive non-increasing functions to be specified later. The
stabilization of Rao-Nakra beam systems has gathered much interest from researchers recently, and
a great number of results have been established. The Rao-Nakra beam model is a beam system that
takes into account the motion of two outer face plates (assumed to be relatively stiff) and a sandwiched
compliant inner core layer, see [1–5] for Rao-Nakra, Mead-Markus and multilayer plates or sandwich
models. The basic equations of motion of the Rao-Nakra model are derived thanks to the Euler-
Bernoulli beam assumptions for the outer face plate layers, the Timoshenko beam assumptions for the
sandwich layer and a “no slip” assumption for the motion along the interface. Suppose h( j), j = 1, 2, 3
is the thickness of each layer in the beam of length π, see Figure 1 and h = h(1) + h(2) + h(3) the total
thickness of the beam.

Figure 1. Triple layer beam.

Assuming the Kirchhoff hypothesis is imposed on the outer layers of beam and in addition, there is
a continuous, piecewise linear displacements through the cross-sections, Liu et al. [6] gave a detailed
derivation of following laminated beam system:

ρ1h1utt − E1h1uxx − τ = 0,

ρ1I1y1
tt − E1I1y1

xx −
h1

2
τ +G1h1(wx + y1) = 0,

ρhwtt + EIwxxxx −G1h1k(wx + y1)x −G3h3(wx + y3)x − h2τx = 0,
ρ3h3vtt − E3h3vxx + τ = 0,

ρ3I3y3
tt − E3I3y3

xx −
h3

2
τ +G3h3(wx + y3) = 0,

(1.4)

where x ∈ (0, π), t > 0, (u, y1), (v, y3) represent longitudinal displacement and shear angle of the bottom
and top layers plates. The transverse displacement of the beam is represented by w, and τ is the
shear stress of the core layer. Also, for j = 1, 2, 3 (from bottom to top layer), E j,G j, I j, ρ j > 0
are Young’s modulus, shear modulus, moments of inertia and density respectively for each layer.
Moreover, in (1.4)3, we have that ρh = ρ1h1 + ρ2h2 + ρ3h3 and EI = E1I1 + E3I3. By neglecting
the rotary inertia in top and bottom layers of the beam, we obtain ρ1I1 = ρ3I3 = 0 in (1.4)4

AIMS Mathematics Volume 8, Issue 12, 28188–28209.



28190

and (1.4)5. Furthermore, if we neglect the transverse shear, this leads to the Euler-Bernoulli hypothesis
wx + y1 = wx + y3 = 0. Assuming that the core layer consists of a material that is linearly elastic with
the stress-strain relationship τ = 2G2ε, where the shear strain ε is defined by

ε =
1

2h2
(−u + v + αwx) where α = h2 +

h1 + h2

2
.

Thus, we arrive at the following Rao-Nakra beam model [1], given by
ρ1h1utt − E1h1uxx − k(−u + v + αwx) = 0,
ρ3h3vtt − E3h3vxx + k(−u + v + αwx) = 0,
ρhwtt + EIwxxxx − αk(−u + v + αwx)x = 0,

(1.5)

where k =
G2

h2
, G2 =

E2

2(1 + ν)
and −1 < ν <

1
2

is the Poisson ratio. Furthermore, when the extensional

motion of the outer layers is neglected, system (1.4) takes the form of the two-layer laminated beam
system derived by Hansen and Spies [7]. Li et al. [8] showed that system (1.5) is unstable if only one
of the equations is damped. When two of the three equations in (1.5) were damped, the authors in [8]
proved a polynomial stability. For recent results in literature, Méndez et al. [9] considered (1.5) with
with Kelvin-Voigt damping and studied the well-posedness, lack of exponential decay and polynomial
decay. Feng and Özer [10] looked at a nonlinearly damped Rao-Nakra beam system and established
the global attractor with finite fractal dimension. Feng et al. [11] studied the stability of Rao-Nakra
sandwich beam with time-varying weight and time-varying delay. Mukiawa et al. [12] considered (1.5)
with viscoelastic damping on the first equation and heat conduction govern by Fourier’s law and proved
the well-posedness and a general decay result. Also, Raposo et al. [13] coupled (1.5) with Maxwell-
Cattaneo heat conduction established the well-posedness. For more results related Rao-Nakra beam
system with frictional, delay or thermal damping, see [14–20] and the references therein.

An interesting tool used by Mathematician in stabilizing beam models such as the Laminated and
Timoshenko beam systems is the Gurtin-Pipkin’s thermal law, see [21], with constitutive equation

βq(t) +
∫ ∞

0
g(s)θx(x, t − s)ds = 0, (1.6)

where θ = θ(x, t) is the temperature difference, q = q(x, t) is the heat flux, β is a coupling constant
coefficient and the relaxation g is a summable convex L1([0,+∞)) function with unit mass. For results
related to (1.6), Dell’Oro and Pata [22] studied

ρ1utt − k(ux + v)x = 0, in (0, π) × R+,
ρ2vtt − bvxx + k(ux + v) + δθx = 0, in (0, π) × R+,

ρ3θt −
1
β

∫ ∞

0
h(s)θxx(x, t − s)ds + δvxt = 0, in (0, π) × R+

(1.7)

and proved an exponential stability result if and only if χh = 0, where

χh =

(
ρ1

kρ3
−

β

h(0)

) (
ρ1

k
−
ρ2

b

)
−

β

h(0)
ρ1δ

2

kbρ3
.

AIMS Mathematics Volume 8, Issue 12, 28188–28209.



28191

For similar results with Gurtin-Pipkin’s thermal law, see [23–28] and references therein. As clearly
elaborated in [22], the Fourier’s and Cattaneo’s (second sound) thermal law can be recovered from (1.6)
by defining the memory function g in (1.6) as

gδ(s) =
1
δ

h
( s
δ

)
, δ > 0 (1.8)

and
gτ(s) =

β

τ
e−s βτ , τ > 0 (1.9)

respectively. A closely related thermal law to the Gurtin-Pipkin’s thermal law is the Coleman-Gurtin’s
heat conduction law, see [29], with constitutive equation given by

βq(t) + (1 − η)θx + η

∫ ∞

0
µ(s)θx(x, t − s)ds = 0, η ∈ (0, 1), (1.10)

where η = 1 and η = 0 correspond to the Gurtin-Pipkin’s and Fourier thermal laws, respectively. This
entails replacing (1.7)3 with

ρ3θt −
(1 − η)
β

θxx −
η

β

∫ ∞

0
µ(s)θxx(x, t − s)ds + δvxt = 0, in (0, π) × R+. (1.11)

We should note here that systems govern by Coleman-Gurtin’s thermal lawa (1.10) gain additional
dissipation from the term − (1−η)

β
θxx and thus less difficult to handle compare to systems with Gurtin-

Pipkin’s thermal law (1.6).
Our main focus of this paper is to investigate the well-posedness and the asymptotic behavior of

solutions of system (1.1)–(1.3). We mote here that, the rotational inertia term wxxtt which should be
in (1.1)3 of the original models is neglected in the present model. However, the result in this paper
is not affected by the absent of this term. Also, since the thermal coupling in system (1.1)–(1.3) is
not strong enough to achieve exponential stability, a viscous damping term wt is added to (1.1)3. The
rest of work is organized as follows: In Section 2, we state some assumptions and set up our problem
(1.1)–(1.3) in appropriate spaces. In Section 3, we prove the existence and uniqueness result for the
system (1.1)–(1.3). In Section 4, we study the asymptotic behavior of solution of system (1.1)–(1.3).

2. Assumptions, problem transformation and functional setting

2.1. Assumptions on the kernels

For the relaxation functions g1 and g2, we assume the following:
Assumption (A0):

(a0) g1, g2 : [0,+∞) −→ (0,+∞) are non-increasing C2([0,+∞)) and convex summable functions
satisfying

lim
s→+∞

gi(s) = 0 and
∫ +∞

0
gi(s)ds = 1, i = 1, 2. (2.1)

(b0) There exists ξi > 0, i = 1, 2 such that

−g′′i (s) ≤ ξi
(
g′i(s)

)
, ∀s ≥ 0, i = 1, 2. (2.2)
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By setting
µ1(s) = −g′1(s) and µ2(s) = −g′2(s), (2.3)

assumption (A0) ensues the following:
Assumption (A1):

(a1) µ1, µ2 : [0,+∞) −→ (0,+∞) are non-increasing C1([0,+∞)) and convex summable functions
satisfying

µ0i =

∫ +∞

0
µi(s)ds = gi(0) > 0, and

∫ +∞

0
sµi(s)ds = 1, i = 1, 2. (2.4)

(b1) There exists ξi > 0, i = 1, 2 such that

µ′i(s) ≤ −ξiµi(s), ∀s ≥ 0, i = 1, 2. (2.5)

2.2. Problem transformation

Due to the work of Dafermos [30], we define new functions for the relative past history of θ and ϑ
as follows:

σ, ζ : (0, π) × R+ × R+ → R+,

define by

σ = σ(x, t, s) :=
∫ t

t−s
θ(x, r)dr and ζ = ζ(x, t, s) :=

∫ t

t−s
ϑ(x, r)dr. (2.6)

On account of the boundary conditions (1.2), we have

σ(0, t, s) = σx(π, t, s) = ζ(0, t, s) = ζx(π, t, s) = 0,

and routine calculation gives

σt + σs − θ = 0, in (0, π) × (R+ × R+,
ζt + ζs − ϑ = 0, in (0, π) × R+ × R+,
σ(x, t, 0) = ζ(x, t, 0) = 0, in (0, π) × R+,

σ(x, 0, s) =
∫ s

0
θ0(x, r)dr := σ0(x, s), in (0, π) × R+,

ζ(x, 0, s) =
∫ s

0
ϑ0(x, r)dr := ζ0(x, s), in (0, π) × R+,

(2.7)

where σ0 and ζ0 represent the history of θ and ϑ respectively. Also, using direct computations, we have∫ +∞

0
g1(s)θxx(x, t − s)ds

= lim
a→+∞

g1(s)
∫ t

t−s
θxx(x, r)dr

∣∣∣∣∣s=a

s=0
−

∫ +∞

0
g′1(s)

∫ t

t−s
θxx(x, r)drds

=

∫ +∞

0
µ1(s)σxx(x, t, s)ds.

(2.8)
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Similarly, we get ∫ +∞

0
g2(s)ϑxx(x, t − s)ds =

∫ +∞

0
µ2(s)ζxx(x, t, s)ds. (2.9)

On account of (2.6)–(2.9), system (1.1)–(1.3) takes the form

ρ1h1utt − E1h1uxx − k(−u + v + αwx) + δ1θx = 0, in (0, π) × R+,
ρ3h3vtt − E3h3vxx + k(−u + v + αwx) − δ1θ + δ2ϑx = 0, in (0, π) × R+,
ρhwtt + EIwxxxx − αk(−u + v + αwx)x + δ3wt = 0, in (0, π) × R+,

ρ4θt − β1

∫ +∞

0
µ1(s)σxx(x, t, s)ds + δ1(uxt + vt) = 0, in (0, π) × R+,

σt + σs − θ = 0, in (0, π) × R+ × R+,

ρ5ϑt − β2

∫ +∞

0
µ2(s)ζxx(x, t, s)ds + δ2vxt = 0, in (0, π) × R+,

ζt + ζs − ϑ = 0, in (0, π) × R+ × R+

(2.10)

with the boundary conditions
ux(0, t) = vx(0, t) = w(0, t) = wxx(0, t) = θ(0, t) = ϑ(0, t), t ≥ 0,
u(π, t) = v(π, t) = w(π, t) = wxx(π, t) = θx(π, t) = ϑx(π, t) = 0, t ≥ 0,
σ(0, t, s) = σx(π, t, s) = ζ(0, t, s) = ζx(π, t, s) = 0, s, t ∈ R+,

σ(x, t, 0) = ζ(x, t, 0) = 0, x ∈ (0, π), t ∈ R+

(2.11)

and the initial data
u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ (0, π),
ut(x, 0) = u1(x), vt(x, 0) = v1(x), wt(x, 0) = w1(x), x ∈ (0, π),
θ(x,−t) = θ0(x, t), ϑ(x,−t) = ϑ0(x, t) x ∈ (0, π), t > 0,
σ(x, 0, s) = σ0(x, s), ζ(x, 0, s) = ζ0(x, s), x ∈ (0, π), s > 0.

(2.12)

Setting Ψ = (u, φ, v, ψ,w, ϕ, θ, σ, ϑ, ζ)T , with φ = ut, ψ = vt and ϕ = wt. Then, the semi-group
formulation of system (2.10)–(2.12) is given by the Cauchy problem

(P)

 Ψt +AΨ = 0,
Ψ(0) = Ψ0,

(2.13)

where Ψ0 = (u0, u1, v0, v1,w0,w1, θ0, σ0, ϑ0, ζ0)T and the linear operatorA is defined by
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AΨ =



−φ

−
E1

ρ1
uxx −

k
ρ1h1

(−u + v + αwx) +
δ1

ρ1h1
θx

−ψ

−
E3

ρ3
vxx +

k
ρ3h3

(−u + v + αwx) − δ1
ρ3h3

θ + δ2
ρ3h3

ϑx

−ϕ

EI
ρh

wxxxx −
αk
ρh

(−u + v + αwx)x +
δ3

ρh
ϕ

−
β1
ρ4

∫ +∞

0
µ1(s)σxx(x, s)ds +

δ1

ρ4
(φx + ψ)

σs − θ

−
β2
ρ5

∫ +∞

0
µ2(s)ζxx(x, s)ds +

δ2

ρ5
ψx

ζs − ϑ



.

2.3. Functional spaces

Let ⟨, ⟩ and ∥.∥ denote the inner product and the norm in L2(0, π) respectively and we define following
Sobolev spaces:

H1
a :={ϖ ∈ H1(0, π)/ϖ(0) = 0}, H1

b := {ϖ ∈ H1(0, π)/ϖ(π) = 0},
H2

a :={ϖ ∈ H2(0, π)/ϖx ∈ H1
a}, H2

b := {ϖ ∈ H2(0, π)/ϖx ∈ H1
b},

H2
∗ :=H2(0, π) ∩ H1

0(0, π),

where H2
∗ is equip with the inner product

⟨ϖ, ϖ̂⟩H2
∗
= ⟨ϖxx, ϖ̂xx⟩

and norm
∥ϖ∥2H2

∗
= ∥ϖxx∥

2.

It is easy to check that (H2
∗ , ∥.∥

2
H2
∗

) is a Banach space and the norm ∥.∥2
H2
∗

is equivalent to the usual norm
in H2(0, π).Next, we introduce the weighted-Hilbert space of H1

a(0, π)-real valued functions on (0,+∞)
by

L2
µ := L2

µ

(
R+; H1

a(0, π)
)
,
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where

L2
µ

(
R+; H1

a(0, π)
)
=

{
ϖ : R+ −→ H1

a(0, π)/
∫ +∞

0
µ(s)∥ϖx(s)∥2ds < ∞

}
,

and equip them with the inner product

(ϖ, ϖ̂)L2
µ

:=
∫ +∞

0
µ(s)⟨ϖx(s), ϖ̂x(s)⟩ds,

and norm

∥ϖ∥2L2
µ
=

∫ +∞

0
µ(s)∥ϖx(s)∥2ds.

Also, we define
D

(
L2
µ

)
:=

{
ϖ ∈ L2

µ/ϖs ∈ L2
µ and lim

s→0
∥ϖx(s)∥ = 0

}
.

Now, we introduce the phase space of our problem given by

H := H1
b × L2 × H1

b × L2 × H2
∗ × L2 × L2 × L2

µ1
× L2 × L2

µ2

and equipped it with the inner product

⟨(u, φ, v, ψ,w, ϕ, θ, σ, ϑ, ζ), (û, φ̂, v̂, ψ̂, ŵ, ϕ̂, θ̂, σ̂, ϑ̂, ζ̂)⟩H
:=E1h1⟨ux, ûx⟩ + ρ1h1⟨φ, φ̂⟩ + k⟨(−u + v + αwx), (−û + v̂ + αŵx)⟩
+ E3h3⟨vx, v̂x⟩ + ρ3h3⟨ψ, ψ̂⟩ + EI⟨wxx, ŵxx⟩ + ρh⟨ϕ, ϕ̂⟩ + ρ4⟨θ, θ̂⟩

+ β1⟨σ, σ̂⟩L2
µ1
+ ρ5⟨ϑ, ϑ̂⟩ + β2⟨ζ, ζ̂⟩L2

µ2

and norm

∥Ψ∥2
H
=∥(u, φ, v, ψ,w, ϕ, θ, σ, ϑ, ζ)∥2

H

:=E1h1∥ux∥
2 + ρ1h1∥φ∥

2 + k∥(−u + v + αwx)∥2

+ E3h3∥vx∥
2 + ρ3h3∥ψ∥

2 + EI∥wxx∥
2 + ρh∥ϕ∥2

+ ρ4∥θ∥
2 + β1∥σ∥

2
L2
µ1
+ ρ5∥ϑ∥

2 + β2∥ζ∥
2
L2
µ2
,

for any Φ = (w, φ, v, ψ, u, ϕ, θ, σ, ϑ, ζ)T ∈ H .
The domain of the linear operatorA in (2.13) is defined as follows:

D(A) :=



(u, φ, v, ψ,w, ϕ, θ, σ, ϑ, ζ) ∈ H

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u, v ∈ H2
b ∩ H1

b , φ, ψ ∈ H1
b ,

w ∈ H4 ∩ H2
∗ , ϕ ∈ H2

∗ ,

σ ∈ D
(
L2
µ1

)
, θ ∈ H1

a ,

ζ ∈ D
(
L2
µ2

)
, ϑ ∈ H1

a ,

(−u + v + αwx) ∈ H1
a ∩ H1

b ,∫ +∞

0
µ1(s)σ(s)ds ∈ H2 ∩ H1

a ,∫ +∞

0
µ2(s)ζ(s)ds ∈ H2 ∩ H1

a ,

wxx(0) = wxx(π) = 0.



.
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Remark 2.1. (1) Due to (2.5), we can deduce that

⟨−ϖs, ϖ⟩L2
µi
≤ −

ξi

2
∥ϖ∥2L2

µi
, ∀ ϖ ∈ D

(
L2
µi

)
, i = 1, 2. (2.14)

(2) Using Hölder’s and Young’s inequalities, we have that∫ +∞

0
µi(s)∥ϖx(s)∥ds ≤

√
gi(0)∥ϖ∥L2

µi
, i = 1, 2. (2.15)

3. Well-posedness

In this section, we establish the existence and uniqueness of global weak solution to the system
(2.10)–(2.12).

3.1. Needed lemmas for well-posedness

Lemma 3.1. The linear operatorA : D(A) ⊂ H → H defined in (2.13) is monotone.

Proof. Let Ψ = (u, φ, v, ψ,w, ϕ, θ, σ, ϑ, ζ) ∈ D(A), then using integration by parts and the boundary
conditions (2.11), we have

⟨AΨ,Ψ⟩H =δ3∥ϕ∥
2 + β1

∫ +∞

0
µ1(s)⟨σxs(s), σx(s)⟩ds + β2

∫ +∞

0
µ2(s)⟨ζxs(s), ζx(s)⟩ds

=δ3∥ϕ∥
2 +

β1

2

∫ +∞

0
µ1(s)

d
ds

(
∥σx(s)∥2

)
ds +

β2

2

∫ +∞

0
µ2(s)

d
ds

(
∥ζx(s)∥2

)
ds

=δ3∥ϕ∥
2 −

β1

2

∫ +∞

0
µ′1(s)∥σx(s)∥2ds +

β1

2
lim

a→+∞
µ1(s)∥σx(s)∥2

∣∣∣∣∣s=a

s=0

−
β2

2

∫ +∞

0
µ′2(s)∥ζx(s)∥2ds +

β2

2
lim

a→+∞
µ2(s)∥ζx(s)∥2

∣∣∣∣∣s=a

s=0
.

From (2.5) and (2.6), we obtain

lim
a→+∞

µ1(s)∥σx(s)∥2
∣∣∣∣∣s=a

s=0
= lim

a→+∞
µ2(s)∥ζx(s)∥2

∣∣∣∣∣s=a

s=0
= 0.

Therefore,

⟨AΨ,Ψ⟩H =δ3∥ϕ∥
2 −

β1

2

∫ +∞

0
µ′1(s)∥σx(s)∥2ds −

β2

2

∫ +∞

0
µ′2(s)∥ζx(s)∥2ds ≥ 0.

Therefore,A is monotone. □

Lemma 3.2. The linear operatorA : D(A) ⊂ H → H defined in (2.13) maximal, that is R(I +A) =
H .

Proof. Given F = (k1, k2, k3, k4, k5, k6, k7, k8, k9, k10) ∈ H , we look for a unique solution

Ψ = (u, φ, v, ψ,w, ϕ, θ, σ, ϑ, ζ) ∈ D(A)
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such that Ψ solves the stationary problem

Ψ +AΨ = F. (3.1)

System (3.1) is equivalent to

u − φ = k1, in H1
b ,

ρ1h1φ − E1h1uxx − k(−u + v + αwx) + δ1θx = ρ1h1k2, in L2,

v − ψ = k3, in H1
b ,

ρ3h3ψ − E3h3vxx + k(−u + v + αwx) − δ1θ + δ2ϑx = ρ3h3k4, in L2,

w − ϕ = k5, in H2
∗ ,

(ρh + δ3)ϕ + EIwxxxx − αk(−u + v + αwx)x = ρhk6, in L2,

ρ4θ − β1

∫ +∞

0
µ1(s)σxx(x, s)ds + δ1 (φx + ψ) = ρ4k7, in L2,

σ + σs − θ = k8, in L2
µ1

ρ5ϑ − β2

∫ +∞

0
µ2(s)ζxx(x, s)ds + δ2ψx = ρ5k9, in L2,

ζ + ζs − ϑ = k10, in L2
µ2
.

(3.2)

By multiplying (3.2)8 and (3.2)10 by er and integrating the results over (0, s), we arrive at

σ(s) =
(
1 − e−s) θ + ∫ s

0
er−sk8(r)dr,

ζ(s) =
(
1 − e−s)ϑ + ∫ s

0
er−sk10(r)dr.

(3.3)

From (3.2)1, (3.2)3 and (3.2)5, we get

u − k1 = φ, v − k3 = ψ and w − k5 = ϕ, (3.4)

respectively. Substituting (3.4) and (3.3) into (3.2)2, (3.2)4, (3.2)6, (3.2)7 and (3.2)9 leads to

ρ1h1u − E1h1uxx − k(−u + v + αwx) + δ1θx = ρ1h1(k1 + k2)︸          ︷︷          ︸
f 1

, in L2,

ρ3h3v − E3h3vxx + k(−u + v + αwx) − δ1θ + δ2ϑx = ρ3h3(k3 + k4)︸          ︷︷          ︸
f 2

, in L2,

ρhw + EIwxxxx − αk(−u + v + αwx)x = δ3k5 + ρh(k5 + k6)︸                 ︷︷                 ︸
f 3

, in L2,

ρ4θ −Cβ1,µ1θxx + δ1 (ux + v)

= δ1

(
k1

x + k3
)
+ ρ4k7 + β1

∫ +∞

0
µ1(s)

(∫ s

0
er−sk8

xx(r)dr
)

ds︸                                                                    ︷︷                                                                    ︸
f 4

, in H−1,

ρ5ϑ −Cβ2,µ2ϑxx + δ2vx

= δ2k3
x + ρ5k9 + β2

∫ +∞

0
µ2(s)

(∫ s

0
er−sk10

xx(r)dr
)

ds︸                                                          ︷︷                                                          ︸
f 5

, in H−1,

(3.5)
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where

Cβi,µi = βi

∫ +∞

0
µi(s)

(
1 − e−s) ds > 0, i = 1, 2.

Now, we observe that last terms in f 4 and f 5 are in H−1(0, π). Indeed, since k8 ∈ L2
µ1

, we have for any

ϖ ∈ H1
a(0, π), with ∥ϖx∥ ≤ 1,

that ∣∣∣∣∣∣
〈∫ +∞

0
µ1(s)

(∫ s

0
er−sk8

xx(r)dr
)

ds, ϖ
〉∣∣∣∣∣∣ =

∣∣∣∣∣∣
〈∫ +∞

0
µ1(s)

(∫ s

0
er−sk8

x(r)dr
)

ds, ϖx

〉∣∣∣∣∣∣
≤

∫ +∞

0
µ1(s)e−s

(∫ s

0
er∥k8

x(r)∥dr
)

ds

=

∫ +∞

0
er∥k8

x(r)∥
(∫ +∞

r
e−sµ1(s)ds

)
dr

= ≤

∫ +∞

0
µ1(r)er∥k8

x(r)∥
∫ +∞

r
e−sdsdr

=

∫ +∞

0
µ1(r)∥k8

x(r)∥dr < ∞.

In the same way, we get that ∫ +∞

0
µ2(s)

(∫ s

0
er−sk10

xx(r)dr
)

ds ∈ H−1(0, π).

Next, we consider the Banach space H := H1
b × H1

b × H2
∗ × L2 × L2 and equip it with the norm

∥(u, v,w, θ, ϑ)∥2H =ρ1h1∥u∥2 + E1h1∥ux∥
2 + k∥(−u + v + αwx)∥2 + ρ3h3∥v∥2 + E3h3∥vx∥

2

+ ρh∥w∥2 + EI∥wxx∥
2 + ρ4∥θ∥

2 + ρ5∥ϑ∥
2.

On the account of the weak formulation of (3.5), we consider the bilinear form B on H × H and linear
form L on H, define as follows:

B((u, v,w, θ, ϑ), (u∗, v∗,w∗, θ∗, ϑ∗))
:=ρ1h1⟨u, u∗⟩ + E1h1⟨ux, u∗x⟩ + k⟨(−u + v + αwx), (−u∗ + v∗ + αw∗x)⟩
+ ρ3h3⟨v, v∗⟩ + E3h3⟨vx, v∗x⟩ + ρh⟨w,w∗⟩ + EI⟨wxx,w∗xx⟩

+ ρ4⟨θ, θ
∗⟩ +Cη,β1,µ1⟨θx, θ

∗
x⟩ + ρ5⟨ϑ, ϑ

∗⟩ +Cη,β2,µ2⟨ϑx, ϑ
∗
x⟩,

and

L((u∗, v∗,w∗, θ∗, ϑ∗)) :=⟨ρ1h1(k1 + k2), u∗⟩ + ⟨ρ3h3(k3 + k4), v∗⟩ + ⟨δ3k5 + ρh(k5 + k6), u∗⟩

+ ⟨δ1

(
k1

x + k3
)
+ ρ4k7, θ∗⟩ + ⟨β1

∫ +∞

0
µ1(s)

(∫ s

0
er−sk8

x(r)dr
)

ds, θ∗x⟩

+ ⟨δ2k3
x + ρ5k9, ϑ∗⟩ + ⟨β2

∫ +∞

0
µ2(s)

(∫ s

0
er−sk10

x (r)dr
)

ds, ϑ∗x⟩,
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for every (u, v,w, θ, ϑ), (u∗, v∗,w∗, θ∗, ϑ∗) ∈ H. Routine computations, using Cauchy-Schwarz, Young’s
and Poincaré’s inequalities shows that B is a bounded and coercive bilinear form on H ×H, and L is a
bounded linear form onH. Therefore, using Lax-Milgram theorem, there exists a unique (u, v,w, θ, ϑ) ∈
H such that

B((u, v,w, θ, ϑ), (u∗, v∗,w∗, θ∗, ϑ∗)) = L((u∗, v∗,w∗, θ∗, ϑ∗)), ∀ (u∗, v∗,w∗, θ∗, ϑ∗) ∈ H.

From (3.4), it follows that
φ ∈ H1

b , ψ ∈ H1
b and ϕ ∈ H2

∗ .

Then, using standard regularity theory, it follows from (3.5), that

u, v ∈ H2
b ∩ H1

b , w ∈ H4 ∩ H2
∗ , θ, ϑ ∈ H2 ∩ H1

a .

Since u, v ∈ H1
b ,w, k

6 ∈ H2
∗ and k6 ∈ L2, it easy to see from (3.5)3 that w satisfy

wxx(0) = wxx(π) = 0.

Also, from (3.3), substituting θ and ϑ, we see that

σ ∈ D(L2
µ1

), ζ ∈ D(L2
µ2

).

Finally, from (3.2)7 and (3.2)9, using regularity theory, we get that∫ +∞

0
µ1(s)σ(s)ds,

∫ +∞

0
µ2(s)ζ(s)ds ∈ H2 ∩ H1

a .

Thus, Ψ = (u, φ, v, ψ,w, ϕ, θ, σ, ϑ, ζ) ∈ D(A) and satisfies (3.1). That is, the operator A is maximal.
□

3.2. Well-posedness Result

Theorem 3.1. SupposeΨ0 = (u0, u1, v0, v1,w0,w1, θ0, σ0, ϑ0, ζ0) ∈ H is given and condition (A1) holds,
then the Cauchy problem (2.13) has a unique weak global solution

Ψ ∈ C([0,+∞),H).

Furthermore, if Ψ0 = (u0, u1, v0, v1,w0,w1, θ0, σ0, ϑ0, ζ0) ∈ D(A), then the solution is in the class

Ψ ∈ C([0,∞),D(A)) ∩ C1([0,∞),H).

Proof. On account of Lemmas 3.1 and 3.2 applying the Hille-Yosida theorem, we have that A is a
generator of a C0-semigroup of contractions S(t) = eAt, t ≥ 0, on H . By the semigroup theory for
linear operators (Pazy [31]), we get that

Ψ(t) = S(t)Ψ0, t ≥ 0,

onH is a unique solution satisfying problem (2.13). □
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4. Stability result

In this section, we study the stability of solution of (2.10)–(2.12). The energy functional associated
to the solution Ψ = (u, ut, v, vt,w,wt, θ, σ, ϑ, ζ) of system (2.10)–(2.12) is defined by

E(t) =
1
2

[
ρ1h1∥ut∥

2 + ρ3h3∥vt∥
2 + ρh∥wt∥

2 + E1h1∥ux∥
2 + E3h3∥vx∥

2 + EI∥wxx∥
2
]

+
1
2

[
k∥(−u + v + αwx)∥2 + ρ4∥θ∥

2 + β1∥σ∥
2
L2
µ1
+ ρ5∥ϑ∥

2 + β2∥ζ∥
2
L2
µ2

]
, ∀ t ≥ 0.

(4.1)

4.1. Needed lemmas for stability

Lemma 4.1. Under the conditions of Theorem 3.1, the energy functional (4.1) satisfies

E′(t) = −δ3∥wt∥
2 +

β1

2

∫ +∞

0
µ′1(s)∥σx(s)∥2ds +

β2

2

∫ +∞

0
µ′2(s)∥ζx(s)∥2ds ≤ 0,∀t ≥ 0. (4.2)

Proof. Multiplication in L2(0, π) the Eq (2.10)1, (2.10)2, (2.10)3, (2.10)4 and (2.10)6 by ut, vt,wt, θ and
ϑ respectively, follow by multiplying (2.10)5 and (2.10)7 by σ and ζ in L2

µ1
and L2

µ2
respectively, then

using integration by parts and the boundary conditions (2.11), we have

1
2

d
dt

[
ρ1h1∥ut∥

2 + E1h1∥ux∥
2
]
− ⟨k(−u + v + αwx), ut⟩ − δ1⟨θ, uxt⟩ = 0, (4.3)

1
2

d
dt

[
ρ3h3∥vt∥

2 + E3h3∥vx∥
2
]
+ ⟨k(−u + v + αwx), vt⟩ − δ1⟨θ, vt⟩ − δ2⟨ϑ, vxt⟩ = 0, (4.4)

1
2

d
dt

[
ρh∥wt∥

2 + EI∥wxx∥
2
]
+ ⟨k(−u + v + αwx), αwxt⟩ + δ3∥wt∥

2 = 0, (4.5)

1
2

d
dt

[
ρ4∥θ∥

2
]
+ β1

∫ +∞

0
µ1(s)⟨σx(s), θx(t)⟩ds + δ1⟨θ, (uxt + vt)⟩ = 0, (4.6)

1
2

d
dt

[
β1∥σ∥

2
L2
µ1

]
−
β1

2

∫ +∞

0
µ′1(s)∥σx(s)∥2ds − β1

∫ +∞

0
µ1(s)⟨σx(s), θx(t)⟩ds = 0, (4.7)

1
2

d
dt

[
ρ5∥ϑ∥

2
]
+ β2

∫ +∞

0
µ2(s)⟨ζx(s), ϑx(t)⟩ds + δ2⟨ϑ, vxt⟩ = 0, (4.8)

and
1
2

d
dt

[
β2∥ζ∥

2
L2
µ2

]
−
β2

2

∫ +∞

0
µ′2(s)∥ζx(s)∥2ds − β1

∫ +∞

0
µ2(s)⟨ζx(s), ϑx(t)⟩ds = 0. (4.9)

Addition of (4.3)–(4.9) leads to

E′(t) = −δ3∥wt∥
2 +

β1

2

∫ +∞

0
µ′1(s)∥σx(s)∥2ds +

β2

2

∫ +∞

0
µ′2(s)∥ζx(s)∥2ds ≤ 0. (4.10)

Therefore, the energy E is non-increasing and bounded above by E(0). Also, the computations here are
done for regular solution. However, the result remains true for weak solution by density argument. □
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Lemma 4.2. Let Ψ = (u, ut, v, vt,w,wt, θ, σ, ϑ, ζ) ∈ H be the solution of system (2.10)–(2.12) given by
Theorem 3.1, then the functional G1 defined by

G1(t) = ρ1h1⟨ut, u⟩ + ρ3h3⟨vt, v⟩ + ρh⟨wt,w⟩ +
δ3

2
∥w∥2

satisfies the estimate

G′1(t) ≤ −
E1h1

2
∥ux∥

2 −
E3h3

2
∥vx∥

2 − EI∥wxx∥
2 − k∥(−u + v + αwx)∥2

+ ρ1h1∥ut∥
2 + ρ3h3∥vt∥

2 + ρh∥wt∥
2 +C∥θ∥2 +C∥ϑ∥2, ∀ t ≥ 0.

(4.11)

Proof. Differentiation of G1 gives

G′1(t) =ρ1h1⟨utt, u⟩ + ρ3h3⟨vtt, v⟩ + ρh⟨wtt,w⟩ + δ3⟨wt,w⟩

+ ρ1h1∥ut∥
2 + ρ3h3∥vt∥

2 + ρh∥wt∥
2.

Using Eq (2.10)1, (2.10)2 and (2.10)3, then applying integration by parts over (0, π) and making use of
the boundary conditions (2.11) leads to

G′1(t) = − E1h1∥ux∥
2 − E3h3∥vx∥

2 − EI∥wxx∥
2 − k∥(−u + v + αwx)∥2

+ δ1⟨ux, θ⟩ + δ1⟨v, θ⟩ + δ2⟨vx, ϑ⟩ + ρ1h1∥ut∥
2 + ρ3h3∥vt∥

2 + ρh∥wt∥
2.

Applying Young’s and Poincaré’s inequalities, we obtain

G′1(t) ≤ −
E1h1

2
∥ux∥

2 −
E3h3

2
∥vx∥

2 − EI∥wxx∥
2 − k∥(−u + v + αwx)∥2

+ ρ1h1∥ut∥
2 + ρ3h3∥vt∥

2 + ρh∥wt∥
2 +C∥θ∥2 +C∥ϑ∥2.

□

Lemma 4.3. Let Ψ = (u, ut, v, vt,w,wt, θ, σ, ϑ, ζ) ∈ H be the solution of system (2.10)–(2.12) given by
Theorem 3.1, then the functional G2 defined by

G2(t) = −ρ1h1ρ4⟨θ, ût(t)⟩, where ût(t) =
∫ x

0
ut(y, t)dydx

satisfies, for any ϵ1 > 0 and ϵ2 > 0, the the estimate

G′2(t) ≤ −
ρ1h1δ1

2
∥ut∥

2 + ϵ1∥ux∥
2 + ϵ2∥(−u + v + αwx)∥2

+C∥vt∥
2 +C∥σ∥2L2

µ1
+C

(
1 +

1
ϵ1
+

1
ϵ2

)
∥θ∥2, ∀ t ≥ 0. (4.12)

Proof. Differentiation of G2, using (2.10)1 and (2.10)4, integration by parts and boundary
conditions (2.11), we arrive at

G′2(t) = − ρ1h1ρ4⟨θ, ûtt(t)⟩ − ρ1h1ρ4⟨θt, ût(t)⟩
= − ρ1h1δ1∥ut∥

2 − ρ4E1h1⟨θ, ux⟩ + ρ1h1δ1⟨vt, ût(t)⟩
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− ρ4k⟨θ, ̂(−u + v + αwx)⟩ + ρ3δ1∥θ∥
2

+ ρ1h1β1⟨ut,

∫ +∞

0
µ1(s)σx(., t, s)ds⟩.

Using Cauchy-Schwarz, Young’s and Poincaré’s inequalities yields

G′2(t) ≤ − ρ1h1δ1∥ut∥
2 + ϵ1∥ux∥

2 +
(ρ4E1h1)2

4ϵ1
∥θ∥2 +

3ρ1h1δ1

4
∥vt∥

2

+
ρ1h1δ1

4
∥ut∥

2 + ϵ2∥(−u + v + αwx)∥2 +
(ρ4k)2

4ϵ2
∥θ∥2

+ ρ3δ1∥θ∥
2 +

ρ1h1δ1

4
∥ut∥

2 +
3ρ1h1β

2
1

4δ1
∥σ∥2L2

µ1
.

Thus, we obtain (4.12). □

Lemma 4.4. Let Ψ = (u, ut, v, vt,w,wt, θ, σ, ϑ, ζ) ∈ H be the solution of system (2.10)–(2.12) given by
Theorem 3.1, then the functional G3 defined by

G3(t) = −ρ3h3ρ5⟨ϑ, v̂t(t)⟩, where v̂t(t) =
∫ x

0
vt(y, t)dy

satisfies, for any ϵ3 > 0 and ϵ4 > 0, the estimate

G′3(t) ≤ −
ρ3h3δ2

2
∥vt∥

2 + ϵ3∥vx∥
2 + ϵ4∥(−u + v + αwx)∥2

+C∥θ∥2 +C∥ζ∥2L2
µ2
+C

(
1 +

1
ϵ3
+

1
ϵ4

)
∥ϑ∥2, ∀ t ≥ 0. (4.13)

Proof. Differentiation of G3, using (2.10)2 and (2.10)5, integration by parts and boundary
conditions (2.11), we arrive at

G′3(t) = − ρ3h3ρ5⟨ϑ, v̂tt(t)⟩ − ρ3h3ρ5⟨ϑt, v̂t(t)⟩

= − ρ3h3δ2∥vt∥
2 − ρ5E3h3⟨ϑ, vx⟩ − ρ5δ1⟨ϑ, θ̂(t)⟩ + ρ5k⟨ϑ, ̂(−u + v + αwx)⟩

+ ρ5δ2∥ϑ∥
2 + ρ3h3β2⟨vt,

∫ +∞

0
µ2(s)ζx(., t, s)ds⟩.

Applying Cauchy-Schwarz, Young’s and Poincaré’s inequalities, we have

G′3(t) ≤ − ρ3h3δ2∥vt∥
2 + ϵ3∥vx∥

2 +
(ρ5E3h3)2

4ϵ3
∥ϑ∥2 +

ρ5δ1

2
∥θ∥2

+
ρ5δ1

2
∥ϑ∥2 + ϵ4∥(−u + v + αwx)∥2 +

(ρ5k)2

4ϵ4
∥ϑ∥2

+ ρ5δ2∥ϑ∥
2 +

ρ3h3δ2

4
∥vt∥

2 +
3ρ3h3β

2
2

4δ2
∥ζ∥2L2

µ2
.

Hence, we get (4.13). □
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Lemma 4.5. Let Ψ = (u, ut, v, vt,w,wt, θ, σ, ϑ, ζ) ∈ H be the solution of system (2.10)–(2.12) given by
Theorem 3.1, then the functional G4 defined by

G4(t) = −ρ4⟨θ,

∫ +∞

0
µ1(s)σ(., t, s)ds⟩,

satisfies, for any ϵ5 > 0 and ϵ6 > 0, the estimate

G′4(t) ≤ −
ρ4g1(0)

2
∥θ∥2 + ϵ5∥ut∥

2 + ϵ6∥vt∥
2 −C

∫ +∞

0
µ′1(s)∥σx(s)∥2ds (4.14)

+C
(
1 +

1
ϵ5
+

1
ϵ6

)
∥σ∥2L2

µ1
, ∀ t ≥ 0. (4.15)

Proof. Differentiating G4 with respect to t, using (2.10)4 and (2.10)5, integration by parts and the
boundary conditions (2.11) and recalling (2.4), we get

G′4(t) = − ρ4⟨θt,

∫ +∞

0
µ1(s)σ(., t, s)ds⟩ − ρ4⟨θ,

∫ +∞

0
µ1(s)σt(., t, s)ds⟩

= − ρ4g1(0)∥θ∥2 + β1

∥∥∥∥∥∥
∫ +∞

0
µ1(s)σx(., t, s)ds

∥∥∥∥∥∥2

− δ1⟨ut,

∫ +∞

0
µ1(s)σx(., t, s)ds⟩ + δ1⟨vt,

∫ +∞

0
µ1(s)σx(., t, s)ds⟩

+ ρ4⟨θ,

∫ +∞

0
µ1(s)σs(., t, s)ds⟩.

Making use of Cauchy-Schwarz and Young’s inequalities, we have

β1

∥∥∥∥∥∥
∫ +∞

0
µ1(s)σx(., t, s)ds

∥∥∥∥∥∥2

≤ C∥σ∥2L2
µ1
, (4.16)

∣∣∣∣∣∣−δ1⟨ut,

∫ +∞

0
µ1(s)σx(., t, s)ds⟩

∣∣∣∣∣∣ ≤ ϵ5∥ut∥
2 +

C
ϵ5
∥σ∥2L2

µ1
, for any ϵ5 > 0, (4.17)∣∣∣∣∣∣δ1⟨vt,

∫ +∞

0
µ1(s)σx(., t, s)ds⟩

∣∣∣∣∣∣ ≤ ϵ6∥vt∥
2 +

C
ϵ6
∥σ∥2L2

µ1
, for any ϵ6 > 0. (4.18)

Also, using integration by parts with respect to s, we get∣∣∣∣∣∣ρ4⟨θ,

∫ +∞

0
µ1(s)σs(., t, s)ds⟩

∣∣∣∣∣∣
=

∣∣∣∣∣∣−ρ4⟨θ,

∫ +∞

0
µ1(s)σ′(., t, s)ds⟩

∣∣∣∣∣∣
≤C∥θ∥

(
−

∫ +∞

0
µ′1(s)∥σx∥

2ds
) 1

2

≤
ρ4g1(0)

2
∥θ∥2 −C

∫ +∞

0
µ′1(s)∥σx(s)∥2ds.

(4.19)

AIMS Mathematics Volume 8, Issue 12, 28188–28209.



28204

On account of (4.16)–(4.19), we obtain

G′4(t) ≤ −
ρ4g1(0)

2
∥θ∥2 + ϵ5∥ut∥

2 + ϵ6∥vt∥
2 −C

∫ +∞

0
µ′1(s)∥σx(s)∥2ds

+C
(
1 +

1
ϵ5
+

1
ϵ6

)
∥σ∥2L2

µ1
.

□

Lemma 4.6. Let Ψ = (u, ut, v, vt,w,wt, θ, σ, ϑ, ζ) ∈ H be the solution of system (2.10)–(2.12) given by
Theorem 3.1, then the functional G5 defined by

G5(t) = −ρ5⟨ϑ,

∫ +∞

0
µ2(s)ζ(., t, s)ds⟩,

satisfies for any ϵ7 > 0, the estimate

G′5(t)(t) ≤ −
ρ5g2(0)

2
∥ϑ∥2 + ϵ7∥vt∥

2 −C
∫ +∞

0
µ′2(s)∥ζx(s)∥2ds +C

(
1 +

1
ϵ7

)
∥ζ∥2L2

µ2
, ∀ t ≥ 0. (4.20)

Proof. Differentiation of G5 with respect to t, using (2.10)6 and (2.10)7, integration by parts and the
boundary conditions (2.11), and recalling (2.4), we get

G′5 = − ρ5⟨ϑt,

∫ +∞

0
µ2(s)ζ(., t, s)ds⟩ − ρ5⟨ϑ,

∫ +∞

0
µ2(s)ζt(., t, s)ds⟩

= − ρ5g1(0)∥ϑ∥2 + β2

∥∥∥∥∥∥
∫ +∞

0
µ2(s)ζx(., t, s)ds

∥∥∥∥∥∥2

− δ2⟨vt,

∫ +∞

0
µ2(s)ζx(., t, s)ds⟩ + ρ5⟨ϑ,

∫ +∞

0
µ2(s)ζs(., t, s)ds⟩.

Using similar estimations as in (4.16)–(4.19) leads to (4.20). □

4.2. Main stability result

The main stability result of this work is the following:

Theorem 4.1. Let Ψ0 = (u0, u1, v0, v1,w0,w1, θ0, σ0, ϑ0, ζ0) ∈ D(A) be given. Suppose condition (A1)
holds, then the energy functional E(t) defined in (4.1) decays exponentially. That is, there exists positive
constants M and λ such that

E(t) ≤ Me−λt, ∀t ≥ 0. (4.21)

Proof. We set

L(t) := NE(t) + N1G1(t) + N2G2(t) + N3G3(t) + N4G4(t) + N5G5(t), t ≥ 0, (4.22)

for some N,N1,N2,N3,N4,N5 > 0 to be specified later. Direct computations, applying Young’s,
Cauchy-Schwarz and Poincaré’s inequalities gives

b̃1E(t) ≤ L(t) ≤ b̃2E(t), t ≥ 0, (4.23)
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for some positive constants b̃1 and b̃2. Now, using Lemmas 4.1 and 4.2−4.6, we get

L′(t) ≤ −
[
ρ1h1δ1

2
N2 − ρ1h1N1 − ϵ5N4

]
∥ut∥

2 −
[
δ3N − ρhN1

]
∥wt∥

2

−

[
ρ3h3δ2

2
N3 − ρ3h3N1 −CN2 − ϵ6N4 − ϵ7N5

]
∥vt∥

2

−

[
E1h1

2
N1 − ϵ1N2

]
∥ux∥

2 −

[
E3h3

2
N1 − ϵ3N3

]
∥vx∥

2 − EIN1∥wxx∥
2

− [kN1 − ϵ2N2 − ϵ4N3] ∥(−u + v + αwx)∥2

−

[
ρ4g1(0)

2
N4 −CN1 −CN2

(
1 +

1
ϵ 1
+

1
ϵ2

)
−CN3

]
∥θ∥2

+

[
CN2 +CN4

(
1 +

1
ϵ5
+

1
ϵ6

)]
∥σ∥2L2

µ1
−

[
β1

2
N −CN4

] ∫ +∞

0
µ′1(s)∥σx(s)∥2ds

−

[
ρ5g2(0)

2
N5 −CN1 −CN3

(
1 +

1
ϵ3
+

1
ϵ 4

)]
∥ϑ∥2

+

[
CN3 +CN5

(
1 +

1
ϵ7

)]
∥ζ∥2L2

µ2
−

[
β2

2
N −CN5

] ∫ +∞

0
µ′2(s)∥ζx(s)∥2ds.

(4.24)

From (2.5), we have that

µi(s) ≤ −
1
ξi
µ′i(s), i = 1, 2.

Also, by choosing

N1 = 1, ϵ1 =
E1h1

4N2
, ϵ2 =

k
4N2

, ϵ3 =
E3h3

4N3
, ϵ4 =

k
4N3

,

ϵ5 =
ρ1h1δ1

4N4
, ϵ6 =

ρ3h3δ2

8N4
, ϵ7 =

ρ3h3δ2

8N5
,

then (4.24) takes the form

L′(t) ≤ −
[
ρ1h1δ1

4
N2 − ρ1h1

]
∥ut∥

2 −

[
ρ3h3δ2

4
N3 −CN2 − ρ3h3

]
∥vt∥

2

−
[
δ3N − ρh

]
∥wt∥

2 −
E1h1

4
∥ux∥

2 −
E3h3

4
∥vx∥

2

− EI∥wxx∥
2 −

k
2
∥(−u + v + αwx)∥2

−

[
ρ4g1(0)

2
N4 −CN2

(
1 +

4N2

E1h1
+

4N2

k

)
−CN3 −C

]
∥θ∥2

−

[
β1ξ1

2
N −Cξ1N4 −

(
CN2 +CN4

(
1 +

4N4

ρ1h1δ1
+

8N4

ρ3h3δ2

))]
∥σ∥2L2

µ1

−

[
ρ5g2(0)

2
N5 −CN3

(
1 +

4N3

E3h3
+

4N3

k

)
−C

]
∥ϑ∥2

−

[
β2ξ2

2
N −Cξ2N5 −

(
CN3 +CN5

(
1 +

8N5

ρ3h3δ2

))]
∥ζ∥2L2

µ2
.

(4.25)
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Next, we specified the rest of the parameters. First, we choose N2 large such that

ρ1h1δ1

4
N2 − ρ1h1 > 0.

Second, we select N3 large enough such that

ρ3h3δ2

4
N3 −CN2 − ρ3h3 > 0.

Thirdly, we choose N4 and N5 large enough such that

ρ4g1(0)
2

N4 −CN2

(
1 +

4N2

E1h1
+

4N2

k

)
−CN3 −C > 0,

and
ρ4h2(0)

2
N5 −CN3

(
1 +

8N3

k
+

4N3

b

)
−C > 0.

Finally, we choose N very large so that (4.23) remain valid and

δ3N − ρh > 0,
β1ξ1

2
N −Cξ1N4 −

(
CN2 +CN4

(
1 +

4N4

ρ1h1δ1
+

8N4

ρ3h3δ2

))
> 0,

β2ξ2

2
N −Cξ2N5 −

(
CN3 +CN5

(
1 +

8N5

ρ3h3δ2

))
> 0.

Thus, we obtain

L′(t) ≤ − γ0

[
∥ut∥

2 + ∥vt∥
2 + ∥wt∥

2 + ∥ux∥
2 + ∥vx∥

2 + ∥wxx∥
2
]

− γ0

[
∥(−u + v + αwx)∥2 + |θ∥2 + ∥σ∥2L2

µ1
+ ∥ϑ∥2 + ∥ζ∥2L2

µ2

] (4.26)

for some γ0 > 0. Recalling (4.1), it follows from (4.26) that

L′(t) ≤ −γ1E(t), ∀ t ≥ 0, (4.27)

for some γ1 > 0. Using (4.23), we obtain

L′(t) ≤ −γ2L(t), ∀ t ≥ 0, (4.28)

for some γ2 > 0. Integrating (4.28) over (0, t) yields for some γ3 > 0

L(t) ≤ L(0)e−γ3t, ∀ t ≥ 0. (4.29)

Hence, the exponential estimate of the energy functional E(t) in (4.21) follows from (4.29) by
using (4.23). This completes the proof. □

5. Conclusions

In this work, we investigated the the effect of Gurtin-Pipkin’s thermal law on the outer layers of
the Rao-Nakra beam model. Using standard semi-group theory for linear operators and the multiplier
method, the well-posedness and a stability result of solutions of the triple beam system have been
established.
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