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Abstract: Evaluating water quality is crucial for preserving the quality of river water. However, the typical technique of getting 
biochemical oxygen demand (BOD) values via laboratory testing might take several days, delaying the application of real-
time measurement to improve water quality. This paper suggests using machine learning to predict BOD values from eight 
water quality measurements. The BOD rate in the Klang River, Selangor, Malaysia, was estimated using the long short-term 
memory (LSTM) method. The model was trained using historical data collected from eleven water collection points along the 
river. The predictive test results indicated that the LSTM model with 8 water parameters as input gave the most accurate 
predictions compared to the models with 5 and 3 water parameters. The results of this study indicate that machine learning 
methods can be used to predict BOD levels in real-time. It enables water quality managers to enhance water quality and 
safeguard human health proactively. 
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1. INTRODUCTION 
Organic or chemical pollutants are commonly responsible for water pollution. Microorganisms such as bacteria and viruses 
that are generated by human and animal waste and plant residues contaminate organic substances. Chemical contamination is 
caused by pesticides such as nitrates and phosphates, industrial acids and hydrocarbons, household goods, and heavy metals. 
Water's physical, biological, and chemical components are frequently tested for pollution. These properties are referred to as 
physicochemical water parameters. The Biochemical Oxygen Demand (BOD) is a common criterion for water quality as stated 
by [1]. The BOD concentration can be calculated using an index method that assesses the environmental impact of released 
wastewater. According to [2], BOD is a measure of the amount of oxygen consumed by microorganisms during the oxidation 
of organic materials. The higher the level of BOD in the water, the lower the Dissolved Oxygen (DO), as experimented by [3]. 
Fish and other aquatic creatures will suffer from a shortage of DO. Furthermore, stated by Prambudy et al. [4], BOD is 
important because it offers information on water quality factors directly related to the water body's health. However, as claimed 
in [5], in determining water quality, the Chemical Oxygen Demand (COD) is analogous to the BOD. As agreed by [6], the 
COD indicates how much oxygen organic water contaminants used as they oxidize and create inorganic end products. Because 
of the shorter testing duration, Hasanah et al. [7] suggested that COD is to be used instead of BOD. However, several variables 
influence BOD and COD concentrations in water, as well as their temporal change. Measuring BOD value with a chemical 
solution is time-consuming and expensive. Existing experimental and statistical methods are incapable of resolving time 
limitations and have limited capability.  

Alamelu et al. [8] stated that testing for BOD is a time-consuming technique that takes five days from data collection to 
analysis and requires samples to be incubated for a lengthy period. This is agreed by [9], where laboratory settings, notably 
changes in the microbial variety of the inoculum used, can cause results to differ by 20%. According to [10], the rate of oxygen 
required for the oxidation of organic wastes is addressed in laboratory BOD testing, but not the oxygen consumed by living 
organisms in water. Susilowati et al. [11] express the concern about other complicating factors including the oxygen 
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requirement created by algal respiration in the sample and the likelihood of ammonia oxidation. This statement is supported 
by [12], toxic substances, for example, may hinder microbial activity, resulting in a lower reported BOD value. The laboratory 
conditions used to assess BOD are not the same as those seen in aquatic systems. Furthermore, Jouanneau et al. [9] emphasized 
that significant differences in test results may exist due to the laboratories' approach to sample preservation, the grade of 
chemicals utilized, and the testing process used. As a result, there is an urgent need to investigate a viable secondary (indirect) 
technique for BOD prediction based on historical water data.  

Researchers are beginning to pay attention to the application of machine learning in estimating the value of BOD. This 
machine learning technique has already been employed in studies by researchers [13, 14]. Ooi et al. [13] employed a multi-
layer perceptron (MLP) to improve the accuracy of BOD readings based on physical and chemical characteristics in water. 
Samir et al. [14] conducted research on home drain water and how it might be recycled. They employed an artificial neural 
network (ANN) model to quickly gather BOD values so that the water quality index (WQI) could be calculated. Jiang et al. 
[15] investigated the same issue and discovered a pollution problem in the urban drainage system that is difficult to monitor 
and manage. To address this issue, critical water quality indicators must be identified in sewer water quality evaluation and 
forecasting. To predict BOD levels, they employed multiple linear regression (MLR) and multilayer perceptron (MLP). 

Furthermore, its management is prone to human error and administrative challenges, resulting in the omission of critical 
measurements. Nevertheless, thanks to recent technological advances, this problem can be handled by employing an electronic 
sensor system capable of promptly and accurately monitoring the BOD concentration in water. Regrettably, this advanced 
electronic BOD measurement equipment is costly. Therefore, this work investigates the opportunities of using the advancement 
in artificial intelligence to predict the BOD level given prior information from other water parameters. 

2. METHODOLOGY 
A fundamental study is proposed to address these gaps and examine the relationship between BOD and other well-established 
characteristics. The characteristics are Chemical Oxygen Demand (COD), Dissolved Oxygen (DO), pH, temperature, turbidity, 
Dissolved Solids (DS), Suspended Solids (SS), and ammoniacal nitrogen (NH3-N). The parameters give a cost-effective 
solution, while the in-situ technique addresses the issue of time constraints via an intelligent predictive model. A long short-
term memory (LSTM) recurrent neural network structure is appropriate since it can extract long-term relationships between 
multiple variables, resulting in accurate BOD profiling. 

2.1 Data Extraction 
The Klang River provided the information for this study. The Klang River passes through Selangor and Wilayah Persekutuan 
Kuala Lumpur. Figure 1 depicts the locations of seven tributaries, including the Batu River, Gombak River, Penchala River, 
Damansara River, Ampang River, Kerayong River, and Kuyuh River. Since any pollution or change in the water quality rate 
from any of them is likely to impact changes in the water quality or BOD parameter of the mainstream, the Klang River, studies 
are undertaken based on the data from these tributaries. 

The water quality data from the seven tributaries used in this study were gathered by the Department of Environment 
(DOE) at stationary water monitoring stations (denoted as 1KXX in Figure 1) from 2012 to 2018. The data is then separated 
into two sections. The first portion provides data from 2012 to 2017 that will be utilized for model Training, Validation, and 
Testing. The latter, from 2017 to 2018, is used as prediction data. Figure 2 depicts the stations utilized to collect water 
information for this study. Five water data collection stations are positioned within the main river. At the same time, the 
remaining six are located within the six key rivers that contribute to the water changes in the main river. Based on eight water 
parameters used and it involves the collection of data from 11 water data collection stations, a total of 150,448 pieces of data 
starting from 2012 to 2017 were used to test the deep learning model. Data collection is based on daily readings from each 
station. 

 
 

 
Figure 1. The main rivers that contribute to Klang River [8] 
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Figure 2. Water data collection station involved along the Klang River 

 
 

 
Figure 3. The internal structure of LSTM hidden layer cells [22] 

 

2.2 Water Parameter Data Restructuring using Interpolation  
The hydrological data of the Klang River collected from DOE were not evenly dispersed, and some of the data is significantly 
lacking due to possibilities such as sensor breakdowns, interrupting data collection schedules, and the officers' unavailability 
at the time. The DOE data is generally not routinely recorded by day, month, or year. Interpolation is a technique to rearrange 
the water parameter data needed to generate structured data. Before interpolation, the correlation coefficient test is performed 
on the interpolated data to see whether there has been a significant change in the test findings. 

2.3 Correlation Coefficient on Non-Interpolated and Interpolated Water Parameter Data  
As mentioned by Isaac et al. [16], the correlation coefficient is the precise measurement that indicates the degree of the linear 
link between two variables in correlation analysis. Meanwhile, the Pearson correlation coefficient (r) is one of the most utilized 
correlation metrics in practice as stated in [17]. A correlation coefficient close to 1 or -1 denotes the most significant positive 
or negative correlation between two variables. In contrast, Taylor [18] suggested that a number close to 0 implies no statistically 
significant linear link between two variables with a correlation coefficient of 0.05 and/or 0.01. There are two possibilities for 
probabilities: either a positive correlation or a negative correlation. There is a positive correlation when two variables respond 
in the same direction. In the case of a negative correlation, the two factors being compared will act in the opposite direction, 
with one parameter increasing while the other decreases, which has been agreed by several researchers [16],[19]. The 
correlation coefficient test was performed following the remodelling of the water parameter data to examine if there was a 
significant difference in the correlation coefficient between BOD and other water parameters before and after the interpolation 
process. 

2.4 LSTM Neural Network Model  
Hongxiang et al. [20] have mentioned that the LSTM structure enables the model to remember and keep a state at any time. It 
is accomplished using specifically engineered gates and memory cells. While on the other hand, Zhenbo et al. [21] discovered 
that the LSTM's long-term memory capabilities are appropriate for processing, classifying, and predicting time series data. 
LSTM is well-suited to situations involving long-term data series. This is due to the network's ability to learn long-distance 
temporal dependencies. The internal structure of hidden layer cells in the LSTM network is shown in Figure 3. 
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The first gate is known as the forget gate, the second as the input gate, and the third as the output gate. The forget gates 
will determine whether the information is retained. The sigmoid function will be applied to the current input data and data 
from the previous state, yielding a result between 0 and 1. A value near 0 indicates forgetting, and vice versa. The calculation 
for forget gates is shown in Equation (1).    

 
𝐹𝐹𝑡𝑡 = 𝜎𝜎 �𝑊𝑊𝑓𝑓  . [𝑆𝑆𝑡𝑡−1,𝑋𝑋𝑡𝑡] + 𝐵𝐵𝑓𝑓� (1) 

where σ denotes the sigmoid function. Wf is the weight matrixes and the [.,.] represents the concatenation operation. The St−1 
represents the previous cell. Xt is the input sequence data and Bf is the bias vectors [23]. The transfer function is initiated by 
feeding the prior hidden state and current input to the sigmoid function, which determines the relevance of the value by 
changing it to be between 0 and 1. In this phase, 1 denotes importance and 0 denotes insignificance. The tanh function is 
additionally passed the current input and hidden state to regulate the value between -1 and 1. The sigmoid output will be 
multiplied by these numbers. The sigmoid output will determine whether the information from the tanh output is retained. The 
following are the input gate calculations:     

 
𝐼𝐼𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑖𝑖 . [𝑆𝑆𝑡𝑡−1,𝑋𝑋𝑡𝑡] + 𝐵𝐵𝑖𝑖) 

 
𝐼𝐼𝑡𝑡 = tanh (𝑊𝑊𝑖𝑖 . [𝑆𝑆𝑡𝑡−1,𝑋𝑋𝑡𝑡] + 𝐵𝐵𝑖𝑖) 

(2) 
 

   (3) 
                                        

where 𝑊𝑊𝑖𝑖 and 𝐵𝐵𝑖𝑖  are the bias vectors. The tanh denotes the hyperbolic tangent function. The output gate plays a crucial role in 
determining the content of the next hidden state. At this point, the hidden state retains valuable information from prior inputs, 
which can also be utilized for making predictions. To update the cell state, both the current input and the previous hidden state 
are introduced to the sigmoid function, resulting in a freshly adjusted cell state that is then passed through the tanh function. 
The multiplication of the tanh and sigmoid outputs serves as the mechanism for determining which information should be 
retained. Subsequently, the output comprises the hidden state, the new cell state, and this new hidden state proceeds to the next 
time step for further processing. The calculation is as Equation (4): 

 
     𝑂𝑂𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑜𝑜 . [𝑆𝑆𝑡𝑡−1,𝑋𝑋𝑡𝑡] + 𝐵𝐵𝑜𝑜)                            
 
     𝑆𝑆𝑡𝑡 = 𝑂𝑂𝑡𝑡  . tanh (𝐶𝐶𝑡𝑡)                                                                   

 

(4) 
 
 

(5) 

where Wo are the weight matrices and Bo are the bias vectors. Ct is the output of the current cell, containing the cell state. For 
the cell state, the calculation is as in Equation (6). 

 
𝐶𝐶𝑡𝑡 =  𝐹𝐹𝑡𝑡  .𝐶𝐶𝑡𝑡−1 + 𝐼𝐼𝑡𝑡  . 𝐼𝐼𝑡𝑡 (6) 

The cell state plays an important role in maintaining the information between each time step in the chain. Its content is 
modified through the forget gate and input gate every time the cell state passes through at different time-step. The primary idea 
behind the LSTM is the cell state and a few distinct gates. All sequencing chains receive relative data from the cell state. 
During the sequence's processing, the cell state will store relevant information. As a result, even data from earlier time steps 
will lead to later time steps, reducing the impact on short-term memory. 

2.5 LSTM Model Pre-Processing  
Since eight physicochemical parameters are involved as the input to the LSTM system, it is certainly not easy to get the best 
adjustment before the LSTM system processes all this data to get the best prediction. When working using a long time-series 
data will face problems mainly related to data inconsistency and outliers. The issue of outliers is due to incorrect measurements, 
sensor damage, incorrect procedures and natural disasters, which has been discussed by several researchers [24],[25]. In 
addressing this gap, pre-processing techniques are used to process the data before the LSTM model uses it.  

2.5.1 Z-score Normalization  
The z-score is very good at handling outliers in data problems. Cinar et al. [26] stated that the advantage of having the z-score 
in the process is that it can complement various characteristics into a single scale. Extremely obvious outliers can be reshaped 
so that they no longer stand out. It is accomplished by rescaling the data to have the features of a Gaussian distribution, also 
known as a normal distribution. The equation for the z-score is as in Equation (7). 

 
𝑧𝑧 =

𝑥𝑥𝑜𝑜 −  𝜇𝜇
𝜎𝜎

 (7) 

 
where 𝑥𝑥𝑜𝑜 is the original value, μ is the mean for the 𝑥𝑥𝑜𝑜 train, and σ is the standard deviation to measure how spread the numbers 
are. The z value represents the range between the mean of and from the standard deviation. There will be a positive and negative 
standard score where the value above the mean will have positive scores, and the value below the mean level will have negative 
scores. 
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Figure 4. Water parameter before z-score process 

 

 
Figure 5. Water parameter after z-score process 

 

 
Figure 6. Water parameter after Min-Max normalization process from 1K46 

 

2.5.2 Min-Max Normalization  
The min-max technique is the primary data normalization that can normalize data as equally important. While transforming 
the minimum data equals 0 and the maximum data equals 1, all the other data will be transformed within the limitation between 
0 and 1, as mentioned by Ghimire et al. [27]. The equation for the min-max calculation is shown in Equation (8). 
 

𝑥𝑥𝑎𝑎′ =  
𝑥𝑥𝑎𝑎 −  𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 −  𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
 (8) 

 
where 𝑥𝑥𝑎𝑎′ is the normalized value and 𝑥𝑥𝑎𝑎 is the original value. The 𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the maximum value in the data group and 𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is 
the minimum value in the data group. It will prevent all the small data from being pressed smaller by the dominant big numbers. 
Combining the z-score and min-max normalization will cater to the pros and cons when using both techniques individually. 

The initial step in preprocessing water parameter data involves applying a normalization function to the data. Each water 
parameter possesses unique characteristics in terms of its measurement range, as illustrated in Figure 4. As depicted in Figure 
4, water parameters exhibit varying measurement ranges, which can impact the implementation of a deep learning system for 
analysis. Z-score normalization is commonly employed due to its ability to bring different attributes onto a consistent scale 
[26]. Figure 5 indicates that most water parameter data points fall within the range of -3 to 3. A z-score close to zero suggests 
that a data point is near the average, while values greater than or less than 3 are considered outliers, as described in reference 
[28]. The presence of outliers can significantly increase the standard deviation, reducing the ability to detect meaningful 
differences and potentially leading to errors, as noted in reference [29]. It is important to exercise caution when removing 
outliers because sudden spikes in pollutant levels can result in elevated readings, as discussed in reference [30]. 

Deep learning algorithms aim to identify trends and patterns within data points [31]. However, this can be problematic if 
the data points are not treated equally by the system. The min-max normalization technique is a fundamental method for 
ensuring that data is normalized and treated with equal importance. This is evident in Figure 6, where most of the water 
parameter data now falls within the range of 0 to 1, although some values remain below 0. Min-max normalization is applied 
to water parameter data to prevent smaller values from being unduly influenced by dominant larger values. Combining both z-
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score and min-max normalization addresses the advantages and disadvantages associated with each technique when used 
independently. 

2.6 Input Dataset of Training, Validation, and Testing for Deep Neural Network Model  
For a good and effective trained model, the total data divided into a training set, validation set, and testing set plays a 

significant role [32]. The data presented in this study is novel and has never been assessed using the Deep Learning Neural 
Network model. Table 1 depicts the separation of water quality data into training, validation, testing, and final prediction. The 
data set is comprised of water parameter measurements taken between 2012 and 2017. This data will be divided into 3 parts: 
training, validation, and testing. Meanwhile, data from April 2017 to November 2018 is used as final prediction data. The 
distribution percentage usually consists of 80% of datasets used for training purposes and another 20% percent used for 
validation. This data composition is also suggested [33],[34]. However, it is not mandatory to use a specific percentage. This 
test aims to see the model output accuracy by testing a different number of datasets. Meanwhile, Genc et al. [35] suggested 
that building a deep learning model begins with a dataset that comprises previously collected information about the topic under 
investigation. Using the training dataset, the system can be constructed with different model parameter values, and it can be 
tested by each trained model against the validation set to see how well it performs [36]. However, as the validation set 
comprises samples with known provenance but unknown classifications, predictions on the validation set may be used to assess 
model accuracy [37]. Moreover, Choi et al. [38] stressed that the test dataset that is used to test the model output must be using 
the unknown value to the system. This value cannot be taken from the training or the validation data. The data from the test 
set is fed into the model, and the model's predictions are compared to the data from the test set to see if they agree. This 
argument has been supported by several researchers [39],[40],[41]. The tests are performed using the method in Table 2. 
 

 
Table 1. Distribution of water quality data for model testing and prediction 

No. Data Purpose  Beginning Month Ending Month Period 
1. Training/Validation/Testing  May 2012 Mac 2017 5 years 3 months 
2. Final Prediction  April 2017 November 2018 1 year 8 months 

 
 

Table 2. Various model dataset sizes and water parameter combinations 

 Set 1 Set 2 Set 3 
Training (%) 70 70 70 

Validation (%) 15 15 15 
Testing (%) 15 15 15 

Number of Water 
Parameter 

Water parameters with the 
highest correlation coefficient 

to BOD 

Water parameters with the 
lowest correlation coefficient 

to BOD 

Water parameters combination 
of highest and lowest 

correlation coefficient to BOD 
Number of Water 

Parameter involved 
as input 

 
3 

 
5 

 
8 

 
 
There is no specific technique used to determine the number of dataset divisions. The division of 70% of data for training, 

15% of data for validation, and another 15% for testing were used in this study. This option is made to increase the use of data 
for testing and validation purposes and, at the same time, reduce data for training purposes. If this happens, it will show the 
accuracy rate of the model output when presented with less training data. All eight water parameters can be graded from highest 
to lowest correlation coefficient value based on the results of the correlation coefficient test. New tests are performed to 
determine whether there is a difference in influence on the number of water parameters based on the water parameter with the 
highest correlation coefficient, the lowest correlation coefficient, or a combination of high and low correlation coefficients. 
These aspects are considered while determining the number of water parameters. Three experiments were carried out: (1) With 
the highest correlation coefficient value for the model inputs; (2) With the lowest correlation coefficient value; (3) With all 
high and low correlation coefficient values for all eight water parameters. The performance of each dataset is tested using 
Mean Absolute Error (MAE) and Root-Mean-Square-Error (RMSE). 

 
3. RESULTS AND DISCUSSION  

3.1 Correlation Coefficient for Interpolated Water Parameter Data  
The correlation coefficient test results on the interpolated data are shown in Table 3. Although, on average, the correlation 
coefficient test indicates a poor connection between BOD and all other water parameters except for COD, DO, and NH3-N, 
this does not suggest that changes in this water parameter cannot be directly related to changes in BOD. Varying water pollution 
levels influence these variables, and the absence of significant water pollution leads to low correlation values. 
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Table 3. Correlation coefficient results on interpolated water parameter data 

Water 
Parameters 

BOD 
1K05 1K06 1K07 1K08 1K17 1K19 1K23 1K41 1K46 1K48 1K50 

COD 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 
DO 0.0 -0.3 -0.2 -0.1 -0.2 -0.1 -0.3 -0.3 -0.3 0.1 -0.1 

NH3-N 0.4 0.3 0.1 0.2 0.4 0.4 0.3 0.5 0.3 0.4 0.1 
TSS 0.1 0.0 -0.1 -0.1 -0.1 0.0 0.0 0.2 0.1 0.0 0.1 
TDS 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.2 0.2 0.2 0.1 
pH -0.2 0.0 -0.1 -0.1 -0.1 -0.3 -0.1 0.2 0.0 -0.1 0.2 

Temp 0.1 0.0 0.0 0.1 0.2 0.0 0.0 0.1 0.1 0.2 0.0 
TUR 0.1 0.2 0.1 0.0 0.0 0.1 0.0 0.2 0.2 0.0 0.2 

 
 

Table 4. Training regression coefficients results for the LSTM model utilizing 3, 5, and 8 water parameters. 

No. of 
Parameter 

Station 
1K05 1K06 1K07 1K08 1K17 1K19 1K23 1K41 1K46 1K48 1K50 

3 0.9999 0.9994 0.9988 0.9997 0.9996 0.9990 0.9996 0.9993 0.9997 0.9991 0.9994 
5 0.9999 0.9997 0.9997 0.9998 0.9998 0.9998 0.9996 0.9995 0.9998 0.9993 0.9998 
8 0.9999 0.9998 0.9997 0.9999 0.9998 0.9998 0.9998 0.9997 0.9999 0.9997 0.9999 

 
 

Table 5. Validation regression coefficients results for the LSTM model utilizing 3, 5, and 8 water parameters. 

No. of 
Parameter 

Station 
1K05 1K06 1K07 1K08 1K17 1K19 1K23 1K41 1K46 1K48 1K50 

3 0.9933 0.9970 0.9977 0.9976 0.9987 0.9965 0.9996 0.9998 0.9996 0.9990 0.9897 
5 0.9957 0.9987 0.9995 0.9986 0.9998 0.9998 0.9997 0.9999 0.9997 0.9989 0.9967 
8 0.9975 0.9992 0.9997 0.9992 0.9998 0.9991 0.9999 0.9999 0.9998 0.9996 0.9978 

 

3.2 BOD Prediction using LSTM  
Referring to Table 3, three water parameters with a high correlation coefficient with BOD are COD, DO, and NH3-N. The 
other five water parameters with a lower correlation coefficient are TSS, TDS, pH, Temp, and TUR. This result allows the 
water parameters to be divided into three parts, as stated in Table 2. The three water parameters in Set 1 are COD, DO, and 
NH3-N. The five water parameters in Set 2 are TSS, TDS, pH, Temp, and TUR. Set 3, on the other hand, consists of a 
combination of all eight water parameters used. 

Furthermore, each model was tested with distinct datasets: 70% training, 15% validation, and 15% testing to determine 
the effectiveness of training, validating, and testing the model in producing good BOD predictions. This study utilized no 
specific approaches, such as cross-validation, to estimate the data distribution ratio for training, validation, and testing. 
Therefore, the technique is agreed by [42] to be more appropriate when the available data is small and limited.   

The outcomes of the tests performed using the LSTM model are organized into numerous tables. The regression 
coefficients test results on the LSTM model are shown in Tables 4, 5, and 6. Table 4 is the regression coefficient test for the 
Training process, Table 5 is for the Validation process, and Table 6 is for the Testing process. The results of these regressions 
are critical in determining the model's success in learning and making predictions. It also allows for a comparison with 
regression findings for validation to determine whether overfitting occurs between training and validation. 

The results of the regression test performed by the LSTM model during the Training process may be seen in Table 4. On 
average, based on the readings of each water data collecting station using the 70/15/15 dataset, using three water parameters 
yields a regression value of 0.9994, using five parameters yields a regression reading of 0.9997, and using eight water 
parameters yields a regression reading of 0.9998. The average reading for this Training shows the results are encouraging and 
good enough for the LSTM model. A regression test is then performed on the Validation process output for the LSTM model 
to evaluate if there is an overshoot between the Training and Validation outputs. Table 5 displays the regression test results on 
the Validation model output.  

According to Table 5, using three water parameters yields a regression average of 0.9971, using five water parameters 
yields a regression of 0.9988, and using eight water parameters yields a regression of 0.9992. When data from Table 4 are 
compared, the usage of three water parameters resulted in differences of 0.0023 between them, while the usage of five water 
parameters is 0.0009. With 8 parameters, it results in a difference of 0.0006 between them. Here, adding more water parameters 
minimizes the gap between the Training and Validation regressions. It shows that overfitting did not happen to the LSTM 
model when training was carried out due to the validation phase showing almost the same quality. Following that, regression 
testing is performed against the Testing procedure. Table 6 displays the regression test results for the Testing phase using three, 
five, and eight water parameters. 
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Table 6. Testing regression coefficients results for the LSTM model utilizing 3, 5, and 8 water parameters. 

No. of 
Parameter 

Station 
1K05 1K06 1K07 1K08 1K17 1K19 1K23 1K41 1K46 1K48 1K50 

3 0.9848 0.9959 0.9921 0.9972 0.9987 0.9968 0.9975 0.998 0.9958 0.9978 0.9987 
5 0.9902 0.9983 0.9972 0.9972 0.9996 0.9995 0.9979 0.9984 0.9971 0.9981 0.9997 
8 0.9943 0.9989 0.9979 0.9986 0.9997 0.9991 0.999 0.9989 0.9984 0.9993 0.9997 

 
Table 7. Training MAE test results for the LSTM model utilizing 3, 5, and 8 water parameters. 

No. of 
Parameter 

Station 
1K05 1K06 1K07 1K08 1K17 1K19 1K23 1K41 1K46 1K48 1K50 

3 0.0021 0.0037 0.0027 0.0019 0.0019 0.0036 0.0015 0.0029 0.0023 0.0027 0.0045 
5 0.0017 0.0026 0.0015 0.0017 0.0015 0.0014 0.0014 0.0023 0.0018 0.0024 0.0025 
8 0.0014 0.0019 0.0014 0.0013 0.0015 0.0017 0.0011 0.0019 0.0016 0.0015 0.0021 

 
Table 8. Training RMSE test results for the LSTM model with 3, 5, and 8 water parameters 

No. of 
Parameter 

Station 
1K05 1K06 1K07 1K08 1K17 1K19 1K23 1K41 1K46 1K48 1K50 

3 0.0032 0.0067 0.0051 0.0034 0.0038 0.0063 0.0026 0.0061 0.0039 0.0063 0.0069 
5 0.0027 0.0046 0.0028 0.0030 0.0027 0.0026 0.0025 0.0053 0.0030 0.0058 0.0039 
8 0.0023 0.0035 0.0026 0.0023 0.0025 0.0030 0.0020 0.0043 0.0027 0.0037 0.0032 

 
Table 9. Validation MAE test results for the LSTM model employing 3, 5, and 8 water parameters 

No. of 
Parameter 

Station 
1K05 1K06 1K07 1K08 1K17 1K19 1K23 1K41 1K46 1K48 1K50 

3 0.0069 0.0038 0.0022 0.002 0.0014 0.0046 0.0010 0.002 0.0016 0.0024 0.0042 
5 0.0050 0.0024 0.0010 0.0018 0.0009 0.0008 0.0009 0.0015 0.0011 0.0022 0.0020 
8 0.0036 0.0017 0.0009 0.0013 0.0008 0.0020 0.0007 0.0012 0.0010 0.0013 0.0016 

 
Table 10. Validation RMSE test results for the LSTM model utilizing 3, 5, and 8 water parameters 

No. of 
Parameter 

Station 
1K05 1K06 1K07 1K08 1K17 1K19 1K23 1K41 1K46 1K48 1K50 

3 0.0220 0.0112 0.0058 0.0068 0.0045 0.0129 0.0022 0.0036 0.0037 0.0053 0.0161 
5 0.0178 0.0072 0.0027 0.0058 0.0018 0.0018 0.0019 0.0026 0.0031 0.0054 0.0091 
8 0.0136 0.0058 0.0021 0.0043 0.0018 0.0066 0.0011 0.0023 0.0027 0.0035 0.0075 

 
 

Referring to Table 6 for the regression test results for the LSTM model's Testing section, the average regression readings 
for using three water parameters are 0.9958. The result of using five water parameters is an average of 0.9976. When eight 
water parameters datasets are used, it gives an average of 0.9985. The number of water parameters affects the regression 
outcomes. MAE and RMSE tests are performed on the model according to three sections of the model, namely Training, 
Validation, and Testing, to understand the created LSTM model better. The outcomes of the Training tests are documented in 
Table 7 for Training MAE. 

According to Table 7, the MAE test results demonstrate that employing 8 water parameters has the most impact and 
delivers the lowest average MAE value, which is 0.0016 on average, compared to 5 parameters of 0.0019 and 3 parameters of 
0.0028. To further refine the results, the RMSE tests are done. Table 8 shows the results for Training RMSE. The RMSE test 
result in Table 8 also still shows that the number of eight water parameters gives the lowest RMSE result as in the MAE test. 
The trained model is tested using new data in the Validation section to validate the training data during the Training function. 
It is done to reduce the possibility of data overfitting. It aims to assess the Training dataset and make appropriate adjustments 
accurately.  

The results of all MAE and RMSE tests for LSTM model Validation are shown in Table 9 and Table 10. On average, the 
error range values for MAE and RMSE show a downward trend compared to during the Training process. For example, if 
viewed from station 1K07, the lowest MAE during the Training process is 0.0014, while RMSE is 0.0026. After the Validation 
process is implemented, the lowest MAE is 0.0009, and RMSE is 0.0021. It shows an increase in model learning after the 
Validation process is implemented. One similarity in the Training process is the advantage of reading accuracy using 8 water 
parameters. Then, the model that has been trained and validated is tested.  

The Testing phase is where the model displays the model's prediction results after the LSTM model has been trained. As 
with the Validation phase, where fresh data that the model does not recognize is utilized, the Testing process also employs 
new data that has never been used before. The MAE and RMSE testing have been carried out. The tests are the same as those 
performed in the Training and Validation section. Table 11 shows the MAE values, while Table 12 shows the RMSE results. 
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Table 11. Testing MAE test results for the LSTM model employing 3, 5, and 8 water parameters 

No. of 
Parameter 

Station 
1K05 1K06 1K07 1K08 1K17 1K19 1K23 1K41 1K46 1K48 1K50 

3 0.0154 0.0038 0.0027 0.0019 0.0022 0.0050 0.0018 0.0032 0.0024 0.0042 0.0039 
5 0.0116 0.0024 0.0014 0.0016 0.0014 0.0013 0.0016 0.0025 0.0018 0.0038 0.0020 
8 0.0082 0.0018 0.0012 0.0013 0.0014 0.0023 0.0013 0.0021 0.0014 0.0023 0.0017 

 
Table 12. Testing RMSE test results for the LSTM model utilizing 3, 5, and 8 water parameters 

No. of 
Parameter 

Station 
1K05 1K06 1K07 1K08 1K17 1K19 1K23 1K41 1K46 1K48 1K50 

3 0.0324 0.0114 0.0100 0.006 0.0079 0.0161 0.0063 0.0090 0.0102 0.0143 0.0106 
5 0.0258 0.0075 0.0059 0.0073 0.0045 0.005 0.0057 0.0079 0.0085 0.0132 0.0056 
8 0.0196 0.0060 0.0051 0.0052 0.0040 0.0083 0.0040 0.0065 0.0064 0.0081 0.0049 

 
 

Based on Tables 11 and 12, it can be observed that using 8 water parameters as input to the model produces the best results 
when compared to using 5 water parameters and 3 water parameters. It is based on the results using the MAE and RMSE tests. 
The lowest MAE reading for all 11 water data collection stations is between 0.0012 and 0.0082, and the lowest RMSE reading 
is between 0.0040 and 0.0196. At this stage, it is known that using 8 water parameters gives the LSTM model acceptable 
accuracy. The performance of the Training, Validation, and Testing processes was then compared using 8 water parameters. 
The average value from the MAE test results from Tables 7, 9, and 11 and the RMSE test results from Tables 8, 10, and 12 are 
used for this purpose. The average MAE value for each water data collection site yields an outcome of 0.0016 for Training, 
0.0015 for Validation, and 0.0023 for Testing. The average RMSE obtain for Training is 0.0029, Validation is 0.0047, and 
Testing is 0.0071. The average results of MAE and RMSE indicate very minor differences and are highly comparable. Overall, 
the results are within a reasonable range, and the model's accuracy is acceptable. 

An error histogram has been plotted to see the error between the target and predicted values after Training, Validation, 
and Testing. Figure 7 shows the error for all water data collection stations using the LSTM model. The errors in data fitting 
are evenly spread around zero. It provides a strong indication of the constructed LSTM model. The error histogram depicts 
how near the model's predicted value is to the actual value. Positive error indicates that the outputs fell short of the goal, 
whereas negative error indicates that they surpassed it. It can also be noted that several stations, such as 1K06, 1K07, 1K17, 
1K23, and 1K41, exhibit a very minor deviation beyond the zero area. However, it is still regarded as good due to its proximity 
to zero. Based on the results, it is possible to conclude that the datasets 70% Training, 15% Validation, and 15% Testing are 
acceptable for training the LSTM model. It was discovered that using 8 water parameters as input to the model is more optimal. 
According to prior research, increasing the data ratio for training can improve performance and make the model more stable, 
while increasing the validation ratio can improve validation performance [34]. Based on the model test findings, BOD 
prediction from each of the 11 tributaries was performed using 8 water parameters as input.  

It should be stressed that the data used for Training, Validation, and Testing is utterly different from the data used in the 
final prediction. The final predictive data is original data that has not been subjected to all the processes applied to the data 
used to train the neural network model before being utilized to make predictions. Using a 70% Training, 15% Validation and 
15% Testing dataset, LSTM models were built and tested using 8 water parameters: COD, DO, NH3-N, TSS, TDS, pH, Temp, 
and TUR to predict BOD readings. The graphs of the comparison results between the actual value of BOD and the predicted 
value of BOD for all water data collection stations are shown in Figure 8. 
 
 

 
(a) LSTM 1K05 station 

 
(b) LSTM 1K06 station 
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(c) LSTM 1K07 station 

 
(d) LSTM 1K08 station 

 

 
(e) LSTM 1K17 station 

 

 
(f) LSTM 1K19 station 

 

 
(g) LSTM 1K23 station 

 

 
(h) LSTM 1K41 station 

 

 
(i) LSTM 1K46 station 

 

 
(j) LSTM 1K48 station 
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(k) LSTM 1K50 station 

 
Figure 7. Error histograms for each water data collection station to view the Training, Validation and Testing errors for the 

LSTM model 
 
 

 
(a) BOD Prediction for 1K05 station 

 

 
(b) BOD Prediction for 1K06 station 

 

 
(c) BOD Prediction for 1K07 station 

 

 
(d) BOD Prediction for 1K08 station 

 
(e) BOD Prediction for 1K17 station 

 
(f) BOD Prediction for 1K19 station 
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(g) BOD Prediction for 1K23 station 

 

 
(h) BOD Prediction for 1K41 station 

 

 
(i) BOD Prediction for 1K46 station 

 

 
(j) BOD Prediction for 1K48 station 

 

 
(k) BOD Prediction for 1K50 station 

 
Figure 8. Comparison graph between the actual value and the predicted BOD for each water data collection station using the 

LSTM model 
 
4. CONCLUSION  
This study has successfully demonstrated that utilizing various water parameters and LSTM neural network makes it possible 
to predict the BOD water parameters needed to measure river water quality even though specific water parameters have a 
substantial correlation coefficient relationship with BOD. In contrast, others have a more modest relationship with BOD. This 
study also discovered that minor changes to water parameters with a weak correlation coefficient with BOD can also affect 
changes in BOD readings. The RMSE test results show that the LSTM model has a value of 0.4020 and produces nearly 
identical prediction results to the actual value based on the average computation against the actual value. The usage of eleven 
water data collection stations throughout the Klang River is intended to ensure that the deep learning model technique may 
very well be deployed everywhere along the Klang River. It is significant in the context of the Klang River since the river has 
several tributary branches. After testing the data from each water data collecting station, it was discovered that the deep learning 
model's BOD prediction results are consistent and suggest that this model can be deployed anywhere along the Klang River. 
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