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Adenosine, bridging chronic
inflammation and tumor growth

Luxia Chen, Mohamad Alabdullah and Karsten Mahnke*

Department of Dermatology, University Hospital Heidelberg, Im Neuenheimer Feld,
Heidelberg, Germany
Adenosine (Ado) is a well-known immunosuppressive agent that may be released

or generated extracellularly by cells, via degrading ATP by the sequential actions

of the ectonucleotides CD39 and CD73. During inflammation Ado is produced by

leukocytes and tissue cells by different means to initiate the healing phase. Ado

downregulates the activation and the effector functions of different leukocyte

(sub-) populations and stimulates proliferation of fibroblasts for re-establishment

of intact tissues. Therefore, the anti-inflammatory actions of Ado are already

intrinsically triggered during each episode of inflammation. These tissue-

regenerating and inflammation-tempering purposes of Ado can become

counterproductive. In chronic inflammation, it is possible that Ado-driven anti-

inflammatory actions sustain the inflammation and prevent the final clearance of

the tissues from possible pathogens. These chronic infections are characterized

by increased tissue damage, remodeling and accumulating DNA damage, and are

thus prone for tumor formation. Developing tumors may further enhance

immunosuppressive actions by producing Ado by themselves, or by “hijacking”

CD39+/CD73+ cells that had already developed during chronic inflammation.

This review describes different and mostly convergent mechanisms of how Ado-

induced immune suppression, initially induced in inflammation, can lead to

tumor formation and outgrowth.
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1 Introduction

A connection between inflammation and cancer was already reported in 1863 by

Rudolf Virchow (1). Recent epidemiological studies have highlighted the interplay between

cancer and inflammation, whether it is triggered by infection or not. Two major hypotheses

have been proposed to explain the potential association between inflammation and cancer.

One hypothesis implicates that sustained and pathogenic inflammation intrinsically

promotes genetic instability during cancer pathogenesis. In another hypothesis, a

defective host immunity, which is unable to clear pathogens, leads to chronic

inflammation that finally facilitates cancer development (2, 3). These two interconnected

pathways result in immunosuppression, thereby providing a favorable tissue environment

for tumor development.
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Immunosuppression is ubiquitously present in healthy and

diseased individuals. It is a critical mechanism for maintaining

self-tolerance and for the resolution of acute inflammation. At later

stages of a ceasing inflammation, immunosuppression facilitates

tissue remodeling and repair. On the contrary, immunosuppression

is also a mechanism by which pathogens and tumor cells escape

immune surveillance to survive and to proliferate.

Adenosine (Ado), besides being a neurotransmitter, has been

thoroughly investigated for its immunosuppressive functions. Ado

is generated from the sequential hydrolysis of adenosine

triphosphate (ATP) by the ectonucleotidases CD39 and CD73, or

by release through pores. Cells which express CD39 and CD73 exert

suppressive function through the production of Ado. For instance,

regulatory T cells (Tregs) constitutively express CD73, and their

suppressive capacity in several inflammatory models depends on

the production of Ado. In the immune system Ado is capable of

suppressing dendritic cells, T cells, B cells and monocytes in a way

that these cells are impeded in different immune stimulatory

functions. This immunosuppressive activity of Ado is mainly

mediated by A2A and A2B Ado receptors, however, A1 and A3

receptors for Ado are also defined but their cellular signaling and

contribution to immune suppression is less clear.

Ado may have implications for the development of tumors from

chronic inflammations. Due to its regulatory functions during

inflammation, Ado may at first maintain an ongoing immune

reaction by preventing the immune system from finally clearing

pathogens or harmful agents from the body, thus helping to turn an

acute into a chronic inflammation. Such a lingering inflammation

provides a tissue environment that fosters DNA damage and

neoplasia, eventually leading to tumor formation. The developing

tumors start growing, and an already adenosine-harboring and thus

immune suppressed tissue, is less capable of preventing the

outgrowth of tumors. Moreover, some tumors even express the

Ado producing enzymes CD39 and CD73 themselves, or are able to

recruit further Ado-producing cells to create a tumor permissive

environment. Although not many data on the detailed mechanisms

are available yet, a role for Ado produced in inflamed tissues for

later tumor development is conceivable, given its strong immune

suppressive properties.

2 How is tumor growth, chronic
inflammation and Ado connected
at all?

2.1 Molecular mechanisms

Many factors and molecular means are involved in cancer

initiation, among them are inflammation and infection. Between

15% and 20% of all neoplasms are thought to be initiated by

infections, chronic inflammation or autoimmune inflammatory

disease (4, 5). Among them are colorectal carcinoma, occurring

with high prevalence in persons suffering from Inflammatory bowel

diseases, such as Crohn’s disease and chronic ulcerative colitis, (6,

7), gastric cancer that is induced by Helicobacter pylori-infections

(8), and human papillomavirus-related cervical cancer (9).
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Moreover, patients have an increased risk of pancreatic cancer

when suffering from chronic pancreatitis (10), and lung cancer is

enhanced by chronic lung infections, such as tuberculosis (11).

An inflammatorymicroenvironment is believed to raise mutation

rates and to promote the proliferation of mutated cells. Inflammatory

cells generate reactive oxygen species (ROS) and reactive nitrogen

intermediates, causing DNA damage and genomic instability

(Figure 1). For example, ROS has been shown to directly deactivate

mismatch repair enzymes (3, 12). And once the mismatch repair

system is compromised, inflammation-driven mutagenesis

intensifies, leading to the inactivation of crucial tumor suppressors

like transforming growth factor b (TGFb) receptor type 2 (Tgfbr2)

and Bcl-2 Associated X protein (Bax) (3). p53 mutations that are also

likely to result from oxidative damage during inflammation, have

been detected in both, cancer cells and non-dysplastic inflamed

epithelium, in colitis associated cancer, further substantiating the

notion that chronic inflammation induces genomic changes (13).

In more general terms chronic inflammation may act as potent

co-factor for tumor development, as the colonic irritant dextran

sodium sulfate (DSS) may lead to DNA damage and the development

of colonic adenomas when given during chronic inflammation (14).

In contrast, DSS alone is only a weak carcinogen and is not able to

induce tumors in “healthy” subjects by itself (15).

Another link between inflammation and oncogenic mutations

involves the upregulation of AID (activation-induced cytidine

deaminase), an enzyme that induces cytosine deamination in

DNA during immunoglobulin gene class switching (16). AID is

overexpressed in various cancers, and it is induced by inflammatory

cytokines through NF-kB-dependent mechanisms or TGFb (16).

AID promotes genomic instability and increases mutation

occurrence during the error-prone joining of DNA breaks,

impacting critical cancer genes like Tp53, c-Myc, and Bcl-6 (3).

AID contributes to the development of lymphomas, gastric cancers,

and liver cancers (16, 17). Other suggested mechanisms of

inflammation-induced mutagenesis involve effects on non-

homologous recombination and NF-kB-mediated inactivation

of p53-dependent genome surveillance (3). Additionally,

inflammation has been connected to epigenetic reprogramming

through Jmjd3 (Jumonji domain-containing protein D3), an NF-kB
target gene (18).
2.2 The role of leukocytes and adenosine

Although all of these aforementioned tumors originate from

different tissues, and are associated with different types of infection,

and may employ different molecular pathways for tumor

development, a common denominator may be the recruitment of

immune cells during the onset of the Inflammation and/or the

following tumor growth.

The consecutive infiltration of the tissues by immune cells is

initially designed to battle bacteria, viruses or other harmful agents.

To this end, the onset of an inflammatory episode helps to clear the

body from the infection, and later, immune cells help to downregulate

inflammation and to promote healing and the re-establishment of

intact tissues. For these later tasks, immune cells are capable of
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producing immunosuppressive mediators and growth factors, which

are meant to repair tissue damage and to stimulate proliferation of

otherwise quiescent cells that are adjacent to the site of infection.

One of these factors is the broadly expressed suppressive

mediator Ado. It can be released by cells, or it is extracellularly

produced by actions of the two ectonucleotidases CD39 and CD73.

These enzymes are expressed on various types of immune cells, e.g.

T cells, dendritic cells, B cells and neutrophils, with a preference for

immune suppressive cells, such as regulatory T cells, immature

dendritic cells and suppressive B cells (19). As for their function,

CD39 dephosphorylates proinflammatory extracellular ATP that is
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released by dying, injured or alarmed cells, a situation that occurs

during inflammation, to Ado diphosphate (ADP) and Ado

monophosphate (AMP). In a second step, AMP can be degraded

to Ado, which has, as opposed to ATP, potent anti-inflammatory

potential. Ado engages four G protein-coupled adenosine receptors

(ARs), e.g. A1, A2A, A2B and A3, and activates downstream

signaling pathways, modulating various cellular functions

according to different cell types and receptor expression patterns

(20). A2A and A2B are predominantly involved in the

immunosuppressive function of Ado (21), and became the focus

of many studies.
FIGURE 1

Inflammation can foster tumor development. During inflammation Immune cells produce factors such as ROS, cytokines and Ado that stimulate cell
growth and battle pathogens. But these factors have also mutagenic potential and once premalignant cells have developed, the immunosuppressive
actions will be augmented by either direct production of Ado, expression of CD73+, or by recruitment of CD73+ cells, enabling the tumor to create a
favorable growth environment. Ado, adenosine; DC, Dendritic cell; MF, macrophage; ROS, reactive oxygen species; Treg, regulatory T cells.
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Thus, an inherent immunosuppressive and even pro-

proliferative function of immune cells, owed to their capability to

produce Ado, or to react to it, is already present during

inflammatory episodes, and tumors, early on during development

of cancer, may take advantage of this to escape immunologic

control. In a broader sense, actions of Ado during chronic

inflammation is tumorigenic whilst anti-inflammatory Ado can

maintain neoplasms and growth (Figure 2). The specific time

sequence of Ado-related signaling can confer differential effects

on tumorigenesis or cancer progression via several mechanisms on

distinct cell types as we will further discuss.
3 Functions of Ado during
inflammation and tumor development

3.1 Direct pro-inflammatory effects of Ado

It has been delineated in many publications that during

infection the incoming innate immune cells, and later, cells from

the adaptive immune system, may have a great impact for

“preparing the soil for tumor growth”. That is, continuous

inflammation with cell death, tissue destruction and enhanced cell

proliferation may foster an environment in which gene editing,

modification of DNA and proliferative pathways (e.g. NF-kB, and
Wnt signaling), common to inflammation and cancerous cells, may

lead to tumor development (22–24). In this regard some reports

show direct proinflammatory actions of Ado.

In a model of DSS-induced colitis blockade of A2B Ado

receptors by the antagonist ATL-801 reduced the severity of

colitis, along with lower levels of IL6 (25). Similarly, PSB1115, an

antagonist for A2B Ado receptors, suppressed the inflammation of

the intestine in a neonatal rat model of enterocolitis (26). These

studies were further supported by the observation that genetic

deletion of A2B Ado receptors ameliorated colonic inflammation

induced by DSS or 2,4,6-trinitrobenzene sulfonic acid (TNBS) (25).

Moreover, also A1 Ado receptors may act proinflammatory by

directly stimulating neutrophil adherence to endothelium and

inducing chemotaxis towards inflammatory tissues (27). Thus, by

showing that antagonists to A2B and A1 Ado receptors are able to

suppress inflammation, one can conclude that Ado itself has

proinflammatory functions, which may promote tumorigenesis at

later stages of the disease, involving mechanisms as outlined before.
3.2 Effects of Ado on leukocytes in tumor
and inflammation

3.2.1 Macrophages
Macrophages are heterogenous myeloid cells originating from

monocyte precursors in the blood that differentiate in the presence

of cytokines and growth factors in the tissues they have infiltrated

(28). Macrophages are present during chronic inflammation, during

the development of malignant tumors and the progression of tumor

growth (29). Classically activated M1 phenotype macrophages

exhibit a pro-inflammatory phenotype and are present at sites of
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chronic inflammation during the early stages of cancer. The exact

role of macrophages in early stages of cancer is controversial, since

previous studies claimed that macrophages contribute to generating

a milieu that promotes neoplasia by releasing copious amounts of

mutagenic free radicals that promote cell transformation (30, 31).

During the maintenance of inflammation, uncontrolled

macrophage responses can become pathogenic and lead to disease

progression and chronic inflammation (32). However, other studies

added data supporting that M1 macrophages have inflammatory,

but more predominantly, tumor-destructive phenotypes, as they

eradicate only neo-transformed cells instead of normal cells (33–

35). Moreover, they antagonize the tumor-promoting actions of

suppressive cells (36).

By contrast, alternatively activated M2 macrophages display an

anti-inflammatory phenotype, and comprise the main population

when macrophages infiltrating established tumors. The

term tumor-associated macrophages (TAMs) is frequently

synonymously used. The polarization of TAMs, controlled by

cancer cells, is not fixed to distinct M1 or M2 subpopulations, but

a rather hybrid activation state of pro- and anti-inflammatory

phenotype that can be found in developing cancers (28).

Therefore, as cancer progresses, the malignant cells may hijack

the polarization of macrophages which were initially recruited by an

inflammatory response, by secreting M2-differentiating cytokines

and chemokines, e.g. interleukin10 (IL10), CC chemokine ligand

(CCL)2/3/4/5/7/8, CXC chemokine ligand (CXCL)12, vascular

endothelial growth factor (VEGF), and Platelet-derived growth

factor (PDGF). As a result, the M2-like macrophage population

increases and appears to be the main population in later

tumors (37).

In these processes, Ado has various inhibitory effects on

macrophages, as it blocks their colony stimulating factor (M-

CSF)-dependent proliferation (38), suppresses their phagocytic

function (39), and dampens M1 macrophage activation mediated

by A2A receptors (40). In addition, Ado promotes alternative-

macrophage activation, as shown by the increased expression of

several M2-macrophage markers, including arginase 1, tissue

inhibitor of matrix metalloproteinase 1 and macrophage

galactose-type C lectin 1. This is mainly mediated by the

engagement of A2B Ado receptors and to a lesser extent by A2A

receptors (41). Recent studies suggest a role of tumor-derived

exosomes in promoting A2B Ado receptor-mediated polarization

of macrophages toward an M2-like phenotype by carrying

enzymatically active CD39/CD73 and Ado. The macrophages

reprogrammed by tumor- derived exosomes secrete elevated

concentration of pro-angiogenic factors (e.g. Angiopoietin-1,

Endothelin-1, Platelet Factor 4 and Serpin E1) and subsequently

stimulate growth of endothelial cells (42). Ado, generated by

cervical cancer cells, stimulate the migration of myeloid cells to

cancer tissues, in which they differentiate to CD39 and CD73-

expressing M2-polarized macrophages. Thus, the M2-like

macrophages contribute to raising extracellular concentrations of

Ado and form a self-amplifying immunosuppressive mechanism

(43). In the aggregate, these effects show synergistic actions of Ado

and tumor derived factors, facilitating the conversion of

proinflammatory M1 macrophages, which may initially be
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recruited by inflamed tissues, into tumor-permissive M2

subtypes (Table 1).

3.2.2 Dendritic cells
Dendritic cells (DCs) are myeloid cells that bridge innate

immunity and adaptive immunity, by presenting antigen and

activating T cells during infection and tumor pathogenesis

(59). Thus, they are key players that are present in the tissues

and lymphoid organs when the transitions from acute

to chronic inflammation and finally to tumor generation

takes place.

Ado, by engagement of A2B receptors (60), modifies DC

maturation, as shown by reducing expression of MHC class II

and CD86, as well as by reduction of tumor necrosis factor a
(TNFa) and IL12 secretion, and by increased IL10 production (44,

61). Consequently, specific inhibition of A2B Ado receptors

improves DC activation by increasing the production interferon g
(IFNg) and the IFNg-inducible chemokine CXCL10. It leads to

enhanced recruitment of activated T cells that express CXCR3, the

receptor for CXCL10, thereby reducing the growth of MB49

bladder- and 4T1 mammary carcinomas (62). A2A Ado receptors
Frontiers in Immunology 05
have direct suppressive effects on the function of tumor associated

macrophages and DCs. This is facilitated by reducing IL-12

secretion and increasing IL-10 expression, leading to indirect

suppression of T- and natural killer (NK) cells. In accordance

with this, myeloid-specific deletion of A2A Ado receptors in mice

led to enhanced effector function of DCs, T cells and NK cells,

preventing them from developing primary and metastatic

tumors (63).

Moreover, also A2B Ado receptors are active in DCs, as their

engagement modifies the differentiation of DCs towards a

phenotype lacking expression of the DC marker CD1a. Instead,

these DCs display increased VEGF production and high levels of

tolerogenic molecules, e.g. VEGF, IL-8, IL-6, IL-10, cyclooxygenase-

2, TGFb, and IDO (indoleamine 2,3-dioxygenase). These Ado-

induced DCs possess impaired allostimulatory functions and

support tumor vascularization, resulting in accelerated tumor

growth in mice (44). This resembles the action(s) of Ado in the

polarization of macrophages towards M2 phenotype, and since both

macrophages and DCs are derived from monocytes, they may share

similar intrinsic mechanisms, which are triggered by Ado

receptors (Table 1).
A

B

FIGURE 2

Schematic view of how Ado levels are involved in regulating inflammation and stimulating tumor growth. (A) After insult and pathogen invasion, immune
response is started. Soon thereafter Ado is produced by leukocytes, for example regulatory T cells and tissue cells, to dampen the immune reaction and
to start the healing phase of an infection. The infection ceases and the tissue is regenerated with help of Ado and other immune suppressive mediators.
(B) In the course of an infection, the immune suppressive effects of Ado together with an ongoing immune response may be too strong to be cleared at
an instant. A chronic inflammation may ensue with high levels of Ado. Ado is creating an immunosuppressive tissue environment and at the same time
inflammation induces mutagenesis, eventually leading to development of tumors. Once established, tumors may recruit Ado producing cells or generate
Ado by themselves, maintaining an immunosuppressive environment, to escape immune surveillance. Ado: adenosine.
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3.2.3 T cells
3.2.3.1 CD8+ T cells

Antitumor CD8+ T cells express both A2A and A2B Ado

receptors and exert anti-tumor effect mainly through the

production of IFNg. Several independent studies using Ado

receptor gene-targeted mouse models or selective Ado receptor

inhibitors (45, 64–67) have established that Ado, mediated by A2A

and/or A2B Ado receptors, inhibits the anti-tumor activity of CD8+

T cells, supporting metastasis and neoangiogenesis in cancerous

tissues. In detail, A2A Ado receptor signaling in CD8+ T cells

dampens T cell receptor signaling by inhibiting activation of

Notch1 (68). It suppresses effector functions of tumor infiltrating

CD8+ T cells by increased protein kinase A (PKA) activation,

leading to impairment of the mTORC1 (mammalian target of

rapamycin complex 1) pathway (69). Thereby, Ado disrupts T cell

activation, proliferation and cytokine production (70). A2A Ado

receptor engagement also suppress T cell effector functions by

upregulating the expression of immune-checkpoint molecules,

including TIM3 (T cell immunoglobulin and mucin domain-

containing protein 3) and PD-1 on CD8+ effector T cells (71). Of

note, CD39+CD8+ T cells in chronic viral infections displayed high

expression of PD1 and cytotoxic T-lymphocyte–associated antigen

4 (CTLA4) (72). Gene expression arrays as well as analysis of

surface molecules revealed an exhausted phenotype of T cells.

However, whether this impacts the function is less clear, but the

strong correlation of CD39 expression with an exhausted phenotype

of T cells observed in chronic inflammation corroborates our notion

that chronic infection and tumor development may be bridged

by Ado.
Frontiers in Immunology 06
As for the regulation of Ado production, it is plausible that

enhanced expression of CD39 and(or) of CD73 by T cells (as well as

on tissue cells), contributes to generation of Ado in tissues of tumor

and chronic infections, and thus the activation of A2A/A2B

signaling through paracrine and/or autocrine mechanisms is

responsible for inducing dysfunction in T cells. Despite the broad

inhibitory effect of Ado on T cells, A2A signaling was also reported

to protect T cells from activation-induced cell death (73) and to be

important for the differentiation of T cells with memory phenotype

(74, 75). These two effects may contribute to the transition from

acute to chronic inflammation, because Ado may impede the

termination of an acute inflammation by (i) preventing the

activation-induced cell death of activated T cells, and (ii) by

inducing enhanced differentiation of memory T cells. This may

keep the inflammation ongoing as memory T cells are long lived

and fast reactive as compared to naïve T cells.

3.2.3.2 CD4+ T cells

Ado suppresses the effector functions of both, CD8+ and CD4+

T cells (76). Extensive studies using Ado receptor subtype-selective

agonists and antagonists demonstrate that Ado attenuates

inflammatory cytokine production in CD4+ T cells, primarily via

the A2A receptor. In murine CD4+ T cells, TCR signaling increased

the expression of A2A but not of A2B receptor mRNA. Accordingly,

A2A receptor-selective agonists ATL146e and CGS21680 (CGS)

exhibited a prominent inhibition of the release of IFN-g (77) that is
mediated by cAMP accumulation. Furthermore, Ado was found to

substantially inhibit the production of IFN-g and IL-2 in human

melanoma-specific CD4+ T helper (Th) 1 cells, mediated via cAMP-

activating PKA type I, as revealed by the application of CGS and the

A2A Ado receptor-selective antagonist ZM241385 (47). In vivo,

CGS administration reduced expansion of alloantigen specific Th1

cells, and the inhibition was abrogated by IL-2 therapy (78).

Additionally, A2A Ado receptor mRNA expression in Th2

effector T cells increased following TCR stimulation. A2A Ado

receptor stimulation suppressed the development of TCR-

stimulated naïve T cells into Th2 cells, as indicated by decreased

IL-4 secretion after CGS treatment in TCR-stimulated effector Th2

cells (48).

The effect of Ado on Th17 cells is controversial. Ado favors

Th17 differentiation by acting via A2B receptors on DCs and

stimulating production of IL-6 (79, 80).

In an autoimmune uveitis model, a nonselective Ado receptor

agonist, applied shortly prior to onset of the disease inhibits the Th1

response and enhances the Th17 responses. In contrast, in an early

stage of the already ongoing diseases injection of the same amount

of Ado receptor agonist inhibits both Th1 and Th17 responses (81).

Furthermore, A2A Ado receptor activation in naïve CD4+ T cells

skews their differentiation away from Th1 effector cells toward the

expansion of immune-suppressive regulatory T cells (Tregs), a

subset of CD4+ T cells highly expressing CD25 and the forkhead

transcription factor Foxp3, which play a vital role in immune

suppression (36, 82).

Accumulation of Tregs in tumor microenvironment is frequent,

as Tregs comprise the majority of tumor-infiltrating lymphocytes
TABLE 1 Effects of adenosine on the function of different cells.

Cell Type Adenosine-mediated effect on cells Ref.

Macrophages Dampens M1 proliferation and activity by A2A;
Favours tumor-promoting M2 polarization

(40–
42)

Dendritic
cells

Inhibits DC maturation and activation; Induces
expression of inhibitory molecule; Favours tolerogenic
DC differentiation

(21,
44)

CD8+ T cells Suppresses activation, proliferation and cytokine
production; Upregulates co-inhibitory molecules

(45,
46)

CD4+ T cells Suppresses cytokine production and expansion of Th1
and Th2

(47,
48)

Tregs Promotes Tregs expansion, production of immuno-
suppressive cytokines as well as expression of co-
inhibitory receptors

(36,
49,
50)

Natural
Killer cells

Hinders NK cell maturation, proliferation and
cytotoxic function

(51)

Neutrophils Suppresses adhesion, migration and effector functions (52,
53)

B cells Blocks BCR and TLR4 signalling and impairs the
activation and survival of B cells

(54)

Fibroblasts Promotes proliferation; Stimulates production of
matrix proteins and collagen

(55–
57)

Keratinocytes Increases proliferation (58)
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(TILs) at later stages of tumor progression in murine and human

tumors (83, 84). Although Tregs possess different means for

immune suppression, they are capable of synthesizing Ado by

expressing high levels of the ectoenzymes CD39 and CD73, which

provide a major source for Treg derived Ado. For example, Ado

has been shown to be a major mediator of Treg-mediated

immune suppression, which is critical for the downregulation of

inflammatory reactions and for preventing immune reactions going

overboard. That has been shown in models of inflammatory

skin diseases, whereby Tregs devoid of Ado-producing CD73 are

impaired in their immunosuppressive function (85). Consequently,

tumor associated Tregs clearly promote tumor growth by Ado

production. That has been established in several human tumors

and in murine cancer models. (86–88). Of interest, Ado, via A2A

Ado receptors, also feeds back on Tregs in a way as it promotes Treg

cell expansion, the production of immunosuppressive cytokines

(including TGFb and IL10) and the expression of co-inhibitory

receptors including PD-1, CTLA4 and Lymphocyte Activation

Gene 3 (LAG3) (49, 50). Thus, Tregs and Ado may enter a self-

sustaining cycle, starting in chronic inflammation and continuing

during tumor growth (Table 1).

3.2.4 Other leukocyte subpopulations
As Ado receptors are almost ubiquitously expressed by all types

of immune cells, NK cells, neutrophilic granulocytes (neutrophils)

as well as B cells are also susceptible to Ado. But their contribution

to tumor development during inflammation is rather undefined and

the role of Ado is quite often simply to suppress the immune

function of these cells to help tumors grow. For the sake of

completeness, however, the function of those different subtypes

will be briefly described in the following.

Natural killer (NK), together with the effector CD8+ T cells are

effector lymphocytes of the innate immune system and the adaptive

immune system, respectively. NK cells form the first line of defense

against various viral infections and tumors (89) and Ado plays a vital

role in modulation of its effector function. Earlier studies found that

adenosine inhibited NK cell function by interfering granule

exocytosis (90) and by reducing the ability of NK cells to adhere to

neoplastic cells (91). In particular, A2A Ado receptors are abundantly

expressed by NK cells, and A2A receptor activation decreased NK cell

maturation and cytotoxic functions in vitro (51), suppressed pro-

inflammatory cytokines and inhibited granzyme B, perforin and FAS-

Ligand mediated tumor cell lysis by NK cells (51, 92, 93).

In neutrophils, different Ado receptors serve various functions

during inflammation. A3 Ado receptor signaling has been reported

to be the key Ado receptor that facilitate neutrophil chemotaxis by

controlling their trans-endothelial migration (57). In contrast, A2A

Ado receptor activation was reported to suppress adhesion and

migration of neutrophils, as well as their effector functions (52, 53).

And finally, A2B receptors, which are also expressed by neutrophils,

contribute to the maintenance of vascular integrity and attenuate

neutrophil leakage into the inflamed tissue, as A2B Ado receptor

knockout mice subjected to hypoxia exhibit increased tissue

infiltration of neutrophils (94).

In B cells, Ado blocks the downstream NF-kB signaling of the B

cell receptor and toll-like receptor 4 (TLR4) in an A2A-receptor/
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cAMP-dependent manner, thus impairing the activation and

survival of these cells (54). Moreover, CD39high B cells from

human peripheral blood possess enzymatically active regulatory

effects which vigorously produce Ado and mediate suppression of

effector T cells by acting on A2A Ado receptors. Meanwhile, Ado

generated by suppressive B cells activates the A1 and A2A Ado

receptors on adjacent B cells, which generates an autocrine

signaling, and in turn, enlarges the proliferation and functionality

of these regulatory CD39high B cells (95). However, although

B cells are not noticed as major tumor infiltrating population,

their capabilities to produce Ado and their presence during

inflammatory reactions may add to an immunosuppressive and

yet tumor permissive tissue environment (Table 1).
3.3 Effect of Adenosine on
non-immune cells

In the further course of an inflammation, after the infection has

been cleared, Ado has to support the re-establishment of tissue

integrity and wound healing by promoting proliferation of tissue

cells, such as fibroblasts and keratinocytes. To this effect it has been

shown that agonists of the A2A and A2B Ado receptors stimulate

production of matrix proteins in fibroblasts and affect

differentiation into cells, which are critical for wound healing

(55–57). This can even be therapeutically exploited, as topical

application of an A2A Ado receptor agonist improves wound

healing (96) and increases angiogenesis (97) by the production of

VEGF (98) and the down-regulation of thrombospondin-1 (99),

which acts as inhibitor of angiogenesis.

Ado has been shown to promote collagen production of

fibroblasts, leading to scleroderma-like symptoms (57). According

to mouse data, this is mediated by A2A Ado receptors, as A2A Ado

receptor deficient fibroblasts failed to produce collagen in response

to Ado. Scleroderma is considered as chronic inflammatory disease

(100, 101) and in its course scleroderma patients have a higher risk

for colorectal-, breast- and lung cancer (102, 103).

More evidence of an interconnection of Ado in chronic

inflammation and tumor growth can be derived from a study in

humans suffering from a genetic defect in the Ado inactivating

enzyme Adenosine Deaminase (ADA). These patients have a higher

chance of developing Dermatofibrosarcoma protuberans (DFSP), a

rare malignant skin tumor (104).

In addition to fibroblasts, also keratinocytes can react to

stimulation by Ado with proliferation. Evidence is provided by

investigations showing that keratinocytes undergo increased

proliferation after engagement of A2A Ado receptors and an

altered expression pattern of A2A Ado receptors is thought to

play a role in the development of psoriasis (58). Psoriasis is a

sever chronic inflammation of the skin, which is furthermore

connected to an increased occurrence of keratinocyte cancer (105).

In mice, direct tumorigenic actions of Ado can be investigated

much more precisely, as mouse lines with genetic defects tailored to

ablate molecules involved in Ado-mediated signaling, can be

produced. As for mesenchymal, i.e. fibroblast-derived, tumors it

has been shown that the general carcinogenesis is impaired in mice
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lacking the major Ado producing ectoenzyme CD73 (106) and that

ablation of the A2A Ado receptor or injection of its antagonist

caffeine, suppressed the carcinogen-induced tumorigenesis (107). In

mice there are many more studies on how Ado and respective

antagonists can prevent tumor growth, but this is beyond the scope

of this review and details can be found in our previous review (108).
4 Hypoxia as a common denominator
between Adenosine, inflammation and
tumor growth

Findings have shown that the extracellular concentration of Ado

in extracellular fluids of solid carcinomas may reach to 10-4 M (10 to

20-fold higher than normal concentration) (109). The accumulation

of Ado in tumormicroenvironments is probably due to a reduction in

oxygen levels (hypoxia), which is common in cancer. It results

from the fast growth of an expanding carcinoma outcompeting

the development of a supportive vascular bed (110). For example,

the hypoxic fraction in squamous cell carcinomas of the cervix and

head and neck can be as high as 20-32% (111) and a connection to

Ado can be delineated by results obtained with hypoxic cultures of

3LL Lewis lung carcinoma cells that have been shown to generate

elevated levels of extracellular Ado (112). Notably, the extracellular

Ado levels in tumors can be supplemented by the ectoenzymes CD39

and CD73 that additionally mediate production of Ado. The

respective genes are induced by hypoxic situations (113, 114) and

in the pathways the hypoxia-inducible factor1 alpha (HIF1a) is

involved. It upregulates CD73 activity and subsequently increases

synthesis of Ado (115, 116). Vice versa, blockade of CD73 or

respective Ado receptors is able to promote normoxia in some
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cancer models (117, 118), suggesting a feedback mechanism

that further strengthens a proposed Ado-hypoxia interconnection

(Figure 3).

In terms of hypoxia, the tumor microenvironment can be

considered as a chronic low-grade inflammation. These hypoxic

tissue conditions are common in inflammation as well as during

tumor growth, and a relation to “adenosinerg” signaling became

evident early on, as conditions of low oxygen or inflammation favor

the release of extracellular ATP/ADP (119, 120). This assumption

has now been broadened by ample evidence showing that Ado

metabolism and gene expression are tightly linked with oxygen

signaling (121–125).

On a molecular level the relation between oxygen shortness and

Ado became clear, after studies of Synnestvedt et al. (126) identified

a binding site for HIF1a, the major signaling molecules in hypoxia,

in the hypoxia response element promoter of the CD73 gene. In

support of this, it was shown that CD73-deficient mice, i.e. mice

impaired in producing extracellular Ado, suffer substantial vascular

leakage and increased accumulation of lymphocytes when exposed

to low oxygen (127). CD39, another surface molecule involved in

Ado production, is induced in hypoxia by the transcription factor

specificity protein 1 (Sp1) (123), which belongs to a hypoxia-

induced gen set and has been shown to play a protective role in

regulation of CD39 during cardiac and hepatic ischemia (128, 129).

And finally, yet another enzyme involved in Ado turnover is

affected by HIFs: the adenosine kinase. This enzyme converts Ado

to Adenosine-monophosphate and is blocked by HIFs, which leads

to a shift towards more Ado (as compared to Adenosine-

monophosphate) in cells (130).

In addition to the production of Ado by enzymes such as

ectonucleotidases, Ado concentrations are also directly

influenced by HIFs, as HIF affects the transport of Ado by
FIGURE 3

Hypoxia as a common denominator in Ado-induced mechanisms of tumor growth. Hypoxia, i.e. a reduced availability of oxygen, is a key event in
inflammation. Mainly via HIF1a, it stimulates Ado production and differentiation of M2 macrophages. These events exert immune suppressive actions
and hamper immunity of the body. Consequently, development of tumors from infected tissues can escape immune surveillance and growing
cancers maintain hypoxia, which in turn stabilizes the immune suppressive actions of Ado. Ado: adenosine; HIF1a: hypoxia-inducible factor 1 a.
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equilibrative nucleoside transporters (ENTs) and its G-protein-

coupled receptors. For example, ENT1 and ENT2 (131, 132),

two transporters that mediate uptake of Ado into cells, are

downregulated by HIFs and therefore extracellular Ado will be

increased. Finally, HIFs also affect the receptors for Ado, as for the

A2A Ado receptor, it has been shown to be a target gene of HIF2a in

human lung endothelial cells (133), while the A2B Ado receptor has

been identified as a target gene of HIF1a (134, 135).

More experimental evidence supports the hypothesis that Ado

promotes angiogenesis by stimulating VEGF production through

engagement of A2A receptors (29). Synergistic up-regulation of

VEGF expression is induced by Ado via A2A Ado receptors,

together with endotoxin (98, 136) and(or) other toll-like receptors

agonists (137, 138). As VEGF is a target of HIF1, several studies

support that A2A Ado receptor activation stimulates VEGF

production by inducing massive HIF1 expression in macrophages

(98, 139), both of which are main events in response to hypoxia.

Hypoxia also appears to be a key driver in recruiting and

modifying macrophages in tumor tissues. Hypoxia attracts

macrophages by chemokines, HIF1/2 and endothelin-2 (140), and

increases their angiogenic activity (141) by inducing high levels of

pro-angiogenic factors such as VEGF and TNFa (142). The

transition of M1 to M2 phenotype, is an effective method to

permit the resolution of inflammation. However, M2

macrophages have a tumor permissive phenotype by contributing

to various aspects of metastasis (as outlined in the previous

chapter). They promote angiogenesis and cell proliferation,

induce the local suppression of lymphocyte-mediated anti-tumor

immunity and facilitate matrix deposition and remodeling (143).

In a nutshell, one can envision interconnected feedback loops of

inflammation, Ado, hypoxia and tumor development. The primary

role of Ado during inflammation is to harness over boarding

immune activation and cells may sense an inflammatory

environment by hypoxic conditions. In this feedback loop

hypoxia leads to enhanced production of Ado that typically

ameliorates inflammation. As a consequence, normoxic

conditions will be reestablished and in the following normoxic

conditions will lead to downregulation of Ado production.

However, production of Ado and Ado-mediated immune

regulation takes time and/or may be not very effective as

leukocytes and tissue cells differentially express Ado receptors.

Therefore, inflammation may not be fully terminated by Ado and

a lingering (i.e. chronic) inflammation maintains a hypoxic

environment, keeping Ado concentrations elevated. Now, a self-

sustaining loop is keeping two immunosuppressive mechanisms

(i.e. Ado and Hypoxia) active and neoplasm-inducing conditions

will arise.

Once a tumor grows, hypoxia is maintained by the tumor itself,

independent from the inflammation. This may further stimulate

Ado production, but as the tumor causes hypoxia and not the

infiltrating leukocytes, the regulatory feedback loop between
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Hypoxia, Ado and inflammation is disrupted. The tumor can now

profit from the suppressive tissue environment and escape

immune surveillance.
5 Conclusion

In the course of an inflammation the potent immune suppressor

Ado is produced by cells to prevent overshooting inflammation and

to induce healing of the tissue. At the same time inflammation causes

massive mutations and stimulates extensive cell proliferation that

requires active immune surveillance to prevent induction of tumors.

If this commonly accepted and fine-tuned immunosuppression by

Ado is out of balance, for example by chronic and prolonged

inflammation, immune suppressive actions of Ado may

outcompete the beneficial “healing” and tissue remodeling

capacities of Ado, and inflammation-driven mutations may easily

lead to tumors that can escape the immune surveillance, which is

suppressed by Ado.
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ADA adenosine deaminase

Ado adenosine

ADP adenosien diphosphate

AID activation-induced cytidine deaminase

AMP adenosine monophosphate

ARs adenosine receptors

ATP adenosine triphosphate

Bax Bcl-2 associated X protein

Bcl-6 B-cell lymphoma 6

CCL CC chemokine ligand

CGS CGS21680

CTLA-4 cytotoxic T-lymphocyte-associated antigen 4

CXCL CXC chemokine ligand

CXCR CXC chemokine receptor

DC dendritic cell

DFSP aermatofibrosarcoma protuberans

DSS dextran sodium sulfate

ENTs nucleoside transporters

HIF hypoxia-inducible factor

IDO indoleamine 2,3-dioxygenase

IFNg interferon g

IL interleukin

Jmjd3 Jumonji domain-containing protein D3

LAG3 Lymphocyte Activation Gene 3

mTORC1 mammalian target of rapamycin complex 1

NK natural killer

PD-1 programmed death-1

PD-L2 programmed death-ligand 2

PDGF Platelet-derived growth factor

PKA protein kinase A

ROS reactive oxygen species

Sp1 specificity protein 1

TAMs tumor-associated macrophages

Tgfbr2 TGF-b receptor type 2

TGFb Transforming growth factor b

TIM3 T cell immunoglobulin and mucin domain-containing protein 3

TNBS 2,4,6-trinitrobenzene sulfonic acid

TNF tumor necrosis factor
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Tregs regulatory T cells

VEGF vascular endothelial growth factor
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