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Introduction: Hemagglutinin (HA) is responsible for facilitating viral entry and 
infection by promoting the fusion between the host membrane and the virus. 
Given its significance in the process of influenza virus infestation, HA has garnered 
attention as a target for influenza drug and vaccine development. Thus, accurately 
identifying HA is crucial for the development of targeted vaccine drugs. However, 
the identification of HA using in-silico methods is still lacking. This study aims to 
design a computational model to identify HA.

Methods: In this study, a benchmark dataset comprising 106 HA and 106 non-HA 
sequences were obtained from UniProt. Various sequence-based features were 
used to formulate samples. By perform feature optimization and inputting them 
four kinds of machine learning methods, we constructed an integrated classifier 
model using the stacking algorithm.

Results and discussion: The model achieved an accuracy of 95.85% and with 
an area under the receiver operating characteristic (ROC) curve of 0.9863 in the 
5-fold cross-validation. In the independent test, the model exhibited an accuracy 
of 93.18% and with an area under the ROC curve of 0.9793. The code can be 
found from https://github.com/Zouxidan/HA_predict.git. The proposed model 
has excellent prediction performance. The model will provide convenience for 
biochemical scholars for the study of HA.
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1. Introduction

Influenza is a contagious respiratory disease, posing a significant threat to human health 
and causing varying degrees of disease burden globally (1, 2). Hemagglutinin (HA), a 
glycoprotein on the surface of influenza viruses, mediates viral entry and infection by binding 
to host sialic acid receptors (3). The highly conserved stem or stalk region of HA has been 
identified as a promising target for the development of a universal influenza vaccine (4). 
Accurate identification of HA is crucial for targeted vaccine and drug development.

With the increasing maturity of protein sequence coding methods and machine learning 
algorithms, sequence-based protein recognition has been an effective approach for rapid 
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identification of protein. It achieves classification and identification of 
specific proteins using protein sequence coding methods and machine 
learning algorithms, which has been widely used in the prediction 
studies of cell-penetrating peptides (5), hemolytic peptide (6), anti-
cancer peptides (7), hormone proteins (8), autophagy proteins (9), and 
Anti-CRISPR proteins (10), etc., because of its high recognition 
accuracy in the protein identification study.

Despite the pivotal role of HA in influenza virus infection, existing 
machine learning-based research on HA has primarily focused on 
influenza virus subtype classification (11, 12), influenza virus host 
prediction (13), influenza virus mutation and evolution prediction 
(14), HA structure–function analysis (15), and influenza virus 
pathogenicity and prevalence prediction (16). However, there are 
currently no approaches for HA identification based on HA sequence 
information and machine learning techniques.

In this study, we proposed a machine learning-based prediction 
model for HA to achieve effective identification. Firstly, we constructed 
a benchmark dataset based on existing protein databases. Next, 
we  employed feature extraction methods to encode the protein 
sequences. Subsequently, we  fused all the extracted features and 
utilized the analysis of variance (ANOVA) combined with incremental 
feature selection (IFS) strategies to obtain the most informative feature 
subset. Finally, the HA prediction model was developed based on this 
optimal feature subset. The workflow is shown in Figure 1.

2. Method and materials

2.1. Benchmark dataset

A benchmark dataset is essential for bioinformatics analysis (17, 
18). The dataset used in this study was collected from the Universal 

Protein Resource (UniProt) (19). To ensure the quality of the dataset, 
several pre-processing steps were performed. Protein sequences 
containing nonstandard letters (e.g., ‘B’, ‘U’, ‘X’, ‘Z’) were eliminated. 
Redundancy removal was done using CD-HIT (20) to remove 
sequences with high similarity. The cutoff value was set to 80%, and 
sequences with a similarity higher than 80% were removed. The 
non-HA dataset was down-sampled to ensure a balanced dataset with 
equal positive and negative samples. The final benchmark dataset 
consisted of 212 protein sequences, including 106 HA and 106 
non-HA samples. The dataset was randomly split into a training 
dataset and a test dataset in a 4:1 ratio. The above-mentioned model 
training set data and test set data are included in https://github.com/
Zouxidan/HA_predict.git. At the same time, a dataset named ‘predict_
data.txt’ for testing is also included.

2.2. Feature extraction

Feature extraction plays a crucial role in protein identification and 
prediction (10, 21–25). However, machine learning algorithms cannot 
directly process protein sequence information for computation and 
model construction. Therefore, it is necessary to convert protein 
sequence information into numerical data that can be understood and 
utilized by machine learning algorithms (26–29). Here, we employed 
various methods for feature extraction of protein sequences, including 
Amino Acid Composition (AAC), Dipeptide Composition (DPC), 
Tripeptide Composition (TPC), Composition of k-spaced Amino 
Acid Pairs (CKSAAP), Pseudo-Amino Acid Composition (PseAAC), 
PseAAC of Distance-Pairs and Reduced Alphabet (DCP). These 
sequence feature extraction approaches have been widely adopted in 
the field of bioinformatics (30–32). The implementation of these 
feature extraction methods was based on iLearnPlus (33).

A protein sequence P of length L can be represented as:

FIGURE 1

Workflow diagram for constructing the HA prediction model.
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 P R R R R R R RL= 1 2 3 4 5 6  (1)

where R1 denotes the first amino acid of the sequence, R2 denotes 
the second amino acid, and so on.

2.2.1. AAC
AAC is a commonly used method for protein sequence feature 

extraction, which involves 20 feature vectors. AAC was defined as:
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where ai denotes the i-th natural amino acid and N(ai) denotes the 
frequency of amino acid ai in the protein sequence.

2.2.2. DPC
Similar to AAC, DPC counts the frequency of amino acids, but it 

focuses on the frequency of two adjacent amino acids in a protein 
sequence. DPC was defined as:
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where (ai, aj) denotes two adjacent amino acids and N(ai, aj) 
denotes the frequency of the amino acid pair (ai, aj) in the 
protein sequence.

2.2.3. TPC
TPC is another feature extraction method that considers the 

relationship among three adjacent amino acids, providing more 
protein sequence information compared to AAC and DPC. TPC was 
defined as:
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where (ai, aj, az) denotes the combination of three adjacent amino 
acids, and N(ai, aj, az) denotes the frequency of the tripeptide 
combination (ai, aj, az) in the protein sequence.

2.2.4. CKSAAP
To obtain further sequence information, Chen et al. proposed 

CKSAAP (34) which was defined as:
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where k denotes the number of amino acids spaced between two 
amino acids, xk denotes k arbitrary amino acids, (ai, xk, aj) denotes the 
spaced amino acid pair, and N(ai, xk, aj) denotes the frequency of the 
spaced amino acid pair (ai, xk, aj) in the protein sequence.

2.2.5. PseAAC
To incorporate protein sequence ordinal information and improve 

prediction quality, a powerful feature, called PseAAC, was proposed, 
which incorporated the physicochemical characteristics of amino 
acids. PseAAC was defined as:
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where xi denotes the normalized amino acid frequency, ω denotes 
the weight factor for short-range and long-range, and θj denotes the 
j-th sequence correlation factor.

θj was calculated as:
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Θ(Ri + Ri + j) was defined as:
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where H1(Ri), H2(Ri), and M(Ri) denote the standardized 
hydrophobicity, standardized hydrophilicity, and standardized side 
chain mass of the amino acid Ri, respectively.

The hydrophobicity, hydrophilicity, and side chain mass of amino 
acids were standardized using the following equations:
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where H1(Ri), H2(Ri), and M(Ri) denote the standardized 
hydrophobicity, standardized hydrophilicity, and standardized side 
chain mass of amino acids, respectively, and H Ri1

0 ( ) , H Ri2
0 ( ) , and 

M Ri0 ( ) denote the corresponding raw physicochemical properties of 
amino acids.

2.2.6. DCP
To incorporate more protein sequence order information and 

reduce the impact of high-dimensional features, Liu et al. proposed 
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DCP (35). Based on a validated amino acid simplification alphabet 
scheme (36), three simplified amino acid alphabets were defined as:
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For any simplified amino acid alphabet, DCP was defined as:
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where z denotes the number of amino acid clusters in the 
simplified alphabet, and N cp cpd i j,( )  denotes the frequency of any 
two amino acid clusters with distance d in the protein sequence.

In this study, the following parameters were used for protein 
sequence feature extraction: k = 1 for CKSAAP (amino acid spacing 
value), λ = 10 for PseAAC (number of amino acid theoretical 
properties), and ω = 0.7 for the weight factor for short-range and long-
range. Consequently, we  extracted features that include 
20-dimensional AAC, 400-dimensional DPC, 8000-dimensional TPC, 
800-dimensional CKSAAP, 30-dimensional PseAAC, and 
1,463-dimensional DCP.

2.3. Feature fusion and selection

Different feature extraction methods offer diverse interpretations 
and representations of protein sequences. Relying solely on a single 
feature extraction method may limit the information provided by a 
single feature. To obtain a more comprehensive and reliable 
interpretation of protein sequences, we fused all features to create a 
fused feature set, resulting in a 10,713-dimensional feature set 
(20 + 400 + 8,000 + 800 + 30 + 1,463). We  then selected the optimal 
feature subset using ANOVA and IFS.

ANOVA, a widely used feature selection tool, tests the difference 
in means between groups to determine whether the independent 
variable influences the dependent variable. Its high accuracy has made 
it an effective choice for feature selection (8). For a feature f, its F-value 
was calculated based on the principle of ANOVA as follows:
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where F(f) represents the F-value of feature f, SSA represents the 
sum of squares between groups, SSE represents the sum of squares 
within groups, K-1 and N-K denote the degrees of freedom between 
and within groups, respectively. N is the total number of samples, and 
K is the number of groups.

SSA and SSE were calculated as follows:
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where f i j,( )  denotes the j-th feature of the i-th group, K 
represents the number of groups, and ki represents the total number 
of samples in the i-th group.

A larger F-value indicates a stronger influence of the feature on 
data classification, thereby contributing more to the data classification 
results. In the feature set, the large amount of data, redundant data and 
noise will not only result in higher computational costs, but also cause 
the phenomenon of overfitting or reduced accuracy of the prediction 
model. The above fusion feature set contains 10,713 features, which is 
a large number of features. For saving computational time and 
reducing computational cost, we firstly use ANOVA to initially filter 
to obtain the 1,000 features which have the greatest influence on the 
classification results.

Next, the optimal subset of features was determined by searching 
the top 1,000 features ranked by F-value using IFS. IFS is a frequently 
employed feature selection method in the field of bioinformatics (37, 
38). The specific process of IFS is as follows. Firstly, all features were 
sorted in descending order according to their F-values obtained from 
ANOVA. Then, each feature was sequentially added to the feature set, 
and a model was constructed using support vector machine (SVM) 
for each newly formed feature subset. Grid search was utilized to 
obtain optimal models, and their performance was evaluated using 
5-fold cross-validation. The optimal feature subset was defined as the 
set of features that maximized the model’s accuracy.

2.4. Machine learning methodology and 
modeling

The advancement of machine learning has provided an effective 
approach to solving biological problems (39–42). Utilizing machine 
learning techniques to identify proteins based on sequence features 
has proven to be a rapid and widely applied method in various studies 
(43–45).

Constructing appropriate models is crucial for achieving accurate 
and robust predictions. In this study, we selected four commonly used 
machine learning algorithms, namely K-nearest neighbor (KNN) (46), 
logistic regression (LR) (47), random forest (RF) (48), and SVM (49), 
to build the fundamental classifier model for the HA dataset. The 
optimal parameters for each algorithm were obtained using grid 
search. To further enhance the model’s accuracy and generalization 
ability, we developed an integrated classifier model by combining the 
four basic classifier models. The Stacking algorithm was employed, 
with logistic regression serving as the second-layer classifier. All the 
machine learning models utilized in this study were implemented 
using scikit-learn (50).

KNN is a simple yet effective machine learning algorithm based 
on the implementation of the distance between data and data. LR is 
a binary classification algorithm based on the sigmoid function, 
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which classifies samples by their corresponding output values. In RF, 
the result of prediction is determined by the vote or average of 
decision trees. The basic principle of SVM is to separate two classes 
of training data by defining a hyperplane and maximizing the 
distance between the two classes.

The Stacking algorithm is one of the widely used integrated learning 
methods, which obtains predictive models with higher accuracy and 
better generalization ability by combining basic classifier models. The 
Stacking algorithm was initially proposed by Wolpert (51). Its basic idea 
is to obtain an optimal integrated classifier model by training and 
combining multiple basic classifier models. In the Stacking algorithm, 
machine learning algorithms with strong learning and fitting capabilities 
are frequently used to construct basic classifier models for adequate 
learning and interpretation of training data. To reduce the degree of 
overfitting, simple algorithms with strong interpretations are commonly 
used to construct integrated classifier models.

2.5. Performance evaluation

To assess the effectiveness of the constructed models, we employed 
5-fold cross-validation and independent testing. The performance of the 
proposed model was evaluated using several metrics, including accuracy 
(ACC), sensitivity (Sn), specificity (Sp), Matthew’s correlation coefficient 
(MCC), and the area under the receiver operating characteristic curve 
(AUC) (27, 52–56). ACC, Sn, Sp, and MCC were expressed as:

 
ACC TP TN

TP TN FP FN
=

+
+ + +  

(14)

 
Sn TP

TP FN
=

+  
(15)

 
Sp TN

TN FP
=

+  
(16)
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TP FN TP FP TN FP TN FN
=

× − ×

+( ) +( ) +( ) +( )  
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where TP, TN, FP, and FN represent the following respectively: 
correctly identified positive samples, correctly identified negative 
samples, incorrectly identified negative samples, and incorrectly 
identified positive samples.

Additionally, we  utilized the receiver operating characteristic 
(ROC) curve to evaluate model performance. A higher AUC value 
indicates better model performance, as it reflects the proximity to 1 
according to the underlying principle.

3. Results and discussion

3.1. Optimal feature subset

We constructed optimal feature subsets using ANOVA and IFS 
and evaluated the models for each subset using the ACC. Figure 2A 

shows the IFS curve for the fusion feature set. When the feature set 
contained 773 features, the prediction model achieved a maximum 
ACC value of 0.9585.

In optimal feature subset, 13-dimensional AAC, 73-dimensional 
DPC, 629-dimensional TPC, 29-dimensional CKSAAP, and 
29-dimensional DCP features are included. Notably, PseAAC is not 
included in this subset, suggesting that it is less effective in classifying 
HA compared to the other features. Furthermore, TPC has the highest 
proportion in optimal feature subset, indicating that TPC provides the 
best identification and differentiation ability among the six methods 
for feature extraction.

To demonstrate the impact of optimal feature subsets on model 
performance, we  compared the performance of SVM prediction 
models constructed with optimal feature subsets to those constructed 
with six single feature sets. Each model was optimized using grid 
search within the same parameter range, and all models were 
evaluated using 5-fold cross-validation. Table 1 presents the results of 
the comparison, and Figure 2B shows the ROC curves for the 5-fold 
cross-validation of these models. The model constructed with the 
optimal feature subset achieved an ACC of 94.06% and an AUC of 
0.970, outperforming the models constructed with other single feature 
sets. These results indicate that the optimal feature subset significantly 
improved the model’s prediction performance.

3.2. Model construction and evaluation

We constructed four basic models and an integrated model 
based on the optimal feature subsets. The optimal parameters for 
each algorithm were as follows: K = 52 for KNN, n = 62 for RF, f = 6 
for the number of features considered during best-split search, 
ξ = 4 for the SVM kernel parameter, and C = 32 for the 
regularization parameter.

Table 2 presents the performance comparison of different classifier 
models using two testing methods. Figures 2C,D show the ROC curve 
of the constructed integration model using these wo testing methods. 
With 5-fold cross-validation, the proposed integrated model achieved 
an ACC of 95.85% and an AUC of 0.9863. On the independent test set, 
the integrated model achieved an ACC of 93.18% and an AUC of 
0.9793. These results demonstrate that the proposed integrated model 
exhibited better HA prediction capability, improved model 
performance, and enhanced generalization ability compared to a 
single model.

3.3. Comparison of other machine learning 
algorithms

We have created two models based on optimal feature subsets and 
compared their performance to demonstrate the superiority of our 
proposed model. The comparison results are presented in Table 3, 
where we  compared the model constructed with the XGboost 
algorithm with our proposed model. The main parameters of the 
model constructed based on the XGboost algorithm are as follows: 
max_depth  = 3, learning_rate  = 0.16, colsample_bytree  = 0.85, 
subsample = 0.75. The results in Table 3 show that our model has good 
classification performance.
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3.4. Leave-one-out validation of the model

Due to the small sample data size, model robustness may 
be questioned. To ensure credible results, we use the leave-one-out 

method to re-validate model performance. The results of the model 
performance evaluation based on the leave-one-out method are 
shown in Table 4. In the performance evaluation of the model using 
the leave-one-out method, the model achieves an ACC of 93.45% and 

FIGURE 2

Performance analysis for optimal feature subsets and HA prediction models. (A) IFS curve for fusion features. (B) ROC curves of models constructed 
based on optimal feature subsets and six single feature sets. (C) ROC curves of the integrated classifier model with 5-fold cross-validation. (D) ROC 
curves of the integrated classifier model with independent testing.

TABLE 1 Performance of models constructed based on optimal feature subsets and six single feature sets.

Feature type Sn(%) Sp(%) MCC ACC(%) AUC

AAC 86.99 84.56 0.7324 85.74 0.9463

DPC 93.97 91.62 0.8597 92.83 0.9643

TPC 92.87 91.62 0.8512 92.30 0.9773

CKSAAP 92.79 89.26 0.8296 91.07 0.9636

PseAAC 85.66 92.79 0.7941 89.29 0.9518

DCP 86.99 89.26 0.7650 88.13 0.9658

Optimal subset 94.04 94.04 0.8825 94.06 0.9790
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an AUC of 0.9846. The model shows good performance on both 
cross-validation methods, signifying its stability and the reliability of 
its classification outcomes.

4. Conclusion

Hemagglutinin (HA) is a vital glycoprotein found on the surface 
of influenza viruses, and accurately identifying HA is crucial for the 
development of targeted vaccine drugs. In this study, we proposed a 
prediction model based on HA protein sequence features. The model 
was constructed using the Stacking algorithm, incorporating an 
optimal subset of features and a basic classifier model. Our results 
demonstrated that the constructed model exhibits excellent predictive 
capacity and generalization ability.

We anticipate that the model will prove valuable in the effective 
identification and prediction of HA. Moving forward, we  plan to 
explore additional feature extraction methods and optimize our 
prediction model to further enhance its performance. Additionally, 
we are committed to developing an accessible web server to facilitate 
the identification and prediction of HA.

In summary, our research provides a promising approach to 
accurately identifying HA and lays the foundation for the development 
of targeted vaccine drugs. We believe that our findings contribute to 
the advancement of influenza research and offer valuable insights for 
future studies in this field.
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