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Purpose: This study aims to explore novel biomarkers related to the coagulation

process and tumor-associated macrophage (TAM) infiltration in lung

adenocarcinoma (LUAD).

Methods: The macrophage M2-related genes were obtained by Weighted Gene

Co-expression Network Analysis (WGCNA) in bulk RNA-seq data, while the TAM

marker genes were identified by analyzing the scRNA-seq data, and the

coagulation-associated genes were obtained from MSigDB and KEGG

databases. Survival analysis was performed for the intersectional genes. A risk

score model was subsequently constructed based on the survival-related genes

for prognosis prediction and validated in external datasets.

Results: In total, 33 coagulation and macrophage-related (COMAR) genes were

obtained, 19 of which were selected for the risk score model construction.

Finally, 10 survival-associated genes (APOE, ARRB2, C1QB, F13A1, FCGR2A, FYN,

ITGB2, MMP9, OLR1, and VSIG4) were involved in the COMAR risk score model.

According to the risk score, patients were equally divided into low- and high-risk

groups, and the prognosis of patients in the high-risk group was significantly

worse than that in the low-risk group. The ROC curve indicated that the risk

score model had high sensitivity and specificity, which was validated in multiple

external datasets. Moreover, the model also had high efficacy in predicting

the clinical outcomes of LUAD patients who received anti-PD-1/PD-L1

immunotherapy.
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Conclusion: The COMAR risk scoremodel constructed in this study has excellent

predictive value for the prognosis and immunotherapeutic clinical outcomes of

patients with LUAD, which provides potential biomarkers for the treatment and

prognostic prediction.
KEYWORDS

lung adenocarcinoma, coagulation, tumor-associated macrophage, risk score model,
prognosis, immunotherapy
1 Introduction

Although the screening and treatment of lung cancer have

witnessed greater improvement in the past few years, there are

still ongoing challenges in improving the clinical outcomes of

patients (1, 2). Lung adenocarcinoma (LUAD), a kind of non-

small cell lung cancer (NSCLC), was the most common lung

malignancy with genetic and morphologic diversity, and the

pathogenesis and treatment of LUAD still need further

exploration (3, 4). The tumor microenvironment (TME) plays a

critical role in tumor progression and treatment (5, 6). Tumor-

associated macrophage (TAM) was an essential component of the

tumor microenvironment, and it contributed to tumor growth,

metastasis, and immunosuppression, as well as tumor resistance to

chemotherapy and checkpoint blockade immunotherapy (7, 8).

There were also a number of studies about the roles of TAMs in

NSCLC or LUAD. TAMs in the TME usually originated from two

main sources: one was the bone marrow (BM)-derived monocytic

precursors; another was the tissue-resident macrophages (TRMs)

originated from embryonic precursors (8). After egress from the

BM, monocytes (or M-MDSCs) were recruited to the TME via

chemokines of the CC and CXC families, such as CCL2, CCL5, and

CXCL12, that were produced by cancer cells early during

tumorigenesis (9). Subsequently, the myeloid cells recruited to

tumors would convert to TAMs under the activation of integrin

(9). CCR2 and CX3CR1 were the receptors of the chemokines CCL2

and CX3CL1, respectively, and they were proven to play significant

roles in macrophage migrating to lung cancer and M2

polarization (10).

TAMs shaped the TME of NSCLC. They accumulated close to

tumor cells in the early stage of tumor formation to promote

epithelial–mesenchymal transition and invasiveness of tumor

cells, and they also caused a potent regulatory T-cell response

that suppressed the adaptive immunity of tumor cells (11). TAMs

can promote LUAD growth or metastasis by secreting some factors

that can be adopted by the tumor cells in the TME, such as miR-942

(12), LINC00273 (13), and HB-EGF (14), as well as by upregulating

CRYAB expression in tumor cells (15). The M2 subtype of TAM

enhances the expression of VEGF-A and VEGF-C, which is

significantly associated with angiogenesis and lymphangiogenesis,

contributing to the progression of NSCLC (16). TAMs also have a

great impact on the chemotherapy and anti-PD1/PD-L1
02
immunotherapy for LUAD (17, 18). Recent studies found that

TAMs had a close relationship with coagulation. On the one

hand, TAM was an important contributor to the coagulation in

tumors by producing factor X (FX) and leading to cell-autonomous

FXa-PAR2 signaling in these cells within the TME (19, 20). On the

other hand, some coagulation-related factors can regulate the

functions of TAMs, consequently influencing the progression of

tumors. For example, thrombin and plasminogen activator

inhibitor-1 (PAI-1) can facilitate the M2 polarization of TAMs in

ovarian and breast cancer, respectively (21, 22). Tissue factor (TF)

expression by tumor cells can recruit TAMs to the lung, supporting

the formation of the premetastatic niche (23). The lung plays an

important role in blood coagulation, and there was evidence that the

lung is a primary site of terminal platelet production (24). Lung

cancer is a non-negligible cause of the disturbance of blood

coagulation, which can lead to venous thromboembolism, the

second leading cause of death in cancer patients (5, 25). NSCLC

has a relatively high risk of venous thromboembolism among lung

cancer types, and LUAD is especially an independent risk factor for

it (26, 27). The pathophysiology of this phenomenon was complex

and not entirely understood, and several related risk factors were

involved (25).

The study was designed to further explore the significance of

coagulation and TAM infiltration in shaping the TME of LUAD

and predicting the prognosis and immunotherapeutic clinical

outcomes of LUAD patients.
2 Materials and methods

2.1 Data collection and preprocessing

The gene expression profiles of The Cancer Genome Atlas

(TCGA)-LUAD cohort (converted to log2(FPKM+1)) were

downloaded using the R package “TCGAbiolinks”. The officially

corrected survival information (overall survival (OS)) and clinical

information (including age, stage, gender, grade, etc.) of LUAD

patients in TCGA were downloaded from the cBioPortal database.

The gene expression profiles and clinical information of the

GSE30219, GSE37745, GSE41271, GSE42127, GSE50081,

GSE68465, and GSE72094 datasets were downloaded from the

GEO database. In these datasets, the primary tumors were
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collected by surgical resection from lung adenocarcinoma patients.

The patients in these cohorts have been collected with high-quality

gene expression data and complete clinical and follow-up

information. None of the patients received preoperative

chemotherapy or radiotherapy. The probes in the GEO datasets

corresponding to more than one gene would be removed. When

multiple probes corresponded to the same symbol, the average value

would be taken.

We filtered out the samples with incomplete survival information

in TCGA and the GEO datasets. The GSE68465 dataset was used as

the training cohort, while the other datasets were taken as the

validation cohorts. The GSE131907 dataset, containing single-cell

transcriptome data from 15 lung adenocarcinoma patients, was also

downloaded from the GEO database. The cellular annotation results,

reported by Kim, were used for the subsequent analyses (28). A total

of 535 coagulation-related genes were obtained from the coagulation-

related pathways in the MSigDB and Kyoto Encyclopedia of Genes

and Genomes (KEGG)databases. The detailed pathways and the

numbers of the corresponding genes were listed in (Table 1), and

the names of those 535 genes are listed in Supplementary Table S1.
2.2 The construction of the gene co-
expression network by WGCNA analysis

Weighted Gene Co-expression Network Analysis (WGCNA)

aimed to identify co-expressed gene modules, explore the

relationships between the gene co-expression networks and the

phenotypes of interest, and study the core genes in the network.

WGCNA analysis was performed using the genes with the top 75%

highest variation coefficient in the expression profile of the

GSE68465 dataset. First, the correlation coefficient between every

two genes was calculated, and the connections between genes in the

network were made to obey a scale-free network using the weighted

values of the correlation coefficients. Subsequently, a hierarchical

clustering tree was constructed based on the correlation coefficients

among these genes. Different branches of the clustering tree

represented different gene modules, and different colors

represented different modules. Next, the significance of the
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modules was calculated and used to calculate the correlation

between the macrophage M2 infiltration scores and different

modules, and the genes in each module, considered signature

genes of the modules, were recorded.
2.3 Processing the single-cell
RNA-seq data

The R package “Seurat” was used to preprocess the scRNA-seq

data. First, we set the following thresholds in which the cells can be

included in the study: (1) cells with more than 200 and less than

10,000 genes; (2) cells with less than 20% mitochondrial gene

expression; and (3) cells with more than 100 and less than

150,000 UMIs. The “NormalizeData” function was used to

normalize the scRNA-seq dataset, and 3,000 highly variable genes

w e r e i d e n t ifi e d u s i n g t h e “mvp ” me t h od o f t h e

“FindVariableFeatures” function. Subsequently, we made scale

transformed for the data and performed principal component

analysis (PCA) for dimensionality reduction. We eventually

selected the top 20 principal components for the downstream

analyses. Since the data were obtained from different samples,

batch correction was performed using the R package “Harmony”

to avoid the interference of the batch effect on the subsequent

analyses. We used the UMAP algorithm to mine and visualize the

data. Finally, we annotated the cell populations based on the

signatures provided by the study of Kim et al. (28).

We identified differentially expressed genes (DEGs) between

each cell type by using the “FindAllMarkers” function in the R

package “Seurat”, where min.pct = 0.1, logfc. threshold = 0.25, and

only.pos = FALSE were set, while only genes with p-values of< 0.05

would be retained. We used the R package “scRNAtoolVis” to plot

the volcano chart for the DEGs between different cell types.
2.4 Mutation and CNV analyses

R package “maftools” was employed to plot the waterfall maps

of the mutation landscape of the 33 coagulation and macrophage-

related (COMAR) genes in the TCGA-LUAD cohort. The CNV

data of TCGA-LUAD was downloaded from the “UCSC Xena”

website, and then the CNV frequency was presented in a plot

finished by R software.
2.5 Construction of the COMAR
prognostic model

The COMAR prognostic model was constructed based on 33

coagulation and macrophage-related genes. First, Kaplan-Meier

survival analysis was performed to divide the patients into high

and low-expression groups with the best cut-off value for each gene,

and 19 genes that had significant differences in survival status

between the two groups were identified. Next, multivariate Cox

regression analysis for the 19 genes was used to construct the 10-

gene prognostic model. In the COMAR prognostic model, patients’
TABLE 1 The coagulation-related pathways and the number of genes
involved in each pathway.

Pathways Count

GOBP_BLOOD_COAGULATION_INTRINSIC_PATHWAY 18

GOBP_COAGULATION 347

GOBP_NEGATIVE_REGULATION_OF_COAGULATION 52

GOBP_POSITIVE_REGULATION_OF_COAGULATION 24

GOBP_REGULATION_OF_COAGULATION 71

HALLMARK_COAGULATION 138

KEGG_COMPLEMENT_AND_COAGULATION_CASCADES 69

KEGG_PLATELET_ACTIVATION 124

KEGG_COMPLEMENT_AND_COAGULATION_CASCADES 86
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risk scores were calculated based on the expression levels of each

prognosis-related gene and their corresponding regression

coefficients:

Risk score =o
n

i=1
expi* bi

In the above formula, “n” represents the number of genes;

“expi” represents the expression level of gene “i”; and “bi”
represents the coefficient of gene “i”. Patients were divided into

high- and low-risk groups according to the median risk score, and

survival analysis was performed using the R package “survminer” to

analyze OS in the high- and low-risk groups. The “survminer” and

“timeROC” packages were used to perform time-dependent ROC

curve analysis to check the predictive efficacy of the prognostic

models. Finally, risk scores would be calculated in the validation

cohorts using the same formula.
2.6 Biological functional annotation

The GO_BP and GO_MF enrichment analyses were performed

using the Gene Set Variation Analysis (GSVA) algorithm to calculate

the score for each pathway in each sample. The differentially

activated pathways in the high- and low-risk score groups were

identified using the “limma” package, with the differential threshold

set at FDR< 0.05. Differentially activated KEGG pathways between

the high- and low-risk score groups were analyzed using Gene Set

Enrichment Analysis (GSEA).
2.7 The estimation of immune cell
infiltration in the TME

The CIBERSORT algorithm in the R package “IOBR” was

applied to evaluate the immune cell abundance in the samples of

the GSE68465 dataset. Specifically, the CIBERSORT algorithm was

used to calculate the infiltration fractions of the 22 types of immune

cells. CIBERSORT was considered superior to previous methods of

deconvolution when analyzing unknown mixture content and

noise. This algorithm could be used to statistically estimate the

relative proportions of cell subgroups in complex tissues according

to gene expression profiles, making it a useful tool for estimating the

abundance of specific cell types in mixed tissues.
2.8 Collecting the immunotherapeutic
cohorts

The GSE126044 dataset, containing seven LUAD patients who

received anti-PD-1 immunotherapy, was downloaded from the

GEO database. The GSE135222 dataset containing 27 NSCLC

patients with anti-PD1/PD-L1 immunotherapy was also

downloaded from the GEO database. We calculated the risk

scores for each sample in these datasets using the same algorithm

as the previous model and made a survival analysis. We also

compared the difference in risk score between the patients with
Frontiers in Immunology 04
cancer progression and those with no progression after

receiving immunotherapy.
2.9 Statistical analysis

All the analyses were performed in R software (version 4.1.2).

For significance analysis between various values (such as expression

levels, infiltration ratio, and various eigenvalues, etc.), the Wilcoxon

rank-sum test was applied to compare the differences between two

groups of samples, while the Kruskal–Wallis test was used to

compare the differences between multiple groups of samples. For

plot presentation, the “ns” represents p > 0.05; “*” represents p<

0.05; “**” represents p< 0.01; “***” represents p< 0.001; and “****”

represents p< 0.0001. Survival curves in the prognostic analysis

were generated by the Kaplan–Meier method, and the significance

of the differences was determined by the log-rank test.
3 Results

3.1 Screening the macrophage-related
genes through WGCNA

The flow chart of this study is shown in Figure 1. The

CIBERSORT algorithm was used to calculate the content of

macrophages M1 and M2 in the samples of the GSE68465 cohort.

Next, the LUAD patients were divided into groups with high and low

macrophages M1 and M2. Kaplan–Meier analysis indicated that

there was no significant difference in the survival of LUAD patients

between the high and low macrophage M1 groups (Supplementary

Figure S1A), but patients in the low macrophage M2 group had a

longer overall survival (Supplementary Figure S1B). This suggested

that macrophage M2 played an important role in LUAD. Based on

this result, WGCNA was used to identify macrophage M2-related

genes in LUAD. First, the result of sample clustering showed no

outliers in these LUAD samples (Supplementary Figure S1C). When

the power value was 7, the degree of independence was > 0.85 for the

first time, so 7 was selected as the optimal soft threshold power

(Supplementary Figures S1D, S2E). There were nine gene modules

identified in the WGCNA (Supplementary Figures S1F, S2G). The

correlation analysis indicated that genes in the brown module (cor =

0.33, p = 0.0001) and blue module (cor = −0.41, p = 0.0000) were

most significantly correlated with macrophages M2. Therefore, 408

genes in the brown module and 430 genes in the blue module

(Supplementary Table S2) were selected for the subsequent analyses.
3.2 Acquiring the TAM marker genes using
scRNA-seq data

After quality control for the scRNA-seq dataset GSE131907,

25,011 genes were detected in 50,515 cells. The violin plots showed

the number of genes detected in each cell (nFeature), the total number

of counts in each cell (nCount), and the percentage of mitochondrial

genes in each cell (percent.mt) (Supplementary Figures S2A–C).
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The correlation analysis indicated that nCount was significantly

positively correlated with nFeature (Supplementary Figure S2D).

Next, the 3,000 highly variable genes were plotted in the scatter

plot (Supplementary Figure S2E). In total, 20 PCs were identified by

PCA (Supplementary Figure S2F), which were selected for “harmony”

analysis. According to the TSNE and cell type annotation, all cells

were divided into two groups (34,279 immune cells and 16,236

nonimmune cells). The immune cell group consisted of B

lymphocytes, mast cells, myeloid cells, T/NK cells, and TAM, while

the nonimmune cell group included endothelial cells, epithelial cells,

and fibroblasts (Supplementary Figures S3A, S4B). Differentially

expressed genes for each cell type were analyzed and displayed in

the volcano plot (Supplementary Figure S3C). The 1,815 differentially

expressed genes in TAM were considered the TAM-associated genes

(Supplementary Table S3).
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3.3 Characterization of the COMAR genes
and the landscape of their genetic and
transcriptional alterations

The intersection of the 535 coagulation-associated genes, 838

macrophage M2-related genes, and 1,815 TAM-associated genes

contained 33 genes, and these genes were selected for the

subsequent analyses (Figure 2A; Supplementary Table S4). We

first summarized the incidence of copy number variations and

somatic mutations of the 33 COMAR genes in LUAD. Among 561

samples, 183 experienced mutations of coagulation-related genes,

with a frequency of 32.62%. It was found that the TLR4 exhibited

the highest mutation frequency, followed by ITGAX, while 11 genes

did not show any mutations in LUAD samples (Figure 2C). The

investigation of CNV alteration frequency indicated a prevalent
FIGURE 1

The flow chart of this study.
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A

FIGURE 2

The characterization of the 33 COMAR genes and the landscape of their genetic and transcriptional alterations. (A) The determination of the 33
COMAR genes from the cross-talk of the coagulation-related genes, the macrophage M2-related genes identified by WGCNA, and the TAM markers.
(B) The mutational frequency of the 33 coagulation-associated genes in 561 LUAD patients from the TCGA-LUAD cohort. Each column represents
individual patients. Upper bar plots show TMB, and the numbers on the right indicate the mutational frequency of each gene. Right-bar plots show
the proportion of each variant type. Stacked bar plots below show the fraction of conversions in each sample. (C) The CNV variation frequency of
the 33 coagulation-related genes in the TCGA-LUAD cohort. The height of the column represents the alteration frequency. Red dots represent
deletion frequency; blue dots represent amplification frequency. (D) The expression levels of the 33 genes between normal and LUAD cancer tissues
in the TCGA-LUAD cohort. In the box plot, blue represents normal tissues, and red represents cancer tissue. The upper and lower ends of the boxes
represent the interquartile ranges of values. Lines in the boxes represent median values. Blue or red dots show outliers. Asterisks above the boxes
represent the p-value (*p< 0.05; **p< 0.01; ***p< 0.001; ns, p> 0.05). (E) The immunohistochemical staining images of FCGR2A, FYN, ITGB2, MMP9,
and VSIG4 genes in normal lung tissues and LUAD tumor tissues. The names of genes and antibodies are listed at the top of the figure. The upper
five images are the staining in the corresponding normal tissues, and the lower five images are the staining in the tumor tissues.
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CNV alteration in these coagulation-related genes, with copy

number amplification being much more significant than copy

number deletion. Genes like FCER1G and FCGR2A were found

with pretty prominent copy number amplification, while RASGRP1

and C5AR1 were found with obvious copy number deletion

(Figure 2B). We also compared the relative RNA expression levels

between LUAD and paired normal tissues and found that most of

the genes were downregulated in LUAD compared with paired

normal tissues (Figure 2D). Thus, there may be some other factors

that may influence the expression of these genes, except for CNV.

The Human Protein Atlas (HPA) database was applied to validate

the protein expression of the COMAR genes, and the IHC staining

images of FCGR2A, FYN, ITGB2, MMP9, and VSIG4 were

obtained (Figure 2E). Each gene was stained using the same

antibody in the normal lung tissue and LUAD cancer tissue.

Among these genes, FCGR2A, FYN, ITGB2, and VSIG4 protein

levels were increased in tumor tissues, while MMP9 protein level

was decreased, which was consistent with their mRNA expression

levels (Figures 2D, E).
3.4 Construction and validation of the
prognostic model based on the
COMAR genes

To investigate the clinical value of the 33 COMAR genes, we

divided the patients in the training cohort GSE68465 into high- and

low-expression groups for each gene with the best cut-off value and

performed survival analysis. Results indicated that 19 genes were

prognostic-related genes (Supplementary Figure S4). We then

conducted a multivariate Cox regression analysis based on the 19

genes. Finally, 10 of the 19 genes were found in the prognostic

model we constructed (Figures 3A–J). The specific calculation

formula for the risk score model was listed as follows:

Risk score = (−0.26708659 * APOE expression level) +

(−0.282614466 * ARRB2 expression level) + (0.410059345 *

C1QB expression level) + (0.178659465 * F13A1 expression level)

+ (−0.303985307 * FCGR2A expression level) + (−0.271534215 *

FYN expression level) + (−0.610784492 * ITGB2 expression level) +

(0.15191577 * MMP9 expression level) + (0.120339218 * OLR1

expression level) + (0.446920184 * VSIG4 expression level).

The training LUAD patients were ranked by the risk score and

divided into low-risk (n = 221) and high-risk (n = 221) groups

(Figure 3M; Supplementary Table S5), and the patient’s survival

time became shorter with the risk score increasing generally

(Figure 3N). The Kaplan–Meier curve showed a significantly

poorer prognosis in the high-risk group than in the low-risk

group (log-rank test, p = 4.59e−07) (Figure 3K). The ROC curve

showed the AUCs of the patients at 1, 3, and 5 years were 0.693,

0.696, and 0.672, respectively (Figure 3L). The AUCs in the

prediction of short-term prognosis were higher, and they were

0.745, 0.740, and 0.718 at 4-, 6-, and 9-month follow-up,

respectively (Supplementary Figure S5A). Thus, the prognostic

model might have stronger predictive efficacy for shorter-term

prognosis. Moreover, this prognostic model had significantly

superior predictive efficacy compared with other clinical factors
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such as age, sex, tumor stage, and differentiation status at 1-, 3-, and

5-year follow-ups (Supplementary Figures S5B–D).

To evaluate the robustness and generalizability of the 10-gene

COMAR prognostic model, several external independent datasets,

including GSE30219, GSE37745, GSE41271, GSE42127, GSE50081,

GSE72094, and TCGA-LUAD, were used as the validation cohort

for this model. In both validation cohorts, the patients in the low-

and high-risk groups had significantly different prognoses, and the

ROC curves all indicated high sensitivity and specificity

(Figures 4A–G). Furthermore, univariate and multivariate Cox

regression analyses were applied to evaluate whether the risk

score model could act as an independent prognostic factor for

LUAD. In both training and validation cohorts, the risk score was

considered to be an independent prognostic factor among other

clinical features such as age, sex, and tumor stage (Figures 5A–P).

These results all indicated that the 10-gene coagulation-related risk

score model had a better prognostic efficacy with high robustness

and generalizability.
3.5 Relationship between the COMAR risk
score and the tumor microenvironment

Different activations of hallmarks, GO_BPs, and GO_MFs in the

GSE68465 dataset were investigated using the GSVA algorithm.

Results indicated that some cancer hallmarks were much more

enriched in the high-risk score group, such as MYC and MTOR-

related pathways (Figure 6A; Supplementary Table S6). The high-risk

score group had stronger molecular functions on DNA replication

and transcription (such as DNA replication origin binding, helicase

activity, and transcription initiation factor activity), while the low-risk

score group exhibited greater molecular functions on immune

activities (such as type I interferon receptor binding and T-cell

receptor binding) (Figure 6B; Supplementary Table S6).

Consistently, the immune biological pathways were mostly

activated in the low-risk score group (such as positive regulation of

T-cell receptor signaling pathway, positive regulation of antigen

receptor-mediated signaling pathway, and positive regulation of

inflammatory response to antigen stimulus), while pathways about

DNA replication were activated in the high-risk group (such as DNA

replication checkpoint and mitotic cell cycle checkpoint) (Figure 6C;

Supplementary Table S6).

Similar to the results in the GO analyses, the KEGG GSEA

indicated the high-risk score group was mostly enriched in the

following pathways (DNA replication, cell cycle, and P53 signaling),

while the low-risk score group was mostly enriched in the immune-

related pathways (natural killer cell-mediated cytotoxicity,

complement and coagulation cascades, and intestinal immune

network for IgA production) (Figure 6D; Supplementary Table S6).

To further explore the correlation between the risk score and tumor

immune characteristics, the immune cell infiltration in these samples

was investigated using the CIBERSORT algorithm. It was found that

immune cell infiltration was overall higher in the low-risk score group

than in the high-risk score group (such as naïve B cells, resting

dendritic cells, naive CD4 T cells, resting memory CD4 T cells, and T

follicular helper cells) (Figure 6E; Supplementary Table S7). However,
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the infiltration of macrophage M0 and M2 was significantly higher in

the high-risk score group (Figure 6E; Supplementary Table S7).

Moreover, some immune-related functions were much more

activated in the low-risk score group, including HLA, T-cell co-

stimulation, and type II IFN response (Figure 6F).
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3.6 Predictive efficacy of the 10-gene
COMAR model in immunotherapy

The risk scores of LUAD patients treated with anti-PD1/PD-L1

blockade in the GSE126044 and GSE135222 datasets were
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FIGURE 3

Construction of the 10-gene prognostic model in the training cohort. (A–J) The overall survival curves of the 10 genes involved in the prognostic
model: (A) APOE, (B) ARRB2, (C) C1QB, (D) F13A1, (E) FCGR2A, (F) FYN, (G) ITGB2, (H) MMP9, (I) OLR1, and (J) VSIG4. The abscissa axis shows
survival time, while the ordinate axis shows survival probability. Blue represents low expression, while red represents high expression. The grouping
status of the patients is indicated at the bottom of the chart. p< 0.05 in the Log-rank test was considered statistically significant. (K) The overall
survival curve of patients in high- and low-risk score groups in the training cohort. The abscissa axis shows survival time, while the ordinate axis
shows survival probability. Blue represents patients with low-risk scores, while red represents patients with high-risk scores. The grouping status of
the patients is indicated at the bottom of the chart. P< 0.05 in the Log-rank test was considered statistically significant. (L) The ROC curve for
predicting the 1-, 3-, and 5-year survival of LUAD patients according to the risk score. The abscissa axis represents specificity and the vertical axis
represents sensitivity. Different colors represent different predictive times. (M) The risk score distributions of the patients. (N) The survival status of
the patients.
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calculated using the risk score model. In the GSE126044 cohort, it

was found that patients in the low-risk score group had significantly

better progression-free survival (PFS) and overall survival (OS)

versus high-risk score group (Figures 7A, C). Surprisingly, the

corresponding ROC curves indicated that the AUCs at 6 months,

12 months, and 18 months were all 1 (Figures 7B, D). Similar results

could also be found in the GSE135222 cohort. Patients in the low-

risk score group had a remarkable advantage in prognosis

(Figure 7E), and the AUCs of patients at 4 months, 8 months,

and 12 months were 0.846, 0.8, and 0.854, respectively (Figure 7F).

The risk score distributions and the survival status of the patients in

the GSE135222 cohort are provided in Figures 7G, H. Moreover,

patients who experienced progression of LUAD after anti-PD1/PD-

L1 immunotherapy were found to have a higher risk score

(Figure 7I), and they were all in the low-risk score group

(Figure 7J). These results indicated that the 10-gene coagulation
Frontiers in Immunology 09
and macrophage-related model had a strong predictive efficacy for

patients’ prognosis with anti-PD1/PD-L1 immunotherapy.
3.7 Validation of the bioinformatic
analytical results through the patient
specimens and cancer cell lines

To further investigate the functions of the genes in the COMAR

model in immunotherapy, first we made a correlation analysis in

the TCGA-LUAD dataset and found the expression levels of all the

genes in the COMAR model were positively correlated with PD-L1

expression level and the immunophenoscore (IPS) with anti-PD1

+CTLA4 or anti-PD1 along immunotherapy (Figure 8A). Next, we

analyzed the protein expression levels of the COMAR genes and

PD-L1 in the HPA database, and the immunochemical images of
B

C D

E F

G

A

FIGURE 4

The predictive efficacy of the prognostic model in the external validation cohorts: (A) GSE30219 dataset, (B) GSE37745 dataset, (C) GSE41271
dataset, (D) GSE42127 dataset, (E) GSE50081 dataset, (F) GSE72094 dataset, (G) TCGA-LUAD dataset. On the left of each panel is the overall survival
curve of patients in high and low-risk score groups. The abscissa axis shows survival time while the ordinate axis shows survival probability. Blue
represents patients with low-risk scores while red represents patients with high-risk scores. The grouping status of the patients is indicated at the
bottom of the chart. On the right of each panel is the ROC curve for predicting the 1-, 3-, and 5-year survival of LUAD patients according to the risk
score. The abscissa axis represents specificity and the vertical axis represents sensitivity. Different colors represent different predictive times.
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VSIG4 and PD-L1 of six patients stained using the same antibody

for each gene were obtained.

It was found that patient 2003 with the strong staining intensity

of PD-L1 could also be found with the strong staining intensity of

VSIG4 in the specimens. Furthermore, the specimens of the other

five patients with negative staining of PD-L1 were consistent with

the negative VSIG4 staining results (Figures 8B–G). This indicated
Frontiers in Immunology 10
that the COMAR genes were positively correlated with PD-L1

expression at the proteinic level. We also explored the correlation

between the 10 COMAR genes and immune checkpoint genes in

LUAD cell lines using the data from the Cancer Cell Line

Encyclopedia (CCLE) database (29). The results indicated that the

expression levels of some COMAR genes, like ITGB2, were

positively correlated with multiple immune checkpoints
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FIGURE 5

Forest plots of the univariate and multivariate Cox regression analyses for the prognostic model in the training and validation cohorts. (A) Univariate Cox
regression analysis for the training cohort GSE68465. (B) Multivariate Cox regression analysis for the training cohort GSE68465. (C) Univariate Cox regression
analysis for the validation cohort GSE30219. (D) Multivariate Cox regression analysis for the validation cohort GSE30219. (E) Univariate Cox regression analysis
for the validation cohort GSE37745. (F) Multivariate Cox regression analysis for the validation cohort GSE37745. (G) Univariate Cox regression analysis for the
validation cohort GSE41271. (H) Multivariate Cox regression analysis for the validation cohort GSE41271. (I) Univariate Cox regression analysis for the validation
cohort GSE42127. (J) Multivariate Cox regression analysis for the validation cohort GSE42127. (K) Univariate Cox regression analysis for the validation cohort
GSE50081. (L) Multivariate Cox regression analysis for the validation cohort GSE50081. (M) Univariate Cox regression analysis for the validation cohort
GSE72094. (N) Multivariate Cox regression analysis for the validation cohort GSE72094. (O) Univariate Cox regression analysis for the validation cohort
TCGA-LUAD. (P) Multivariate Cox regression analysis for the validation cohort TCGA-LUAD. The left column of each panel shows the p-value and hazard
ratio of the factors, including risk score, and the right column shows the corresponding forest plot.
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(Supplementary Figure S6A), which was consistent with the results

in the patient specimens. Moreover, we obtained the

immunofluorescent staining image of the VSIG4 gene in LUAD

cell line A-549 from the HPA database and found that VSIG4 is

mainly located in the plasma membrane and cytosol of cancer cell

line A-549 (Supplementary Figure S6B).
4 Discussion

It had been extensively reported that lung cancer, especially for

LUAD, could frequently cause coagulation aberration and even

venous thromboembolism, which was a major cause of cancer-

related deaths (25–27, 30–32). It has been proved that the TME
Frontiers in Immunology 11
plays a significant role in tumor progression and therapy. As an

essential component of the TME, TAMs have been the focus of

several studies. TAMs could facilitate the progression of most types

of cancer, including LUAD, through promoting angiogenesis,

suppression of specific immunity, and cancer growth and

metastasis (7, 8, 11–16). TAMs could also be applied as the

therapeutic target for cancers, and the ways include depleting

them, reverting TAM polarization, checkpoint blockade, strategies

to reshape and activate TAMs, metabolic approaches, and

macrophage cell therapies (7, 8). TAMs played an important role

in coagulation, which was closely related to cancer development.

For example, TAMs could produce factor X (FX) and activate the

cell-autonomous FXa-PAR2 signaling in the TME, which led to

tumor immune evasion and a poor prognosis (19, 20). Some other
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FIGURE 6

The association between the COMAR risk score and the TME characteristics. (A–C) GSVA enrichment analysis shows the differentially activated
hallmarks (A), GO_MFs (B), and GO_BPs (C) between risk score low and high groups. The items of hallmarks, molecular functions, and biological
processes are listed on the right. Red represents activation, while blue represents inhibition. (D) GSEA enrichment analysis shows the activated
pathways in risk score high and low groups. The abscissa axis represents the ranked gene list according to their expression levels in two groups. The
vertical axis represents the running enrichment score. Curves of different colors represent different pathways. The curves that have a high peak on
the left side represent pathways that are enriched in the high-risk score group, while the curves that have a low peak on the right side represent
pathways that are enriched in the low-risk score group. (E) Relative abundance of the 22 types of immune cells in risk score low and high groups.
The abscissa axis represents the names of immune cells. The abscissa axis shows the immune cell types, and the vertical axis represents the
infiltration fraction of each immune cell. (F) Score of functions in immune regulation in risk score low and high groups. The abscissa axis shows the
items of immune functions, and the vertical axis shows the activation score of each immune function. "*p< 0.05; **p< 0.01; ***p< 0.001; ns, p> 0.05.
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FIGURE 7

The 10-gene COMAR model predicts the immunotherapeutic outcomes of patients with LUAD. (A) The progression-free survival curve of
patients with high and low-risk scores in the anti-PD-1 cohort GSE126044. (B) The ROC curve for predicting the 6- and 12-month
progression-free survival of patients in the GSE126044 cohort. (C) The overall survival curve of patients with high and low-risk scores in the
GSE126044 cohort. (D) The ROC curve for predicting the 6- and 12-month overall survival of patients in the GSE126044 cohort. (E) The
progression-free survival curve of patients with high- and low-risk scores in the anti-PD-1/PD-L1 cohort GSE135222. (F) The ROC curve for
predicting the 4-, 8-, and 12-month progression-free survival of patients in the GSE135222 cohort. For the survival charts, the abscissa axis
shows survival time, while the ordinate axis shows survival probability. Blue represents patients with low-risk scores, while red represents
high-risk scores. The grouping status of the patients is indicated at the bottom of the chart. For the ROC curves, the abscissa axis represents
specificity, and the vertical axis represents sensitivity. Different colors represent different predictive times. (G) The risk score distributions of
the patients in the GSE135222 cohort. (H) The survival status of the patients in the GSE135222 cohort. (I) Violin plot showing the risk score of
patients with progression or no progression after anti-PD-1/PD-L1 blockade immunotherapy in the GSE135222 cohort. (J) The proportion of
patients with progression or no progression after immunotherapy in low- and high-risk score groups in the GSE135222 cohort.
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coagulation-associated factors could also strengthen the tumor-

promoting effects of TAMs (21–23). Therefore, targeting the

coagulation-related factors might effectively dampen the tumor-

promoting functions of TAMs and boost the efficacy of cancer

therapy. There have been some studies showing that targeting

coagulation signaling could inhibit or reprogram TAMs and

improve immunotherapy (19, 20). However, the regulatory

mechanisms between coagulation and TAMs in tumor

development still need to be further studied, and more

biomarkers related to the coagulation process and TAM functions
Frontiers in Immunology 13
that could be used for cancer therapeutic targets and prognostic

prediction should be explored.

In this study, we acquired the coagulation-related genes from

the coagulation pathways provided by MSigDB and KEGG

databases (Table 1; Supplementary Table S1). Then, we found

high macrophage M2 content in the tumor was associated with a

worse prognosis in LUAD patients while macrophage M1 was not

(Supplementary Figures S2A, B), so the macrophage M2-related

genes were identified using the WGCNA method in the bulk RNA-

seq data (Supplementary Figures S2C–G; Supplementary Table S2).
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FIGURE 8

The correlation between genes in the COMAR model and anti-PD-1/PD-L1 immunotherapy. (A) Correlation analysis between the 10 genes involved
in the COMAR model, PD-L1 expression, and IPS in immunotherapy. (B-G) Immunohistochemical staining images of the specimens of patient ID
2003 (B), 4923 (C), 1907 (D), 1932 (E), 4090 (F), and 4488 (G). Images were downloaded from the Human Protein Atlas (HPA) database. Gene names,
antibodies, and staining intensity are listed at the bottom of each image. IPS, immunophenoscore. *p< 0.05; **p< 0.01; ***p< 0.001.
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Single-cell sequencing is an advanced technology that gives us an

unprecedented opportunity to dissect cellular heterogeneity in

various biological contexts by analyzing transcriptomic profiles of

thousands to millions of cells simultaneously (33–36). Through

analyzing the scRNA-seq data, we annotated all the cell types and

characterized the TAMmarker genes in the LUAD scRNA-seq data

(Supplementary Figure S3C; Supplementary Table S3) (28). Finally,

we adopted the intersectional genes of the three groups of genes and

obtained 33 genes that are closely related to the coagulation process

and TAM infi ltration for further analyses (Figure 2A;

Supplementary Table S4). Those genes were named COMAR genes.

Subsequently, we performed K-M survival analysis for those 33

COMAR genes and found that 19 genes were associated with the

prognosis (Supplementary Figure S6). Based on the 19 genes, we

constructed a prognostic model including 10 genes, which was

effective and proved robust in predicting patients’ prognosis

(Figures 3–5). Among the 10 genes, ARRB2 was reported to be a

tumor suppressor and could inhibit the progression of various kinds

of cancer, including lung cancer (37–41). In our study, ARRB2 was

found to be a protective factor for prognosis, which was consistent

with the previous studies (Figure 3B). Moreover, it was found that

ARRB2 was significantly downregulated in tumor versus normal

tissues and presented with a higher frequency of CNV deletion

(Figures 2B, D). Thus, we speculated that the expression of ARRB2

might be regulated by CNV in LUAD.

F13A1 was an important coagulation-related gene encoding

factor XIII subunit A (FXIII-A), which was a transglutaminase

involved in hemostasis, wound healing, tumor growth, and

apoptosis (42). It was reported that F13A1 was a risky factor for

the prognosis of patients with several types of cancer (43–45), which

was consistent with our study (Figure 3D). Though F13A1 had a

high frequency of CNV amplification (Figure 2B), it was

downregulated in LUAD tumor tissues (Figure 2D). Considering

its high mutation rate (Figure 2C), we speculated that mutational

inactivation might be the reason for the low expression of F13A1.

C1QB was a risky factor for patients with some cancers,

including NSCLC, according to previous studies (46–48), which

was also consistent with our analyses (Figure 2C). CIQB might

affect prognosis by regulating the TME because a study found that

intrahepatic cholangiocarcinoma (ICC) with APOE+C1QB+

subtype of macrophage infiltration was associated with the

chronic inflammation subtype of ICC and poor prognosis (46).

The FCGR2A gene encodes a member of the immunoglobulin

Fc receptor gene family (49). Previous studies mainly focused on the

polymorphisms of this gene that could influence the clinical

outcomes of monoclonal antibody treatment in cancers like breast

cancer (50), colorectal cancer (51, 52), and neuroblastoma (53).

Only limited reports pointed out that high expression of FCGR2A

was associated with a poor prognosis for cancer patients (49, 54). In

our study, we also found that high expression of FCGR2A was

associated with shorter survival in LUAD (Figure 3E). Moreover,

FCGR2A, presented with a higher rate of CNV amplification, was

downregulated in LUAD tumor tissues (Figures 2B, D), which was

rarely reported. Thus, it needed to be further explored, and the

regulatory mechanisms of its expression that were not consistent

with CNV amplification also needed to be figured out.
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FYN was a nonreceptor tyrosine kinase (RTK) member of the

Src family kinase (SFK) (55). It was reported that FYN promoted

tumor progression in glioma (56), melanoma (57), colon cancer

(58), gastric cancer (59), and pancreatic cancer through various

mechanisms (60). Furthermore, FYN was found to suppress LUAD

by downregulating PI3K/AKT and inhibiting the epithelial-to-

mesenchymal transition (61). This might partially account for the

result of our study that FYN was a protective factor for the

prognosis (Figure 3F).

ITGB2 participated in the YAP-induced cancer cell invasion by

activating leukocyte-specific integrin b2 expression (62) and the

myxofibrosarcoma aggressiveness conferred by SKP2 amplification

(63). High expression in cancer-associated fibroblast (CAF) could

promote oral squamous cell carcinoma proliferation by regulating

PI3K/AKT/mTOR pathways to enhance glycolysis activity in CAFs

(64). Moreover, high expression of ITGB2 was also reported to be

correlated with poor prognosis in some cancers (65, 66). However,

ITGB2 presented with opposite functions in NSCLC. It inhibited

the proliferation and metastasis of NSCLC cells through

suppressing EMT. Furthermore, low expression of it was

associated with inferior prognosis in NSCLC (67), which was

validated in an independent dataset, GSE68465 (Figure 3G).

MMP9 can degrade various components of the extracellular

matrix to promote cancer cell invasion and liberate ligands for

growth factor receptors from the extracellular matrix. It has been

reported to play an important role in tumor-induced VEGF-

dependent angiogenesis and prepping organs for the formation of

distant metastases depending upon VEGFR-1 (68). Furthermore, it

not only induced metastasis to the lung but was also involved in

lung cancer invasion through multiple mechanisms (69). Consistent

with previous reports, we found that MMP9 was also a risky factor

for the prognosis of LUAD (Figure 3H).

The OLR1 gene encodes the LOX-1 receptor protein, which

could facilitate the progression and metastasis of several cancers

(70). OLR1 could also promote lung metastases of osteosarcomas

through regulating the EMT (71). Similar to the above, OLR1 was

also an unfavorable risky factor for the prognosis (Figure 3I). Its

high frequency of CNV deletion might be the reason for its low

expression in LUAD (Figures 2B, D).

VSIG4 was a multifunctional cell surface protein and presented

as an immune checkpoint regulator, which suppressed T

lymphocyte function and promoted cancer development and

progression (72). In NSCLC tissues, VSIG4 could only be found

expressed in macrophages, and the VSIG4+ macrophages

infiltrating the tumor tissues could facilitate tumor growth by

inhibiting T-cell proliferation and cytokine production (73). This

might mechanically explain why the high expression of VSIG4 was

related to the poor prognosis of LUAD (Figure 3J).

Different from previous reports, APOE was found to be a

protective factor for the prognosis of LUAD (Figure 3A), while it

was reported to promote cancer proliferation and migration and

contribute to an aggressive clinical course in patients with LUAD

(74). When APOE was knocked out, lung tumor development and

metastasis were suppressed via increasing TREM-1-dependent

antitumor activity of NK cells (75). In general, most of the genes

involved in the COMAR prognostic signature were limitedly
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researched for their roles in LUAD. The regulatory mechanisms of

coagulation aberrancy and TAM functions and the cross-talk

relationships between them still need to be further studied.

For the correlation analysis between the COMAR risk score and

the TME, patients in the low-risk score group were found to

participate in much more activated immune-related biological

pathways versus patients in the high-risk score group. These

immune-related biological pathways might suppress tumor

progression and contribute to a better prognosis for the low-risk

group. In the GO_MF analysis, we found that the molecular

functions of T-cell receptor (TCR) and type I interferon (IFN)

receptor binding were enhanced in the low-risk score group

(Figure 6B). For T cells, antitumor reactivity was defined by their

unique TCRs (76), and high TCR abundance was associated with a

better prognosis (77). Type I IFNs play a major role in the natural

and therapy-induced immunological control of many malignancies,

including lung cancer (78). The GO_BP analysis also indicated that

positive regulation of the TCR pathway was activated in the low-risk

score group. In addition, the gamma-delta T-cell differentiation was

also found to be activated in the low-risk score group (Figure 6C).

Gamma-delta T cells had antitumor functions in the TME and a

high content of Vd1 T cells; Vd1 T cells were reported to be a

subtype of gamma-delta T cells and were associated with superior

prognosis and response to anti-PD-1 immunotherapy (79).

The GSEA of the KEGG pathway also indicated that several

immune-associated pathways were enriched in the low-risk score

group, including natural killer cell-mediated cytotoxicity (Figure 6D).

Natural killer (NK) cells were cytotoxic lymphocytes of the innate

immune system that were capable of killing viral infected and/or

cancerous cells (80); when NK cells were commonly reduced in

human tumors, immune surveillance escape would happen (81). The

CIBERSORT analysis indicated that samples in the low-risk score

group were infiltrated with a higher fraction of B cells, plasma cells,

and CD4 cells, but less macrophage M2 (Figure 6E). B cells, plasma

cells, and CD4 cells had been proven to play significant roles in

promoting antitumor immunity and better clinical outcomes in the

ICB immunotherapy (82–84), while macrophage M2 was associated

with NSCLC progression, antitumoral immunosuppression, and

resistance to anti-PD-1 immunotherapy (12, 15, 85, 86).

The results of the subsequent analyses in the LUAD

immunotherapeutic cohorts corresponded to those of the TME

analyses. Patients in the low-risk score group had significantly

longer survival times and lower progression rates after accepting

anti-PD-1 immunotherapy (Figure 7). The AUC values were pretty

high, especially in the GSE126044 cohort (the AUC value = 1), which

indicated the high sensitivity and specificity of this prognostic model

(Figures 7B, D, F). Immune surveillance escape occurred by hijacking

the corresponding inhibitory pathways via overexpressed checkpoint

genes such as PD-L1 and CD47; thus, phagocytosis checkpoints have

emerged as essential checkpoints for cancer immunotherapy (87). In

the correlation analysis, we found that the 10 COMAR genes were

positively correlated with immune checkpoint expression, such as

PD-L1 and the IPS with anti-PD1 plus anti-CTLA4 or anti-PD1

along immunotherapy in both patient specimens and LUAD cell lines

(Figure 8; Supplementary Figure S6A). Most of the genes in the

COMAR model have also been reported to be positively correlated
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with PD-L1 expression and respond to ICB immunotherapy in

multiple cancers (47, 88–93), which was consistent with the results

of our study. These suggested that the 10 COMAR genes might serve

as potential targets for ICB immunotherapy.

Certainly, there were also some limitations in our study. First,

our study was mainly based on bioinformatic analyses of public

datasets. Biological and molecular experiments in vitro and/or in vivo

were needed to further explore the relevant mechanisms of the key

COMAR genes. Second, due to our retrospective study, bias might be

inevitable, and prospective experiments were needed for further

validation. These limitations were also the focus of our future

research. Our research had significant potential for future clinical

guidance. First, the expression levels of key COMAR genes in LUAD

could be examined before ICB immunotherapy and then applied for

screening of immunotherapy patients. Second, researchers could

explore the therapeutic target potential of these genes, which could

be adopted for the development of targeted drugs.

In brief, the coagulation process and macrophage infiltration

are two important factors that are usually aberrant in LUAD. They

have cross-talk impacts on each other mutually and contribute to

the concerto in regulating LUAD development. Based on the

coagulation-related genes and the M2-TAM marker genes, a

scoring model containing 10 prognostic genes (APOE, ARRB2,

C1QB, F13A1, FCGR2A, FYN, ITGB2, MMP9, OLR1, and VSIG4)

was constructed. This prognostic signature is super efficacious in

predicting the prognosis and ICB immunotherapeutic outcomes of

patients with LUAD, which provides potential biomarkers for

LUAD treatment and prognostic prediction.
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