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Introduction: Shorea macrophylla is a commercially important tropical tree

species grown for timber and oil. It is amenable to plantation forestry due to its

fast initial growth. Genomic selection (GS) has been used in tree breeding studies to

shorten long breeding cycles but has not previously been applied to S. macrophylla.

Methods: To build genomic prediction models for GS, leaves and growth trait

data were collected from a half-sib progeny population of S. macrophylla in Sari

Bumi Kusuma forest concession, central Kalimantan, Indonesia. 18037 SNP

markers were identified in two ddRAD-seq libraries. Genomic prediction

models based on these SNPs were then generated for diameter at breast

height and total height in the 7th year from planting (D7 and H7).

Results and discussion: These traits were chosen because of their relatively high

narrow-sense genomic heritability and because seven years was considered long

enough to assess initial growth. Genomic prediction models were built using 6

methods and their derivatives with the full set of identified SNPs and subsets of 48,

96, and 192 SNPs selected based on the results of a genome-wide association

study (GWAS). The GBLUP and RKHS methods gave the highest predictive ability

for D7 and H7 with the sets of selected SNPs and showed that D7 has an additive

genetic architecture while H7 has an epistatic genetic architecture. LightGBM and

CNN1D also achieved high predictive abilities for D7with 48 and 96 selected SNPs,

and for H7with 96 and 192 selected SNPs, showing that gradient boosting decision

trees and deep learning can be useful in genomic prediction. Predictive abilities

were higher in H7 when smaller number of SNP subsets selected by GWAS p-value

was used, However, D7 showed the contrary tendency, which might have

originated from the difference in genetic architecture between primary and

secondary growth of the species. This study suggests that GS with GWAS-based

SNP selection can be used in breeding for non-cultivated tree species to improve

initial growth and reduce genotyping costs for next-generation seedlings.

KEYWORDS
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1 Introduction

Shorea macrophylla belongs to the Dipterocarpaceae, the

dominant tree family in the tropical rainforests in Southeast Asia

(Ghazoul, 2016). It is commercially important in Borneo as a source

of timber and fruit that is harvested to produce oil (Randi et al.,

2019). It can also be used in plantation forestry because of its rapid

initial growth (Lee et al., 1997). Breeding resources such as progeny

and provenance trials are rarely available for tropical tree species

with the exception of species such as eucalyptus and teak

(Grattapaglia & Kirst, 2008; Corriyanti & Muharyani, 2020). Even

when breeding resources exist, their scales and the associated

facilities are often limited due to a lack of breeding history.

Genomic selection (GS; Meuwissen et al., 2001), which has been

put forward as a way to shorten tree breeding cycles (Grattapaglia

et al., 2018; Lebedev et al., 2020), is therefore an attractive option for

expediting the breeding of tropical species. Another advantage of

GS in tree breeding is that a training population can be established

without mating families or a priori information about the family.

GS could therefore greatly accelerate improvement in the focal traits

of tropical tree species. Further, the genetic resources of tree species

with limited breeding history are those of an almost wild

population, so their genetic diversity typically exceeds that of a

breeding population (Jones et al., 2006). This study investigates the

potential for using GS to accelerate tree breeding in species with

limited breeding history and little established collections of

breeding resources.

GS has a faster cycle time than pedigree-based breeding because

it allows individuals to be evaluated early in their lives by calculating

their genomic estimated breeding values (GEBVs) using their

genomic information. Many studies have compared the

performance (i.e., accuracy) of different methods for predicting

GEBVs, which is important because the genetic gains from GS

depend on the accuracy of the GEBVs (Lebedev et al., 2020).

However, these studies have mainly used parametric methods,

which can only account for additive genetic effects, in order to

capture inheritable genetic effects for parent selection. However,

non-additive effects (i.e., dominant and epistatic effects) are also of

interest because their inclusion can increase the accuracy of GEBVs

and the prediction of genetic responses (Varona et al., 2018).

Accordingly, when using simulated data, the predictive ability

achieved with non-parametric methods exceeds that for

parametric methods when epistatic genetic effects are present

(Ober et al., 2011; González-Camacho et al., 2012; Howard et al.,

2014). Some GS studies have used non-parametric methods to

account for both additive and non-additive genetic effects (Chen

et al., 2019; de Almeida Filho et al., 2019; Abdollahi-Arpanahi et al.,

2020; Yan et al., 2021). However, there has been no detailed

comparison of parametric and non-parametric methods to

identify those providing the most accurate GEBVs.

Machine learning using deep learning (DL) methods has

recently been remarkably successful in diverse applications

involving the processing and analysis of complex datasets
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including image recognition and natural language processing.

Many traits important in forestry, such as growth, are considered

to be complex traits because they are regulated by groups of many

polygenes. DL appears to be well-suited to the analysis of such

complex traits and is therefore increasingly being used for this

purpose (Bellot et al., 2018; Ma et al., 2018; Abdollahi-Arpanahi

et al., 2020). Among DL models, convolutional neural networks

(CNNs) seem to provide more accurate genomic predictions than

multilayer perceptrons (MLPs) (Pérez-Enciso & Zingaretti, 2019),

possibly because CNNs apply filters to small parts of the input data

and can thus model patterns within each part of the data. This may

be advantageous when analyzing genotype data covering most of an

entire genome because of the genome’s continuous nature.

Additionally, CNNs can accept two-dimensional input data such

as images, while other methods can accept only one-dimensional

data. This means that information on the nuclear phase can be

incorporated into the model. Gradient boosting decision trees

(GBDTs) are another class of machine learning methods that

perform well in classification, regression, and ranking tasks and

are starting to be used in GS studies (Li et al., 2018; Azodi et al.,

2019; Abdollahi-Arpanahi et al., 2020). GBDTs rely on gradient

boosting, in which learning is achieved through iterative

minimization of a loss function using base-learners. GBDTs

generate decision trees for the base-learners to make predictions,

which construct tree-structed predictive models that split samples

using their feature values as criteria. Some GBDT implementations

have high computational efficiency and achieve accurate predictions

in diverse practical applications.

Genomic prediction models are typically built by genotyping an

enormous number of genetic markers covering the whole genome

of individuals from a training population, which are then regressed

against phenotypic traits. However, to apply such models, it then

becomes necessary to genotype thousands of progeny individuals

derived from the training population. Because progeny populations

are generally much larger than training populations, the cost of such

genotyping can be very high. Additionally, this approach suffers

from the “large P, small N problem” because the number of

explanatory variables (genetic markers in this case) greatly

exceeds the number of observations (individuals in the training

population). To overcome these problems, some studies have

focused on subsets of genetic markers selected using ranking

values. The predictive accuracy of such models can rival or

exceed that of conventional models using every available marker

(Hiraoka et al., 2018; Li et al., 2018; e Sousa et al., 2019).

This is the second empirical study on GS for Dipterocarpaceae

and builds on an earlier work (Sawitri et al., 2020) showing that GS

could improve the productivity and quality of S. platyclados. To

investigate the potential of genomic breeding for S. macrophylla and

other tropical forestry species with limited breeding resources, we

aimed to: (1) identify the methods that yield the highest GEBVs

predictability, (2) evaluate the effectiveness of DLs and GBDTs in

genomic prediction, and (3) determine the impact of genetic marker

selection on predictive accuracy.
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2 Materials and methods

2.1 Collecting plant material
and phenotyping

A progeny trial of S. macrophylla at the PT. Sari Bumi Kusuma

forest concession, Central Kalimantan, Indonesia was targeted for

genomic prediction modeling. The progeny trial was established in

2006 using open-pollinated seeds from 94 mother trees in natural

populations in the forest concession. The progeny was cultivated in

a nursery for ten months and then planted with a 6 x 3 meter

spacing. Five trees derived from each mother tree were planted

using a Randomized Complete Block Design (RCBD) in a single

block and eight block replicates were prepared, giving 3760 progeny

trees in total. The phenotypic variance of the progeny population

was deemed adequate because significant between-family

differences in diameter at breast height (DBH) and total height

(HT) were observed 4 years after planting (Widiyatno et al., 2014).

Two blocks on relatively gentle terrain containing 940 trees were

selected to build genomic prediction models. Three trees from each

mother tree were removed for thinning in 2015, 9 years after

planting. Leaf samples were collected in 2018 from 361 surviving

trees, packed in plastic bags with silica gel, and then transferred to a

laboratory at JIRCAS and stored in -30°C freezer until DNA

extraction. The HT and DBH of these trees were measured at 1,

2, 3, 4, 7, 9, 11.5, and 12.5 years after planting. HT was measured

using a measuring rod up to 11.5 years after planting, then using a

Vertex instrument at 12.5 years old. DBH was measured by

measurement tape.
2.2 DNA sequencing and genotyping

Leaf samples (n=361) were individually pulverized in liquid

nitrogen, then total genomic DNA was extracted from 60 mg of the

resulting powder using a modified Cetyltrimethylammonium

bromide (CTAB) method (Murray & Thompson, 1980). The

crude DNA was purified using the NucleoSpin® gDNA Clean-up

kit (MACHEREY-NAGEL GmbH & Co. KG, Düren, Germany)

following the manufacturer’s instructions. The DNA content of

each cleaned-up sample was quantified using a Qubit® dsDNA BR

Assay Kit and Qubit® 3.0 Fluorometer (Thermo Fisher Scientific

Inc., Waltham, MA, U.S.A.), and the samples were adjusted to a

final DNA concentration of 25 ng/mL. Two double digest

Restriction-site Associated DNA sequencing (ddRAD-seq)

libraries were then generated by digesting 500 ng of the DNA

using MseI with PstI or MluCI with BglII (New England Biolabs

Inc., Ipswich, MA, U.S.A.), as described by Peterson et al. (2012).

MseI and MluCI are 4-base cutters, while PstI and BglII are 6-base

cutters. The resulting DNA fragments were then ligated with

adapter cassettes at restriction enzyme cleavage sites. Since the 4-

base cutters had greater numbers of cleavage sites, the

corresponding adapters were designed to form Y-shaped

structures that suppressed fragment amplification in cases where

MseI or MluCI sites were on both sides. Indexed PCR fragments
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were amplified using KAPA HiFi DNA Polymerase (Kapa

Biosystems Inc., Wilmington, MA, U.S.A.) and the Access Array

Barcode Library for Illumina® Seqencers―384, Single Direction

(Standard BioTools Inc., South San Francisco, CA, U.S.A.)

following the manufacturer’s instructions. We then selected 430-

470 bp fragments using a 2% agarose gel with the BluePippin system

(Sage Science Inc., Beverly, MA, U.S.A.). These size-selected PCR

fragments were adjusted to a concentration of 10 nM by assuming

an average fragment size of 450 bp. Finally, each library solution

was sequenced using 2 lanes on the Illumina Hiseq X platform

(illumine, San Diego, CA, USA) to obtain 151 bp paired-

end sequences.

dDocent version 2.8.13 (Puritz et al., 2014) was used with

default settings for quality filtering, read mapping, and SNP

calling on raw reads from Hiseq X sequencing of the MseI/PstI

library. Version 2.9.4 of the same software was used to perform the

same tasks for the MluCI/BglII library. During the read mapping

step, all reads were mapped to the draft genome of S. leprosula (Ng

et al., 2021) which belongs to the same genus as S. macrophylla. The

output file in variant call format (VCF), which was named

“TotalRawSNPs.vcf”, was then filtered using VCFtools version

0.1.16 (Danecek et al., 2011). SNP filtering was performed using a

10-step procedure. In the first step, samples were filtered by

applying the following conditions: missing data ≤ 50%, quality

value ≥ 30, minor allele ≥ 3 and depth ≥ 3 (–max-missing 0.5, –

minQ 30, –mac 3 and –minDP 3). Second, samples were filtered by

the proportion of missing data ≤ 0.65 (F_MISS on out.imiss > 0.65).

Third, SNPs were filtered by applying the criteria proportion of

non-missing data ≥ 0.95, minor allele frequency ≥ 0.05 and mean

depth ≥ 10 (–max-missing 0.95, –maf 0.05 and –min-meanDP 10).

Fourth, the vcf file was filtered using dDcent_filters v2.9.4 (Puritz

et al., 2018) by applying filters “based on allele balance at

heterozygous loci, locus quality, and mapping quality/Depth”;

filters “based on overlapping forward and reverse reads”; filters

“based on properly paired status” assuming paired-end library;

filters “based on high depth and lower than 2*DEPTH quality

score”; and filters “based on maximum mean depth” with

maximum mean depth cutoff 134. Fifth, we removed SNPs with

depths below 60% of the average of groups comprising SNPs within

distances of 151 base pairs by applying the filter “based on within

locus depth mismatch” from dDocent_filters. This was

implemented in a modified part of dDocent_filters because it

supports the use of vcf files based on a reference genome. Sixth,

we applied a filter based on the significance of deviation from

Hardy-Weinberg Equilibrium being ≥ 0.001 (–hwe 0.001). Seventh,

the two vcf files for the two libraries were combined using

“vcfcombine” in vcflib version 1.0.3 (Garrison et al., 2022) with

priority given to the library using PstI and BglII. Eighth, SNPs were

filtered by applying the “Filter Genotype Table Taxa” and “Filter

Genotype Table Sites” in TASSEL 5.2 (Bradbury et al., 2007) with

the following criteria “Min Proportion of Sites Present” 0.9, “Site

Min Count” 60% of number of taxa and “Site Min Allele Freq” 0.05.

Ninth, solitary SNPs within each scaffold were removed using R

version 4.2.1 (R Core Team, 2020) and the vcfR package version

1.13.0 (Knaus & Grünwald, 2017) for beagle imputation. Then, we

used beagle 5.4 (Browning et al., 2018; Browning et al., 2021) with
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the default effective population size: ne value (100,000) to estimate

an appropriate Ne value. The log2-transformed values of the

estimated ne obtained from the log file were divided into classes

of 0.1 width, and the most frequent class unless the default value

class was considered the appropriate class. Finally, missing data

were imputed by beagle 5.4 using a Ne value of 38,968, which is

between the values for the two most frequent classes.
2.3 Genetic structure and
linkage disequilibrium

We analyzed genetic structure using principal component

analysis (PCA). First, SNPs within 1000 bp of one-another were

thinned using VCFtools (–thin 1000) to prevent detection of biased

structure due to neighboring SNPs. The vcf data were converted to

matrices with the following coding: -1 for homozygous reference

alleles, 0 for heterozygous alleles, and 1 for homozygous alternative

alleles: 1. PCA was performed in R using the “prcomp” function.

We also analyzed the linkage disequilibrium of each SNP using

TASSEL 5.2 with a window size of 870 to complete all combinations

within each scaffold. To obtain a trendline for linkage

disequilibrium decay within the inter-SNP distance, the r2 values

were regressed against the inter-SNP distance using the “loess”

function with the following parameter settings: degree = 2, control =

loess. control(surface = ”interpolate”). The “span” parameter of the

function was optimized using four-fold cross-validation,

minimizing the root mean squared error of the regression line

and the observed data.
2.4 Spatial structure analysis for
micro-environmental effects

The observed values of the phenotypic data in the progeny trial

were corrected by performing a spatial structure analysis to reduce

the impact of micro-environment effects, which could otherwise

introduce noise that would reduce the accuracy of the genomic

prediction models (Chen et al., 2018). This analysis was

implemented in R using the “remlf90” function of the breedR

package version 0.12.5 (Munoz & Sanchez, 2020) with a splines

model to fit spatial structure along the coordinates of the trees using

12 and 13 knots (default setting). We then subtracted the estimated

values due to spatial effects from the observed phenotypic values to

obtain the corrected phenotypic values. Outliers among the

adjusted phenotypic values were removed using the 5% two-tailed

Smirnov-Grubbs test, implemented in R.
2.5 Genomic heritability

We analyzed genotype and phenotype data to check heritability

and SNP effects on each phenotype. Samples were removed if at

least one of them was NA within the same year in these analyses. To

identify well-predicted phenotypes, narrow-sense genomic

heritability was calculated using the equation: h2 = s 2
a=s2

y where
Frontiers in Plant Science 04
s2
a is additive genetic variance and s 2

y is total phenotypic variance,

which were averaged over ten iterations for each trait. Variances

were obtained from variance components estimated using the

Bayesian Ridge Regression (BRR) model, which was implemented

in R using “BGLR” function of the BGLR package version 1.1.0

(Pérez & de los Campos, 2014).
2.6 Genome-wide association study using
all individuals

A genome-wide association study (GWAS) was conducted

using DBH and HT in the 7th year (D7 and H7) as the traits of

interest. These traits were selected (1) because they have relatively

high heritability, (2) to avoid maternal effects expressed strongly

after germination and during initial growth, (3) because the

observation values of HT in the 11th year were discrete, and (4)

since measurements using measurement rods are more accurate

than those obtained using the Vertex system.

The aim of the GWAS was to identify SNPs significantly

associated with the traits of interest and to verify that both traits

are complex, therefore, all individuals were used in the first GWAS.

This was done in R using the “mrMLM” function of the mrMLM

package version 5.0.1 (Wen et al., 2018) with FASTmrEMMA

(Tamba & Zhang, 2018). In this method, a single-locus method is

first used to scan the whole genome and calculate P-values for each

SNP. Second, LOD scores are calculated for strongly trait-associated

SNPs; these scores indicate the probability of association between

the SNP and quantitative trait loci (QTL) of the trait. Population

and kinship structures were flattened using principal components 1

to 4 and a covariance matrix (K) inferred by the genetic markers as

default setting of the “mrMLM” function (Wen et al., 2018). P-

values were corrected by the false discovery rate (FDR) to reduce the

incidence of false positive SNPs.
2.7 Building genomic prediction models
and SNP marker selection

Genomic prediction models were generated using each of 12

methods described in the section 2.8. All models were built using 10

training/validation sets and 10 model construct replicates were

generated to assess split effects in a half-sib population. After the

split of training/validation sets, we confirmed that all SNP markers

maintain their polymorphism in each of training populations

(Table S4). No model construct replicates were generated for

GBLUP because the nature of this method means that all

replicates yield identical results. Model building was done by first

splitting the full dataset into one training and one validation set

with a size ratio of 3:1. Genotype data was coded as specified

previously (homozygous reference allele: -1, heterozygous allele: 0,

homozygous alternative allele: 1). For CNN2D, nuclear phase data

were coded as reference allele: 0 and alternative allele: 1. The

phenotype and genotype values in the training data were then

normalized using “StandardScaler” in the scikit-learn library.

Validation data were also normalized using parameters from
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training data normalization. These scaling steps were omitted for

decision tree methods (RF, LGB, XGB), and for genotype values in

GBLUP and CNN2D. Next, each model was built using the training

data and validated using the validation data. For hyper-parameter

optimization, 3-fold inner cross-validation was performed using

“TPESampler” to evaluate sampled parameters, maximizing the

Pearson correlation coefficient between observed and predicted

values. For comparative purposes, predictive ability was defined

as the Pearson correlation coefficient between the observed values

and the predicted values for the validation data set.

The second GWAS was performed on the training population

to attempt to reduce the number of markers used in the genome

prediction model by selecting markers with relatively strong

additive genetic effects (Figure S2). As the result of the marker

selection, the average of percentage sharing SNP markers between

the pair of two training populations was 23% for the 48 and 29% for

the 192 selected SNP markers for D7 and 25% for the 48 and 28%

for the 192 selected SNP markers for H7 (Tables S5, S6) The

Additional models were generated by selecting the 48, 96, and 192

SNPs with the lowest P-values for each training population using

FASTmrEMMA. Genomic prediction models were then built for

each SNP subset in the same manner as the models for all SNPs. It

should be noted that models using all SNPs were not generated

using CNN1D and CNN2D because the structures of these methods

are unsuitable for models with many SNPs.
2.8 Genomic prediction modeling methods
used in this study

Genomic best linear unbiased prediction: Genomic best linear

unbiased prediction (GBLUP; VanRaden, 2008) was implemented

in R using the “mmer” function in the sommer package version

4.1.8 (Covarrubias-Pazaran, 2016; Covarrubias-Pazaran, 2018). An

additive relationship matrix was generated using the “A.mat”

function in sommer package for use in GBLUP models.

Bayesian linear methods: BayesA and BayesB (Meuwissen

et al., 2001), Bayesian LASSO (BL; Park & Casella, 2008),

BayesC (Habier et al., 2011), and Bayesian ridge regression

(BRR; Pérez & de los Campos, 2014) were implemented in R

using the “BGLR” function of the BGLR package. These models all

have the form y = 1m +oJ
j=1Xjb j + ϵ where y is the continuous

response, m is the intercept, Xj are predictors, b j are vectors of

effects, and ϵ is residuals. They were mainly characterized by their

own prior distribution (Gianola, 2013).

Reproducing kernel Hilbert space regression: Reproducing

kernel Hilbert space regression (RKHS; Wahba, 1978) was

implemented in R using the “BGLR” function of the BGLR

package. The resulting model has the form y = 1m +oL
l=1ul + ϵ

where y is the continuous response, m is the intercept, ul is a kernel
matrix of random effects, and ϵ is residuals. The distance matrix for

observations was calculated using the “dist” function with the

optional method = ”euclidean”. The bandwidth parameter was set

to 1 when generating the kernel matrix.
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Random forest: Random forest (RF; Breiman, 2001) was

implemented in Python version 3.9.5 (Van Rossum & Drake,

2009) using “RandomForestRegressor” in scikit-learn library

version 1.1.2 (Fabian et al., 2011). RF employs decision trees in

which the objective variable is calculated by dividing the samples

based on their features. These trees are built repeatedly using

different sample sets sampled by bootstrap sampling. Final

predictions are then obtained by averaging.

Gradient boosting decision trees: Two GBDTmethods, eXtreme

Gradient Boosting (XGB; Chen & Guestrin, 2016) and Light

Gradient Boosting Machine (LGB; Ke et al., 2017) were

implemented in Python using “XGBRegressor” in xgboost library

version 1.6.2 and “LGBMRegressor” in lightgbm library version

3.3.2. Because both methods have many (8) parameters to optimize

(Table S1), hyper-parameter optimization was performed to set

their values. “TPESampler” in Optuna library version 3.0.2 (Akiba

et al., 2019) was used to identify optimal parameters to avoid

overfitting and obtain better predictions. XGB and LGB had

several common parameters because both algorithms are decision

trees, but each method also had some unique parameters chosen

based on their specifications or importance. In particular,

“max_depth” and “num_leaves” were considered important and

their values were chosen to control tree complexity.

Deep learning: Two deep neural networks, CNN1D and

CNN2D, were implemented in Python using the Keras library

version 2.8.0 (Chollet, 2015). Their architectures are detailed in

Table S3 and were inspired by the model of Simonyan and

Zisserman (2015) that achieved remarkable success in image

recognition. CNN2D differed from CNN1D with respect to input

dimensions, convolution, and pooling layers because they have two

dimensions in their nuclear phase. The nuclear phase dimension

was summarized in the final pooling layer. CNN1D and CNN2D

also had 7 common parameters that were optimized by Optuna

(Table S2) using “TPESampler” due to their common architecture.
3 Results

3.1 Genotyping and genetic analysis

278,898,826,194 bases on 1,847,012,094 reads and

279,470,755,304 bases on 1,850,799,704 reads were obtained from

the MseI/PstI and MluCI/BglII libraries, respectively, using the

Illumina HiSeq X platform. After performing separate assembly

and filtering steps for each library using the dDocent pipeline, the

MseI/PstI and MluCI/BglII libraries produced 6,516,667 sites from

352 samples and 10,217,939 sites from 368 samples, respectively,

which were stored in vcf file format. In the filtering step, some

individuals were removed due to excessive missing data or

mislabeling. The final vcf files for the MseI/PstI and MluCI/BglII

libraries contained data on 11,425 and 10,605 polymorphic sites

from 290 samples and were merged into a single vcf file that was

then filtered using TASSEL 5.2 and imputed by beagle 5.4 to

generate a vcf file representing 18,037 polymorphic sites from 290

samples that was used in all subsequent analyses.
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Genetic structure was assessed by PCA using 1000 bp thinned

genotype data containing 8709 SNPs. The first two principal

components (PC1 and PC2) explained 4.58% and 2.60% of the

genetic variance, respectively. Additionally, clusters of samples were

observed in the left (PC1) and central (PC2) regions of the space

(Figure 1). Linkage disequilibrium decay was assessed based on

pairwise r2 values between all SNPs located on the same scaffold.

Figure 2 plots these r2 values against the corresponding inter-SNP

distances in base pairs and shows the associated trendline. An r2

intercept line at 0.1 is also shown to estimate the LD decay of the S.

macrophylla population. The regression line intersects this intercept

line at a distance of 2336 bp.
3.2 Spatial analysis of phenotypic traits

A spatial structure analysis using a two-dimensional spline model

was performed to detect and remove spatial bias in both focal traits

(DBH and HT). Trees with lower values of both traits were

concentrated on the left side of the progeny trial, which was

captured by the analysis and the estimated spatial effect values were

also smaller in this area. On the other hand, trees located around the

center of the trial had higher phenotypic and spatial effect values. On

the right side of the trial, there were some trees whose phenotypic

values were lower, accentuating the relatively high phenotypic values

of both traits in trees at the center of the trial area. Since the planting

locations of progenies from each mother tree were arranged

according to a RCBD, the spatial effects observed in the trial can be

largely attributed to environmental heterogeneity. We therefore

adjusted the raw phenotypic values to minimize the impact of this

heterogeneity. The raw phenotypes, spatial effects, and adjusted
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phenotypes for D7 and H7 were visualized using heatmaps

(Figure 3). The adjusted seventh-year phenotypes of trees with

genotyping data were also visualized using histograms (Figure 4).
3.3 Genomic heritability

Narrow-sense genomic heritability for DBH and HT from year

1 to year 12.5 was calculated based on variance components

obtained from Bayesian ridge regression for sample sets without

missing data (Table 1). The highest genomic heritability values were

0.406 for DBH in year 1 and 0.395 for HT in year 11.5. The lowest

values were 0.288 for DBH and 0.271 for HT, both in year 12.5. The

narrow-sense genomic heritability of DBH was always higher than

that of HT except in years 2 and 11.5.
3.4 Genome-wide association study using
all individuals

P-values and LOD scores of SNPs for D7 and H7 were

calculated using FASTmrEMMA for the sample sets considered in

the genomic heritability analysis. The results were visualized using a

Q-Q plot and a Manhattan plot showing all P-values and LOD

scores above 3, which was taken as the significance threshold

(Figure 5). For D7, three SNPs had significant LOD scores but

non-significant − log10(P) values (4.0052, 3.8663 and 6.4149) at the

5% statistical significance level after FDR correction. For H7, five

SNPs had significant LOD scores but non-significant − log10(P)

values (5.8854, 4.7025, 5.1203, 3.7573, and 3.88) at the 5% statistical

significance level after FDR correction (Figure 5).
FIGURE 1

The population structure revealed by principal component analysis. The proportion of the total variance explained by each principal component is
shown on the axes.
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3.5 Comparison of genomic prediction
modeling methods

8480 genomic prediction models were built using 12 models (with

10 model building replicates, 10 sample split replicates, 4 different

numbers of selected SNPs based on the p value of the second GWAS

using each of the training populations, and 2 focal traits per method).

Themedian of predictive abilities withinmodel building replicates and

sample split replicates were positive and majority of the predictive

abilities was significantly deviated from zero except CNN1D of D7
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(96, 192, all SNPs), GBLUP of H7 (all SNPs), LGB of D7 (all SNPs),

RKHS of D7 (96 SNPs), XGB of D7 (all SNPs), XGB of H7 (all SNPs)

(Table 2, Table S7). The highest median predictive ability for D7 was

0.188, which was achieved using RF with the full set of SNPs. For H7,

the highest median predictive ability was 0.231, which was achieved

using RKHS with 48 selected SNPs. Predictive accuracies could not be

calculated for H7 using three of the GBLUP models using the full set

of SNPs because their predictions were identical to those for the test

set (shown in parentheses in Table 2). When the median of predictive

accuracy was compared among the selected number of markers, the
A B

DC

FIGURE 3

Heatmaps of the spatial effects for D7 (A) and H7 (C) as well as the corresponding raw phenotypes and adjusted phenotypes (B, D, respectively). In
(A) and (C), higher to lower values are represented by shades ranging from pale to dark blue. In (B) and (D), higher to lower values are represented
by shades ranging from red to blue, with white denoting intermediate values. NA values are shown in dark grey.
FIGURE 2

LD decay in the studied population indicated by a scatter plot of r2 against the inter-SNP distance. The figure also shows the LOESS regression line

(in blue), an intercept at r2 = 0:1, and the distance at their intersection (red).
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higher number of SNPs tended to yield higher estimation accuracy for

D7 for all methods except LGB and CNN2D. On the other hand, for

H7, a lower number of SNPs tended to give higher estimation

accuracy for all methods.
4 Discussion

4.1 Linkage disequilibrium analysis and
genome-wide association study

After accounting for linkage disequilibrium decay, the

approximate genomic coverage was estimated to be 2236� 8709 =

19, 473, 324 bp based on the intersection of the regression line and

the r2 = 0:1 line (2336 bp) and the number of SNPs (8709 SNPs) after

thinning the genotype data at every 1000 bp. The S. macrophylla

genome size was estimated to be 363.816 Mbp using the formula of

Doležel et al. (2003) because the C-value of S. macrophylla is 0.372
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(Ng et al., 2016). Therefore, the genotype data in this study represents

around 5.35% of the total genome. The GWAS for D7 and H7

detected 3 and 5 SNPs with LOD scores above 3, respectively, but no

significant SNPs were detected in terms of P-values (Figure 5). The

inability to identify QTLs for D7 and H7may be due to the sparsity of

marker coverage within the genome and the fact that both traits are

probably regulated by complex genetic backgrounds that are not

readily characterized. In order to obtain ideal results in GWAS, it is

necessary to further increase the marker density and the power of LD

detection by increasing the number of individuals.
4.2 Comparison of methods for building
genomic prediction models and
population subdivision

GBLUP achieved maximum predictive abilities of 0.176 for D7

and 0.206 for H7. Notably, when considering only results with
TABLE 1 Narrow-sense genomic heritability for diameter at breast height (DBH) and tree height (HT) from year 1 to year 12.5.

year 1 2 3 4 7 9 11.5 12.5

DBH 0.406 0.304 0.312 0.373 0.366 0.350 0.391 0.288

HT 0.303 0.324 0.284 0.304 0.358 0.312 0.395 0.271
frontie
The highest genomic heritability values on DBH and HT were shown in bold.
FIGURE 4

Histograms of adjusted phenotypes for D7 and H7 that were used to construct the genomic prediction model. The units of the horizontal axis are
cm for D7 and m for H7.
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TABLE 2 Median predictive ability values of genomic prediction models when used with 48, 96, and 192 or with the full set of 18037 SNPs.

Traits Number of SNPs
Predictive ability (median)

GBLUP BayesA BayesB BayesC BRR BL

D7 48 0.100 0.087 0.086 0.085 0.087 0.088

96 0.125 0.116 0.122 0.121 0.113 0.119

192 0.176 0.154 0.152 0.156 0.157 0.152

18037 0.130 0.134 0.133 0.134 0.132 0.136

H7 48 0.206 0.211 0.200 0.200 0.212 0.208

96 0.201 0.209 0.206 0.204 0.207 0.209

192 0.160 0.157 0.174 0.167 0.146 0.167

18037 0.056 0.110 0.108 0.109 0.108 0.107

Traits Number of SNPs
Accuracy (median)

RKHS RF LGB XGB CNN1D CNN2D

D7 48 0.086 0.121 0.167 0.119 0.062 0.108

96 0.106 0.125 0.142 0.093 0.039 0.073

192 0.136 0.164 0.155 0.120 0.082 0.098

18037 0.140 0.188 0.119 0.090 – –

H7 48 0.231 0.204 0.162 0.181 0.179 0.184

96 0.209 0.195 0.157 0.191 0.218 0.199

192 0.159 0.165 0.142 0.148 0.200 0.173

18037 0.125 0.151 0.092 0.075 – –
F
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Abbreviations of methods are as follows: GBLUP for genomic best linear unbiased prediction, BRR for Bayesian ridge regression, BL for Bayesian LASSO, RF for random forest, LGB for light
gradient boosting machine, XGB for extreme gradient boosting, CNN1D for convolutional neural network for one-dimensional input and CNN2D for convolutional neural network for two-
dimensional input. Predictive ability was defined as the correlation coefficient between the observed and predicted values for each model. The tabulated values are medians of 100 replicates based
on 10 pairs of training and validation sets and 10 model construction replicates. The highest accuracy values for each trait and number of SNPs are shown in bold.
A

B D

C

FIGURE 5

Q-Q and Manhattan plots of D7 and H7. (A, B) Q-Q plots of − log10(P) values from GWAS of D7 and H7. (C, D) Manhattan plots of − log10(P) values
and LOD scores from FASTmrEMMA of D7 and H7. In (A) and (B), zero values were removed from all − log10(P) values before calculation of expected
values. In (C) and (D), all − log10(P) values of SNPs were separately plotted in light green and sky blue in color which represents localization of SNPs
to each scaffold. Only LOD scores above the threshold 3 were shown in magenta and connected by dashed line with the plots of − log10(P) values
of the same SNPs.
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selected SNPs, the value for D7 was the highest achieved with any

method in this work (Table 2). Similarly, in a GS study on Japanese

cedar, GBLUP achieved greater accuracy than BayesB for most

traits including growth, wood properties, and male fertility. BayesB

is considered to be effective only in cases involving a small number

of strongly linked QTLs (Jannink et al., 2010), so the superior

performance of GBLUP suggests that the focal traits in this work are

governed by large numbers of QTLs (Hiraoka et al., 2018).

Therefore, the selected SNPs (192) are possibly linked to many

QTLs in D7, which contributes to the higher predictive ability of

GBLUP than BayesB. Among the linear Bayesian methods (BayesA,

BayesB, BayesC, BRR, and BL), BRR had the best predictive ability

for both D7 (0.157) and H7 (0.212) but only outperformed the next

best models (BayesC and BayesA, respectively) by 0.001 for both

traits, and there were only minor differences in accuracy between all

of these methods with the exception of BayesB (Table 2). An earlier

study on cattle similarly found no difference in predictive ability

between the Bayesian methods, which was consistent with a

simulated scenario involving multiple QTLs (Foroutaifar, 2020).

BayesB achieved a higher predictive ability for H7 when using a

relatively large number of SNPs (192 SNPs) and a lower accuracy

when using a relatively small number of SNPs (48 SNPs) when

compared to other Bayesian linear methods. BayesB has also proved

to be an effective method for traits dominated by QTL with large

effects in several studies (Daetwyler et al., 2010; Wang et al., 2019).

We therefore suggest that the difference between BayesB and other

Bayesian linear methods was due to its reliance on the assumption

that there were many SNPs with no genetic variance (Meuwissen

et al., 2001). RKHS achieved a maximum predictive ability of 0.140

for D7 and 0.231 for H7 and offered the best performance for H7 of

all the tested methods (Table 2). This is consistent with an earlier

GS study on pine, where RKHS was slightly more accurate than

BayesA for DBH, HT, and simulated traits including non-additive

genetic effects. This outcome is also consistent with the argument

that RKHS non-explicitly accounts for non-additive genetic effects

(de Almeida Filho et al., 2019) and suggests that such effects have an

important influence on H7. The predictive ability achieved for H7

when using RKHS was only slightly sensitive to the number of

selected SNPs but was highest when using only 48. This may be

because the relative influence of non-additive genetic effects was

increased when restricting the analysis to the SNPs with the largest

effects. RF achieved a maximum predictive ability of 0.188 for D7

when using the full set of SNPs, and 0.204 for H7 when using 48

selected SNPs. RF achieved the highest predictive ability for D7 out

of all the methods tested in this work. The predictive ability for H7

was always highest when using the full set of SNPs, irrespective of

the choice of method (Table 2). RF also achieved better accuracy

than BayesB and GBLUP in genomic predictions for cedar growth

and woody strength (Hiraoka et al., 2018). Nonlinear methods such

as RF should be more effective when the relationship between the

feature and objective variables is nonlinear, which is expected to be

the case when epistatic effects account for the majority of genetic

variance (Jannink et al., 2010). D7 and H7 may thus have epistatic

genetic structures.

No studies have yet investigated whether observed GP model

performance can reliably be extrapolated to next generation of a
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training population. However, since the test population in this work

consisted of just 71 individuals, it is very likely that predictive ability

was influenced by the relationship between the training and test

populations. In an earlier study on maize, the highest predictive

ability was achieved with models based on a dataset in which both

parents were shared by the training and test populations, followed

by a dataset where only the mothers were shared. Performance was

significantly worse for datasets that shared only fathers or with no

shared parents (Yan et al., 2021). The progeny trial examined in this

work was produced from 94 mother trees from a single natural

forest with up to 5 siblings each, and test population consisted of 71

randomly selected trees. It is therefore very likely that the bias of the

shared mother trees affected the accuracy of the predictions. More

accurate predictions would probably be obtained if siblings from the

same mother trees were distributed evenly between the test and

training populations.
4.3 Performance of deep learning and
gradient boosting decision trees for
genomic prediction

CNN1D achieved maximum predictive abilities of 0.082 for D7

and 0.218 for H7. It also achieved the highest predictive ability of

any method when using the 96 and 192 SNP datasets for H7 and the

lowest predictive ability of any method when using the 48, 96, and

192 SNP datasets for D7 (Table 2). Similar results were obtained in a

GS study on strawberries and blueberries, in which CNN exhibited

better predictive ability than linear models for traits with relatively

strong epistatic effects (Zingaretti et al., 2020). In addition, the

predictive ability achieved for H7 with RKHS was highest for the 48

SNP dataset and declined as the number of SNPs increased. This

implies that the epistatic effects in question are particularly strong

among the small number of genes close to the selected 48 SNPs. The

predictive accuracy achieved for H7 with CNN1D was highest when

using the 96 and 192 SNP datasets, indicating that more genes in the

vicinity of these SNPs are involved in regulating this trait.

Maximum predictive abilities of 0.108 for D7 and 0.199 for H7

were achieved with CNN2D, in which the haplotype patterns were

modeled using the CNN filter (Table 2). Although the basic

structure of the CNN2D model is similar to that of the CNN1D

model, the inclusion of nuclear phase information estimated by

beagle seems to weaken the trend observed with the latter model

due to the greater complexity of CNN2D. LGB achieved a

maximum predictive ability of 0.167 for D7 and 0.162 for H7. It

also had the highest predictive ability of any method for D7 when

using the 48 and 96 SNP datasets (Table 2). An earlier GS study on

maize suggested that LGB provides better accuracy than other

GBDTs and rrBLUP, and that genome-wide epistatic interactions

can be cumulatively learned by LGB given a sufficiently large

population (Yan et al., 2021). However, the number of samples in

this work (281) was much smaller than in the maize study and may

have been insufficient for LGB to cumulatively learn the genome-

wide epistasis interactions. The high accuracy achieved for D7 with

the 96 and 192 SNP datasets may also be partly due to the bimodal

distribution of the phenotypic values for this trait (Figure 4). Most
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models considered in this work assume that the values of the

objective variable are normally distributed, and their accuracy

may suffer if this assumption is violated. However, LGB models

can predict non-unimodal traits without issue. XGB achieved a

maximum predictive ability of 0.120 for D7 and 0.191 for H7; both

of these values are lower than those achieved with linear models in

most cases (Table 2). However, in genomic predictions using

simulated data, the predictive ability of XGB exceeded those of

BayesB, GBLUP, RF, CNN, and MLP when dominant and epistasis

effects were present in addition to additive genetic effects

(Abdollahi-Arpanahi et al., 2020). However, XGB achieved poor

predictive ability when applied to real data in this work even though

the results obtained with RKHS and RF suggest that the selected

SNPs (for H7) and all SNPs (for both D7 and H7) have nonadditive

genetic structures. Given the very large sample size of the simulation

study (over 10,000 samples), this discrepancy may be due to the low

number of samples included in this work.
4.4 Influence of marker selection on
genomic prediction and detection of
genetic effects

Predictive ability varied with the number of included SNPs in

the order 18037 (all) > 192 > 96 > 48 SNP for D7 and 48 > 96 >

192 > 18037 (all) for H7, and its difference were statistically

significant in a few modeling methods (Table 2). The Q-Q plots

of − log10(P) values suggest that false positives did not unduly affect

the GWAS results for any training population (Figure S2). For H7,

the higher predictive ability of the models with SNP selection

compared to those using the full SNP dataset may be due to the

elimination of noise introduced by unlinked SNPs. ddRAD-seq

randomly selects DNA fragments from the whole genome with a

certain density and therefore includes some SNPs that are not

linked to the target trait. The − log10(P) values of such SNPs should

be very small in GWAS, and removing such SNPs should increase

model accuracy. The improvement in prediction accuracy due to

the decrease in the number of markers was particularly noticeable in

H7, and tree height might be relatively less complex than tree

diameter D7. Although the complexity of gene regulation in

primary and secondary growth should vary depending on tree

species, secondary growth is likely to involve a large number of

genes compared to primary growth due to the greater diversity of

cell types and processes associated with the secondary growth in

general (Oh et al., 2003; Demura and Fukuda, 2007). The difference

of complexity of gene regulation might be main reason of the

opposite tendencies between H7 and D7.

Other genomic prediction studies on disease resistance in

aquaculture species have similarly found that SNP marker

selection improves the accuracy of genomic prediction models

(Luo et al., 2021). The predictive ability for D7 exceeded that for

H7 irrespective of the chosen method when using the full SNP

dataset (Table 2), possibly because the genetic heritability of D7

exceeds that of H7. However, the highest accuracy for H7 was

achieved when using 48 selected SNPs whereas the highest accuracy
Frontiers in Plant Science
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for D7 was achieved with the full set of SNPs (Table 2). This may be

related to the fact that the phenotypic values for H7 were normally

distributed whereas those for D7 were bimodal (Figure 4). Because

the first stage in the SNP analysis was performed using a linear

model with FASTmrEMMA, it is possible that the pipeline was best

suited for pseudo-normally distributed focal variables like H7 and

was thus more effective at detecting significant SNPs for H7 than

for D7.

The differences in predictive accuracy between semiparametric

and nonparametric methods were greater than those between

parametric methods (Table 2). Parametric methods only consider

additive genetic effects, whereas nonparametric methods do not

exclude other genetic effects such as dominance and epistasis and

thus produce models that can account for a wider range of genetic

effects. This is consistent with the findings of Howard et al. (2014),

whose studies using simulated data showed that four semiparametric/

nonparametric methods achieved markedly differing accuracies that

were related to their ability to explain both additive and epistatic

genetic structure. The differences in predictive ability between the

tested methods thus suggest that the SNPs selected for H7 have a

relatively strong epistatic genetic structure but those selected for D7

may have a more additive genetic structure. These results show that

to maximize predictive ability when constructing a genomic

prediction model based on GWAS, it is important to select a

method appropriate for the genetic structure of the selected SNPs.
5 Conclusion

Genomic prediction models were constructed for two growth

traits in the tropical timber tree species S. macrophylla: DBH (D7)

and HT (H7) in the seventh year from transplantation at the PT.

Sari Bumi Kusuma forest concession in central Kalimantan,

Indonesia. Unlike species with established lineages and pedigrees

such as crops and livestock, the studied progeny trial retains high

genetic diversity due to the large effective population size of mother

trees and the reliance on open-pollinated mating to regenerate the

reproductive source of the trial. Despite this high genetic diversity,

the measured values correlated positively with the outputs of

genomic prediction models for D7 and H7. When GWAS data

were used to select SNP subsets, different sets of SNPs were selected

for each split of the training/test population and the highest

predictive accuracies were achieved with the full set of SNPs for

D7 and 48 selected SNPs for H7, these opposite tendencies might be

originated from difference of genetic architecture between primary

and secondary growth of the species. These results show that the

SNP subset with the highest predictive ability in H7 can be used for

genotyping next-generation populations in breeding programs in

order to reduce costs while maximizing genetic gains. Although it is

necessary to further increase the marker density and the power of

LD detection by increasing the number of individuals, the genomic

prediction models and subsequent selection at seedling stage using

the models show potential to accelerate breeding cycles for non-

cultivated tree species.
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Bellot, P., de los Campos, G., and Pérez-Enciso, M. (2018). Can deep learning
improve genomic prediction of complex human traits? Genetics 210 (3), 809–819.
doi: 10.1534/genetics.118.301298

Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., and Buckler,
E. S. (2007). TASSEL: Software for association mapping of complex traits in diverse
samples. Bioinformatics 23 (19), 2633–2635. doi: 10.1093/bioinformatics/btm308

Breiman, L. (2001). “Random Forest,” in Machine Learning. Springer, New York.
doi: 10.1007/978-3-030-62008-0_35

Browning, B. L., Tian, X., Zhou, Y., and Browning, S. R. (2021). Fast two-stage
phasing of large-scale sequence data. Am. J. Hum. Genet. 108 (10), 1880–1890.
doi: 10.1016/j.ajhg.2021.08.005

Browning, B. L., Zhou, Y., and Browning, S. R. (2018). A one-penny imputed genome
from next-generation reference panels. Am. J. Hum. Genet. 103 (3), 338–348.
doi: 10.1016/j.ajhg.2018.07.015
Chen, T., and Guestrin, C. (2016). XGBoost: A scalable tree boosting system. J. Assoc.
Physicians India. 785–794. doi: 10.1145/2939672.2939785

Chen, Z. Q., Baison, J., Pan, J., Westin, J., Gil, M. R. G., and Wu, H. X. (2019).
Increased prediction ability in Norway spruce trials using a marker X environment
interaction and non-additive genomic selection model. J. Heredity 110 (7), 830–843.
doi: 10.1093/jhered/esz061

Chen, Z., Helmersson, A., Westin, J., Karlsson, B., andWu, H. X. (2018). Efficiency of
using spatial analysis for Norway spruce progeny tests in Sweden. Ann. For. Sci. 75 (1).
doi: 10.1007/s13595-017-0680-8

Chollet, F. (2015) Keras. Available at: https://github.com/fchollet/keras.

Corriyanti, C., and Muharyani, N. (2020). The opportunities and challenges of jati
plus perhutani. Wood Res. J. 9 (1), 1–3. doi: 10.51850/wrj.2018.9.1.1-3

Covarrubias-Pazaran, G. (2016). Genome-Assisted prediction of quantitative traits
using the r package sommer. PloS One 11 (6), e0156744. doi: 10.1371/
journal.pone.0156744

Covarrubias-Pazaran, G. (2018). Software update: Moving the R package sommer to
multivariate mixed models for genome-assisted prediction. BioRxiv. doi: 10.1101/
354639

Daetwyler, H. D., Pong-Wong, R., Villanueva, B., and Woolliams, J. A. (2010). The
impact of genetic architecture on genome-wide evaluation methods. Genetics 185 (3),
1021–1031. doi: 10.1534/genetics.110.116855

Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., et al.
(2011). The variant call format and VCFtools. Bioinformatics 27 (15), 2156–2158.
doi: 10.1093/bioinformatics/btr330
frontiersin.org

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA988453/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA988453/
https://doi.org/10.5281/zenodo.8051012
https://doi.org/10.5061/dryad.kkwh70s8d
https://www.frontiersin.org/articles/10.3389/fpls.2023.1241908/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2023.1241908/full#supplementary-material
https://doi.org/10.1186/s12711-020-00531-z
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1534/g3.119.400498
https://doi.org/10.1534/genetics.118.301298
https://doi.org/10.1093/bioinformatics/btm308
https://doi.org/10.1007/978-3-030-62008-0_35
https://doi.org/10.1016/j.ajhg.2021.08.005
https://doi.org/10.1016/j.ajhg.2018.07.015
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1093/jhered/esz061
https://doi.org/10.1007/s13595-017-0680-8
https://github.com/fchollet/keras
https://doi.org/10.51850/wrj.2018.9.1.1-3
https://doi.org/10.1371/journal.pone.0156744
https://doi.org/10.1371/journal.pone.0156744
https://doi.org/10.1101/354639
https://doi.org/10.1101/354639
https://doi.org/10.1534/genetics.110.116855
https://doi.org/10.1093/bioinformatics/btr330
https://doi.org/10.3389/fpls.2023.1241908
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Akutsu et al. 10.3389/fpls.2023.1241908
de Almeida Filho, J. E., Guimarães, J. F. R., Fonsceca E Silva, F., De Resende, M. D. V.,
Muñoz, P., Kirst, M., et al. (2019). Genomic prediction of additive and non-additive
effects using genetic markers and pedigrees. G3: Genes Genomes Genet. 9 (8), 2739–
2748. doi: 10.1534/g3.119.201004

Demura, T., and Fukuda, H. (2007). Transcriptional regulation in wood formation.
Trends Plant Sci. 12 (2), 64–70. doi: 10.1016/j.tplants.2006.12.006
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