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The popularity of online social networks (OSNs) promotes the co-propagation of
multiple types of information. And there exist inevitably competitive interactions
between these information, which will significantly affect the spreading trend of
each information. Besides, the coupled topology of multi-layer interconnects
exhibited in OSNs will also increase the research complexity of information
propagation dynamics. To effectively address these challenges, we propose a
novel competitive information propagation model on multi-layer interconnected
networks, where the tendency of an individual to become a positive or negative
spreader depends on the weighted consideration of local and global prevalence.
Then the basic reproduction number is calculated via next-generation matrix
method. And under the critical conditions of the basic reproduction number, the
asymptotic stability of information-free and information-endemic equilibria is
theoretically proven through Lyapunov stability theory. Besides, an optimal
control problem involving two heterogeneous controls is formulated, aiming at
achieving the best suppression performance of negative information with the
minimum control cost. According to Cesari theorem and Pontryagin minimum
principle, the existence and analytical formulation of optimal solutions are derived.
Extensive numerical experiments are conducted to prove the correctness of our
theoretical results, and evaluate the effectiveness of our proposed control
strategies. This study can provide useful insights into the modeling and control
of multiple information propagation considering multi-layer network topology
and individual adaptive behavior.
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1 Introduction

With the continuous development of modern technology, online social networks (OSNs)
have gradually become essential mediums for people to exchange opinions, which
contributes to large-scale information propagation in different forms including rumor,
awareness, influence and so on. It is well-known that the ubiquitous information
propagation will significantly affect human daily life in turn. In particular, the spread of
positive influence involving a certain city will help it absorb more talents and accelerate its
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productivity [1–3]. The awareness propagation about COVID-19 protection may save many human lives and reduce unnecessary economic
losses [4–7]. And the rumor spreading about side effects of vaccine therapy can decrease the vaccination rates and hinder the effectiveness of
disease interventions [8–10]. Therefore, exploring the dynamical process of information propagation is of great practical significance and has
attracted much attention from the academic community. A large number of related work has followed on the mathematical modeling of
information propagation dynamics, employing classical SIS, SIR and other derivative models. For example, Yu et al. [11] established an
ignorance-discussant-spreader-remover rumor spreading model, and analyzed the local asymptotic stability of four equilibria. Yin et al. [12]
took into account the emotion categories and choices of user communities on OSNs, and constructed an emotion-based susceptible-
forwarding-immune propagation dynamic model to investigate the evolution process of emotional information and guide public sentiment.
Zhu et al. [13] proposed a novel susceptible-latent-breaking-recovered propagation model to explore the dynamic behavior of industrial
viruses in the SCADA system.

However, a considerable amount of previous work assumes that only single information propagates on OSNs, which is far beyond the
practical case. In view of the individuals’ differences including nationality, ethnicity, education and personality, their opinions towards a
specific event is generally diverged into two opposite sides, which can be considered as positive information and negative information.
Typically, different groups of people always have different evaluations on a city, where local residents tend to prefer good evaluations, while
nonresidents may make bad evaluations due to their terrible experiences. Then good evaluations promote the spread of positive influences,
and bad evaluations lead to the spread of negative influences [14–16]. The effectiveness of COVID-19 prevention measures, such as
vaccination and physical distancing, also simultaneously spreads through the crowd in dual forms of rumor and truth [17–21]. In particular,
the government will disclose the truth about the effectiveness of prevention measures, and the supporters may actively promote the spread of
truth. However, some opponents inevitably worry about the side effects of prevention measures and spread rumors. More attention should be
paid to the spreading process of competitive information, so that the interaction between multiple information can more truly reflect the
complexity of information propagation on OSNs. On the other hand, OSNs also form a multi-layer structure due to the clustering nature of
the population, and the coupling between any layers will significantly affect the dynamic trend and steady-state prevalence of information
propagation compared to single-layer networks. Antonopoulos et al. [22] studied the opinion dynamics over multiplex networks with
heterogeneous confidence thresholds and general initial opinion distributions. Through probability analysis, they derived the analytical
expressions for the critical thresholds of confidence bound considering certain regularity conditions of the networks, which reveals the
significant impacts of structural multiplexity and initial distribution on the critical thresholds. Furthermore, their numerical simulations also
explored the consensus behavior of agents in diverse network topologies. Yin et al. [23] constructed an environment-based susceptible-
forwarding-immune model of information propagation on multi-platform networks, which reflects the complexity of actual social network
topologies and the interaction between various social platforms. They also parameterized the model using COVID-19 data, and conducted
the parameter sensitivity analysis. Wang et al. [24] investigated the multi-lingual SIR dynamic process of rumor spreading, which regarded
each language community as a layer, and establish the rumor cross-transmitted mechanism in different lingual environments. Both the basic
reproduction number and the stability of the rumor-free/endemic equilibrium were systematically discussed. These studies reveal many new
characteristics how multi-layer network topologies intervene information propagation trend. However, although lots of work has separately
investigated the potential effects of multiple information coexistence and multi-layer network topology, the attempts to synthesize the two
aspects may reveal more interesting conclusions, which have not been well explored. Therefore, in order to more comprehensively explore the
information propagation dynamics on OSNs, an improved model taking both the multiple information interaction and multi-layer
interconnected networks needs to be further developed and analyzed.

Actually, individuals in OSNs are not only the carriers of information propagation, but also take certain adaptive behaviors according to
the information prevalence. The herd behavior that individuals tend to follow others when making decisions is one of the most common
social behaviors, and has recently attracted substantial attention from the research community [25–28]. However, to the best of our
knowledge, there is few work to introduce individual herd behavior into the multiple information propagation on multi-layer networks,
where herd behavior may change the mechanism of state transition and thus determine the dominance relationship between multiple
information. Under the framework of multiple information propagation, each individual may consider both the local situation of its
neighbors and the global situation of all individuals before deciding which type of information to spread. This adaptive herd behavior will
affect the coupling characteristics between multiple information, and interfere with the evolution trend and prevalence of various
information. Therefore, the consideration of individual herd decision-making behavior will also improve our understanding of
information propagation dynamics.

One of the primary purposes for modeling information propagation is to control the spreading processes of interest. There are two main
streams of control strategies, namely, heuristic control and optimal control [29–33]. Heuristic control strategy employs the real-time
information prevalence to construct adaptive control function, aiming to effectively suppress/promote the specific information spreading,
while optimal control strategy constructs the adaptive control function to maximize/minimize a well-designed objective function. Lin et al.
[34] established a novel SWIR model with uncertain mental state to describe the spreading process of fraudulent information, and further
formulated an optimal problem of two synergistic control strategies to minimize the total cost constraint involving individual losses and
control resource consumption. Li et al. [35] proposed a multifactor-based information model considering information content and node
characteristics, and also constructed an efficient heuristic algorithm of seed nodes selection to solve the targeted influence maximization
problem. Wang et al. [36] proposed a novel computational model to present the temporal dynamics of the positive and negative information
spread, and devised a nonlinear feedback control mechanism to perform three synergetic intervention strategies with minimal system
expenses. During multiple information propagation, our control strategies are aimed at promoting the diffusion of positive information and
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suppressing the outbreak of negative information. Due to the resource limitations in reality, decision-makers always attempt to achieve the
most powerful suppress performance of negative information with the lowest control intensity, which forms a trade-off between control cost
and propagation cost. This trade-off can be formulated as an optimization problem, and the corresponding optimal solutions need to be
further discussed, which can provide theoretical guidance and reference significance for practical resource scheduling.

Motivated by the above analysis, we aim to develop a novel framework that can integrate competitive information propagation, multi-
layer interconnected networks and individual adaptive behavior. Our main contributions are summarized as follows.

• We propose a novel competitive information propagation model on multi-layer interconnected networks. This model can not only
efficiently describe the competing phenomenon of positive and negative information coexistence in the real world, but also analyze the
correlation between information propagation and multi-layer topology in OSNs;

• We construct a novel compartmental model with individual herd behavior towards information propagation, where the individual’s
inclination to be a positive or negative spreader depends on a weighted balance between global and local information prevalence. This
consideration reflects the coupled characteristics of individual response and information propagation, that is, individuals generally take
adaptive behavior towards the received information, and this behavior may further affect the trend of information propagation;

• We analytically deduce the basic reproduction numberR0 of our proposed model, and respectively discuss the stability of information-
free equilibrium and information-endemic equilibrium using Lyapunov theorem, that is, when R0 < 1, our dynamic system will
converge to a stable information-free equilibrium; whenR0 > 1, our dynamic systemwill also converge to a stable information-endemic
equilibrium;

• We design two heterogeneous controls to suppress the prevalence of negative information. Considering the cost constraints in reality,
we construct an optimization problem involving a trade-off between the negative propagation cost and the control cost. To solve the
optimization problem, we further discuss the existence, the analytic formulation and the uniqueness of the optimal solution.

The rest of this paper is organized as follows. In Section 2, a competitive information propagation model is formulated within the
framework of multi-layer interconnected network. Stability analysis of information-free and information-endemic equilibria is carried out in
Section 3. The formulation of optimal control problem is conducted to discuss the existence, analytic formulation and uniqueness of the
optimal solution in Section 4. Extensive numerical simulations are conducted to verify our presented theoretical results in Section 5. Some
conclusions are drawn in Section 6.

2 Model formulation and Preliminaries

In this section, we formulate a spreading model SIAIBHR of competitive negative and positive information on multi-layer interconnected
networks.

For simplicity, we here consider a two-layer interconnected network and denote them as layers 1 and 2 respectively, whose relevant
conclusions can be easily generalized to the other cases of multi-layer networks with more layers. These two layers can be depicted as different
countries, cities or communities in the real world. The individuals on two respective layers belong to different groups. Each individual has
both the neighbors within the same layer and the acquaintances within other layer, which contributes to the intra-layer and inter-layer edges.
Then denote the intra-layer average degree of the layer 1 and 2 as 〈k1〉 and 〈k2〉 respectively. And the inter-layer average degree from layer
1 to layer 2 is also denoted as 〈k12〉, and the similar definition holds for 〈k21〉. The diagram of multi-layer interconnected networks is shown
in Figure 1A.

During the spreading dynamics SIAIBHR, all individuals are divided into five status compartments: Susceptible (S), Infected by positive
information (IA), Infected by negative information (IB), Hesitate (H) and Recovered (R). Specifically, S state represents an individual who is
unknown to any type of information but potentially infected via its intra-layer or inter-layer edges; IA state represents a spreader who is
infected with positive information; IB state represents a spreader who is infected with negative information; H state represents an individual
who has received two types of information but is hesitant to become which one; R state represents an individual who has no interest in
spreading either positive or negative information. We further define the state density of S, IA, IB, H, R in layer 1 and 2 at time t as S1(t), S2(t),
IA1 (t), IA2 (t), IB2(t), IB2(t), H1(t), H2(t), R1(t), R2(t), respectively.

Considering that the dynamic process of information propagation has the same time scale as the evolution of involved population
numbers, we introduce the birth and mortality rates of population dynamics. And the birth rate and mortality rate of our dynamics are
presented as ξ and δ respectively. Denote R5

+ the nonnegative cone and its lower dimensional face. Thus, we can study the SIAIBHR model in
the following feasible region

Ω � Si t( ), IAi t( ), IBi t( ), Hi t( ), Ri t( )( ) ∈ R5
+
∣∣∣∣ Si t( ) + IAi t( ) + IBi t( ) +Hi t( ) + Ri t( )≤ ξ

δ
{ }. (2.1)

The birth rate will increase the quantitative basis of susceptible individuals, which can potentially raise the infection risk in the population
and promote the information prevalence. And the opposite condition holds for the mortality rate. The relative size of birth andmortality rates
determines the evolutionary trend of population numbers. In real life, both birth and mortality rates have two meanings: 1) For the birth rate,
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on the one hand, it refers to natural birth rate, which means that the initial population can give birth to newborns and these newborns can
participate in the information propagation; on the other hand, it also refers to immigrated birth rate, which means that the external
population may move to the regions where the initial population is located due to work, education and tourism. After their immigration, they
can also participate in the information propagation. 2) For mortality rate, on the one hand, it refers to natural mortality rate, which means
that some individuals in the initial population will die due to accidents and old age, and these deaths may be excluded for the information
propagation; on the other hand, it also refers to emigration mortality rate, which means that some initial individuals may move to other
regions for diverse reasons, and their emigration makes them no longer involved in the information propagation. Taking the propagation
process in layer 1 as an example, the state transition mechanism of SIAIBHR model can be described as.

• Some newborn individuals will be filled into the network with birth rate ξ to participate in the information propagation process.
Without loss of generality, these newborn individuals are assumed to be susceptible; Individuals in all five compartments are removed
from the network with mortality rate δ;

• Individuals in S status may become infectious spreader of positive/negative information associating with their intra-layer infected
neighbors in IA1 (IB1 ) at infection rate λ1 (λ2). They can also be infected by their inter-layer acquaintances in IA2 (IB2 ) at decay infection
rate κλ1 (κλ2), κ < 1;

• Individuals in IA1 state may become hesitate ones after receiving the negative information from their neighbors (acquaintances) in IB1
(IB2 ) state at transmission rate θ1 (κθ1); similarly, individuals in IB1 state also may become hesitate ones after receiving the positive
information from their neighbors (acquaintances) in IA1 (IA2 ) state at transmission rate θ2 (κθ2);

• Individuals in H status may tend to be the spreaders of positive (negative) information with transmission rate εA1 (εB1 ), which is driven
by the weighted balance between the global and local prevalence scale of positive (negative) information;

• Individuals in IA1 , I
B
1 ,H status may lose spreading interest at recovered rate μ, and be removed in the propagation processes of negative/

positive information.

The similar state transition mechanism holds for layer 2. The state transition diagram of SIAIBHR model is shown in Figure 1B.
The dynamic evolution of information propagation for layers 1 and 2 can be derived as

dS1 t( )
dt

� ξ − 〈k1〉λ1S1 t( )IA1 t( ) − 〈k1〉λ2S1 t( )IB1 t( ) − 〈k12〉κλ1S1 t( )IA2 t( ) − 〈k12〉κλ2S1 t( )IB2 t( ) − δS1 t( )
dIA1 t( )
dt

� 〈k1〉λ1S1 t( )IA1 t( ) + 〈k12〉κλ1S1 t( )IA2 t( ) + εA1 t( )H1 t( ) − 〈k1〉θ1IA1 t( )IB1 t( ) − 〈k12〉κθ1IA1 t( )IB2 t( ) − δ + μ( )IA1 t( )
dIB1 t( )
dt

� 〈k1〉λ2S1 t( )IB1 t( ) + 〈k12〉κλ2S1 t( )IB2 t( ) + εB1 t( )H1 t( ) − 〈k1〉θ2IB1 t( )IA1 t( ) − 〈k12〉κθ2IB1 t( )IA2 t( ) − δ + μ( )IB1 t( )
dH1 t( )

dt
� 〈k1〉θ1IA1 t( )IB1 t( ) + 〈k12〉κθ1IA1 t( )IB2 t( ) + 〈k1〉θ2IB1 t( )IA1 t( ) + 〈k12〉κθ2IB1 t( )IA2 t( ) − εA1 t( ) + εB1 t( ) + δ + μ( )H1 t( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2.2)

FIGURE 1
The schematic diagram of (A) multi-layer interconnected networks and (B) state transition mechanism.
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dS2 t( )
dt

� ξ − 〈k2〉λ1S2 t( )IA2 t( ) − 〈k2〉λ2S2 t( )IB2 t( ) − 〈k21〉κλ1S2 t( )IA1 t( ) − 〈k21〉κλ2S2 t( )IB1 t( ) − δS2 t( )
dIA2 t( )
dt

� 〈k2〉λ1S2 t( )IA2 t( ) + 〈k21〉κλ1S2 t( )IA1 t( ) + εA2 t( )H2 t( ) − 〈k2〉θ1IA2 t( )IB2 t( ) − 〈k21〉κθ1IA2 t( )IB1 t( ) − δ + μ( )IA2 t( )
dIB2 t( )
dt

� 〈k2〉λ2S2 t( )IB2 t( ) + 〈k21〉κλ2S2 t( )IB1 t( ) + εB2 t( )H2 t( ) − 〈k2〉θ2IB2 t( )IA2 t( ) − 〈k21〉κθ2IB2 t( )IA1 t( ) − δ + μ( )IB2 t( )
dH2 t( )

dt
� 〈k2〉θ1IA2 t( )IB2 t( ) + 〈k21〉κθ1IA2 t( )IB1 t( ) + 〈k2〉θ2IB2 t( )IA2 t( ) + 〈k21〉κθ2IB2 t( )IA1 t( ) − εA2 t( ) + εB2 t( ) + δ + μ( )H2 t( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2.3)

where

εA1 t( ) � β1 ω1I
A
1 t( ) + 1 − ω1( ) 1

2
IA1 t( ) + IA2 t( )( )[ ], εB1 t( ) � β1 ω1I

B
1 t( ) + 1 − ω1( ) 1

2
IB1 t( ) + IB2 t( )( )[ ], (2.4)

εA2 t( ) � β2 ω2I
A
2 t( ) + 1 − ω2( ) 1

2
IA1 t( ) + IA2 t( )( )[ ], εB2 t( ) � β2 ω2I

B
2 t( ) + 1 − ω2( ) 1

2
IB1 t( ) + IB2 t( )( )[ ]. (2.5)

For Eqs 2.4, 2.5, the local information prevalence is equivalent to the density of information spreaders in the layer where individuals
reside, while the global information prevalence is defined as the average density of information spreaders in two layers. ω1 and ω2 are the
weighted coefficients of local prevalence of negative/positive information in layer 1 and 2. β1, β2 are the scaling factors. Without loss of
generality, we set β1 = β2 = 1 here.

3 Basic reproduction number and stability analysis

In this section, we firstly study the basic reproduction number of dynamical systems (2.2) and (2.3) through the next-generation matrix
method [37]. Secondly, the existence and stability of information-free equilibrium and information-endemic equilibrium are discussed by
means of analysis technique, Routh-Hurwitz judgment, Lyapunov method and LaSalle’s invariance principle.

In order to facilitate the calculation of the basic reproduction number, denote

X t( ) � IA1 t( ), IA2 t( ), IB1 t( ), IB2 t( ), H1 t( ), H2 t( ), S1 t( ), S2 t( )( )T. (3.1)
Then we can rewrite the dynamical systems (2.2) and (2.3) as

dX t( )
dt

� F X t( )( ) − V X t( )( ) (3.2)
where

F �

〈k1〉λ1S1 t( )IA1 t( ) + 〈k12〉κλ1S1 t( )IA2 t( )
〈k2〉λ1S2 t( )IA2 t( ) + 〈k21〉κλ1S2 t( )IA1 t( )
〈k1〉λ2S1 t( )IB1 t( ) + 〈k12〉κλ2S1 t( )IB2 t( )
〈k2〉λ2S2 t( )IB2 t( ) + 〈k21〉κλ2S2 t( )IB1 t( )

0
0
0
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.3)

V �

〈k1〉θ1IA1 t( )IB1 t( ) + 〈k12〉κθ1IA1 t( )IB2 t( ) + δ + μ( )IA1 t( ) − εA1 t( )H1 t( )
〈k2〉θ1IA2 t( )IB2 t( ) + 〈k21〉κθ1IA2 t( )IB1 t( ) + δ + μ( )IA2 t( ) − εA2 t( )H2 t( )
〈k1〉θ2IB1 t( )IA1 t( ) + 〈k12〉κθ2IB1 t( )IA2 t( ) + δ + μ( )IB1 t( ) − εB1 t( )H1 t( )
〈k2〉θ2IB2 t( )IA2 t( ) + 〈k21〉κθ2IB2 t( )IA1 t( ) + δ + μ( )IB2 t( ) − εB2 t( )H2 t( )

εA1 t( ) + εB1 t( ) + δ + μ( )H1 t( ) − θ1 + θ2( )〈k1〉IA1 t( )IB1 t( ) − κ〈k12〉 θ1I
A
1 t( )IB2 t( ) + θ2I

B
1 t( )IA2 t( )( )

εA2 t( ) + εB2 t( ) + δ + μ( )H2 t( ) − θ1 + θ2( )〈k2〉IA2 t( )IB2 t( ) − κ〈k21〉 θ1I
A
2 t( )IB1 t( ) + θ2I

B
2 t( )IA1 t( )( )

〈k1〉S1 t( ) λ1I
A
1 t( ) + λ2I

B
1 t( )( ) + κ〈k12〉S1 t( ) λ1I

A
2 t( ) + λ2I

B
2 t( )( ) + δS1 t( ) − ξ

〈k2〉S2 t( ) λ1I
A
2 t( ) + λ2I

B
2 t( )( ) + κ〈k21〉S2 t( ) λ1I

A
1 t( ) + λ2I

B
1 t( )( ) + δS2 t( ) − ξ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.4)

Obviously, there exists an information-free equilibrium E0 � X(∞) � (0, 0, 0, 0, 0, 0, ξδ, ξδ). Furthermore, the Jacobian matrices of F(X )
and V(X ) at E0 are

DF E0( ) � F 0
0 0

[ ], DV E0( ) � V 0
J1 J2

[ ], (3.5)

where
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F �

〈k1〉λ1
ξ

δ
〈k12〉κλ1

ξ

δ
0 0

〈k21〉κλ1
ξ

δ
〈k2〉λ1

ξ

δ
0 0

0 0 〈k1〉λ2
ξ

δ
〈k12〉κλ2

ξ

δ

0 0 〈k21〉κλ2
ξ

δ
〈k2〉λ2

ξ

δ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, V �

δ + μ 0 0 0
0 δ + μ 0 0
0 0 δ + μ 0
0 0 0 δ + μ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (3.6)

Therefore, the next-generation matrix can be calculated as

Γ � FV−1 �

〈k1〉λ1
ξ

δ
δ + μ

〈k12〉κλ1
ξ

δ
δ + μ

0 0

〈k21〉κλ1
ξ

δ
δ + μ

〈k2〉λ1
ξ

δ
δ + μ

0 0

0 0
〈k1〉λ2

ξ

δ
δ + μ

〈k12〉κλ2
ξ

δ
δ + μ

0 0
〈k21〉κλ2

ξ

δ
δ + μ

〈k2〉λ2
ξ

δ
δ + μ

.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.7)

The basic reproduction number R0 is defined as the spectral radius of matrix Γ,namely,

R0 � ρ Γ( ) � ρ FV−1( ) � ξmax λ1, λ2{ }
2δ δ + μ( ) 〈k1〉 + 〈k2〉 +

��������������������������
〈k1〉 − 〈k2〉( )2 + 4κ2〈k12〉〈k21〉

√( ). (3.8)

Combined the above analysis, the stability properties of the information-free equilibrium E0 and information-endemic equilibrium E* are
given in the following theorems.

3.1 Stability analysis of information-free equilibrium

With R0 < 1, our dynamical system will converge to the information-free equilibrium E0 � (0, 0, 0, 0, 0, 0, ξδ, ξδ) when reaching a steady
state. Next, we provide theorems 3.1 and 3.2 to prove its stability.

Theorem 3.1. For the dynamical systems (2.2) and (2.3), the information-free equilibrium E0 is locally asymptotically stable if R0 < 1 and
unstable if R0 > 1.

Proof: The local stability of the information-free equilibrium E0 of the dynamical systems (2.2) and (2.3) is determined by the eigenvalues
of the corresponding Jacobian matrix JE0. From the dynamic evolution of SIAIBHR, we can obtain

JE0�

〈k1〉λ1
ξ

δ
− δ + μ( ) 〈k12〉κλ1

ξ

δ
0 0 0 0 0 0

〈k21〉κλ1
ξ

δ
〈k2〉λ1

ξ

δ
− δ + μ( ) 0 0 0 0 0 0

0 0 〈k1〉λ2
ξ

δ
− δ + μ( ) 〈k12〉κλ2

ξ

δ
0 0 0 0

0 0 〈k21〉κλ2
ξ

δ
〈k2〉λ2

ξ

δ
− δ + μ( ) 0 0 0 0

0 0 0 0 − δ + μ( ) 0 0 0

0 0 0 0 0 − δ + μ( ) 0 0

−〈k1〉λ1ξ
δ

−〈k12〉κλ1ξ
δ

−〈k1〉λ2ξ
δ

−〈k12〉κλ2ξ
δ

0 0 −δ 0

−〈k21〉κλ1ξ
δ

−〈k2〉λ1ξ
δ

−〈k21〉κλ2ξ
δ

−〈k2〉λ2ξ
δ

0 0 0 −δ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.9)

Then the eigenvalues of JE0 can be provided as
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u1,2 � −δ, u3,4 � 1
2δ

〈k1〉 + 〈k2〉 ±
��������������������������
〈k1〉 − 〈k2〉( )2 + 4κ2〈k12〉〈k12〉

√( )ξλ1 − 2δ δ + μ( )[ ],
u5,6 � − δ + μ( ), u7,8 � 1

2δ
〈k1〉 + 〈k2〉 ±

��������������������������
〈k1〉 − 〈k2〉( )2 + 4κ2〈k12〉〈k12〉

√( )ξλ2 − 2δ δ + μ( )[ ].
Furthermore, we can derive the maximum eigenvalue

umax � 1
2δ

〈k1〉 + 〈k2〉 +
��������������������������
〈k1〉 − 〈k2〉( )2 + 4κ2〈k12〉〈k12〉

√( )ξmax λ1, λ2( ) − 2δ δ + μ( )[ ] � R0 − 1( ) δ + μ( ) (3.10)

Thus, it is obvious that as long as R0 < 1, all eigenvalues u1, u2, u3, u4, u5, u6, u7, u8 have negative real parts. Otherwise, at least one
eigenvalue owns a positive real part. In conclusion, the information-free equilibrium E0 is locally asymptotically stable for R0 < 1, and
unstable for R0 > 1.

Next, we investigate the global stability of the information-free equilibrium E0.

Theorem 3.2. The information-free equilibrium E0 of the dynamical systems (2.2) and (2.3) is globally asymptotically stable if R0 < 1.
Proof: Construct the following Lyapunov function

V t( ) � exp Ξ t( ) − ∫t

0

2ξ δ + μ( )
δ

+ κ 〈k12〉 + 〈k21〉( )( )dx[ ]> 0, (3.11)

where Ξ(t) � ∑2
i�1
(IAi (t) + IBi (t) +Hi(t)), and dΞ(t)

dt � dIA1 (t)
dt + dIB1 (t)

dt + dIA2 (t)
dt + dIB2 (t)

dt + dH1(t)
dt + dH2(t)

dt .

The derivative of V(t) towards t can be calculated as

dV t( )
dt

� V t( ) dΞ t( )
dt

− 2ξ δ + μ( )
δ

− κ 〈k12〉 + 〈k21〉( )[ ]
� V t( )S1 t( ) 〈k1〉 λ1I

A
1 t( ) + λ2I

B
1 t( )( ) + κ〈k12〉 λ1I

A
2 t( ) + λ2I

B
2 t( )( )[ ]

+V t( )S2 t( ) 〈k2〉 λ1I
A
2 t( ) + λ2I

B
2 t( )( ) + κ〈k21〉 λ1I

A
1 t( ) + λ2I

B
1 t( )( )[ ]

−V t( ) δ + μ( ) IA1 t( ) + IB1 t( ) + IA2 t( ) + IB2 t( ) +H1 t( ) +H2 t( )( ) + 2ξ δ + μ( )
δ

+ κ 〈k12〉 + 〈k21〉( )[ ]
≤V t( ) ξmax λ1, λ2{ }

δ
〈k1〉 + κ〈k21〉( ) IA1 t( ) + IB1 t( )( ) + 〈k2〉 + κ〈k12〉( ) IA2 t( ) + IB2 t( )( )[ ]

−V t( ) 2 δ + μ( )Ξ t( ) + κ 〈k12〉 + 〈k21〉( )[ ]
≤V t( ) ξmax λ1, λ2{ }

δ
〈k1〉 + 〈k2〉( )Ξ t( ) + κ〈k21〉 IA1 t( ) + IB1 t( )( ) + κ〈k12〉 IA2 t( ) + IB2 t( )( )[ ]

−V t( ) 2 δ + μ( )Ξ t( ) + κ 〈k12〉 + 〈k21〉( )[ ]
≤V t( ) ξmax λ1, λ2{ }

δ
〈k1〉 + 〈k2〉 +

��������������������������
〈k1〉 − 〈k2〉( )2 + 4κ2〈k12〉〈k21〉

√( ) − 2 δ + μ( )Ξ t( ){ }
� V t( ) · 2 δ + μ( ) R0 − 1( )Ξ t( )

Significantly, dV(t)dt ≤ 0 ifR0 < 1. Besides, dV(t)dt � 0 if and only if Ξ(t) = 0, namely, IAi (t) � IBi (t) � Hi(t) � 0.Based on LaSalle’s invariance
principle, it can be concluded that the information-free equilibrium E0 is globally asymptotically stable if R0 < 1.

3.2 Stability analysis of information-endemic equilibrium

When R0 > 1, the system will deviate from the information-free equilibrium E0, and point to an endemic equilibrium. We define
information-endemic equilibrium E* � (IA*1 , IA*2 , IB*1 , IB*2 , H1*, H2*), then dynamical system (2.2) satisfies the following conditions

ξ � 〈k1〉λ1S1*IA*1 + 〈k1〉λ2S1*IB*1 + 〈k12〉κλ1S1*IA*2 + 〈k12〉κλ2S1*IB*2 + δS1*

δ + μ( )IA*1 � 〈k1〉λ1S1*IA*1 + 〈k12〉κλ1S1*IA*2 + εA*1 H1* − 〈k1〉θ1IA*1 IB*1 − 〈k12〉κθ1IA*1 IB*2
δ + μ( )IB*1 � 〈k1〉λ2S1*IB*1 + 〈k12〉κλ2S1*IB*2 + εB*1 H1* − 〈k1〉θ2IB*1 IA*1 − 〈k12〉κθ2IB*1 IA*2
δ + μ( )H1* � 〈k1〉θ1IA*1 IB*1 + 〈k12〉κθ1IA*1 IB*2 + 〈k1〉θ2IB*1 IA*1 + 〈k12〉κθ2IB*1 IA*2 − εA*1 + εB*1( )H1*

(3.12)

with the similar condition holding for system (2.3).

Theorem 3.3. The information-endemic equilibrium E* of the dynamical systems (2.2) and (2.3) is globally asymptotically stable ifR0 > 1.
Proof: Construct the following Lyapunov function
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V t( ) � V1 t( ) + V2 t( ), (3.13)
for the dynamical system (2.2) in layer 1, we define

V1 t( ) � exp c1S1*g
S1 t( )
S1*

( ) + c2I
A*
1 g

IA1 t( )
IA*1

( ) + c3I
B*
1 g

IB1 t( )
IB*1

( ) + c4H1*g
H1 t( )
H1*

( ) − ∫t

0
Θ u( )du[ ]> 0, (3.14)

where g(x) = x − 1 − ln x ≥ g (1) = 0, and

Θ u( ) � c1 − c2( )〈k1〉λ1S1*IA*1 + c2θ1 + c3θ2( )〈k1〉IA*1 IB*1 + c2〈k12〉κθ1IA*1 IB*2[ ]g IA1 u( )
IA*1

( )
+ c1 − c3( )〈k1〉λ2S1*IB*1 + c2θ1 + c3θ2( )〈k1〉IA*1 IB*1 + c3〈k12〉κθ2IB*1 IA*2[ ]g IB1 u( )

IB*1
( )

+ c4
1 − ω1

2
IA*2 H1* + IB*2 H1*( )( )g H1 u( )

H1*
( ) + c1〈k12〉κλ1S1*IA*2 + c4

1 − ω1

2
IA*2 H1* + c3〈k12〉κθ2IB*1 IA*2( )g IA2 u( )

IA*2
( )

+ c1〈k12〉κλ2S1*IB*2 + c4
1 − ω1

2
IB*2 H1* + c2〈k12〉κθ1IA*1 IB*2( )g IB2 u( )

IB*2
( ).

(3.15)

Furthermore, we define

q1 � S1 t( )
S1*

, x1 � IA1 t( )
IA*1

, y1 � IB1 t( )
IB*1

, z1 � H1 t( )
H1*

, (3.16)

VS
1 t( ) � c1S1*g

S1 t( )
S1*

( ), VA
1 t( ) � c2I

A*
1 g

IA1 t( )
IA*1

( ), VB
1 t( ) � c3I

B*
1 g

IB1 t( )
IB*1

( ), VH
1 t( ) � c4H1*g

H1 t( )
H1*

( ). (3.17)

Then, we can obtain

V1 t( ) � exp VS
1 t( ) + VA

1 t( ) + VB
1 t( ) + VH

1 t( ) − ∫t

0
Θ u( )du[ ]

� exp c1S1*g q1( ) + c2I
A*
1 g x1( ) + c3I

B*
1 g y1( ) + c4H1*g z1( ) − ∫t

0
Θ u( )du[ ]. (3.18)

The derivative of V1(t) towards t can be calculated as

dV1 t( )
dt

� V1 t( ) dVS
1 t( )
dt

+ dVA
1 t( )
dt

+ dVB
1 t( )
dt

+ dVH
1 t( )
dt

− Θ t( )[ ], (3.19)

where

dVS
1 t( )
dt

� c1 1 − 1
q1

( ) 〈k1〉λ1S1*IA*1 1 − q1x1( ) + 〈k1〉λ2S1*IB*1 1 − q1y1( )[
+〈k12〉κλ1S1*IA*2 1 − q1x2( ) + 〈k12〉κλ2S1*IB*2 1 − q1y2( ) + δS1* 1 − q1( )],

(3.20)

dVA
1 t( )
dt

� c2 1 − 1
x1

( ) 〈k1〉λ1S1*IA*1 q1x1 − x1( ) + 〈k12〉κλ1S1*IA*2 q1x2 − x1( ) + 1 + ω1

2
IA*1 H1* x1z1 − x1( )[

+1 − ω1

2
IA*2 H1* x2z1 − x1( ) − 〈k1〉θ1IA*1 IB*1 x1y1 − x1( ) − 〈k12〉κθ1IA*1 IB*2 x1y2 − x1( )],

(3.21)

dVB
1 t( )
dt

� c3 1 − 1
y1

( ) 〈k1〉λ2S1*IB*1 q1y1 − y1( ) + 〈k12〉κλ2S1*IB*2 q1y2 − y1( ) + 1 + ω1

2
IB*1 H1* y1z1 − y1( )[

+1 − ω1

2
IB*2 H1* y2z1 − y1( ) − 〈k1〉θ2IB*1 IA*1 y1x1 − y1( ) − 〈k12〉κθ2IB*1 IA*2 y1x2 − y1( )],

(3.22)

dVH
1 t( )
dt

� c4 1 − 1
z1

( ) 〈k1〉θ1IA*1 IB*1 x1y1 − z1( ) + 〈k12〉κθ1IA*1 IB*2 x1y2 − z1( ) − 1 + ω1

2
IA*1 H1* x1z1 − z1( )[

−1 − ω1

2
IA*2 H1* x2z1 − z1( ) + 〈k1〉θ2IB*1 IA*1 y1x1 − z1( ) + 〈k12〉κθ2IB*1 IA*2 y1x2 − z1( )

−1 + ω1

2
IB*1 H1* y1z1 − z1( ) − 1 − ω1

2
IB*2 H1* y2z1 − z1( )].

(3.23)

For convenience, we define

Λ t( ),dVS
1 t( )
dt

+ dVA
1 t( )
dt

+ dVB
1 t( )
dt

+ dVH
1 t( )
dt

− Θ t( ). (3.24)

Therefore, combining Eq. 3.15 and Eqs 3.20—3.23, we can derive
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Λ t( ) � −c1δS1* q1 − 1( ) 1 − 1
q1

( ) − c1〈k1〉λ1S1*IA*1 + c1〈k1〉λ2S1*IB*1 + c1〈k12〉κλ1S1*IA*2 + c1〈k12〉κλ2S1*IB*2( )g 1
q1

( )
− c2〈k12〉κλ1S1*IA*2 + c2

1 + ω1

2
IA*1 H1* 1 − c4

c2
( ) + c2

1 − ω1

2
IA*2 H1*[ ]g x1( ) − c1〈k1〉λ1S1*IA*1 1 − c2

c1
( )g q1x1( )

− c2〈k1〉λ1S1*IA*1 + c3〈k1〉λ2S1*IB*1( )g q1( ) − c1〈k1〉λ2S1*IB*1 1 − c3
c1

( )g q1y1( )
− c3〈k12〉κλ2S1*IB*1 + c3

1 + ω1

2
IB*1 H1* 1 − c4

c3
( ) + c3

1 − ω1

2
IB*2 H1*[ ]g y1( ) − c1〈k12〉κλ1S1*IA*2 1 − c2

c1
( )g q1x2( )

−c2〈k12〉κλ1S1*IA*2 g
q1x2

x1
( ) − c1〈k12〉κλ2S1*IB*2 1 − c3

c1
( )g q1y2( ) − c3〈k12〉κλ2S1*IB*2 g

q1y2

y1
( )

+c21 + ω1

2
IA*1 H1* 1 − c4

c2
( )g x1z1( ) + c3

1 + ω1

2
IB*1 H1* 1 − c4

c3
( )g y1z1( ) + c2

1 − ω1

2
IA*2 H1* 1 − c4

c2
( )g x2z1( )

−c21 − ω1

2
IA*2 H1*g

x2z1
x1

( ) + c3
1 − ω1

2
IB*2 H1* 1 − c4

c3
( )g y2z1( ) − c3

1 − ω1

2
IB*2 H1*g

y2z1
y1

( )
− 1 + ω1

2
H1* c2I

A*
1 1 − c4

c2
( ) + c3I

B*
1 1 − c4

c3
( )( ) + c4〈k1〉 θ1 + θ2( )IA*1 IB*1 + c4〈k12〉κ θ1I

A*
1 IB*2 + θ2I

B*
1 IA*2( )[ ]g z1( )

− c2〈k1〉θ1IA*1 IB*1 1 − c4
c2

( ) + c3〈k1〉θ2IA*1 IB*1 1 − c4
c3

( )[ ]g x1y1( ) − c4〈k1〉 θ1 + θ2( )IA*1 IB*1 g
x1y1

z1
( )

−〈k12〉κθ1IA*1 IB*2 c2 1 − c4
c2

( )g x1y2( ) + c4g
x1y2

z1
( )[ ] − 〈k12〉κθ2IB*1 IA*2 c3 1 − c4

c3
( )g y1x2( ) + c4g

y1x2

z1
( )[ ].

(3.25)

Next, by taking c1 ≥ c2 = c3 = c4 > 0, we have

dV1 t( )
dt

� V1 t( )Λ t( )≤ 0. (3.26)

Besides, dV1(t)
dt � 0 if and only if S1(t) � S1*, IA1 (t) � IA*1 , IB1(t) � IB*1 , H1(t) � H1*. And for the dynamical system (2.3) in layer 2, we can

also construct the Lyapunov function V2(t) which is similar to V1(t), such that V2(t) > 0 and dV2(t)
dt < 0. In other words, we achieve that V(t) =

V1(t) + V2(t) > 0 and dV(t)
dt � dV1(t)

dt + dV2(t)
dt < 0. Based on LaSalle’s invariance principle, it can be concluded that the information-endemic

equilibrium E* is globally asymptotically stable if R0 > 1.
In conclusion, we have completed the proof of asymptotic stability for information-free and information-endemic equilibria. Note that

the Lyapunov theory we employ is not the unique method to prove system stability. As an alternative, Shang [38] proposed a novel framework
that can analytically obtain the explicit solutions of dynamical systems using Lie algebra methods. Once the explicit solutions can be available,
an effort may be made to derive the limit values of these explicit solutions when t→∞. And the convergence of the limit values can reflect the
stability of dynamical systems.

4 Optimal control

In order to suppress the prevalence of negative information, we introduce two heterogeneous controls: one is direct control mode v1(t),
which persuades negative information spreaders to become positive information spreaders; the other is indirect control mode v2(t), which
guides hesitant individuals to become positive information spreaders. DefineQC as the Lebesgue square integrable control set of all admissible
values of v1(t) and v2(t) over time interval [0, T], given as QC � v1(t), v2(t) ∈ L2[0, T]: 0≤ v1(t), v2(t)≤ 1, 0≤ t≤T{ }. Based on the above
considerations, we consider the optimization problems as follows:

J � ∫T

0
d1 IB1 t( ) + IB2 t( )( ) + 1

2
d2v

2
1 t( ) + 1

2
d3v

2
2 t( ){ }dt. (4.1)

where the first term corresponds to the infection cost of negative information propagation in the network, and the second and third terms are
the costs brought by the implementation of controls. Our goal is to achieve the most powerful inhibition effect on negative information with
the lowest control intensity, which forms a trade-off between the two kinds of costs. d1, d2 and d3 are the weight factors of the three costs.

Correspondingly, the Lagrangian of our optimal problem can be formed as

L � d1 IB1 t( ) + IB2 t( )( ) + 1
2
d2v

2
1 t( ) + 1

2
d3v

2
2 t( ), (4.2)

then define adjoint functions φ(t) � (φ1(t),φ2(t),φ3(t),φ4(t),φ5(t),φ6(t),φ7(t),φ8(t)), we can drive the Hamiltonian function as
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H � L + φ1 t( ) dS1 t( )
dt

+ φ2 t( )dI
A
1 t( )
dt

+ φ3 t( ) dI
B
1 t( )
dt

+ φ4 t( ) dH1 t( )
dt

+φ5 t( ) dS2 t( )
dt

+ φ6 t( )dI
A
2 t( )
dt

+ φ7 t( ) dI
B
2 t( )
dt

+ φ8 t( ) dH2 t( )
dt

.

(4.3)

4.1 The existence of optimal solution

Theorem 4.1. There exists a set of optimal controls v*(t) ∈ v1*(t), v2*(t){ } and corresponding solutions �S1(t), �IA1 (t), �IB1(t), �H1(t), �S2(t),
�IA2 (t), �IB2(t), �H2(t) such that J(v*(t)) � minv(t)∈QCJ(v(t)).

Proof: The existence of optimal control strategies can be proven by the Cesari theorem [39]. Cesari theorem indicates that if the
optimization problem for our dynamical systems (2.2) and (2.3) satisfies the following five conditions, the optimal solutions of two controls
v1(t) and v2(t) will exist.

(1) The control set and state variables are non-empty;
(2) The control set is closed and convex;
(3) The right-hand side of systems (2.2) and (2.3) is bounded above by a linear function with the state and control;
(4) The integrand in the objective function is convex with respect to the controls v1(t), v2(t);
(5) There exists a constant C1 > 1 and positive number C2 and C3 such that

L≥C2 v1 t( )| |2 + v2 t( )| |2( )C12 − C3.

Next, we will prove that the dynamical systems (2.2) and (2.3) satisfy the above five conditions. Obviously, if the system is uniformly
Lipschitz continuous, the sets of QC and solutions to initial values are non-empty. Besides, state variables are non-empty such that condition
(1) is satisfied. The characteristics of control space and objective function can be verified by definition, meeting conditions (2) and (4).

The systems (2.2) and (2.3) can be rewritten as

D X t( )( ) � dX t( )
dt

� BX t( ) + G X t( )( ), (4.4)
where

B �

− δ + μ( ) 0 0 0 0 0 0 0
0 − δ + μ( ) 0 0 0 0 0 0
0 0 − δ + μ( ) 0 0 0 0 0
0 0 0 − δ + μ( ) 0 0 0 0
0 0 0 0 − δ + μ( ) 0 0 0
0 0 0 0 0 − δ + μ( ) 0 0
0 0 0 0 0 0 −δ 0
0 0 0 0 0 0 0 −δ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.5)

G X( ) �

〈k1〉λ1S1 t( )IA1 t( ) + 〈k12〉κλ1S1 t( )IA2 t( ) + εA1 t( )H1 t( ) − 〈k1〉θ1IA1 t( )IB1 t( ) − 〈k12〉κθ1IA1 t( )IB2 t( )
〈k2〉λ1S2 t( )IA2 t( ) + 〈k21〉κλ1S2 t( )IA1 t( ) + εA2 t( )H2 t( ) − 〈k2〉θ1IA2 t( )IB2 t( ) − 〈k21〉κθ1IA2 t( )IB1 t( )
〈k1〉λ2S1 t( )IB1 t( ) + 〈k12〉κλ2S1 t( )IB2 t( ) + εB1 t( )H1 t( ) − 〈k1〉θ2IB1 t( )IA1 t( ) − 〈k12〉κθ2IB1 t( )IA2 t( )
〈k2〉λ2S2 t( )IB2 t( ) + 〈k21〉κλ2S2 t( )IB1 t( ) + εB2 t( )H2 t( ) − 〈k2〉θ2IB2 t( )IA2 t( ) − 〈k21〉κθ2IB2 t( )IA1 t( )

〈k1〉θ1IA1 t( )IB1 t( ) + 〈k12〉κθ1IA1 t( )IB2 t( ) + 〈k1〉θ2IB1 t( )IA1 t( ) + 〈k12〉κθ2IB1 t( )IA2 t( ) − εA1 t( ) + εB1 t( )( )H1 t( )
〈k2〉θ1IA2 t( )IB2 t( ) + 〈k21〉κθ1IA2 t( )IB1 t( ) + 〈k2〉θ2IB2 t( )IA2 t( ) + 〈k21〉κθ2IB2 t( )IA1 t( ) − εA2 t( ) + εB2 t( )( )H2 t( )

ξ − 〈k1〉λ1S1 t( )IA1 t( ) − 〈k1〉λ2S1 t( )IB1 t( ) − 〈k12〉κλ1S1 t( )IA2 t( ) − 〈k12〉κλ2S1 t( )IB2 t( )
ξ − 〈k2〉λ1S2 t( )IA2 t( ) − 〈k2〉λ2S2 t( )IB2 t( ) − 〈k21〉κλ1S2 t( )IA1 t( ) − 〈k21〉κλ2S2 t( )IB1 t( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.6)

Furthermore, we can verify

G ~X( ) − G X( )
∣∣∣∣∣ ∣∣∣∣∣≤Q ~S1 − S1

∣∣∣∣ ∣∣∣∣ + ~S2 − S2
∣∣∣∣ ∣∣∣∣ + ~I

A

1 − IA1
∣∣∣∣∣ ∣∣∣∣∣ + ~I

A

2 − IA2
∣∣∣∣∣ ∣∣∣∣∣ + ~I

B

1 − IB1
∣∣∣∣∣ ∣∣∣∣∣ + ~I

B

2 − IB2
∣∣∣∣∣ ∣∣∣∣∣ + ~H1 −H1

∣∣∣∣ ∣∣∣∣ + ~H2 −H2

∣∣∣∣ ∣∣∣∣( ) (4.7)
where

Q � max {2 λ1 + λ2( ) 〈k1〉 + 〈k12〉κ( ), 2 λ1 + λ2( ) 〈k2〉 + 〈k21〉κ( ), 2 〈k1〉 λ1 + θ1 + θ2( ) + 〈k21〉κ λ1 + θ2( ) + 〈k12〉κθ1[ ], .
2 〈k2〉 λ1 + θ1 + θ2( ) + 〈k12〉κ λ1 + θ2( ) + 〈k21〉κθ1[ ], 2 〈k1〉 λ2 + θ1 + θ2( ) + 〈k21〉κ λ2 + θ1( ) + 〈k12〉κθ2[ ],

2 〈k2〉 λ2 + θ1 + θ2( ) + 〈k12〉κ λ2 + θ2( ) + 〈k21〉κθ2[ ], 3max ~εA1 + ~εB1 , ε
A
1 + εB1{ }, 3max ~εA2 + ~εB2 , ε

A
2 + εB2{ }}. (4.8)

Then we have
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D ~X( ) −D X( )
∣∣∣∣∣ ∣∣∣∣∣≤V ~X − X∣∣∣∣ ∣∣∣∣, (4.9)

where

V � max Q, B‖ ‖{ }<∞ . (4.10)
Therefore, the function D is uniformly Lipschitz continuous and satisfies the required bound in Cesari theorem. The control set QC

belongs to the closed set [0, 1] and the objective function J lies in a compact interval [Jmin, Jmax]. Consequently, the functionD(X) is linear in
two controls v1(t) and v2(t), which means condition (3) is satisfied. As a result, we can draw the conclusion that the solution of the system
exists.

Furthermore, we set C1 = 2, C2 � 1
2min d2, d3{ }, C3 = Δ(0), then condition (5) is satisfied, which means the optimal solution exists. Based

on the above discussion, the proof is completed.

4.2 The solution to optimal control problem

Here we employ Pontryagin minimum principle with fixed final time to analytically derive the optimal solution.

Theorem 4.2.Given an optimal control pair v1(t) and v2(t) and the corresponding solutions to the system (2.2) and (2.3), there exist adjoint
functions φ1(t), φ2(t), φ3(t), φ4(t), φ5(t), φ6(t), φ7(t), φ8(t), satisfying

dφ1 t( )
dt

� φ1 t( ) − φ2 t( )( ) 〈k1〉λ1IA1 t( ) + 〈k12〉κλ1IA2 t( )( ) + φ1 t( ) − φ3 t( )( ) 〈k1〉λ2IB1 t( ) + 〈k12〉κλ2IB2 t( )( ) + δφ1 t( ), (4.11)
dφ2 t( )
dt

� φ1 t( ) − φ2 t( )( )〈k1〉λ1S1 t( ) + φ4 t( ) − φ2 t( )( ) 1 + ω1

2
H1 t( ) − 〈k1〉θ1IB1 t( ) − 〈k12〉κθ1IB2 t( )( ) + δ + μ( )φ2 t( )

+ φ3 t( ) − φ4 t( )( )〈k1〉θ2IB1 t( ) + φ5 t( ) − φ6 t( )( )〈k21〉κλ1S2 t( ) + φ8 t( ) − φ6 t( )( ) 1 − ω2

2
H2 t( ) + φ7 t( ) − φ8 t( )( )〈k21〉κθ2IB2 t( ),

(4.12)
dφ3 t( )
dt

� φ1 t( ) − φ3 t( )( )〈k1〉λ2S1 t( ) + φ4 t( ) − φ3 t( )( ) 1 + ω1

2
H1 t( ) − 〈k1〉θ2IA1 t( ) − 〈k12〉κθ2IA2 t( )( ) + δ + μ( )φ3 t( )

+ φ2 t( ) − φ4 t( )( )〈k1〉θ1IA1 t( ) + φ5 t( ) − φ7 t( )( )〈k21〉κλ2S2 t( ) + φ8 t( ) − φ7 t( )( ) 1 − ω2

2
H2 t( )

+ φ6 t( ) − φ8 t( )( )〈k21〉κθ1IA2 t( ) − φ2 t( )v1 t( ) + φ3 t( )v1 t( ) − d1,

(4.13)

dφ4 t( )
dt

� δ + μ + v2 t( )( )φ4 t( ) + φ4 t( ) − φ2 t( )( )εA1 t( ) + φ4 t( ) − φ3 t( )( )εB1 t( ) − v2 t( )φ2 t( ), (4.14)
dφ5 t( )
dt

� φ5 t( ) − φ6 t( )( ) 〈k2〉λ1IA2 t( ) + 〈k21〉κλ1IA1 t( )( ) + φ5 t( ) − φ7 t( )( ) 〈k2〉λ2IB2 t( ) + 〈k21〉κλ2IB1 t( )( ) + δφ5 t( ), (4.15)
dφ6 t( )
dt

� φ5 t( ) − φ6 t( )( )〈k2〉λ1S2 t( ) + φ8 t( ) − φ6 t( )( ) 1 + ω2

2
H2 t( ) − 〈k2〉θ1IB2 t( ) − 〈k21〉κθ1IB1 t( )( ) + δ + μ( )φ6 t( )

+ φ7 t( ) − φ8 t( )( )〈k2〉θ2IB2 t( ) + φ1 t( ) − φ2 t( )( )〈k12〉κλ1S1 t( ) + φ4 t( ) − φ2 t( )( ) 1 − ω1

2
H1 t( ) + φ3 t( ) − φ4 t( )( )〈k12〉κθ2IB1 t( ),

(4.16)
dφ7 t( )
dt

� φ5 t( ) − φ7 t( )( )〈k2〉λ2S2 t( ) + φ8 t( ) − φ7 t( )( ) 1 + ω2

2
H2 t( ) − 〈k2〉θ2IA2 t( ) − 〈k21〉κθ2IA1 t( )( ) + δ + μ( )φ7 t( )

+ φ6 t( ) − φ8 t( )( )〈k2〉θ1IA2 t( ) + φ1 t( ) − φ3 t( )( )〈k12〉κλ2S1 t( ) + φ4 t( ) − φ3 t( )( ) 1 − ω1

2
H1 t( )

+ φ2 t( ) − φ4 t( )( )〈k12〉κθ1IA1 t( ) − φ6 t( )v1 t( ) + φ7 t( )v1 t( ) − d1,

(4.17)

dφ8 t( )
dt

� δ + μ + v2 t( )( )φ8 t( ) + φ8 t( ) − φ6 t( )( )εA2 t( ) + φ8 t( ) − φ7 t( )( )εB2 t( ) − v2 t( )φ6 t( ), (4.18)
with boundary conditions

φ1 T( ) � φ2 T( ) � φ3 T( ) � φ4 T( ) � φ5 T( ) � φ6 T( ) � φ7 T( ) � φ8 T( ) � 0. (4.19)
Furthermore, the optimal solutions of v1*(t) and v2*(t) are formulated as

v1* t( ) � min max
1
d2

φ3 t( ) − φ2 t( )( )�IB1 t( ) + φ7 t( ) − φ6 t( )( )�IB2 t( )[ ], vmin
1{ }, vmax

1{ }, (4.20)

v2* t( ) � min max
1
d3

φ4 t( ) − φ2 t( )( ) �H1 t( ) + φ7 t( ) − φ6 t( )( ) �H2 t( )[ ], vmin
2{ }, vmax

2{ }. (4.21)
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Proof: While characterizing the properties of the optimal solution, the costate conditions must be satisfied in the system of costate
differential equations as

dφ1 t( )
dt

� − ∂H

∂S1 t( ),
dφ2 t( )
dt

� − ∂H

∂IA1 t( ),
dφ3 t( )
dt

� − ∂H

∂IB1 t( ),
dφ4 t( )
dt

� − ∂H

∂H1 t( ),

dφ5 t( )
dt

� − ∂H

∂S2 t( ),
dφ6 t( )
dt

� − ∂H

∂IA2 t( ),
dφ7 t( )
dt

� − ∂H

∂IB2 t( ),
dφ8 t( )
dt

� − ∂H

∂H2 t( ).
(4.22)

Then, by the optimal conditions, we have

∂H

∂v1 t( ) � d2v1 t( ) + φ2 t( ) − φ3 t( )( )IB1 t( ) + φ6 t( ) − φ7 t( )( )IB2 t( ),
∂H

∂v2 t( ) � d3v2 t( ) + φ2 t( ) − φ4 t( )( )H1 t( ) + φ6 t( ) − φ8 t( )( )H2 t( ).
(4.23)

Let ∂H
∂v1(t) � ∂H

∂v2(t) � 0, so we can obtain the optimal control at time t satisfying

v1* t( ) � 1
d2

φ3 t( ) − φ2 t( )( )�IB1 t( ) + φ7 t( ) − φ6 t( )( )�IB2 t( )[ ]�Δ vop1 t( ),

v2* t( ) � 1
d3

φ4 t( ) − φ2 t( )( ) �H1 t( ) + φ7 t( ) − φ6 t( )( ) �H2 t( )[ ]�Δ vop2 t( ).
(4.24)

Considering the property of the control space, we obtain

v1* t( ) �
vmin
1 , if vop1 t( )< vmin

1

vop1 t( ), if vmin
1 ≤ vop1 t( )≤ vmax

1

vmax
1 , if vop1 t( )> vmax

1

⎧⎪⎨⎪⎩ , v2* t( ) �
vmin
2 , if vop2 t( )< vmin

2

vop2 t( ), if vmin
2 ≤ vop2 t( )≤ vmax

2

vmax
2 , if vop2 t( )> vmax

2

⎧⎪⎨⎪⎩ (4.25)

Thus we have the optimal controls v1*(t) and v2*(t) in compact notation

v1* t( ) � min max
1
d2

φ3 t( ) − φ2 t( )( )�IB1 t( ) + φ7 t( ) − φ6 t( )( )�IB2 t( )[ ], vmin
1{ }, vmax

1{ }, (4.26)

v2* t( ) � min max
1
d3

φ4 t( ) − φ2 t( )( ) �H1 t( ) + φ8 t( ) − φ6 t( )( ) �H2 t( )[ ], vmin
2{ }, vmax

2{ }. (4.27)

In summary, the proof of theorem 4.2 has been completed.

4.3 The uniqueness of optimal solution

Theorem 4.3. For a relatively short control time T, the states and the adjoint functions at the optimum and the optimal control strategies
are unique.

Proof: Considering two different control states and their corresponding adjoint functions as

Si, I
A
i , I

B
i ,Hi,φj( ), ~Si, ~I

A

i , ~I
B

i , ~Hi, ~φj( ), i � 1, 2, j � 1, 2, . . . , 8.

Then we define S1 = eαtp1, IA1 � eαtp2, IB1 � eαtp3,H1 = eαtp4, S2 = eαtp5, IA2 � eαtp6, IB2 � eαtp7,H2 = eαtp8, and φ1 = e−αth1, φ2 = e−αth2, φ3 =
e−αth3, φ4 = e−αth4, φ5 = e−αth5, φ6 = e−αth6, φ7 = e−αth7, φ8 = e−αth8. The same definitions holds for ~S1 � eαt ~p1, ~I

A
1 � eαt ~p2, ~I

B
1 � eαt ~p3, ~H1 � eαt ~p4,

~S2 � eαt ~p5, ~I
A
2 � eαt ~p6, ~I

B
2 � eαt ~p7, ~H2 � eαt ~p8, and ~φ1 � e−αt~h1, ~φ2 � e−αt~h2, ~φ3 � e−αt~h3, ~φ4 � e−αt~h4, ~φ5 � e−αt~h5, φ6 � e−αt~h6, φ7 � e−αt~h7,

φ8 � e−αt~h8, where α > 0 is a constant to be chosen.
After substituting the above values into systems (2.2) and (2.3), we can obtain

αp1 + dp1

dt
� ξe−αt − 〈k1〉λ1eαtp1p2 − 〈k1〉λ2eαtp1p3 − 〈k12〉κλ1eαtp1p6 − 〈k12〉κλ2eαtp1p7 − δp1, (4.28)

αp2 + dp2

dt
� 〈k1〉λ1eαtp1p2 + 〈k12〉κλ1eαtp1p6 + 1 + ω1

2
eαtp2p4 + 1 − ω1

2
eαtp6p4 − 〈k1〉θ1eαtp2p3

−〈k12〉κθ1eαtp2p7 − δ + μ( )p2 + v1*p3 + v2*p4,

(4.29)

αp3 + dp3

dt
� 〈k1〉λ2eαtp1p3 + 〈k12〉κλ2eαtp1p7 + 1 + ω1

2
eαtp3p4 + 1 − ω1

2
eαtp7p4 − 〈k1〉θ2eαtp3p2

−〈k12〉κθ2eαtp3p6 − δ + μ + v1*( )p3,

(4.30)
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αp4 + dp4

dt
� 〈k1〉θ1eαtp2p3 + 〈k12〉κθ1eαtp2p7 + 〈k1〉θ2eαtp3p2 + 〈k12〉κθ2eαtp3p6 − 1 + ω1

2
eαtp2p4

−1 − ω1

2
eαtp6p4 − 1 + ω1

2
eαtp3p4 − 1 − ω1

2
eαtp7p4 − δ + μ + v2*( )p4,

(4.31)

αp5 + dp5

dt
� ξe−αt − 〈k2〉λ1eαtp5p6 − 〈k2〉λ2eαtp5p7 − 〈k21〉κλ1eαtp5p2 − 〈k21〉κλ2eαtp5p3 − δp5, (4.32)

αp6 + dp6

dt
� 〈k2〉λ1eαtp5p6 + 〈k21〉κλ1eαtp5p2 + 1 + ω2

2
eαtp6p8 + 1 − ω2

2
eαtp2p8 − 〈k2〉θ1eαtp6p7

−〈k21〉κθ1eαtp6p3 − δ + μ( )p6 + v1*p7 + v2*p8,

(4.33)

αp7 + dp7

dt
� 〈k2〉λ2eαtp5p7 + 〈k21〉κλ2eαtp5p3 + 1 + ω2

2
eαtp7p8 + 1 − ω2

2
eαtp3p8 − 〈k2〉θ2eαtp7p6

−〈k21〉κθ2eαtp7p2 − δ + μ + v1*( )p7,

(4.34)

αp8 + dp8

dt
� 〈k2〉θ1eαtp6p7 + 〈k21〉κθ1eαtp6p3 + 〈k2〉θ2eαtp7p6 + 〈k21〉κθ2eαtp7p2 − 1 + ω2

2
eαtp6p8

−1 − ω2

2
eαtp2p8 − 1 + ω2

2
eαtp7p8 − 1 − ω2

2
eαtp3p8 − δ + μ + v2*( )p8,

(4.35)

dh1
dt

− αh1 � eαt h1 − h2( ) 〈k1〉λ1p2 + 〈k12〉κλ1p6( ) + eαt h1 − h3( ) 〈k1〉λ2p3 + 〈k12〉κλ2p7( ) + δh1, (4.36)

dh2
dt

− αh2 � h1 − h2( )〈k1〉λ1eαtp1 + eαt h4 − h2( ) 1 + ω1

2
p4 − 〈k1〉θ1p3 − 〈k12〉κθ1p7( ) + δ + μ( )h2

+ h3 − h4( )〈k1〉θ2eαtp3 + h5 − h6( )〈k21〉κλ1eαtp5 + h8 − h6( ) 1 − ω2

2
eαtp8

+ h7 − h8( )〈k21〉κθ2eαtp7,

(4.37)

dh3
dt

− αh3 � h1 − h3( )〈k1〉λ2eαtp1 + eαt h4 − h3( ) 1 + ω1

2
p4 − 〈k1〉θ2p2 − 〈k12〉κθ2p6( ) + δ + μ − d1( )h3

+ h2 − h4( )〈k1〉θ1eαtp2 + h5 − h7( )〈k21〉κλ2eαtp5 + h8 − h7( ) 1 − ω2

2
eαtp8

+ h6 − h8( )〈k21〉κθ1eαtp6 + v1*e
αt,

(4.38)

dh4
dt

− αh4 � δ + μ( )h4 + eαt h4 − h2( ) 1 + ω1

2
p2 + 1 − ω1

2
p6( ) + eαt h4 − h3( ) 1 + ω1

2
p3 + 1 − ω1

2
p7( ) + v2*e

αt, (4.39)

dh5
dt

− αh5 � eαt h5 − h6( ) 〈k2〉λ1p6 + 〈k21〉κλ1p2( ) + eαt h5 − h7( ) 〈k2〉λ2p7 + 〈k21〉κλ2p3( ) + δh5, (4.40)

dh6
dt

− αh6 � h5 − h6( )〈k2〉λ1eαtp5 + eαt h8 − h6( ) 1 + ω2

2
p8 − 〈k2〉θ1p7 − 〈k21〉κθ1p3( ) + δ + μ( )h6

+ h7 − h8( )〈k2〉θ2eαtp7 + h1 − h2( )〈k12〉κλ1eαtp1 + h4 − h2( ) 1 − ω1

2
eαtp4 + h3 − h4( )〈k12〉κθ2eαtp3,

(4.41)

dh7
dt

− αh7 � h5 − h7( )〈k2〉λ2eαtp5 + eαt h8 − h7( ) 1 + ω2

2
p8 − 〈k2〉θ2p6 − 〈k21〉κθ2p2( ) + δ + μ − d1( )h7

+ h6 − h8( )〈k2〉θ2eαtp7 + h1 − h2( )〈k12〉κλ2eαtp1 + h4 − h3( ) 1 − ω1

2
eαtp4 + h2 − h4( )〈k12〉κθ1eαtp2 + v1*e

αt,

(4.42)

dh8
dt

− αh8 � δ + μ( )h8 + eαt h8 − h6( ) 1 + ω2

2
p6 + 1 − ω2

2
p2( ) + eαt h8 − h7( ) 1 + ω2

2
p7 + 1 − ω2

2
p3( ) + v2*e

αt. (4.43)

Similarly, we can obtain other equations for ~S1, ~I
A
1 , ~I

B
1 , ~H1, ~S2, ~I

A
2 , ~I

B
2 , ~H2, ~φ1, ~φ2, ~φ3, ~φ4, ~φ5, ~φ6, ~φ7, ~φ8. Afterward, we subtract the equations

for S1 and ~S1, IA1 and ~I
A
1 , I

B
1 and ~I

B
1 ,H1 and ~H1, S2 and ~S2, IA2 and ~I

A
2 , I

B
2 and ~I

B
2 ,H2 and ~H2, φ1 and ~φ1, φ2 and ~φ2, φ3 and ~φ3, φ4 and ~φ4, φ5 and

~φ5, φ6 and ~φ6, φ7 and ~φ7, φ8 and ~φ8 respectively, then multiply each equation with appropriate difference subsequently, and integrate the
obtained each equation from 0 to T. We take IA1 and ~I

A
1 , φ3 and ~φ3 as examples, thus
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1
2

p2 T( ) − ~p2 T( )( )2 + α∫T

0
p2 − ~p2( )2dt

� 〈k1〉λ1∫T

0
eαt p1p2 − ~p1

~p2( ) p2 − ~p2( )dt + 〈k12〉κλ1∫T

0
eαt p1p6 − ~p1

~p6( ) p2 − ~p2( )dt
+1 + ω1

2
∫T

0
eαt p2p4 − ~p2

~p4( ) p2 − ~p2( )dt + 1 − ω1

2
∫T

0
eαt p6p4 − ~p6

~p4( ) p2 − ~p2( )dt
−〈k1〉θ1∫T

0
eαt p2p3 − ~p2

~p3( ) p2 − ~p2( )dt − 〈k12〉κθ1∫T

0
eαt p2p7 − ~p2

~p7( ) p2 − ~p2( )dt
− δ + μ( )∫T

0
p2 − ~p2( )2dt + ∫T

0
v1*p3 − ~v1*~p3( ) p2 − ~p2( )dt + ∫T

0
v2*p4 − ~v2*~p4( ) p2 − ~p2( )dt

≤ ~C1e
αT∫T

0
p1 − ~p1( )2 + p2 − ~p2( )2 + p3 − ~p3( )2 + p4 − ~p4( )2 + p6 − ~p6( )2 + p7 − ~p7( )2[ ]dt

+~C2∫T

0
p4 − ~p4( )2 + p8 − ~p8( )2 + p7 − ~p7( )2 + p3 − ~p3( )2 + p2 − ~p2( )2 + h3 − ~h3( )2 + h2 − ~h2( )2[
+ h6 − ~h6( )2 + h4 − ~h4( )2 + h7 − ~h7( )2 + h8 − ~h8( )2]dt

(4.44)

Furthermore,

1
2

h3 0( ) − ~h3 0( )( )2 + α∫T

0
h3 − ~h3( )2dt

� 〈k1〉λ2∫T

0
eαt h1 − h3( )p1 − ~h1 − ~h3( )~p1[ ] h3 − ~h3( )dt + 1 + ω1

2
∫T

0
eαt h4 − h3( )p4 − ~h4 − ~h3( )~p4[ ] h3 − ~h3( )dt

−〈k1〉θ2∫T

0
eαt h4 − h3( )p2 − ~h4 − ~h3( )~p2[ ] h3 − ~h3( )dt − 〈k12〉κθ2∫T

0
eαt h4 − h3( )p6 − ~h4 − ~h3( )~p6[ ] h3 − ~h3( )dt

+ δ + μ − d1( )∫T

0
h3 − ~h3( )2dt + 〈k1〉θ1∫T

0
eαt h2 − h4( )p2 − ~h2 − ~h4( )~p2[ ] h3 − ~h3( )dt

+〈k21〉κλ2∫T

0
eαt h5 − h7( )p5 − ~h5 − ~h7( )~p5[ ] h3 − ~h3( )dt + 1 − ω2

2
∫T

0
eαt h8 − h7( )p8 − ~h8 − ~h7( )~p8[ ] h3 − ~h3( )dt

+〈k21〉κθ1∫T

0
eαt h6 − h8( )p6 − ~h6 − ~h8( )~p6[ ] h3 − ~h3( )dt + ∫T

0
eαt v1* − ~v1*( ) h3 − ~h3( )dt≤ ~C2∫T

0
h3 − ~h3( )2dt

+~C1e
αT∫T

0
h1 − ~h1( )2 + h2 − ~h2( )2 + h3 − ~h3( )2 + h4 − ~h4( )2 + h5 − ~h5( )2 + h6 − ~h6( )2 + h7 − ~h7( )2 + h8 − ~h8( )2[ ]dt

+~C1e
αT∫T

0
p1 − ~p1( )2 + p2 − ~p2( )2 + p3 − ~p3( )2 + p4 − ~p4( )2 + p5 − ~p5( )2 + p6 − ~p6( )2 + p7 − ~p7( )2 + p8 − ~p8( )2[ ]dt

(4.45)

Combining all of these equations, we can obtain

1
2
∑8
i�1

pi − ~pi( )2 T( ) + 1
2
hi − ~hi( )2 0( ){ } + α∑8

i�1
∫T

0
pi − ~pi( )2dt + ∫T

0
hi − ~hi( )2dt{ }

≤ ~C1 + ~C2e
αT( )∫T

0
∑8
i�1

pi − ~pi( )2 + hi − ~hi( )2{ }dt
(4.46)

where ~C1 and ~C2 are constants depending on the coefficients and bounds of p1, p2, p3, p4, p5, p6, p7, p8, h1, h2, h3, h4, h5, h6, h7, h8. Therefore, we
have

α − ~C1 + ~C2e
αT( )[ ]∫T

0
∑8
i�1

pi − ~pi( )2 + hi − ~hi( )2{ }dt≤ 0 (4.47)

If α is chosen such that α> ~C1 + ~C2 and T< 1
α ln(α− ~C1

~C2
), then pi � ~pi, hi � ~hi, i = 1, 2, . . . , 8. As a result, based on the above proof, we can

learn that the optimal control solution is unique.
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5 Numerical experiments

In this section, we perform extensive numerical simulations to 1) corroborate the theoretical results of stability analysis towards
information-free and information-endemic equilibria; 2) explore the influence of spreading parameters on dynamic trend and steady-state
prevalence; 3) discuss the competition between two types of information; and 4) investigate the effectiveness of our optimal control strategies.

In order to verify the correctness of our theoretical modeling in characterize the competitive information propagation process on multi-
layer interconnected networks, we first conduct the time evolution of each status according to Eqs 2.2, 2.3 andMonte Carlo (MC) simulations
under different cases of spreading parameters. As shown in Figure 2, the MC simulation results are observed to match well with the
theoretical results, which indicates that our formulations can accurately reflect the competitive spreading mechanism. Furthermore, we can
calculate the basic reproduction number R0 under three cases, namely, (1) Case 1: R0 � 2.6794> 1, our system will converge to an
information-endemic equilibrium point E* = (0.4398, 0, 0.3784, 0) when t→∞; (2) Case 2:R0 � 2.8133> 1, our system will converge to an
information-endemic equilibrium point E* = (0, 0.3383, 0, 0.2936) when t→∞. (3) Case 3:R0 � 0.8038< 1, our system will converge to an
information-free equilibrium point E0 = (0, 0, 0, 0) when t → ∞; These conclusions are consistent with our Theorems 3.1–3.3.

It is well-acknowledged that spreading parameters are the key factors affecting the steady-state prevalence of information propagation, so
it is necessary to explore the correlation between some important spreading parameters and the information prevalence. Note that the
dynamic process of information in layer 1 is influenced by three aspects: 1) the interaction between individuals in layer 1 via intra-layer edges
presented as 〈k1〉; 2) the interaction between individuals across layers 1 and 2 via inter-layer edges presented as 〈k12〉; 3) the weight ω1

between local and global information prevalence. Similarly, the dynamic process of information in layer 2 is also influenced by three aspects:
1) the interaction between individuals in layer 2 via intra-layer edges presented as 〈k2〉; 2) the interaction between individuals across layers
2 and 1 via inter-layer edges presented as 〈k21〉; 3) the weight ω2 between local and global information prevalence. We observe that the
information propagation in layer 1 and 2 have similar mechanisms of state transition, leading to their similar evolution trend, and their
differences are merely reflected in numerical results. Therefore, we only analyze the conclusions in layer 1, which are well generalized to layer
2. Here we provide the phase diagrams of five different experiments. For each diagram, the colormap adopts a JET mode, which starts with
blue representing the minimum value, gradually transitions to cyan, green, yellow, orange, and ends with red representing the maximum
value.

• Figure 3A describes the changing trend of steady-state density of IA1 and IB1 spreaders under heterogeneous combinations of λ1 and λ2.
The color scale of IA1 (∞) (left) ranges from [0, 0.3164], and the color scale of IB1(∞) (right) ranges from [0, 0.3183]. We can observe
that when both λ1 and λ2 are relatively small, the system converges to an information-free equilibrium, where two types of information
will eventually die out. When λ1 and λ2 become larger, the infection density presents a coexistence of continuous and discontinuous
phase transitions. Specifically, taking IA1 density as an example, when λ2 is very small, the steady-state density of IA1 gradually increases
in a slow trend with the increase of λ1. This is because the small λ2 corresponds to the low-density IB1 spreaders, and the larger λ1
increases the probability that these small number of IB1 spreaders are infected with positive information. Although the infectivity of
positive information is increased, the quantity of IB1 spreaders with potential infected possibility is low, thus the steady-state IA1 density
will not increase dramatically. Besides, when λ2 is large, the steady-state density of IA1 spreaders will grow sharply with the increase of λ1.
This is because the larger λ2 keeps the infected density of IB1 spreaders at a high level. The increase of λ1 will not only make these large
number of IB1 spreaders change their opinions into I

A
1 state with a great probability, but also guide more S andH individuals to become

IA1 spreaders. Both the large infectivity and potential population base contribute to a sharp increase in the steady-state density of IA1
spreader, which presents a transient process of discontinuous phase. The similar analysis also applies to the changing trend of IB1
spreader density influenced by IA1 and IB1 .

• Figure 3B illustrates how IA1 and IB1 are affected by the transmission rate θ1 and θ2. The color scale of IA1 (∞) (left) ranges from
[0, 0.2480], and the color scale of IB1(∞) (right) ranges from [0, 0.2930]. It can be seen that the changing trends of IA1 and IB1 are
completely complementary, which further verifies the competition between two kinds of information. With the increase of θ1, the
probability of IA1 spreaders receiving negative information and turning into IB1 status may become larger significantly, thereby
improving (decreasing) the density of IB1 (IA1 ) spreaders. Similarly, the increase in θ2 will cause more IB1 individuals to change their
opinions and become the IA1 spreaders.

• Figure 3C depicts the changing trend of IA1 and IB1 influenced by λ1 and μ. The color scale of IA1 (∞) (left) ranges from [0, 0.5758], and
the color scale of IB1(∞) (right) ranges from [0, 0.5176]. When both λ1 and μ are small, the negative information propagation is
dominant, and the system will converge to the information-endemic equilibrium with non-zero IB1 . However, when λ1 exceeds a certain
threshold, the infectivity of positive information is stronger than that of negative information, thereby the systemmay converge to other
equilibrium with non-zero IA1 . The transformation of equilibrium is a process of discontinuous phase transition. Further increases in λ1
will extend the prevalence of IA1 . No matter IA1 or IB1 is dominant, the increase in μ can significantly reduce the steady-state density of
positive and negative information. And when μ is large enough, both kinds of information will eventually die out and the system will
stabilize at the information-free equilibrium.

• Figure 3D provides the changing trend of steady-state IA1 under the influence of ξ and δ. The color scale of IA1 (∞) ranges from
[0, 0.9865]. As ξ becomes larger, the number of S individuals may grow to participate in information propagation process, thus the
individuals infected as IA1 spreaders will also increase correspondingly. On the contrary, the increase in δ not only directly removes

Frontiers in Physics frontiersin.org15

Cao et al. 10.3389/fphy.2023.1293177

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1293177


FIGURE 2
Time evolution of each state density via several combinations cases. The symbols correspond to Monte Carlo (MC) simulations and the dotted lines
represent the theoreticalmodeling of dynamic equation (ODE). The shared parameter settings are 〈k1〉=4, 〈k2〉= 3, 〈k12〉= 3, 〈k21〉=2, θ1 = 0.2, θ2 = 0.15,
ξ = δ = 0.3, κ = 0.5. (A) Case 1: S1 (0) = 0.7, IA1 (0) = 0.15, IB1 (0) = 0.15, S2 (0) = 0.8, IA2(0) = 0.15, IB2(0) = 0.05, λ1 = 0.25, λ2 = 0.15, μ = 0.15; (B) Case 2: S1 (0) =
0.55, IA1 (0) = 0.25, IB1 (0) = 0.2, S2 (0) = 0.4, IA2(0) = 0.3, IB2(0) = 0.3, λ1 = 0.25, λ2 = 0.35, μ = 0.30; (C) S1 (0) = 0.5, IA1 (0) = 0.3, IB1 (0) = 0.2, S2 (0) = 0.4,
IA2(0) = 0.35, IB2(0) = 0.25, λ1 = 0.1, λ2 = 0.05, μ = 0.3.

FIGURE 3
Phase diagram of correlation between spreading parameters and system steady-state characteristics. (A) IA1 (∞), IB1 (∞) v.s. λ1, λ2; (B) IA1 (∞), IB1 (∞) v.s.
θ1, θ2; (C) I

A
1 (∞), IB1 (∞) v.s. λ1, μ; (D) IA1 (∞) v.s. ξ, δ; (E) IA1 (∞) v.s. 〈k1〉, 〈k2〉.Parameter settings are listed as: (A) θ1 = 0.2, θ2 = 0.15, 〈k1〉= 4, 〈k2〉= 3, 〈k12〉= 3,

〈k21〉 = 2, ω1 = 0.6, ω2 = 0.55, ξ = 0.2, δ = 0.2, κ = 0.5, μ = 0.3; (B) λ1 = 0.25, λ2 = 0.35, 〈k1〉 = 4, 〈k2〉 = 3, 〈k12〉 = 3, 〈k21〉 = 2, ω1 = 0.6, ω2 = 0.55, ξ = 0.2, δ =
0.2, κ=0.5, μ=0.3; (C) λ2 = 0.25, θ1 = 0.2, θ2 = 0.15, 〈k1〉= 4, 〈k2〉= 3, 〈k12〉= 3, 〈k21〉=2, ω1 = 0.6,ω2 = 0.55, ξ=0.2, δ=0.2, κ=0.5; (D) λ1 = 0.25, λ2 =
0.23, θ1 = 0.2, θ2 = 0.15, 〈k1〉=4, 〈k2〉= 3, 〈k12〉= 3, 〈k21〉=2, ω1 = 0.6,ω2 = 0.55, κ=0.5, μ=0.3; (E) λ1 = 0.25, λ2 = 0.23, θ1 = 0.2, θ2 = 0.15, 〈k12〉= 3, 〈k21〉=
2, ω1 = 0.6, ω2 = 0.55, ξ = 0.2, δ = 0.2, κ = 0.5, μ = 0.3.
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FIGURE 4
The evolution trajectory of infection states IA1 , I

B
1 , I

A
2 , I

B
2 under four settings of heterogeneous spreading parameters. Homogeneous parameter

settings are listed as: 〈k2〉= 5, 〈k12〉 = 3, 〈k21〉 = 2, θ1 = 0.2, θ2 = 0.15, ξ = 0.3, δ = 0.3, κ = 0.5, μ= 0.3. And heterogeneous parameter settings are: (A) 〈k1〉 =
8, λ1 = 0.30, λ2 = 0.08; (B) 〈k1〉 = 8, λ1 = 0.15, λ2 = 0.20; (C) 〈k1〉 = 5, λ1 = 0.15, λ2 = 0.08; (D) 〈k1〉 = 6, λ1 = 0.05, λ2 = 0.08.

FIGURE 5
The infection states IA1 (t), IB1 (t), IA2(t), IB2(t) under five different combinations of ω1 and ω2. (A) time v.s. IA1 (t); (B) time v.s. IB1 (t); (C) time v.s. IA2(t); (D) time
v.s. IB2(t). Parameter settings are listed as: S1 (0) = 0.5, IA1 (0) = IB1 (0) = 0.25, S2 (0) = 0.9, IA2(0) = IB2(0) = 0.1, λ1 = 0.08, λ2 = 0.05, θ1 = 0.2, θ2 = 0.15, 〈k2〉 = 8,
〈k2〉 = 3, 〈k12〉 = 4, 〈k21〉 = 2, ξ = δ = μ = 0.3, κ = 0.5.

Frontiers in Physics frontiersin.org17

Cao et al. 10.3389/fphy.2023.1293177

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1293177


more IA1 spreaders from information propagation, but also reduces the probability of individuals in other states being infected by
positive information.

• Figure 3E shows the changing trend of steady-state IA1 under the influence of 〈k1〉 and 〈k2〉. The color scale of IA1 (∞) ranges from
[0, 0.3156]. We can see that the increase of both 〈k1〉 and 〈k2〉 can expand the steady-state density of IA1 spreaders. This is because
larger 〈k1〉will enhance the correlation between individuals in layer 1, making the probability of S and IB1 individuals receiving positive
information larger, thus increasing the density of IA1 spreaders. Besides, a larger 〈k2〉 will also strengthen the interaction intensity of
individuals in layer 2 and make more individuals become IA2 spreaders, thus increasing the density of individuals being infected as IA1 in
layer 1 through the inter-layer edges.

In order to further verify the correctness of our Theorems 3.1–3.3 on the stability analysis of information-free and information-
endemic equilibria, we construct the evolution trajectory of infection states IA1 , I

B
1 , I

A
2 , I

B
2 under four settings of heterogeneous spreading

parameters, which is shown in Figure 4. Each setting all covers 7 cases with different initial value conditions. Next, we separately discuss
the results under four heterogeneous settings: (1) Setting 1:R0 � 4.2182> 1. Nomatter what the initial value condition is, the time-varying
trajectory of infection states in all cases will converge to an information-endemic equilibrium E* = (0.3927, 0, 0.3377, 0), where positive
information is dominant, and there is little difference between the trajectory evolution in layer 1 and layer 2. (2) Setting 2:R0 � 2.8122> 1,
similarly, no matter what the initial value condition is, the infection states in all cases will converge to an information-endemic
equilibrium E* = (0, 0.3363, 0, 0.2614), where negative information is dominant; (3) Setting 3: R0 � 2.1091> 1, the infection states in all
cases will converge to an information-endemic equilibrium E* = (0.2784, 0, 0.1905, 0) where positive information is dominant; (4) Setting
4:R0 � 0.9097< 1, the infection states in all cases gradually die out and finally converge to an information-free equilibrium E0 = (0, 0, 0, 0).
To sum up, the basic reproduction numberR0 determines the stable state of the system. To be more precise, the propagation parameters
associated with R0 significantly affect the evolution trend and steady-state conditions of the system, which are not related to the initial
value conditions.

Furthermore, we explore the effects of weights ω1 and ω2 on the dynamical trend of positive and negative information. It is remarkable
that largerω1 andω2 indicate that hesitant individuals consider the local information prevalence when deciding which information to believe,
while smaller ω1 and ω2 imply that hesitant individuals consider the global information prevalence more. Figure 5 shows the evolution of

FIGURE 6
The total cost, infection cost, control cost1 and control cost2 under five different control strategies. (A) time v.s. total cost; (B) time v.s. infection cost;
(C) time v.s. control v1 cost; (D) time v.s. control v2 cost. Parameter settings are listed as: S1 (0) = S2 (0) = 0.7, IA1 (0) = IB1 (0) = IA2(0) = IB2(0) = 0.15, λ1 = 0.35,
λ2 = 0.25, θ1 = 0.2, θ2 = 0.15, 〈k2〉 = 8, 〈k2〉 = 5, 〈k12〉 = 3, 〈k21〉 = 2, ξ = δ = μ = 0.3, κ = 0.5, ω1 = 0.6, ω2 = 0.4, d1 = 0.3, d2 = d3 = 0.65.
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IA1 (t), I
B
1 (t), I

A
2 (t) and I

B
2 (t) under different combinations ofω1 and ω2. From our parameter settings, it can be observed that: 1) the connection

between nodes in layer 1 is tighter; 2) the spreading of negative information is more dominant that positive information. According to the
comparison of Figures 5A,B, the spreading rate and prevalence of information in layer 1 are significantly higher than those in layer 2. This can
be well-understood as: more edge relationships between nodes provide greater probability for information propagation. More interestingly,
positive and negative information in layer 1 and 2 has the same evolution trend under differentω1 andω2. Taking the spreading process of negative
information as an example, the case where H1 individuals consider more local prevalence and H2 individuals consider more global prevalence
corresponds to the fastest spreading rate and the highest prevalence of negative information. On the contrary, the case where H1 individuals
considermore global prevalence andH2 individuals considermore local prevalence leads to the slowest spreading rate and the lowest prevalence of
negative information. This can be interpreted as: the negative information in layer 1 has a larger propagation tendency due to a tighter network
topology, while the negative information in layer 2 has a limited spreading prevalence due to sparse network connections.H1 individuals still have a
strong tendency to become IB1 status if they consider more local prevalence, but their tendency to become IB1 status is weakened by the lower IB2
density if they consider more global prevalence. Similarly, if H2 individuals consider more local prevalence, their tendency to transform into IB2
status will be reduced because the lower IB2 density in their resident layer. But if H2 individuals consider more global prevalence, they are more
willing to become IB2 status under the influence of a larger I

B
1 . In addition, when ω1 and ω2 are assigned the same settings, the larger ω1 and ω2 are,

the more IB1 and IB2 will be. This is because a larger ω1 greatly promotes the transition from H1 to IB1 . Although H2 individuals takes more
consideration of the prevalence in their resident layer, a larger IB1 can still significantly improve the transition probability from H2 to IB2 . On the
contrary, a smallerω1 means that the propagation of IB1 is limited by the smaller IB2 , and the probability ofH1 becoming IB1 is significantly reduced,
thus weakening the influence on H2. The conclusion of positive information can refer to the above analysis of negative information.

To assess the performance of the proposed control mechanism, we introduce the following five control strategies, including our optimal
control and other four baselines.

• No control: The system evolves naturally without implementing any control, namely, v1(t) = 0, v2(t) = 0;
• Constant control 1: The controls are time invariant, namely, v1(t) = 0.15, v2(t) = 0.15;
• Constant control 2: The controls are time invariant, namely, v1(t) = 0.25, v2(t) = 0.25;
• Heuristic control: The controls are referred as feedback mechanism based on IB1 , I

B
2 , H1 and H2 time-varying state density, namely,

v1(t) � α(IB1(t) + IB2(t))/2,

FIGURE 7
The infection states IA1 , I

B
1 , I

A
2 , I

B
2 under five different control strategies. (A) time v.s. IA1 (t); (B) time v.s. IB1 (t); (C) time v.s. IA2(t); (D) time v.s. IB2(t).

Parameter settings are the same as that in Figure 6.
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v2(t) � α(H1(t) +H2(t))/2, α = 0.8;
• Optimal control: The controls follow Eqs 4.11—4.21.

Figure 6 illustrates the comparative results of cumulative costs under five strategies. As can be observed from Figure 6A, both the optimal
and heuristic controls achieve the lower total cost in the control interval, while the total costs with no control and two constant controls are
relatively high. Under no control strategy, even without the introduction of control cost, the corresponding infection cost will be very high
because the current information prevalence is the largest. For the two constant controls, they merely focus on the control performance
without any cost constraints. Therefore, although constant controls have significant suppression effect on the diffusion of negative
information, their larger control intensity leads to the higher control costs. The results in Figures 6B, C also confirm these explanations. As the
heuristic control strategy is a feedback mechanism to the time-varying infection prevalence, it can still inhibit the prevalence of negative
information to a certain extent, but the control performance is worse than constant controls and optimal control. Another interesting
phenomenon is that although our optimal control strategy can significantly inhibit the spread of negative information, the control intensity of
the two heterogeneous costs is quite different. From Figures 6C,D, the intervention effect on the spreaders of negative information is
significantly stronger than that on the hesitant individuals, which may be because hesitate status has no infectivity and does not significantly
promote the spread of negative information. This also indicates that in order to achieve the ideal control performance, decision-makers
should attach more importance on the direct restrictions towards the sources of negative information, instead of indirect control with little
benefits towards hesitate individuals.

Figure 7 presents the time-varying trend comparison of positive/negative information prevalence IA1 (t), IB1(t), IA2 (t), IB2(t) under five
control strategies. We can investigate that the evolution trends of positive/negative information in two different layers are almost consistent,
but the information prevalence in layer 1 is larger than that in layer 2. Optimal, constant and heuristic controls can significantly reduce the
real-time infection density of negative information and increase the density of positive information. Meanwhile, these controls also accelerate
the spreading process to reach a steady state. In the initial propagation stage, our optimal control strategies play the most significant role in
promoting the positive information propagation while suppressing the negative information propagation. And this control advantage will
gradually weaken over time, because our controls will decline to 0 when approaching the control time terminal. Two constant control
strategies have strong inhibition effects on negative information due that they always maintain high control intensity without cost constraint.
Heuristic control is limited by the time-dependent density of negative information spreaders and hesitate individuals, and its control intensity
is low, which makes its inhibition effect on negative information relatively poor.

6 Conclusion

In this paper, we have investigated the propagation dynamics of competitive information onmulti-layer interconnected networks. On the
one hand, we explored the correlation between information propagation and multi-layer network topology. On the other hand, we
introduced individual adaptive behavior towards information propagation, i.e., the tendency of an infected individual to become a spreader of
positive or negative information depends on the weighted consideration of local and global information prevalence. Under such propagation
mechanism, the basic reproduction number R0 was theoretically calculated via next-generation matrix method. Based on the critical
condition of R0, the asymptotic stability of information-free and information-endemic equilibria was proven. That is, if R0 < 1, the
information-free equilibrium is globally stable, and if R0 > 1, the information-endemic equilibrium is globally stable. Furthermore, we also
designed two heterogeneous controls, which aims to maximize the spread of positive information and suppress the prevalence of negative
information: 1) one is direct control mode, which persuades the spreaders of negative information to transform into the spreaders of positive
information; 2) the other is indirect control mode, which guides hesitate individuals to become the spreaders of positive information. Then
considering the cost constraints of the implementation of control strategies in reality, we developed an optimal control problem to solve the
trade-off between the spreading prevalence of negative information and the control cost. Correspondingly, we provided the theoretical proof
of the existence, analytical formulation and uniqueness of the optimal solution. Finally, the theoretical results of stability analysis and the
performance of the optimal control were verified and discussed through numerical simulation. Extensive simulation experiments show that:
1) The different combinations of spreading parameters λ1, λ2, θ1, θ2, ω1, ω2, δ, μ, ξ not only affect the dynamic evolution process of
information propagation, but also significant change the basic reproduction number and steady-state information prevalence. Driven by
various spreading parameters, the steady-state behavior of our dynamic system may exhibit continuous or discontinuous phase transitions,
which can serve as a theoretical guidance to regulate the steady-state system behavior via tuning spreading parameters. 2) Our optimal control
strategy has achieved remarkable performance in both suppressing the spread of negative information and reducing total cost. Meanwhile,
under the framework of optimal control, the direct control towards negative spreaders is significantly more dominant than the indirect
control towards hesitant individuals. This theoretical result inspires decision-makers to attach more importance on the spreaders of negative
information rather than hesitant individuals when conducting public opinion control in practice.

We provide two possible directions in the future: 1) our model assumes that the spreading parameters and the inter-layer average degree
are time-invariant. However, in real life, information propagation is a rather complicated process associated with numerous social and
cognitive psychology factors. Therefore, our model will be improved if the spreading parameters and topology settings are described as time-
dependent variables driven by more social and psychological factors; 2) Our current control strategies are continuous within the specific time
interval, however, in practical scenario, decision-makers can only intervene in the spreading processes at discrete time due to cost constraints.
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Therefore, we can introduce discrete controls to formulate the optimization problem, and discuss the optimal intensity and interval of these
controls.
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