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Identifying and quantifying the drivers of runoff (R) variability is fundamental to our
understanding of the hydrologic cycle and necessary for decision makers to
manage water resources. Climate variables and vegetation are the main factors
influencing the R. However, the effects of climate and vegetation changes on R are
still poorly understood, especially in arid regions with limited water resources. This
study quantifies the contribution of precipitation (PRE), potential
evapotranspiration (ET0), and Normalized Difference Vegetation Index (NDVI)
to R in Lake Issyk-Kul Basin (LIKB) dryland Central Asia by using the Budyko
model. The results showed that R, PRE, and ET0 decreased from 2000 to 2020,
while theNDVI and underlying parameter (ω) showed a slightly increasing trend. By
using the Mann-Kendall (M-K) statistical approach, divided the R series into a
baseline period (2000–2010) and a change period (2011–2020) based on the
breakthrough point (2011). In the baseline period, R showed a decreasing trend,
while in the change period, R showed an increasing trend of 1.8 mm/yr. The
sensitivity analysis shows that a 1 mm increase in PRE results in a 0.48 mm increase
in R (sensitivity coefficient to R is 0.48). Conversely, a 1 mm increase in ET0
(sensitivity coefficient to R of −0.03) and a 1 unit increase in NDVI (sensitivity
coefficient to R of −343.31) lead to R decreasing by 0.03 and 343.31 mm,
respectively. The relative contributions of PRE, ET0 and NDVI were
33.98%, −3.17% and 3.67%, respectively, suggesting that changes in PRE and
NDVI contributed to the decrease in R while the opposite for ET0. PRE
dominated the decrease in R, which decreased by 26.58 mm, leading to a
decrease in R of 12.76 mm. A decrease of 65.33 mm in ET0 and an increase of
0.003 in NDVI resulted in an increase and decrease of 1.96 and 1.18 mm in R,
respectively. This study enhances the understanding of the response of the water
cycle to climate and vegetation changes in arid regions and can provide
theoretical support for water resource management and ecological restoration.
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1 Introduction

Runoff (R) is an essential component of the water cycle and
critical in understanding the water and energy balance between
the atmosphere and the surface (Sorg et al., 2012; Jiang et al.,
2015). R variability is related to the region’s ecological
environment and water security and is an essential indicator of
sustainable regional development. Climate factors such as
precipitation (PRE) and potential evapotranspiration (ET0) are
the main factors influencing R changes (Wang et al., 2019; Gan
et al., 2021). Moreover, vegetation, as a crucial regulator and
component of the watershed ecosystem, affects water infiltration,
retention, and evaporation during PRE (Piao et al., 2007; Zhang
et al., 2016; Luo et al., 2020a), changing the R of the watershed.
Quantifying the effects of climate variables and vegetation
changes on R helps to clarify the climate-vegetation-hydrology
interactions and facilitates regional water resources planning and
management.

Previous studies have used statistical methods (Xu, 2011; Xu X.
Y. et al., 2013), hydrological models (Huang et al., 2016; Veldkamp
et al., 2018), and conceptual models of water-energy balance
(Budyko, 1974; Yang H. et al., 2008; Wang and Tang, 2014) to
generalize the variation of R. Statistical methods (such as trend
analysis or correlation analysis) are simple to operate. Still, it is
difficult to explain the physical process of R changes (Wu et al., 2017;
Ni et al., 2022). Process-based hydrological modeling is an effective
way to understand the different variables and their interactions
through physical mechanisms. However, the results’ reliability has
not been fully demonstrated due to model structure, data
requirements, calibration, and validation (Nash and Gleick, 1991;
Johnston and Smakhtin, 2014; Song et al., 2015). The conceptual
approach refers mainly to the Budyko model (Budyko, 1974). The
Budyko model is simple and concise, considering water and energy
constraints in long-term hydrological processes (Yang H. B. et al.,
2008; Sposito, 2017). Using the Budyko model, it is possible to derive
the relative contributions of climate and human activities to changes
and trends in the R of a catchment. Recently, the Budyko model has
been widely used to quantify and disentangle the impacts of climate
change and human activities on R in different regions (Shen et al.,
2017; Li et al., 2021b; Lv et al., 2021). Hu Y. A. et al. (2021) found that
the Budyko model can quantify the impact of climate and human
activities on R in the Amu Darya basin in Central Asia, and that the
expansion of cropland is the main reason for the decrease in R. Li Z.
L. et al. (2020)found that the Budyko model is more flexible than
hydrological models in revealing runoff changes in the upper part of
the Heihe River Basin because the Budyko model uses less data.
However, previous studies have focused mainly on the effects of
climate change and human activities on R and less on quantifying
the relationship between vegetation changes and R. Vegetation, as
one of the components of the subsurface, can affect R by trapping
PRE and regulating regional evapotranspiration (Luo et al., 2020b).
Especially, in ecologically fragile arid regions, the relationship
between vegetation and the water cycle is even stronger because
vegetation growth is mainly limited by water resources. In addition,
in the context of climate change, the water cycle and vegetation
growth in arid regions are more sensitive to climate change (Chen
et al., 2015; Hu et al., 2021c), and the relative impacts of climate and
vegetation on runoff are not yet clear. Therefore, it is important to

quantify the impact of climate and vegetation changes on R in data-
scarce arid regions by using the Budyko model.

As one of the most typical arid regions, social development and
ecosystem stability in Central Asia are constrained by water
resources (Xu C. C. et al., 2013; Bai et al., 2019). However, the
spatiotemporal patterns of water resources in Central Asia have
changed significantly in recent decades due to climate change and
human activities (Luo et al., 2019; Duan et al., 2020; Alifujiang
et al., 2021; Hu Z. et al., 2021). There is also a worrying crisis in the
Aral Sea due to irrational water withdrawal for irrigation
(Khamzina et al., 2008). In addition, changes in R have
exacerbated water disputes, causing friction between countries
and affecting regional stability and national security (Wang X.
et al., 2021; Shi et al., 2021). The Lake Issyk-Kul basin (LIKB) is an
inland lake basin with the largest alpine lake in Central Asia. LIKB
is critical in adjusting regional climate and maintaining the balance
of regional ecosystems (Yuan et al., 2019; Alifujiang et al., 2021).
However, the water cycle of the LIKB has become imbalanced in
recent decades, as evidenced directly by the overall decreasing
trend of Issyk-Kul water level (Alifujiang et al., 2017b). For
attributing changes in the LIKB water cycle, most previous
studies have focused on changes in lake surface area and less
on the dynamics of R in the basin. In particularly, there is a lack of
quantification of the relationship between R and changes in climate
and vegetation. In addition, most of the studies focused on the
period before 2012 and lacked monitoring of recent changes of R in
the LIKB.

Based on the above considerations, this study uses the Budyko
model to simulate the surface R of the LIKB from 2000 to 2020. It
uses the Moderate Resolution Imaging Spectroradiometer
(MODIS) Normalized Difference Vegetation Index (NDVI) data
to characterize the changes in vegetation. The main objectives of
this study are 1) to reveal R’s spatial and temporal characteristics in
the LIKB over the last 20 years; 2) to investigate spatial and
temporal changes in climate variables and vegetation of the
LIKB; and 3) to quantify the relative impacts of climatic factors
and vegetation changes on R. The study may provide some
reference for water cycle and ecological monitoring in inland
lake basins, especially in arid areas, in the context of
environmental change.

2 Materials and methods

2.1 Study area

Lake Issyk-Kul Basin is in Kyrgyzstan and is the largest alpine-
enclosed inland lake in Central Asia (Figure 1). LIKB has a
continental climate with a warm and dry environment. The
average temperature is −6°C in January and 15°C in July (Yuan
et al., 2019). The average annual PRE is 200–300 mm, increasing
gradually from west to east (Alifujiang et al., 2021). The
predominant soil type in LIKB is sandy, with a content of up to
63%, and a lower content of silt and clay (Sanchez et al., 2009). The
main vegetation types in the basin are grassland, cropland, and
forest (Figure 1). Grassland is the largest vegetation type in the LIKB
(7581.34 km2), followed by cropland (2299.88 km2), mainly
distributed in the northeast of the LIKB, and forest area is
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smaller (1377.62 km2), mainly distributed in mountainous areas.
Among the mountain lakes, Lake Issyk-Kul ranks first in the world
in terms of depth and volume of water. However, the ecological
balance of the LIKB has been disturbed over the past decades. The
most direct manifestation is the rapid change in climate and the
consequent change in vegetation greening (Jiang et al., 2017). In this
case, changes in climate and vegetation can lead to alterations in
surface R from the LIKB. R may affect the water cycle and water
allocation within the basin. However, R’s spatial and temporal
characteristics in the LIKB and the relationship with climatic
factors and vegetation changes are not clear. Therefore, it is
necessary to quantify the spatial and temporal variation of
climatic factors and vegetation changes on R impact, which can
provide a reference for the rational use of water resources in the
basin.

2.2 Dataset

2.2.1 Meteorological data
The meteorological data used in this study included monthly

precipitation, atmospheric pressure, wind speed and direction,
average temperature, sunshine duration, relative humidity, and
maximum and minimum temperatures for the growing seasons
2000–2020. The maximum and minimum temperatures with a
spatial resolution of 0.5° were obtained from Climate Research
Unit (CRU 4.06) dataset, and the other meteorological data were
obtained from European Reanalysis-Interim v5 (ERA5) with a
spatial resolution of 0.1° (Hersbach et al., 2020). Potential
evapotranspiration (ET0) was estimated using the Penman-
Monteith equation recommended by the Food and Agriculture
Organization (FAO) (Allen et al., 1998). Before calculating ET0,

all meteorological variables were resampled to a consistent spatial
resolution (0.1°× 0.1°) by bilinear interpolation.

2.2.2 Ancillary data
Land use cover change (LUCC) data is obtained from Resource

Environment Data Cloud (https://www.resdc.cn/) with a resolution
of 1 km. The data is obtained through visual interpretation of
Landsat TM and OLI images. The classification accuracy reaches
94.3% (Liu et al., 2014). The land use classification includes
cropland, water, forest, grassland, urban areas, and bare land.
This study reclassified urban areas and bare land as others
(Figure 1). Observations from 2000 to 2012 at the Tossor
hydrological station (Alifujiang et al., 2017a) were used to
validate the R simulated by the Budyko model.

This study used the MOD13A1 NDVI at 500 m spatial
resolution to characterize the dynamics of vegetation cover in
LIKB during the growing season 2000–2020. Actual
evapotranspiration (ET) data were obtained from Mod16A2 at a
spatial resolution of 500 m (https://lpdaac.usgs.gov/data/). The
LUCC and NDVI data were resampled to a spatial resolution of
0.1° by majority and bilinear interpolation, respectively.

2.3 Methods

2.3.1 Linear trend analysis and breakpoint testing
This study used linear regression analysis to calculate trends in

each variable to detect changes in hydrology, meteorological
variables, and vegetation (Kawabata et al., 2001). Then, using the
Pearson correlation method, the correlation coefficients were
calculated, and when the significance level of the correlation
coefficients was at 95% level (Yu et al., 2022b), indicating a close

FIGURE 1
Location and Land cover maps of the Lake Issyk-Kul Basin (LIKB). The land cover data is obtained from the website https://www.resdc.cn/.
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relationship between the two variables. The slope was calculated
using the following equation:

Slope �
n∑n
i�1
iXi − ∑n

i�1
i∑n
i�1
Xi

n∑n
i�1
i2 − ∑n

i�1
i( )2 (1)

where n denotes the cumulative years in the study period, i denotes
the ith year, Xi denotes the variable’s value in an ith year.

The Mann-Kendall (M-K) non-parametric statistical test can
exclude outliers from confounding the results (Mann, 1945; Kendall,
1948) and has been widely used to identify breakpoints in basin
hydrological variables (Xu et al., 2014a; Li et al., 2017). In this study,
the M-K test was used to test for breakpoints in R.

UF � Sk − E Sk( )�������
Var Sk( )√ k � 1, 2, 3, ..., n (2)

E Sk( ) � k k − 1( )
4

(3)

Var Sk( ) � k k − 1( ) 2k + 5( )
72

(4)

Firstly, UF follows a standard normal distribution and is the
result of a positive time series statistic. As for UB, it is the result of
the time series in inverse order. By analyzing the statistical series
UF and UB, the time point of the mutation can be further
analyzed. If there is an intersection of the UF and UB curves
and the intersection is between the two critical value lines, then
the moment corresponding to the intersection is the mutation
point.

2.3.2 Sensitivity analysis
Fu (1981) derived different forms of the Budyko model based on

the physical processes of basin hydrometeorology, which have been
widely used to quantify the effects of vegetation and climate factors
on R global and basin scales (Luo et al., 2020a; Li et al., 2021a). The
expression of the Budyko model for each pixel is calculated as
follows:

ET
PRE

� 1 + ET0
PRE

− 1 + ET0
PRE

( )ω[ ]1/ω

(5)

where ET is actual evapotranspiration, PRE is precipitation, ET0 is
potential evapotranspiration, and ω is the model parameter, ω is
significantly affected by vegetation change and climate change
(Roderick and Farquhar, 2011). Based on the basin water balance
Eq. 6:

R � PRE − ET (6)
Then the R can be obtained by Eqs 5, 6:

R � PREω + ET0ω[ ]1/ω − ET0 (7)
Based on Eq. 7, the sensitivity coefficients (∂R/∂X) of R in the

basin to the climate factors (PRE, ET0) and the parameter ω were
obtained by applying the partial differential equation:

∂R
∂PRE

� 1 + ET0
PRE

( )ω[ ] 1/ω−1( )
(8)

∂R
∂ET0

� 1 + PRE
ET0

( )ω[ ] 1/ω−1( )
− 1 (9)

∂R
∂ω � A[ ]1/ω · − 1

ω2( ) · ln A( ) + 1
ω · 1

A
· lnPRE · PREω + lnET0 · ET0ω( )[ ]

A � PREω + ET0ω (10)

When the sensitivity coefficient is positive (negative), it means
that an increase in the variable has a promoting (reducing) effect on
R. Concerning previous studies (Luo et al., 2020a; Yang et al., 2021),
the sensitivity coefficient of R to NDVI (∂R/∂NDVI) is:

∂R
∂NDVI

� ∂R
∂ωSNDVI−ω

NDVI
ω (11)

where SNDVI−ω is the sensitivity of ω to changes in vegetation and
was determined as the slope of the best linear regression between ω
and NDVI (Figure 2).

2.3.3 Attribution analysis of R changes
The study period was divided into a base period and a change

period based on abrupt change analysis. The analysis of the
contribution to R change is based on the base and change
periods. ΔR, ΔPRE, ΔET0, Δω, and ΔNDVI are the mean
changes between the two periods. The change in R (ΔR) can be
attributed to the effects of climate and substratum. The impact of
changes in climate factors on R can be divided into PRE (ΔRPRE) and
ET0 (ΔRET0). The influence of the following parameter ω (ΔRω) R is
divided in this study into the result of vegetation (ΔRNDVI) and other
factors (ΔRothers). The following equation can quantify the
contribution of the above variables to R (Xu et al., 2014b; Ni
et al., 2022):

ΔRPRE � ∂R
∂PRE

· ΔPRE (12)

ΔRET0 � ∂R
∂ET0

· ΔET0 (13)

FIGURE 2
Relationship between NDVI and parameter ω.
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ΔRω � ∂R
∂ω · Δω (14)

ΔRNDVI � ∂R
∂NDVI

· ΔNDVI (15)
ΔRω � ΔRNDVI + ΔROthers

ΔR � ΔRPRE + ΔRET0 + ΔRNDVI + ΔROthers
(16)

Then the contribution of PRE (C_PRE), ET0 (C_ET0), and
NDVI (C_NDVI) to the change in R was calculated using the
following equation:

C PRE � ΔRPRE

ΔR (17)

C ET0 � ΔRET0

ΔR (18)

C NDVI � ΔRNDVI

ΔR (19)

3 Results

3.1 Temporal and spatial variability of PRE,
ET0, NDVI and ω

The spatial and temporal characteristics of PRE, ET0, NDVI,
and parameters ω for the period 2000–2020 are shown in Figure 3.
Spatial variability shows a decreasing trend (−3.8 mm/yr) in PRE in
the northern and southern parts of the LIKB (Figure 3B1). In terms
of interannual variability, PRE showed a decreasing trend over the
study period (Figure 3C1). Themean ET0 is higher than 1200 mm in
most parts of LIKB (Figure 3A2), except in the southeast. The spatial

distribution of mean NDVI shows higher values in the eastern part
of LIKB and lower values in the west (Figure 3A3). The mean value
of the ω based on Eq. 1 is >1 throughout LIKB, with the mean value
of ω > 2 in the northeast (Figure 3A4). Regarding dynamic
characteristics, the spatial patterns of the slopes of PRE and
ET0 are essentially consistent, showing a widespread downward
trend in LIKB (Figures 3B1, 2). The temporal variation of ET0 also

FIGURE 3
Spatial distribution of the mean value (A) and slope (B) of PRE, ET0, NDVI, and ω and the temporal variation (C) in LIKB. The statistically significant
regions (p < 0.05) are labeled with black spots. R2 is the coefficient of determination of the fitted function.

FIGURE 4
Scatter plot of R simulated by the Budykomodel compared to the
measured results. The black line is the 1:1 line, the red dashed line is the
fitted line, and R2 is the coefficient of determination of the fitted
function.
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shows a decreasing trend (Figure 3C2). NDVI shows a decreasing
trend in the southeast of LIKB and an increasing trend in the
southwest. Overall, NDVI shows a slightly increasing trend during
the study period. The parameter ω shows an increasing trend over
most LIKB, consistent with the temporal variation (Figure 3C4).

3.2 Temporal and spatial variability of R ω

Figure 4 shows the relationship between the R simulated based
on the Budykomodel and the observations obtained from the Tossor
station. The 1:1 line indicates that the simulated R is higher than the
observed R. The determination coefficient of the fitted line between
the simulated R and the observed data is 0.58 (R2 = 0.58), indicating
that the Budyko model captures the dynamic characteristics of R for
LIKB. The multi-year mean of R is higher in the northern and
southern parts of LIKB and lower in the western and eastern regions
(Figure 5A). The slope of R for most of the LIKB showed a
decreasing trend over the study period (Figure 5B). In this study,
the breakpoint of R was determined for the period 2000–2020 by the
M-K statistical method to determine the baseline and change period
for R changes. According to the results of the M-K test, there is an
abrupt change point in R in 2011 (Figure 5C). The R series is divided
by abrupt change points into a base period (2000–2010) and a
change period (2011–2020). There is a decreasing trend in R over the
period 2000–2020, and the same trend is observed for the baseline
period (−0.6 mm/yr). The change period shows an increasing trend
in R (1.8 mm/yr), and its mean value of R is lower than that of the
baseline period.

3.3 Sensitivity analysis of R changes

Figure 6 shows the spatial and temporal variation of the
sensitivity coefficients of R to PRE, ET0, and NDVI. The mean

values of the sensitivity coefficients of R to PRE, ET0, and NDVI
were 0.48, −0.03, and −343.31, respectively, over the study period.
Regarding spatial patterns, the sensitivity coefficients of R to PRE
were positive and had higher means in the northern and southern
parts of LIKB (0.75–1.00) and lower means in the eastern part of
LIKB. The sensitivity coefficients for R to ET0 and NDVI are
negative and show a consistent spatial pattern over the years:
higher in the southeast of LIKB (higher absolute values of
sensitivity coefficients) and lower in the northeast (lower
absolute values of sensitivity coefficients). Slopes of R
sensitivity coefficients for PRE indicate a decreasing trend in R
sensitivity to the PRE over most of the LIKB during the study
period, while in the northeast it shows an increasing trend
(decreasing sensitivity in absolute terms). Overall, the
sensitivity of R to ET0 tends to increase slightly (absolute
value of sensitivity increases) over the period 2000–2020. The
sensitivity of R to NDVI tends to increase in most of the LIKB
except for some areas. In the southeast, which indicates a
decreasing sensitivity (absolute value of sensitivity coefficient
decreases). The temporal variation in the sensitivity
coefficients of R to NDVI also indicates a slight decrease in
the sensitivity of R to changes in NDVI over the study period.

Figure 7 reveals the relationship between the sensitivity
coefficient of R and the drought index. The sensitivity coefficient
of R to PRE (Figure 7A) decreases with increasing drought,
indicating that R is more sensitive to changes in PRE under
wetter conditions. The absolute values of the sensitivity of R to
ET0 (Figure 7B) and NDVI (Figure 7C) show a decreasing trend
with increasing drought, indicating that ET0 and NDVI are more
sensitive to changes in PRE under wetter conditions.

To illustrate the practicability of the Budyko hydrothermal
coupling model in this study, we map ET/PRE and ET0/PRE at
the pixel-scale (Figure 8A) and the whole regional-scale (Figure 8B)
together into Budyko’s solution space, respectively. At both the pixel-
scale and the whole regional-scale, all points (ET0/PRE, ET/PRE) are

FIGURE 5
The Spatial distribution of mean values of R (A), slope (B) and breakpoint analysis (C), and temporal variation (D). UF is the result of a positive time
series statistic; UB is the result of the time series in inverse order. R2 is the coefficient of determination of the fitted function.
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shifted to the right along the Budyko curve, indicating gradually drier
climatic conditions in the basin. These points also show an upward
shift away from the curve in Figure 8A, which indicates an increase in
the actual evapotranspiration in the basin. For the same PRE and
ET0 conditions, the higher the value of the underlying parameter (ω),
the higher the evaporation rate (ET/PRE). This then leads to a lower R
according to the water balance equation.

3.4 Attribution analysis of R changes

Compared to the baseline period (2000–2010), the mean value
of R for the change period (2011–2020) is lower, which results in a
negative amount of R change in most of the LIKB (Figure 9A). The
area with a change in R of −100 mm to −60 mm occupied 30% of
the total area and was mainly distributed in the southern part of the
LIKB. PRE induced changes in R were negative throughout the
LIKB (Figure 9B), with the location of −10–0 mm occupying 49%
of the study area and the area of −20 to −10 mm occupying 27%,
mainly in the northern and southern parts of the LIKB. The change
in R induced by ET0 (Figure 9C) is positive over most LIKB, with
0–4 mm and 4–10 mm areas accounting for 74% and 15% of the
study area, respectively. Changes in R induced by NDVI were
negative (−30–0 mm) in 59% of the study area and were primarily
in the southwestern part of LIKB, while positive values (0–35 mm)
were mainly in the northeastern part of LIKB (Figure 9D). For the
whole LIKB (Table 1), PRE decreased by 26.58 mm, leading to a
decrease in R of 12.76 mm. A decrease of 65.33 mm in ET0 and an
increase of 0.003 in NDVI resulted in an increase and decrease of
1.96 and 1.18 mm in R, respectively. Regarding relative
contribution, the contribution of PRE was 33.98%, and the
relative contribution of ET0 and NDVI was −3.17% and 3.67%,
respectively.

Figure 10 shows the spatial distribution of the relative
contributions of PRE, ET0, and NDVI to R change. The
contribution of PRE to R change is positive in most LIKB, and
areas occupy the highest proportion of the study area (73%) with
0%–50% contribution. The contribution of ET0 to R change is
negative except for some areas in the northeast and the areas
with −10% to 0. The contribution of NDVI to R change is
negative in the eastern part of the LIKB (−35%–0), occupying
40% of the study area, and positive in the southern and northern
parts of the LIKB, where the 0%–30% area occupies 49% of the study
area. Figure 10D reflects the spatial distribution characteristics of the
factors that dominate the change in R. During the study period, PRE

FIGURE 6
The spatial distribution of the mean (A) and slope (B) of the sensitivity coefficients for R and the temporal variation (C). R2 is the coefficient of
determination of the fitted function.

FIGURE 7
Relationship between sensitivity coefficients of R and aridity
index (ET0/PRE).
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played a relatively dominant role in R change, with 69% of the areas
where PRE contributed more to R than ET0 and NDVI. The areas
where NDVI was dominant in R change accounted for 25% of the
study area, mainly in the eastern part of the LIKB, while ET0 played
the least dominant role.

Table 2 shows that the sensitivity of R to different climatic
factors is consistent across vegetation types. The sensitivity of R
to NDVI is the strongest among the three vegetation types,
followed by the sensitivity of R to PRE. Regarding
contribution, the highest contribution of PRE to R was shown
on different vegetation types. The contribution of ET0 to R was
lower than NDVI in grassland, while the opposite was observed
in forest and cropland.

4 Discussion

4.1 Impact of climate factors on R

Based on the Budyko model, this study simulates changes in R in
Central Asia, LIKB. R shows a slightly decreasing trend from 2000 to
2020 (Figure 5D). Previous studies have shown that R has shown a
decreasing trend in most regions of the globe over the last few
decades, especially in arid regions, where the decline in R has been
more pronounced (Ukkola et al., 2016; Li L. et al., 2020; Lian et al.,
2021). This is consistent with the findings of this study: R in Central
Asia, LIKB shows a slightly decreasing trend from 2000 to 2020
(Figure 5D). As one of the essential sources of R recharge, PRE

FIGURE 8
Mapping the ET/PRE and ET0/PRE into Budyko space (A) pixel-based average and (B) the regionally averaged time series.

FIGURE 9
Spatial distribution of total R change (ΔR) (A) and R change due to PRE (B), ET0 (C), and NDVI (D) for the period 2000–2020.

TABLE 1 PRE, ET0, and NDVI contribution to R change.

Change in R induced by variables (mm) Contribution to R change (%)

ΔRPRE ΔRET0 ΔRNDVI C_PRE C_ET0 C_NDVI

−12.76 1.96 −1.18 33.98 −3.17 3.67
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changes have been confirmed to influence regional R dynamics
significantly (Ma et al., 2008a; Ning et al., 2016; Lv et al., 2019). This
study found that both spatial patterns and temporal variability of R
were consistent with PRE in LIKB over the study period (Figure 3).
Multi-year means of PRE and R were higher in the southern and
northern parts of LIKB and the spatial and temporal trends were also
consistent (Figures 3A1, C1). This study suggests that the decline in
PRE has eventually contributed to the decrease in R from 2000 to
2020. Contribution analysis based on the Budyko model also
supports that PRE is the dominant factor in R change in LIKB
relative to ET0 and NDVI (Figure 10). The contribution of PRE to
the change in R is 33.98% higher than that of NDVI at 3.67% and
ET0 at −3.17% (Table 1). Recent statistical analyses based on site
data also indicate that the influence of climate factors on R in LIKB is
mainly through changes in PRE (Alifujiang et al., 2021).

ET0 is also one of the factors influencing regional R changes (Piao
et al., 2007; Song et al., 2015; Sujud and Jaafar, 2022). This study found
that the change in Rdue to ET0was positive inmost regions (Figure 9C)
because ET0 showed a decreasing trend during the study period
(Figure 3C2). ET0 is directly related to atmospheric moisture
demand, and a decrease in ET0 leads to a reduction in moisture
transport from the surface to the atmosphere, contributing to an
increase in R (Viola et al., 2017; Ning et al., 2019; Gbohoui et al.,
2021). The lower contribution of ET0 to the change in R during the
study period is due to the lower sensitivity coefficient of R to ET0 and
the lower amount of change in ET0 (Figure 6A2).Wang H. et al. (2021)
showed that the sensitivity of R to PRE and ET0 is lower in arid regions
with low precipitation, which means that R is less sensitive to climate

factors. These results are consistent with our study: the sensitivity
coefficients of R to PRE and ET0 are strongly correlated with the
aridity index, and the drier the conditions, the less sensitive R is to PRE
and ET0 (Figure 7). Such a phenomenon is also found in the Shiyang
River Basin and the Tarim River Basin in China (Ma et al., 2008b; Xue
et al., 2017). These basins and the LIKB basin located in arid and semi-
arid regions and have similar climatic characteristics: lower mean
annual PRE and higher ET, suggesting that the hydrothermal
conditions of the basins limit the influence of climatic factors on the R.

4.2 Impact of vegetation change on R

Vegetation links moisture transport between the land surface
and the atmosphere, whose effects on R have also received extensive
attention in recent years (Zhang et al., 2016; Ning et al., 2021). The
vegetation directly participates in the surface water cycle through its
growth. It can also indirectly influence R by altering the ratio of PRE
to surface and atmospheric moisture through interception and
transpiration of PRE (Luo et al., 2020a). It may be more
pronounced in arid regions (Gan et al., 2021). In arid regions,
where water is the most limiting factor for vegetation growth (Yu
et al., 2022a; Yu et al., 2023), vegetation will use the most available
water, leaving only a smaller amount to resupply R. Recent analyses
based on global scales have shown that the sensitivity of R to
vegetation is higher and even higher in drylands than the
sensitivity of R to climatic factors (Song et al., 2015; Luo et al.,
2020a). Our study also supports the finding that the sensitivity of R

FIGURE 10
The contribution of PRE (A), ET0 (B), and NDVI (C) to R change and the spatial distri-bution of the dominant factors of R change (D).

TABLE 2 Sensitivity coefficients and relative contribution for different vegetation types.

Sensitivity of different vegetation types Contribution of different vegetation types (%)

∂R/∂PRE ∂R/∂ET0 ∂R/∂NDVI C_PRE (%) C_ET0 (%) C_NDVI (%)

Grassland 0.49 −0.06 −441.79 23.14 −4.07 6.29

Forest 0.44 −0.06 −413.06 23.13 −8.01 3.31

Cropland 0.26 −0.04 −284.13 16.13 −3.43 −3.03

Frontiers in Earth Science frontiersin.org09

Feng et al. 10.3389/feart.2023.1251759

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1251759


to NDVI is higher than that of R to PRE and ET0 in the LIKB, an
inland river basin in the arid region (Figure 6A3). Although the
sensitivity of R to both NDVI and climatic factors decreases with
increasing dry conditions, R is still more sensitive to NDVI than to
climatic factors (Figure 7). In addition, vegetation growth accelerates
terrestrial water loss through denser, rougher canopies and deeper
root systems (Luo et al., 2020a). Our results suggest that a slight
increase in NDVI leads to a decrease in R in LIKB. Previous studies
have shown that the change of R is also regulated by vegetation
phenology: an advance in phenology can contribute to a deficit in
surface water resources and induce drought (Lian et al., 2020; Wang
et al., 2020). The relationship between vegetation growth and
regional water resources should be balanced. Unreasonable
vegetation growth (e.g., excessive afforestation) may extract too
much surface water, reducing R and threatening the security of
surface water resources (Cao et al., 2011; Zhang et al., 2018). In our
study, NDVI changes had a relatively small impact on LIKB surface
water resources. They contributed less to R changes than climatic
factors due to smaller changes in NDVI. However, NDVI variations
can lead to changes in the parameter ω and turn to changes in R. Luo
et al. (2020a) showed that parameter ω is also influenced by soil type
and topography and that these factors also affect vegetation
dynamics, which together contribute to R.

4.3 Uncertainties

This study quantifies the relative contribution of climatic factors
and vegetation to changes in R of LIKB. However, there are still some
limitations to the current research. Attribution through the Budyko
model assumes that the water storage changes in closed basins are
negligible annually. However, changes in water storage are related to
groundwater dynamics, especially soil moisture (SM). Neglecting
changes in SM may be one of the factors contributing to higher
modelling results (Figure 4). Based on ERA5 data, we found that SM
varied less in LIKB (Supplementary Figure S1), with Slope values
ranging from −0.5 to 0.5 mm/yr, indicating that SM changes have a
relatively small effect on water storage. Many factors influence
changes in basin R. Besides PRE, ET0, and vegetation dynamics,
human activities such as water project construction, irrigation, and
land use change can also impact regional R dynamics (Liang et al.,
2015; Gao et al., 2016; Ning et al., 2016). However, this study did not
analyze human activity and could not be quantified by the Budyko
model. Furthermore, LIKB is an alpine lake basin, and its R changes
are also influenced by the recharge of snow melt water (Alymkulova
et al., 2016; Zhang et al., 2022). In our study, the R obtained from the
water balance also does not consider the effect of snowmelt variability,
which may impact the R estimates. Moreover, limited by the difficulty
of obtaining observational data in the study area, we used remotely
sensed and reanalyzed data to reveal the relationship between changes
in R and driving factors. Although ET from remotely sensed MODIS
is consistent and highly correlated with the temporal dynamics
(Supplementary Figure S2) of the widely used Global Land
Evaporation Amsterdam Model (GLEAM) and TerraClimate
(TERR), flaws in the MODIS ET computational algorithms and
errors introduced by the sensors still exist. The errors in the above
datamay bring some uncertainties to the study results. In future work,
we will use higher resolution data to simulate R, and the above

uncertainties and factors affecting R will be incorporated into the
Budyko model to improve the understanding of the R variability of
LIKB. The hydrological models such as SWAT, VIC, and HEC can
mechanistically reveal the changes of R in the basin (Chen et al., 2019;
Bharat and Mishra, 2021; Zhang et al., 2021). In future studies, R is
evaluated in combination with hydrological models and observational
data to improve the understanding of R changes in LIKB.

5 Conclusion

Based on the Budyko model, this study reveals the influence of
climate factors and vegetation changes on the R of LIKB in Central
Asian inland lake basins from 2000 to 2020. This study finds that
PRE and ET0 show decreasing characteristics during the study
period, while NDVI, which characterizes vegetation greenness,
and the basin underlying parameter ω show a slightly increasing
trend. The Budyko model captures the dynamics of R in the LIKB
with a coefficient of determination of 0.58, and showed a decreasing
trend during the study period. This study to determine the baseline
and period of change in R, the breakpoint of R for the period
2000–2020 was identified as 2011 through the M-K statistical
method. The R series was divided into a baseline period
(2000–2010) and a change period (2011–2020) by mutation
point. R showed a decreasing trend in the baseline period and an
increasing trend in the change period (1.8 mm/yr).

The sensitivity coefficients of R to PRE, ET0, and NDVI show
mean values of 0.48, −0.03, and −343.31 for R to PRE, ET0, and
NDVI, respectively, throughout the study period. Regarding spatial
pattern, the sensitivity coefficient of R to PRE is positive throughout
LIKB. The sensitivity coefficients of R to ET0 and NDVI showed a
consistent spatial way: the absolute values of sensitivity coefficients
were higher in south-eastern LIKB and lower in northeastern LIKB.
The sensitivity of R to changes in PRE, ET0, and NDVI decreased
with increasing drought, indicating that R was more sensitive to
changes in PRE, ET0, and NDVI under wetter conditions.

Analysis of the contribution to R changes showed that most PRE
induced R changes were negative across LIKB, mainly in the
northern and southern parts of LIKB. ET0 induced R changes
were positive in most of LIKB, R induced modifications by
NDVI were negative in 59% of the study area (–30–0 mm). For
the LIKB as a whole, PRE decreased by 26.58 mm, leading to a
decrease in R of 12.76 mm. A decrease of 65.33 mm in ET0 and an
increase of 0.003 in NDVI resulted in an increase and decrease of
1.96 and 1.18 mm in R, respectively. Among all of them, the relative
contributions of PRE, ET0, and NDVI to R were 33.98%, −3.17%,
and 3.67%, respectively. PRE plays a relatively dominant role in R
change, with 69% of the areas where PRE contributes more to R than
ET0 and NDVI. NDVI plays a dominant role in R change in 25% of
the study area, mainly in the eastern part of LIKB, while ET0 plays
the least dominant role. Zheng et al., 2021.
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