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The enteric glia has been shown as a potential component of neuroimmune 
interactions that signal in the gut-brain axis during Parkinson’s disease (PD). 
Enteric glia are a peripheral glial type found in the enteric nervous system (ENS) 
that, associated with enteric neurons, command various gastrointestinal (GI) 
functions. They are a unique cell type, with distinct phenotypes and distribution 
in the gut layers, which establish relevant neuroimmune modulation and regulate 
neuronal function. Comprehension of enteric glial roles during prodromal 
and symptomatic phases of PD should be  a priority in neurogastroenterology 
research, as the reactive enteric glial profile, gastrointestinal dysfunction, and 
colonic inflammation have been verified during the prodromal phase of PD—a 
moment that may be interesting for interventions. In this review, we explore the 
mechanisms that should govern enteric glial signaling through the gut-brain axis 
to understand pathological events and verify the possible windows and pathways 
for therapeutic intervention. Enteric glia directly modulate several functional 
aspects of the intestine, such as motility, visceral sensory signaling, and immune 
polarization, key GI processes found deregulated in patients with PD. The search 
for glial biomarkers, the investigation of temporal–spatial events involving glial 
reactivity/signaling, and the proposal of enteric glia-based therapies are clearly 
demanded for innovative and intestine-related management of PD.
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1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder that affects multiple systems. An 
avenue of scientific and clinical evidence brought rise to the interplay between the central 
nervous system (CNS) and the gastrointestinal (GI) tract, revealing what we  know as the 
gut-brain axis. It is known that patients with PD present a range of GI pathological manifestations 
such as chronic constipation (affecting ~80% of patients with gastrointestinal symptoms), 
abdominal pain, and other signs of disorders of gut-brain interaction (DGBI) that can be present 
before any classic motor symptom (Travagli et al., 2020; Moudgal et al., 2021). Several groups 
have postulated theories for the pathogenesis of PD and, in an attempt to define a beginning, 
the truth is that today we have evidence to understand PD as a highly heterogeneous pathology 
that must involve different neuroinflammatory and neurodegenerative pathways 
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(Leclair-Visonneau et al., 2020; Rolli-Derkinderen et al., 2020). Even 
subtypes of PD (body-first or brain-first) based on clinical and post-
mortem evaluation have been proposed (Borghammer et al., 2022). In 
both ways, the gut-brain axis is recurrently described as an integral 
part of the PD, and a pathway that connects the different areas of the 
body where the disease manifests itself (Chen and Lin, 2022; Tan et al., 
2022). This axis is subject to enormous modulation given the diversity 
of signaling at the level of the GI tract and the enteric nervous system 
(ENS; Carabotti et al., 2015). In the last years, a complex interaction 
between epithelial, neural, immunological, and microbial components 
emerged as critical factors in the pathology of PD.

In the GI tract, enteric glia play multiple functions and are 
recognized for their crucial role in GI physiology (D’Antongiovanni 
et al., 2023). These specialized cells of the ENS maintain intestinal 
homeostasis through crosstalk with various enteric cell types such as 
neuronal, epithelial, immune, and endocrine cells. The perception and 
modulation of the gut environment by enteric glia is based on a 
distinct transcriptional signature among glial types, which, associated 
with its morphological and locational diversity, makes enteric glia a 
unique glial type (Rosenberg and Rao, 2021). These cells are directly 
related to pathological conditions, such as DGBI, acting on the 
physiopathology of gut inflammation, dysmotility, and abdominal 
pain processes – known features of PD (Seguella et al., 2019; Lucarini 
et al., 2021; Rosenberg and Rao, 2021; Seguella and Gulbransen, 2021). 
In addition, evidence suggests that enteric glia are sensitive to gut 
microbiota and then contribute to gut-brain communication via 
microbial signaling pathways (Seguella et al., 2023). Treatments with 
commensal microbiota in animal models of PD have been shown to 
improve conditions associated with PD pathology, so the 
understanding of its interactions and mechanisms is fundamental.

This review aims to demonstrate the potential roles of enteric glia 
in the gut-brain axis in PD. Here, we give special attention to enteric 
glia phenotypes associated with glial neuroimmune modulation and 
inflammation, how glial and/or microbial molecules can affect each 
other, impacting gut dynamics, and the role of enteric glia in enteric 
neurotransmission, dysmotility, and visceral hypersensitivity. All these 
aspects, at different stages of the disease, likely contribute to the 
development and/or progression of PD and significantly impact 
patient quality of life. We gathered clinical data and animal models of 
PD, using different approaches, which allowed us to discuss and 
propose classic and new ideas to treat PD based on glial signaling.

2. Neuroinflammation through the 
gut-brain axis in Parkinson’s disease: 
the role of enteric glia

PD is a neuroinflammatory disorder in which inflammation has 
a key role in the neurodegenerative response (Tansey et al., 2022). 
Considering this, the interaction between gut neural and immune 
cells may contribute to generating the peripheral inflammatory 
response. Additionally, a complex enteric neuro-glial network 
participates in immune response modulation (Schneider et al., 2022). 
Studies have highlighted the gut condition in PD, in both patients and 
experimental models, suggesting it is a target for disease intervention 
and a source of pathologic/inflammatory signs related to PD 
pathogenesis (Travagli et al., 2020). Accordingly, it is well known that 
inflammatory bowel disease (IBDs) patients are at risk for PD (Lee 

et al., 2021; Li et al., 2023). Breakdown of the intestinal epithelial 
barrier (IEB) and gut inflammation has been described during PD, 
along with the changes in the enteric neurochemical code and enteric 
glial reactivity (Clairembault et al., 2014, 2015; Corbille et al., 2016; 
Coletto et al., 2021; Thomasi et al., 2022). Therefore, regardless of 
whether PD originates bottom-up or top-down through the gut-brain 
axis, peripheral neuroinflammatory responses are known to 
be associated with the disorder. There is ongoing debate regarding the 
role of peripheral neuroinflammation in promoting or exacerbating 
PD pathology through the gut-brain axis. Some reports show that 
intestinal inflammation induces and exacerbates neuroinflammation 
and dopaminergic neurodegeneration in CNS with or without 
detectable Lewy pathology (Garrido-Gil et al., 2018; Kishimoto et al., 
2019; Lin et al., 2022). In this frame, the role of glial cells has been 
appreciated in the last decade and specifically enteric glia gained a 
starring role in the intestinal inflammatory scenario in PD as a key 
neuroimmune element.

Enteric glia is widely distributed throughout the GI tract, found 
in all layers, mucosal, submucosal/myenteric plexus, and muscular 
layers, and plays critical site-specific functions, essential for tissue 
physiology. Along with its original role of providing trophic supply to 
neurons, enteric glia is necessary for maintaining intestinal epithelium 
homeostasis, modulating intestinal motility, neurotransmission, and 
immune response (Gulbransen et al., 2012; McClain et al., 2014, 2015; 
Delvalle et al., 2018b; Grubisic et al., 2020; Ahmadzai et al., 2021; 
Seguella and Gulbransen, 2021). In PD, these functions are disrupted 
(Devos et  al., 2013; Clairembault et  al., 2014, 2015) and appear 
together with enteric glial reactivity, a hallmark of neuroinflammation. 
Evaluation of samples obtained by colonoscopy from patients with PD 
shows an association between the presence of reactive enteric gliosis, 
identified by the increase in glial markers glial fibrillar acidic protein 
(GFAP) and Sox10, together with the increase in proinflammatory 
cytokines such as IL-6, TNF-α, IFN-γ, IL-1β, and chemokines as 
CCL2 and CCL5 (Devos et al., 2013; Perez-Pardo et al., 2019). Such 
alterations contribute to impaired IEB integrity and increased 
permeability observed in individuals with PD (Forsyth et al., 2011; 
Perez-Pardo et al., 2019).

Animal models of PD have been very useful in demonstrating the 
participation of the gut-brain axis and postulating temporal–spatial 
characteristics and mechanisms. In other words, checking areas of the 
nervous system as well as layer-specific responses in the intestine and 
their possible interactions. Multiple groups have demonstrated that 
enteric glia is activated in the myenteric plexus in several types of 
animal models of PD, whether bottom-up or top-down models 
(Perez-Pardo et al., 2019; Dodiya et al., 2020; Pellegrini et al., 2020, 
2022; Palanisamy et al., 2022; Thomasi et al., 2022). The bottom-up (or 
body-first) hypothesis postulates the body periphery, mainly the ENS, 
as the first site of pathologic processes that would be spread out until 
CNS via inflammatory and anatomical pathways as it progresses. In 
contrast, the top-down theory (or brain-first) says the genesis of PD 
would start in some areas of the CNS and then reach the body 
periphery (Borghammer and Berge, 2019; Borghammer et al., 2022). 
Although there are no detailed descriptions of the pathway that 
reverberates pathological signals from one pathogenic site to the other, 
some have been postulated to be  happening through peripheral 
nerves, such as the vagus nerve (Anselmi et  al., 2017; Nanni and 
Travagli, 2020). Our group recently demonstrated that enteric glial 
reactivity occurs quickly and early in a top-down mouse model of PD 
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(Thomasi et  al., 2022). Within the colonic neuromuscular 
compartment, only 48 h after injury by 6-hydroxydopamine 
(6-OHDA), we observed a rise in GFAP content. This was followed by 
histological markers of inflammation, an increase in mucosal TNF-α, 
and changes to the tight junction protein occludin (Thomasi et al., 
2022). In addition, higher immunolabeling of GFAP in the mucosal 
layer was verified in the PD model 1 week after neurodegeneration 
induction (Thomasi et al., 2022). These findings highlight the early 
role of enteric glia in gut neuroinflammation induced by central 
neurodegeneration. This is in accordance with data in patients 
showing that colonic inflammation and glial pathologic recruitment 
are probably higher at the beginning of the disease course, so early 
events can be associated with GI (such as constipation) and CNS 
symptoms (like anosmia, sleep disturbances, mood disorders) 
development. In accordance, gut barrier sensitization, which is also an 
early pathologic event in PD (Pellegrini et al., 2022), is commonly 
verified in parallel to a higher permeability in the blood–brain barrier. 
This last one promotes microgliosis, damage to central neurons, and 
systemic inflammation set (Chen and Lin, 2022). Interestingly, GI and 
CNS symptoms such as constipation, depression, and sleep 
disturbances can appear years before advanced neurodegenerative 
processes in the CNS—which highlights the pre-motor phase. 
Low-grade inflammation is hypothesized as a current process that can 
underlie the prodromal phase of PD (Houser and Tansey, 2017; Rolli-
Derkinderen et al., 2020).

Another relevant enteric glia feature is their immunocompetence 
since it can respond to damage through the activation of Toll-like 
receptors (TLR) like TLR2 and TLR4 (Turco et al., 2014). These same 
receptors are altered in PD, whether in the CNS or ENS and likely 
contribute to the early intestinal pathology identified in PD (Gorecki 
et al., 2021; Zhang et al., 2023). Moreover, enteric glia express MHC 
class II molecules, enabling communication with cells of the innate 
and adaptive immune systems (Da Silveira et al., 2011; Turco et al., 
2014). Thus, enteric glia can detect signals present in the intestinal 
environment caused by the breakdown of the IEB. These signals can 
include microorganisms and microbial products, but also 
proinflammatory cytokines and neurotransmitters that bind to their 
receptors on enteric glia. In turn, enteric glia release proinflammatory 
cytokines, chemokines, and gliotransmitters like ATP, which 
contribute to the inflammatory response and neuronal damage (Chow 
and Gulbransen, 2017; Seguella and Gulbransen, 2021). Altogether, 
research about enteric glia during PD points to a clear relation with 
peripheral inflammation in PD, and this may favor the establishment 
of a general inflamed environment. Peripheric signaling likely reaches 
CNS through immune pathways and/or neuroglial signaling, and in 
both scenarios, enteric glia have quite a protagonism in the early phase 
of PD by their early reactive phenotype.

3. Enteric glia as a sensor of the gut 
microbiome

The gut-brain axis is considered an integral part of the PD 
pathophysiological processes, as demonstrated through several animal 
models and clinical correlations in patients (Blandini et  al., 2009; 
Pellegrini et al., 2016a,b; Morais et al., 2018; Perez-Pardo et al., 2018; 
Dodiya et al., 2020; Nanni and Travagli, 2020; Thomasi et al., 2022; 
Xing et al., 2023). In addition, the intestinal microbiota is an important 

modulator of gut-brain signaling. It presents itself in dysbiosis, that is, 
an imbalance due to the reduction of beneficial commensal bacteria 
and alteration of their microbial metabolites such as short-chain fatty 
acids (SCFA) and lipopolysaccharide (LPS; Huang et al., 2023; Zhang 
et al., 2023). Due to the leaky gut condition, the ENS is exposed to 
pathological stimuli from the microbiota which may contribute to 
synucleinopathy, an alteration in α-synuclein metabolism that 
generates intracellular aggregates named Lewy bodies (Fitzgerald 
et al., 2019). Lewy bodies have been described both in the mucosal 
lamina propria and submucosal plexus (Wakabayashi et al., 1988; 
Corbille et al., 2016). However, which signaling pathways and cellular 
interactions are under this pathogenesis still needs to be  better 
understood. In the last years, glia-microbe interactions have been 
addressed and defects in this signaling, as supposed to occur during 
PD, may drive ENS and CNS neuroimmune plasticity impacting 
neural function.

The mucosal enteric glia are in contact with multiple cell types 
such as immune-effector cells, enteroendocrine cells, blood vessels, 
and epithelium, thus performing intercellular communication in an 
integrative way that is critical for mucosal homeostasis (Bohorquez 
et al., 2014). This glial population is strongly influenced by microbiota, 
as mice treated with antibiotics and germ-free mice show mucosal glia 
depletion (Kabouridis et al., 2015). To understand the mechanism of 
this interaction, transgenic mice for fate-mapping show a new pool of 
enteric glia is recruited to the mucosal plexus from the myenteric 
ganglia, so the global enteric glia dynamic is sensitive to microbiota 
signaling (Kabouridis et al., 2015). This glial replenishment dynamic 
has been tested using human mucosal enteric glial cells xenografted 
in immune-compromised mice but it did not show dependence on the 
microbiome when tested through antibiotic treatment (Inlender et al., 
2021). However, this has not been tested during inflammation or PD 
models, which provoke enteric glia reactivity and epithelial 
modifications in the gut barrier, as previously mentioned. The glial 
network of the mucosa closely regulates the intestinal epithelium, 
mainly in pathological conditions (Cheadle et  al., 2014; Langness 
et al., 2017; Grubišić et al., 2022; Prochera and Rao, 2023), and in vitro 
studies demonstrate the glioprotective capacity on the intestinal 
epithelium via glia-derived s-nitrosoglutathione against acute 
exposure to bacterial pathogens (Flamant et  al., 2011). 
S-nitrosoglutathione is a modulator of barrier function, mainly during 
inflammation, reinforcing tight junction function and integrity 
(Savidge et  al., 2007; Flamant et  al., 2011). Therefore, glia-driven 
effects due to microbial signaling may form a loop in the 
pro-inflammatory environment described in the mucosal layer of PD 
patients that accounts for intestinal epithelial plasticity.

The ability of the microbiota to drive glial plasticity adds 
complexity to Parkinsonian gut processes since profound 
modifications in the intestinal biofilm may be based on neuroimmune 
interactions established in the gut. Several microbial products, such as 
LPS and SCFA, could be candidates to promote signaling pathways 
associated with inflammation and cell metabolism, and those have 
been altered in patients with PD (Keshavarzian et al., 2015; He et al., 
2020; Metzdorf and Tönges, 2021). When subjected to LPS treatment, 
a well-known damage-associated molecular pattern, enteric glia exert 
similar antigen-presenting cell features as MHC-II, CD86, glial 
derived neurotrophic factor (GDNF), TLR-2, and TNF-α expression 
(Yang H. et al., 2022). As mentioned, TLR signaling by activation of 
enteric glia can be  a critical mechanism to integrate microbial 
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signaling into ENS function (Gorecki et al., 2021). Interestingly, the 
glial protein S100B also comprises a signaling pathway that integrates 
glial TLR activity leading to NO release, an inhibitory neurotransmitter 
relevant to neuroglial interaction, motility, and inflammatory 
processes (Turco et al., 2014; Thomasi and Gulbransen, 2023). Seguella 
and colleagues argue that this glial signaling could be  a defense 
response against bacterial bioproducts and pathogenic bacteria based 
on the acquisition of a glial pro-inflammatory profile that would 
collaborate for ENS dysfunction, inflammation, and dysbiotic 
reinforcement (Seguella et  al., 2023). Both S100B and NO are 
molecules implicated in central and enteric neuroplasticity during PD 
(Colucci et al., 2012; Pellegrini et al., 2016a; Sampath et al., 2019; 
Angelopoulou et al., 2021; Kim et al., 2023). This TLR-S100B pathway 
has enormous modulatory potential for enteric function, mainly in the 
neuroimmune interactions established by enteric glia.

Bidirectionally, enteric glia is associated with microbial diversity 
based on structural domains of S100B (EF-hand calcium-binding and 
S100) and its protein domains. Interestingly, normal S100B condition 
and inhibition of its active or binding domain produce opposing 
effects on microbial diversity (Romano et al., 2021; Spica et al., 2023). 
Surprisingly, this work shows that distinct concentrations of S100B are 
associated with different microbial clusters. An in silico approach 
applying bioinformatics also indicated that the microbiota of healthy 
individuals and patients with IBDs might interact differentially with 
the multiple domains of S100B (Orsini et  al., 2020). Then, they 
propose S100B as a candidate signaling molecule in the gut able to 
change microbial dynamics. Evidence from a unique cohort of PD 
patients shows that while mRNA of GFAP and Sox10 are upregulated 
in the colon, the levels of S100B are not modified (Devos et al., 2013). 
However, the gliotic profile that enteric glia assume during colonic 
inflammation in PD may also contribute to distinct protein–protein 
interactions and downstream signaling. S100B polymorphisms and 
their contributions to the pathogenesis of PD are widely described and 
tested at the CNS level (Angelopoulou et al., 2021) and, given the 
gut-brain axis, theories of genesis and propagation of the disease and 
glial signaling in the axis (Esposito et al., 2017; Borghammer and 
Berge, 2019; Leclair-Visonneau et al., 2020; Horsager et al., 2022), it is 
necessary to deepen the evaluation of enteric S100B.

Among the changes in the microbiome during PD, the variation 
of the Bifidobacterium, Lactobacillus, and Akkermansia genera stands 
out—being those recognized genera by the SCFA production 
(Romano et al., 2021). Studies with the reintroduction of SCFAs as 
butyrate or propionate in different animal models of PD demonstrate 
significant improvements in motor and cognitive deficits and IEB 
permeability (Kakoty et al., 2021; Liu et al., 2022). Bifidobacterium 
genus especially appears to impose an immune regulation on enteric 
glia that is variable among bacteria of this genus (Yang Y. et al., 2022). 
Both act on enteric glia to constrain or promote inflammation through 
receptor and neurotrophic factor modulation (Yang et al., 2020; Yang 
H. et al., 2022). Meanwhile, enteric glial responsiveness to SCFA may 
come from transporters and receptors activity and it seems that 
butyrate relies on glial internalization to activate the phosphokinase 
C (PKC) pathway (Defries and Beltran, 2020). Glial PKC in the gut is 
related to the capacitive feature of enteric glia that in turn evokes glial 
network and neuroglial communication (Sarosi et  al., 1998). 
Bifidobacterium has also been correlated to improving the IEB by tight 
junctions modulation—a probiotic-based therapy proposed for PD 

patients (Tan et  al., 2021; Di Vito et  al., 2022). Interestingly, 
Bifidobacterium animalis can regulate GFAP and GDNF, glial proteins 
associated with the state of the IEB (Liu et al., 2022). In parallel, when 
treated with distinct Bifidobacterium species, the MPTP animal model 
of PD improved the CNS oxidative stress condition, protected the gut 
barrier, and suppressed the glial hyperactivation state (Li et al., 2022). 
This data demonstrates a clear connection between glial “immune” 
status with outcomes on microbiota and glial network that can 
ameliorate pro-inflammatory aspects of the gut-brain axis in PD.

4. The potential contribution of glial 
signaling in constipation and 
abdominal pain during Parkinson’s 
disease

Non-motor symptoms of PD include other dysfunctions that are 
credited to the primary condition of constipation, such as abdominal 
pain (Skjærbæk et  al., 2021). Constipation is primarily a 
neuromuscular dysfunction involving impaired enteric neural 
signaling leading to slowing and/or incoordination of bowel 
movements (Metta et  al., 2021). This dysfunctional pattern is 
described as a moderate sensitivity sign for future PD development 
(Mahlknecht et  al., 2015). 28%–80% of PD patients experience 
constipation at some point in the pathological course (Klingelhoefer 
and Reichmann, 2017; Carrasco et al., 2018). Inflammation causes 
dysfunctions of the GI tract that, in the context of PD, have been 
associated with the genesis of constipation and pain.

In the last decade, several works in the field of 
Neurogastroenterology have demonstrated enteric glia as a modulator 
cell of enteric neurotransmission, subject to neurotransmitter receptor 
signaling which generates functional effects on enteric neural reflexes 
(Seguella and Gulbransen, 2021; Thomasi and Gulbransen, 2023). The 
myenteric glia, present inside the myenteric plexus, has a privileged 
location for interaction with enteric neurons (Gabella, 2022). They 
establish bidirectional communication based on the release of 
neuroactive substances, neurotransmitters, hemichannels signaling, 
and neuroimmune mediators which may strongly account for enteric 
neuroplasticity (Thomasi and Gulbransen, 2023). Enteric glia can 
be  activated by cholinergic signaling, the main excitatory control 
pathway of the ENS, to release neurotransmitters such as GABA and 
ATP, in addition to neuromodulators such as prostaglandins, 
cytokines, and trophic factors (Esposito et al., 2017; Fried et al., 2017; 
Delvalle et al., 2018b). Intercellular glial signaling via Connexin-43 
(Cx43) is described as a mediator of neural reflexes and its absence in 
animal models knockouts impact colonic migrating motor complexes 
(McClain et  al., 2014; Grubisic and Parpura, 2017). Furthermore, 
enteric glial activation modulates and activates enteric neural reflexes 
(McClain et al., 2015; Ahmadzai et al., 2021). The description of glial 
reactivity in the intestine of patients with PD and the early 
inflammatory scenario reinforces the idea that impaired glial cell 
activity may be associated with dysmotility manifested as constipation 
in PD. Abnormalities in glial signaling, decrease or loss of these cells, 
or even a pro-inflammatory polarization are considered possible 
mechanisms of gliopathy associated with constipation (Bassotti et al., 
2011; Holland et al., 2021). Considering the progression of PD, GI 
dysfunction mediated and/or modulated by the reactive profile of 
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enteric glia, probably reinforces peripheral pathological processes, 
such as dysbiosis and neuroinflammation itself.

The pain component is extremely relevant in any pathology 
because it impairs the patient’s quality of life and, in PD, also because 
it increases the frequency of other non-motor symptoms, such as 
depression and sleep disorders (Roversi et al., 2021). Visceral pain is 
triggered by the activation of nociceptors in the internal organs. 
Nociceptors are vast ion-channel receptor class specialists in the 
detection of harmful stimuli. It can be modulated by autonomic and 
central neural pathways, by immune mediators, and gains its 
perception in the CNS (Roversi et al., 2021). Among them, the TRPV 
channel family is commonly described in multiple GI disorders with 
a prevalence of the multisensory receptor TRPV1 (Du et al., 2019). 
This receptor is broadly expressed in the neural structures of the ENS 
as the mucosal layer, myenteric plexus, and mainly in the submucosal 
plexus (Akbar et al., 2010). The current notion about TRPV1 in the 
gut wall describes its expression mainly as from extrinsic innervation 
terminals and by intrinsic sensory neurons directly connecting ENS 
and CNS in pain pathways (Matsumoto et al., 2009; Delvalle et al., 
2018a). Data from patients with PD describe abdominal pain related 
to GI dysfunction. In accordance with primary constipation, pain 
commonly precedes PD motor symptoms over many years, and it is 
not necessarily related to the severity of motor symptoms (Ha and 
Jankovic, 2012). Likely, disturbed GI immunity at the beginning of PD 
pathology is another contributor to visceral hypersensitivity in the 
prodromal phase of PD since several pain-sensitizing ligands from 
immune cells can activate nociceptors, as TRPV1 (Roversi et  al., 
2021). Considering the early intestinal neuroinflammatory component 
and constipation, it is very likely that PD patients experience both 
abnormal stimulations in the GI wall that sensitize nociception fibers 
and altered transduction and perception of pain, at the peripheral or 
central levels (Wong et al., 2020).

In the giant GI surface with intrinsic and extrinsic innervations 
closing signaling, pathological mechanisms from ENS are likely to 
operate underlying GI dysfunction-related pain during PD. Using the 
6-OHDA animal model of PD, Pellegrini and collaborators showed 
increased tachykininergic enteric neurotransmission in the colonic 
ENS after neurodegeneration induction. In addition, inflammation 
with enteric glia overexpression of GFAP and increased substance P 
labeling were both detected in the large intestine (Pellegrini et al., 
2016b). Tachykinins, as substance P and neurokinins, and their 
neurokinin receptors (NKR) are broadly found in the GI tract, and 
they have been described as neuroglial mediators during intestinal 
inflammation and pain (Corsetti et al., 2015; Delvalle et al., 2018a). 
Neurokinin A (NKA) is shown to drive enteric neuroglial responses 
evoked primarily by neurons that recruit surrounding enteric glia 
through purinergic and Cx43 pathways – known inflammatory-
related mechanisms (Delvalle et  al., 2018a; Grubisic et  al., 2020). 
Colonic TRPV1+ varicosities express functional NK2Rs, respond to 
NKA and, prevent glial reactivity when blocked during inflammation 
(Delvalle et al., 2018a). As seen in the colitis animal model, NK2R 
blockade also avoided muscle contractibility dysfunction, 
demonstrating that TRPV1+ neurons with functional NK signaling 
are associated with reactive glial and dysmotility during inflammation. 
In a late report, using transgenic animals expressing genetically 
encoded calcium indicators in TRPV1+ fibers, Cx43 hemichannels 
were again implicated during intestinal inflammation as a sensitizer 

mechanism of colonic nociceptors (Grubisic et al., 2020). In addition, 
specific enteric glia activation through Designer Receptors Exclusively 
Activated by Designer Drugs, not only modulates visceromotor 
responses but also potentiates nociceptors activation in sensory 
neurons in a pro-inflammatory context (Morales-Soto and 
Gulbransen, 2020). Furthermore, glial Cx43 has been described as a 
potent modulator of abdominal hypersensitivity during inflammation 
by modulating macrophage phenotype in the neuromuscular 
compartment (Grubisic et al., 2020), a region that undergoes profound 
neurochemical and inflammatory alterations in animal models of PD 
(Fornai et al., 2016; Pellegrini et al., 2016b; Thomasi et al., 2022). 
Evaluations on irritable bowel syndrome gut biopsies also point out 
that both glial S100B and Cx43 play a functional role in the frequency 
and intensity of pain reported by patients which may count with 
modified glial responsiveness to purines, a fundamental neuroglial 
communication mechanism (Lilli et al., 2018).

Animals submitted to nigrostriatal neurodegeneration using 
6-OHDA display increased central expression of TRPV1 associated 
with thermal and mechanical hyperalgesia (Li et  al., 2020). 
Interestingly, in the CNS of animal models of PD, TRPV1 signaling 
has been linked with neuronal restoration and oxidative stress 
amelioration, and these processes are associated with glial activation 
or glial mechanisms (Nam et al., 2015; Chung et al., 2017). No research 
has been published investigating enteric TRPV1 signaling in the 
multiple aspects this receptor could be involved in during PD, mainly 
intestinal inflammation and abdominal pain. Moreover, despite the 
extensive report about glial roles in the central neuroplasticity in pain 
pathways, and the ability of the central glial network to convey signals 
intestine-derived (Gazerani, 2021; He et al., 2021; Hiraga et al., 2022; 
Wu et  al., 2023), we  have few descriptions of enteric glia on the 
gut-brain axis pain signaling during PD despite their likely 
contribution. In an elegant report, Lucarini and colleagues 
demonstrated that enteric glial impairment using glial poisoning 
before colitis induction was enough to contain visceral hypersensitivity 
and inflammation as well (Lucarini et al., 2021). When enteric glia 
were inhibited in this scenario, there was also reduced overexpression 
of S100B and TRPV1 at different points along the gut-brain axis, from 
the myenteric plexus, gaining the dorsal root ganglia and reaching the 
periaqueductal gray area – the latter being a relevant brain area for 
pain perception (Lucarini et al., 2021). Given the potential of enteric 
glia to act as an (I) local modulator, sensitizing nociceptors, (II) their 
ability to signal and recruit glial networks in the gut-brain axis, (III) 
the description of their pathological state in the ENS of patients with 
PD, enteric glia may be a novel target with innovative potential for the 
development of therapies related to pain during PD.

5. Could enteric glial cells be a 
therapeutic target for Parkinson’s 
disease treatment?

The ENS is a target for the treatment of several GI disorders, such 
as achalasia, slow transit constipation, and gastroparesis (Fleming 
et al., 2020). Many of these conditions are related to DGBIs. However, 
there is no current effective treatment for PD-related GI disorders. 
Likewise, whether therapeutic strategies addressing the gut could also 
improve CNS-related PD symptoms is unknown. Due to its central 
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role in GI and gut-brain homeostasis, enteric glial cells have emerged 
as a potential target for DGBI therapy.

Despite drugs or therapies specifically designed to modulate 
enteric glial cells do not exist, ongoing studies aim to explore enteric 
glial mechanisms to improve gut functioning (Gulbransen and 
Christofi, 2018). Indeed, such mechanisms are affected by some 
available therapy strategies for functional bowel disorders (Seguella 
and Gulbransen, 2021). Among the main candidates, intracellular glial 
Ca2+ signaling could be highlighted, which influences gut motility and 
secretion. Downstream glial intracellular Ca2+ responses involve Cx43 
hemichannels, which also engage in glial-mediated inflammatory 
activity by releasing ATP and activating P2X7 and pannexin-1 
receptors (Gulbransen and Christofi, 2018). Thus, targeting Cx43 
could improve both neuroinflammation and dysmotility. Some other 
glial mediators involved in immunological signaling that are 
hypothesized to contribute to gut pathological processes could also 
be targeted by new therapeutic strategies, such as IL-1R, TLR4, RAGE 
and peroxisome proliferator-activated receptor alpha (PPAR-α; 
Esposito et al., 2007, 2014; Stoffels et al., 2014).

Enteric glia are a predominant source of GDNF, a trophic factor 
that has pivotal protective effects on ENS and IEB (Meir et al., 2021). 
GDNF levels are altered in disorders characterized by GI 
neuroinflammation, such as IBDs, Hirschsprung disease and PD 
(Ochoa-Cortes et al., 2016; Manfredsson et al., 2020) and it has been 
shown to improve colonic functions and induce enteric neurogenesis 
in Hirschsprung disease mouse models (Soret et al., 2020). GDNF-
based therapy is currently being discussed as an alternative treatment 
for PD. Although successfully tested in preclinical models, it has failed 
to reproduce motor symptom amelioration in patients (Marks et al., 
2008; Merola et al., 2020). Still, researchers in the field believe the 
failure is mainly related to inappropriate delivery rather than GDNF 
ineffectiveness (Manfredsson et al., 2020). Nonetheless, all studies 
focus on CNS modulation and whether and how it would affect ENS 
and gut function is unknown. Given the previously described changes 
in GDNF gut levels, neuroinflammation and increased IEB 
permeability during PD, it is very likely that a GDNF-based therapy 
would impact PD GI symptoms by modulating enteric glia function 
toward an anti-inflammatory profile, among other gut mechanisms 
(Pellegrini et al., 2020; Thomasi et al., 2022).

More recently, some gut-oriented therapies have been proposed 
for treating PD symptoms, of which the use of nutraceuticals and the 
modulation of gut microbiota could be  highlighted as the most 
promising strategies. Nutraceutical is a substance or part of a food that 
is beneficial for health and can be used for medical purposes, including 
disease prevention and treatment. Although available data is scarce, 
some studies suggest these compounds might have antioxidant, anti-
inflammatory, or modulatory effects on enteric glial cells. For example, 
compounds like palmitoylethanolamide, cannabidiol and berberine 
can reduce gut inflammation and nociception in both IBD models and 
patients (López-Gómez et al., 2021). For the first two, these effects 
were described to occur through the activation of PPARs in enteric 
glial cells (Filippis et  al., 2011; Sarnelli et  al., 2018). The use of 
nutraceuticals that modulate glial cells as a therapeutic strategy was 
also investigated in a neurotoxin-based model of PD with peripheral 
induction. Antioxidant coffee compounds prevented nigrostriatal and 
enteric neurodegeneration by enhancing the antioxidant properties of 
glial cells after rotenone subcutaneous administration (Miyazaki et al., 

2019). However, the study did not evaluate whether it could also 
improve gut symptoms, a known feature of the rotenone PD models. 
Given that inflammation is one of the pathological events underlying 
PD GI dysfunction, nutraceutical compounds that can target the 
enteric glia should be  considered in future studies as a potential 
therapy for PD-related gut dysfunction.

The enteric glia can also be indirectly targeted as a therapeutic 
strategy by modulating the gut microbiota. The gut microbiota can 
be  modulated in many ways, including nutraceuticals such as 
probiotics. Other strategies include prebiotics, antibiotics, and fecal 
microbiota transplantation (FMT), which might affect glial 
mechanisms in the gut (Xu et  al., 2022). For example, the 
administration of Bifidobacterium bifidum in a model of intestinal 
inflammation could reduce gut inflammation by regulating the 
release of pro-inflammatory molecules by the enteric glia (Yang 
et  al., 2020). Gut microbiota modulation has been intensively 
investigated as a therapy for PD, with some successful tests in both 
human and preclinical studies (Xu et al., 2022; DuPont et al., 2023). 
In a neurotoxin model of PD, FMT reduced neuroinflammation by 
decreasing both microglia and astrocyte activation, as well as TLR4/
TNF-a signaling pathway (Sun et al., 2018; Zhao et al., 2021). The 
benefits of the treatment were attributed to the increase in the 
presence of SCFAs, however, GI pathophysiology was not addressed. 
Likewise, sodium butyrate was further reported to restore IEB 
integrity, reduce systemic inflammation and improve motor behavior 
in the same PD model (Xu et  al., 2022). However, whether the 
mechanisms of proposed microbiota-based PD therapies involve 
enteric glia is still unknown, yet likely. Despite promising, therapies 
targeting the gut microbiota still have many challenges to 
be established as a reliable treatment for PD symptoms, including 
the great variability of microbiota among patients, variability of 
diets, which also influences microbiota composition, and a better 
understanding of the underlying mechanisms. Further studies could 
address the effects of microbiota modulation on the enteric glia 
during PD and how it could relate to the improvement of both GI 
and motor dysfunction.

6. Conclusion

The gut-brain axis sensitization in PD and enteric glia roles in this 
scenario are summarized in Figure  1. PD is a complex 
neurodegenerative disorder involving significant gut-brain axis 
dysregulation. Interaction between intestinal, neural, and 
immunological components are key factors in the pathology of 
PD. PD-related GI symptoms, including constipation and abdominal 
pain, are emerging as early indicators of the disease, and the 
involvement of enteric glial cells in the pathogenesis of these 
symptoms presents them as potential therapeutic targets. Currently, 
there are no effective treatments that target both PD GI and motor 
symptoms, despite significant research efforts. Considering the 
complex bidirectional interactions between the gut and the brain, 
enteric glia represent a promising target for therapeutic intervention 
in PD because of their immunomodulatory ability. Glia-oriented 
therapies could provide anti-inflammatory and antioxidant outcomes 
and trophic responses as well. By focusing on modulating these cells, 
therapeutical strategies that address both the GI and central aspects of 
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the disease in an early period may impact the pathologic course, 
symptoms development, and quality of life of patients with PD.
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FIGURE 1

Enteric glia, gut dysfunction and neuroimmune mechanisms to gut-brain axis sensitization. On the left, are the classic pre-motor and non-motor 
symptoms of the prodromal phase of PD. Both glial reactivity and inflammation are strongly implicated in the neurodegenerative process and 
contribute to pathology progression. Dysbiosis adds to this scenario as another pro-inflammatory element. (A) Enteric glia phenotype and 
inflammatory signature verified in biopsy samples from PD patients and PD animal models. (B) The condition of leaky gut is evidenced by the disruption 
of the IEB, given the alteration of the tight junction, thus promoting an increase in intestinal permeability—which should reinforce, reciprocally, the 
intestinal dysbiosis observed during PD. Subsequent immune activation is one of the gut-brain axis signaling pathways. (C) Exposure to bacterial 
bioproducts as well as the reduction of microbe-derived beneficial factors (such as SCFA) to the nervous system, reinforce the pro-inflammatory 
condition and modify the axis based on signaling by biofilm and its derivatives. (D) Enteric glial mechanisms are recognized in PD and/or IBD 
associated with pro-inflammatory action, dysmotility, and visceral pain.
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