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Determination of the target of
monoclonal immunoglobulins:
a novel diagnostic tool
for individualized MGUS
therapy, and prevention
and therapy of smoldering
and multiple myeloma

Sylvie Hermouet1,2*, Edith Bigot-Corbel1,3 and Jean Harb3

1Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302,
Nantes, France, 2Laboratoire d’Hématologie, CHU Nantes, Nantes, France, 3Laboratoire de Biochimie,
CHU Nantes, Nantes, France
Subsets of patients diagnosed with a monoclonal gammopathy of undetermined

significance (MGUS), smoldering multiple myeloma (SMM) or multiple myeloma

(MM), present with a monoclonal immunoglobulin (Ig) specific for an infectious

pathogen, including hepatitis C and B viruses (HCV, HBV),Helicobacter pylori and

several Herpesviruses. Such cases are likely initiated by infection, since in the

context of HCV- or HBV-infected patients, antiviral therapy can lead to the

disappearance of antigenic stimulation, control of clonal plasma cells, and

reduced or suppressed monoclonal Ig production. Complete remission has

been obtained with anti-HCV therapy in refractory MM with a HCV-specific

monoclonal Ig, and antiviral treatments significantly improved the probability of

survival of MM patients infected with HCV or HBV prior to the diagnosis of MM.

Monoclonal Igs may also target glucolipids, particularly glucosylsphingosine

(GlcSph), and GlcSph-reducing therapy can lead to complete remission in

SMM and MM patients presenting with a GlcSph-specific monoclonal Ig. The

present review describes the importance of determining the target of the

monoclonal Ig of MGUS, SMM and MM patients, and discusses the efficacy of

target-reducing treatments in the management of MGUS, SMM and MM cases

who present with a monoclonal Ig reactive against a treatable infectious

pathogen or GlcSph.

KEYWORDS

monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple
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Introduction

Multiple myeloma (MM) is a highly malignant blood

malignancy characterized by the expansion of a plasmacytic clone

that produces large quantities of a single immunoglobulin (Ig),

called monoclonal Ig. MM is preceded by asymptomatic

monoclonal gammopathy of undetermined significance (MGUS)

and/or smoldering myeloma (SMM) (1, 2). Over the years, a

minority of MGUS evolves toward SMM and MM. Presently, it is

not possible to predict the evolution of MGUS, and despite great

advances in treatments, MM remains incurable. If screening for

MGUS is becoming more frequent, in standard practice MGUS

patients are simply monitored. SMM are more frequently studied,

and treated, with the hope of suppressing plasmacytic clones when

there are still minor (2–4). Indeed, being able to eliminate the

plasmacytic clone at the MGUS or SMM stages would prevent

evolution toward MM. However, so far most treatment strategies

used at the SMM stage only delay progression toward MM (3, 4).

More encouraging results have been obtained with 3-drug

combination therapy: complete remission was achieved for 11/16

SMM patients, and these patients remained progression-free for at

least 3 years (3).

Ideally, curative treatments should address and suppress the

cause(s) of disease. Unfortunately, the causes of MGUS, SMM and

MM have long remained unknown. Reasoning that most Igs are

produced to counter infection, and that latent infection and

subsequent inflammation are established causes of malignant

transformation in solid cancers as well as in T-cell and B-cell

lineage malignancies, latent infection seemed a possible cause of

MGUS and subsequent evolution toward SMM and MM (5–7).

Surprisingly since monoclonal Igs trigger many of MM symptoms

and are major markers for the monitoring of clonal gammopathies,

monoclonal Igs have long been neglected in research, diagnostics

and therapy, and considered not to have any antibody function.

Yet it was possible that the targets of subsets of monoclonal Igs

could be infectious pathogens. Initial pathogenic events leading to

chronic lymphocytic leukaemia (CLL) and lymphoma include

latent infection and chronic antigen stimulation and B-cell

receptor stimulation from component of yeasts and fungi results

in increased cell proliferation and survival (8–10). Similarly, chronic

antigenic stimulation by antigens from infectious agents is a

pathogenic mechanism leading to MGUS and MM (11–13). In

particular, MM has been associated with viral infection, by hepatitis

C virus (HCV), human immunodeficiency virus (HIV), or

Epstein Barr virus (EBV) (14–18). In addition, a self-antigen,

glucosylsphingosine (GlcSph), was reported to be the target of

monoclonal Igs from MGUS and MM patients with or without

Gaucher’s disease (19, 20).

This new pathogenic model of monoclonal gammopathies

opened novel possibilities of prognosis and treatment. Indeed,

knowing the target of a patient’s monoclonal Ig may help precise

the prognosis in MM: patients with MM linked to GlcSph were

reported to present with a mild form of MM disease, whereas
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patients with MM linked to EBV tended to have a more severe form

of MM disease (17, 19–25). Regarding treatment, if the target of a

patient’s monoclonal Ig can be suppressed, chronic antigen-

stimulation should disappear, resulting in better control of the

plasmacytic clone. The efficacy of such “target antigen reduction

therapy” is now proven for monoclonal gammopathies, including

MM, linked to GlcSph, HCV, and HBV (21–24). In HCV- or HBV-

infected patients, treating the viral infection improved MGUS and

MM disease and patient overall survival (21–24).

Importantly, these studies and results were made possible

thanks to the development of several new assays based on the

protein array technology, or derived from immunoblotting assays,

which were specifically designed to identify the target of

monoclonal Igs from patients. The aim of the present review is to

describe these assays and how they can be useful to clinicians and

their patients.
Separation of monoclonal Igs from
non-clonal Igs

MGUS and MM patients present with large amounts of

monoclonal Ig, which can be detected in blood serum by serum

protein electrophoresis (SPE), or mass spectrometry assays (26–31).

Prior to the analysis of the specificity of recognition, monoclonal Igs

must be purified, i.e. preparations of monoclonal Igs must be free

from polyclonal Igs present in the blood serum of patients. Obviously

this first step is required in MGUS but also in MM, even though the

quantity of polyclonal Igs is often reduced in MM patients. A

patient’s monoclonal IgG or IgA can be separated from non-clonal

Igs using electric charge by running a SPE on an agarose gel, and after

staining of one lane of the gel, by cutting carefully the band

corresponding to the patient’s monoclonal IgG or IgA, then eluting

the monoclonal Ig from the gel into phosphate buffer saline (PBS)

(17, 18, 25, 32). The purity of the monoclonal IgG or IgA preparation

can be verified using isoelectric focusing (IEF) followed by blotting

and immune revelation (17, 18, 25, 32). Due to the much larger

molecular mass of the monomers that constitute pentameric IgMs

(185-190 kDa), compared to dimeric IgGs (150 kDa) and IgAs (160

kDa), this approach does not work as well for monoclonal IgMs.
Identification of infectious targets of
purified monoclonal Igs

The multiplex infectious antigen
array assay

Following the reasoning that any infectious pathogen leading to

the development of a MGUS or MM had to be associated with

chronic, easily undiagnosed (latent) infection, a new test called the

multiplex infectious antigen array (MIAA) assay was designed, that

consists of recombinant antigens or proteins, peptides, and lysates
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from viruses, bacteria and parasites associated with chronic, latent

infection in humans. The MIAA assay tests for 10 pathogens,

including seven viruses (EBV, Herpes simplex virus 1 (HSV-1),

HSV-2, cytomegalovirus (CMV), varicella zoster virus (VZV),

HBV, HCV), one bacterium [Helicobacter pylori (H. pylori)], and

two parasites [Toxoplasma gondii (T. gondii), Borrelia burgdorferi

(B. burgdorferi)] (17, 18, 25, 32, 33). Infectious lysates, proteins,

peptides and antigens are spotted in triplicate on glass slides with 16

pads of nitrocellulose (33). The assay is performed with 4 µg

purified monoclonal IgG or IgA, which are incubated on MIAA

slides at room temperature. After washing, MIAA slides are

incubated with fluorescence-labeled goat secondary antibodies

against either human IgG (H+L) or human IgA (Fc), and

fluorescence signals are detected using an imaging system scanner

and quantified (17, 18, 25, 32, 33). Five fluorescence thresholds of

specific positivity are used: 500, for HCV, H. pylori, T. gondii; 1,000,

for HSV-1 and HSV-2; 1,200, for CMV; 1,400, for EBV and VZV;

and 1,800 for B. burgdorferi (17, 18, 25). Fluorescent signals below

the thresholds are considered negative. The MIAA assay has been

used to analyse the specificity of recognition of purified monoclonal

Igs from hundreds of patients: ~50% monoclonal Igs were found to

target one of seven infectious pathogens (Figure 1A) (17, 18, 25, 32–

35, and unpublished data). The seven infectious agents thus

associated with MGUS and MM are, by order of frequency: EBV,
Frontiers in Immunology 03
HSV-1, VZV, H. pylori, CMV, HCV and HBV (Figure 1B) (17, 18,

25, 32–35).
Other infectious protein/
peptide microarrays

Other microarrays may be used to determine the eventual

infectious target of purified monoclonal Igs. For instance, the

PEPperCHIP® Infectious Epitope Micro-Arrays (PEPperPRINT

Gmbh, Heidelberg, Germany) allowed to identify sequences

shared by the VP1 coat proteins of human Enteroviruses –

notably poliovirus type 1 and type 3 and coxsackievirus B1 and

B3 – and specifically recognized by purified monoclonal Igs (35).

These microarrays cover several thousands linear B-cell epitopes,

translated into thousands of peptides, from 196 pathogens known

to cause infection in humans. These assays typically require ≥30 µg

purified monoclonal Ig. The two Enterovirus VP1 coat protein

sequences identified as monoclonal Ig targets, PALTAVETG and

PALTAAETG, were reported to be recognized by monoclonal Igs

from 8.4% MGUS patients and 2.0% MM patients (Figure 1B)

(34, 35).

Knowing which pathogen is the target of a patient’s monoclonal

Ig may become important in terms of prognosis. Indeed, certain
A

B

FIGURE 1

Percentages of MGUS and MM patients with a monoclonal Ig of known specificity. (A) Percentages (%) of patients with a monoclonal Ig that targets
either an infectious pathogen or glucosylsphingosine (GlcSph) in cohorts of MGUS (n=155) or MM (n=147) patients. (B) Frequency of the different
infectious targets of monoclonal Igs in MGUS and in MM: EBV, Epstein-Barr virus; HSV-1, herpes simplex virus 1; Enterovirus VP1 protein PALTAVETG
or PALTAAETG sequences of human poliovirus type 1/3 and coxsackievirus type B1/B3; VZV, varicella zoster virus; H. pylori, Helicobacter pylori;
CMV, cytomegalovirus; HCV, hepatitis C virus; HBV, hepatitis B virus. The Chi-2 test was used to compare the % of patients in the MGUS group and
in the MM group. P<0.05 was considered significant. NS, not significant.
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pathogens, such as CMV, were not found among the targets of

monoclonal Igs from MM patients (17, 25). Similarly, HSV-1 and

Enterovirus VP1 are significantly less frequently targeted by

monoclonal Ig in MM compared to MGUS (Figure 1B). Thus,

MGUS initiated by HSV-1 or Enterovirus may be relatively unlikely

to progress toward MM.

Knowing the target of a patient’s monoclonal Ig is also

interesting in terms of treatment: for MGUS and MM patients

whose monoclonal Ig specifically recognizes HCV or HCV,

implying that the gammopathy was initiated by HCV or HBV in

these patients, antiviral therapy has recently been proven beneficial

in terms of remission and improved survival (22–24).
Identification of auto-antigen targets
of monoclonal Igs

Population-based studies have revealed that a personal history

of autoimmune disease significantly increased the risk of MGUS

(36). Logically, subsets of monoclonal Igs have been reported to

target auto-antigens from human proteins or glucolipids (19–21,

37–45). Information about the autoantigens targeted by

monoclonal Igs has been obtained from studies of rare

symptomatic monoclonal gammopathies, called monoclonal

gammopathies of clinical significance (MGCS) (46, 47). Indeed,

certain monoclonal Igs can cause organ lesions through

autoantibody activity, for instance against collagen IV in the

context of bullous skin disease, or anti-phospholipase A2 receptor

in the context of glomerular nephropathy (48–50). It is also

established that in the context of polyneuropathy, the monoclonal

IgM of patients may target myelin-associated glycoprotein (MAG),

chondroitin, or a ganglioside (34, 42–45). In addition, GlcSph is the

target of monoclonal Igs from ~15% of MGUS and MM patients

with or without Gaucher’s disease (Figure 1B) (19–21, 25).

To determine whether a monoclonal Ig targets a human

protein, commercial microarrays can be used to test purified

monoclonal Igs against several hundreds of peptides derived from

human proteins. Such assays require at least 30 µg purified

monoclonal Ig.

To determine whether a monoclonal Ig targets GlcSph,

immunoblotting assays can be used (19, 20, 25). In short,

polyvinylidene di-fluoride (PVDF) membranes are saturated with

GlcSph, rinsed then blocked with bovine serum albumin (BSA). SPE

gels run previously with the serum and purified monoclonal Ig of

patients are blotted onto the GlcSph-saturated membranes using

diffusion blotting. After blocking with BSA, the membranes are

incubated with horseradish peroxidase-conjugated secondary

antibodies, washed and revealed using chemiluminescence (19,

20, 25).

Knowing that the monoclonal Ig of a patient targets GlcSph or

another self-antigen could become important for prognosis and

therapy, since the new treatments that are emerging for MGCS may

be of interest in other monoclonal gammopathies linked to auto-

antigens (46, 47, 51–53).
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Interest for prognosis

Knowing which pathogen is the target of a patient’s monoclonal

Ig is of interest in terms of prognosis. For instance, CMV is not

found among the targets of monoclonal Igs from MM patients,

which implies that CMV-associated MGUS are unlikely to progress

towardMM (17, 25). Similarly, monoclonal Igs that target HSV-1 or

Enterovirus VP1 protein are respectively seven and four times more

frequent in MGUS than in MM, a possible indication that MGUS

linked to HSV-1 or Enterovirus VP1 rarely evolve toward MM

(Figure 1B) (35). Interestingly, a low risk of progression to MM was

noted in MGUS patients with a history of autoimmune disease,

which may indicate that monoclonal gammopathies initiated by

self-antigens may be of good prognosis (51). In MM, two studies

reported that patients with MM linked to GlcSph present with a

mild form of MM disease (20, 25). In contrast, MM patients with a

monoclonal Ig specific for EBV nuclear protein 1 (EBNA-1)

presented with a greater invasion of bone marrow by clonal

plasma cells, a higher creatinin level, and a higher b2-microbulin

level, hence tended to have a more severe form of disease (17, 25).

Using a different approach, other groups have reported EBV

infection to be associated with poor prognosis in MM patients

(54). Prospective studies on large cohorts of patients are necessary

to confirm these preliminary results.
Interest for therapy

The first report of the efficacy of self-antigen target reducing

therapy in patients was published by Nair et al. in 2020 (21). This

report described two patients with Gaucher Disease (GD) and

gammopathy (1 MGUS, 1 SMM), whose gammopathy was likely

initiated by GlcSph since their monoclonal Ig reacted against

GlcSph. For the two patients, GlcSph-reduction therapy with

eliglustat, an oral inhibitor of glucosylceramide synthase, reduced

the production of the monoclonal Ig. In a previous study in GD

mice, GlcSph reduction therapy with eliglustat had been shown to

prevent the development of both myeloma and B-cell lymphoma

(55). Prospective studies of patients with GlcSph-reactive

monoclonal Ig are needed to determine whether therapy to

reduce GlcSph, prevents progression from MGUS to SMM and

MM (21).

Regarding MGUS and MM associated with viruses, an

interesting report published in 2013 by Panfilio et al. described

the regression of MM disease with antiviral treatment in a patient

with HCV infection (56). In this report, the antigen specificity of the

patient’s monoclonal Ig was not studied, but a later study showed

that ≥80% of monoclonal IgGs from HCV-infected MGUS andMM

patients targeted a HCV protein (16). Logically, when antiviral

therapy succeeded in eliminating HCV, i.e. when chronic antigen

stimulation disappeared, reduction or suppression of clonal plasma

cells and monoclonal Ig production were observed, and certain

patients achieved complete remission of MM disease (22). Recent

studies of two large cohorts of MM patients infected either with
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HCV or HBV prior to the diagnosis of MM, revealed that antiviral

treatments significantly improved patient overall survival,

demonstrating the importance of antiviral therapy in MM

patients infected with HCV or HBV (23, 24). Again, prospective

studies of MGUS or SM patients with HCV- or HBV-specific

monoclonal Igs are needed to confirm that anti-viral therapy does

prevent progression to MM.

Other viruses, notably EBV and other herpesviruses, appear to

be able to initiate significant subsets of MGUS and MM (17, 25). It

is well known that reactivations of HSV or VZV are frequent in MM
Frontiers in Immunology 05
patients during intensive chemotherapy, and reactivations can be

treated using different antiviral drugs (57). Moreover, antiviral

prophylaxis is advised in MM patients (58). Consequently, one

can envision future prospective clinical studies that test the efficacy

of anti-herpesvirus therapy on those MGUS or MM patients who

produce a monoclonal Ig which specifically targets a herpesvirus

(EBV, CMV, HSV-1, VZV).

Concerning bacterial infection, so far H. pylori is the only

bacterium associated with the development of MGUS and MM

(17, 25). The efficacy of anti-H. pylori antibiotic therapy has been
FIGURE 2

Characterization of monoclonal Igs from MGUS and MM patients. Clonal plasma cells of MGUS and MM patients secrete large amounts of a single Ig (=
monoclonal Ig), which can be detected in blood serum by serum protein electrophoresis (SPE) (red peak); mass spectrometry assays can also be used to
detect monoclonal immunoglobulins. Characterization of the monoclonal Ig include its quantification (most often by a immuno-turbidimetric method;
more rarely by immuno-nephelemetric method or by orthogonal quantification of the peak) and identification of the Ig’s heavy (g, a, m, d, e) and light (k
l) chains by immunofixation. Monoclonal IgGs or IgAs can be separated from non-clonal Igs in serum by SPE, elution from the SPE gel, and the degree
of purity of the monoclonal Ig preparation can be verified by isoelectric focusing (IEF), western blotting and immunorevelation, as published (17, 18, 24,
31). The target of the purified monoclonal Ig can be determined using the multiplex infectious antigen microarray (MIAA) assay, which tests for the 7
most frequent infectious pathogen targets identified so far (17, 18, 24, 31), then with an assay that tests for GlcSph (lyso-glucosylceramide, LGL-1) (19–
21). These assays require <5 mg purified monoclonal Ig and allow the identification of the target of >70% monoclonal IgG/A of MGUS patients, and >40%
monoclonal IgG/A of MM patients. Purified monoclonal Igs remaining without an identified target after the MIAA and GlcSph assays may be analysed
with microarrays that test for thousands of peptides; such arrays typically require ≥30 mg of purified monoclonal Ig. Knowing the target of a patient’s
monoclonal Ig may provide information on the risk of transformation of MGUS into MM (seemingly low for MGUS associated with HSV-1 or Enterovirus
VP1), on the prognosis of MM patients (good for GlcSph-initiated MM, more severe for EBV-initiated MM), and allow to propose to patients “target
reducing therapy”, already proven beneficial for MGUS and MM cases initiated by GlcSph, HCV or HBV, in terms of reduction or suppression of clonal
plasma cells and monoclonal Ig production, as well as improved patient survival (21–23).
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tested in small cohorts of MGUS patients, with discordant results.

Some authors reported that antibiotic treatment of H. pylori

infection led to the disappearance of the monoclonal Ig and

resolution of the gammopathy (59). For other authors, the

monoclonal Ig persisted after patients were treated for H. pylori

infection (60). Beside their small size (30-60 patients), the limits of

these studies include the lack of proof of complete H. pylori

eradication, and lack of evidence that MGUS disease was

initiated by H. pylori since the target of monoclonal Igs was not

investigated (59, 60). Recent studies estimate that while 25-30%

individuals are infected by H. pylori, only ~2% of monoclonal Igs

target H. pylori (17, 25). Thus, the efficacy of anti-H. pylori

antibiotic therapy should be tested on those MGUS or MM

patients who produce a monoclonal Ig proven to specifically

recognize H. pylori.
Discussion

BecauseMM is still incurable, it is worth trying to preventMM by

treating patients at the MGUS stage, especially since many patients

remain for years at the MGUS stage. Most MGUS being

asymptomatic, chemotherapy is typically not an option at the

MGUS stage. Recently it was demonstrated that a majority of

MGUS cases (>70%) appear to be initiated by an infectious

pathogen (≥60%), or by GlcSph (~15%). In contrast, at the MM

stage the target of only ~40% of monoclonal Igs is an infectious

pathogen. Efficient drugs exist that counter many infectious

pathogens, or GlcSph, which suggests that “target-reducing”

treatments should be tested at the MGUS stage, in patients for

whom one can identify the target of the monoclonal Ig (i.e.,

probable disease-initiating event). This novel approach to the

management of gammopathies has been proven successful for

monoclonal gammopathies driven by GlcSph, HBV or HCV (21–24).

Antiviral treatment of HCV-infected patients should prevent

the development of HCV-driven IgG or IgA MGUS, as well as the

progression of HCV-initiated MGUS into MM (22–24). Regarding

HBV, ~60% of monoclonal gammopathies diagnosed in HBV-

infected patients appear to be initiated by HBV, thus it is

important to determine whether the gammopathy of HBV-

infected patients is driven by the virus, or not. That not all

infected MGUS or MM patients have a pathogen-initiated

gammopathy is not restricted to HBV: it is also true for

herpesviruses, Enteroviruses, and H. pylori. Patients with

infection-initiated MGUS or MM can now be identified by the

determination of the target of the patients monoclonal Ig (G or A),

thanks to novel assays that allow such analysis of monoclonal Igs:

the GlcSph assays, the MIAA assay, other infectious peptide
Frontiers in Immunology 06
microarrays. For MGUS, SMM and most MM patients, it is

necessary to carefully separate the monoclonal Ig from non-clonal

Igs in blood serum before performing the assays that determine the

target of monoclonal Igs. Figure 2 summarizes the complete

laboratory work-up necessary to identify the target of

monoclonal Igs.

In conclusion, using the MIAA assay, other protein arrays, and

the GlcSph assay, it is now possible to determine the target of the

majority of monoclonal IgGs and IgAs. Preliminary studies indicate

that the target of a patient’s monoclonal Ig reflects an early event of

MGUS or MM disease, and may serve as a prognosis marker and

new therapeutic target. Clearly, anti-viral therapy should be

prescribed as early as possible in the development of clonal

gammopathies linked to viruses, ideally at the MGUS stage,

though benefits in terms of improved overall survival were also

demonstrated at the MM stage (22–24). For patients with a

monoclonal Ig reactive against a self-antigen, knowing that

autoimmunity initiated the monoclonal gammopathy should help

understand the immune environment that leads to MM and adapt

treatment (61). Prospective studies in large cohorts of patients are

necessary to validate the prognostic and therapeutic interest of each

of the infectious or auto-antigen targets of monoclonal Igs. Already,

target-reducing therapy has been shown to benefit MGUS and MM

patients who present with a monoclonal Ig specific for GlcSph,

HCV or HBV.
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