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Background: Tachypnea is among the earliest signs of pulmonary decompensation. 
Contactless continuous respiratory rate monitoring might be useful in isolated 
COVID-19 patients admitted in wards. We therefore aimed to determine whether 
continuous monitoring of respiratory patterns in hospitalized patients with 
COVID-19 predicts subsequent need for increased respiratory support.

Methods: Single-center pilot prospective cohort study in COVID-19 patients who 
were cared for in routine wards. COVID-19 patients who had at least one escalation of 
pulmonary management were matched to three non-escalated patients. Contactless 
respiratory monitoring was instituted after patients enrolled, and continued for 
15 days unless hospital discharge, initiation of invasive mechanical ventilation, or 
death occurred. Clinicians were blinded to respiratory rate data from the continuous 
monitor. The exposures were respiratory features over rolling periods of 30 min, 24 h, 
and 72 h before respiratory care escalation. The primary outcome was a subsequent 
escalation in ventilatory support beyond a Venturi mask.

Results: Among 125 included patients, 13 exhibited at least one escalation and 
were each matched to three non-escalated patients. A total of 28 escalation events 
were matched to 84 non-escalation episodes. The 30-min mean respiratory rate 
in escalated patients was 23 breaths per minute (bpm) ranging from 13 to 40  bpm, 
similar to the 22  bpm in non-escalated patients, although with less variability 
(range 14 to 31  bpm). However, higher respiratory rate variability, especially 
skewness over 1  day, was associated with higher incidence of escalation events. 
Our overall model, based on continuous data, had a moderate accuracy with an 
AUC 0.81 (95%CI: 0.73, 0.88) and a good specificity 0.93 (95%CI: 0.87, 0.99).

Conclusion: Our pilot observational study suggests that respiratory rate variability 
as detected with continuous monitoring is associated with subsequent care 
escalation during the following 24 h. Continuous respiratory monitoring thus 
appears to be a valuable increment over intermittent monitoring.
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Strengths and limitations: Our study was the initial evaluation of Circadia 
contactless respiratory monitoring in COVID-19 patients who are at special risk of 
pulmonary deterioration. The major limitation is that the analysis was largely post 
hoc and thus needs to be confirmed in an out-of-sample population.
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Background

The COVID-19 pandemic has affected almost 600 million people 
and is on track to kill 6.5 million people worldwide (1). During the 
first wave, most patients experienced mild–moderate symptoms, but 
up to 10% required hospitalization (2, 3). Among those admitted to 
the hospital, depending on various comorbidities, a substantial 
fraction progressed to respiratory failure requiring ventilatory 
support (4).

Early detection of deteriorating patients may improve 
management and outcomes. Tachypnea is among the earliest signs of 
pulmonary decompensation. For example, respiratory rates exceeding 
35 breaths/min predict life-threatening events within 8 h (odds ratio 
[OR], 31; 95%CI: 8, 130) (5). And in COVID-19 patients, tachypnea 
has been associated with progression to mechanical ventilation (6), 
ICU admission (7), and mortality (2).

Respiratory depression (8) and hypoxemia (9) are common 
among hospitalized patients, even those without COVID-19. 
Furthermore, nurses assessing vital signs at 4-h intervals in hospital 
wards miss half of all serious and prolonged hypotensive episodes 
(10), and more than 90% of serious and prolonged desaturation 
episodes (9, 10). An additional consideration is that healthcare 
professionals’ manually obtained respiratory rate measurements are 
often inaccurate (11, 12), and recorded values often default to either 
18 or 20 breaths per minute (bpm) (13). Automated continuous 
monitoring tools, although not immune to artifacts, have well-
established accuracy and artifact-caused errors can be averaged out 
through continuous monitoring.

Recent advances in sensor technologies have made it possible to 
obtain respiratory rate without direct attachment to patients or their 
beds. Such contactless monitoring technologies, by virtue of not 
requiring effort from patient or healthcare professionals, facilitate 
continuous vital sign monitoring (14, 15). Use of continuous 
respiratory rate data has two additional advantages over infrequent 
spot-check data for prediction of clinical events. Firstly, naturally 
occurring short term variation in breathing rate is fully sampled and 
can thus be averaged out, resulting in a more precise estimate of mean 
respiratory rate (15). Secondly, variation of respiratory rate over time 
may contain clinically relevant information. For example, trends and 
variations in respiratory rate across various intervals predict adverse 
events (16–18). The Circadia Contactless Breathing Monitor (model 
C100, Circadia Technologies, Ltd., London, United Kingdom) uses 
radar to estimate respiratory rate in awake and sleeping patients. A 
feature of the monitor is that it is contactless, thus facilitating long-
term monitoring in hospital wards or at home without the discomfort 
associated with wearable devices or the need to replace batteries (19).

Undetected vital sign abnormalities may be especially likely in 
COVID-19 wards because patient isolation and the need of 
personal protection equipment preclude facile clinical assessments. 
Automated and continuous monitoring of respiratory function 
may thus be especially helpful in COVID-19 patients sick enough 
to require hospitalization (20). We therefore conducted a single-
center pilot prospective cohort study in hospitalized COVID-19 
patients. Our primary goal was to assess the extent to which 
continuous untethered ward respiratory rate patterns identify 
patients who require escalation of pulmonary management 24 h 
ahead of time, defined by progression to high-flow oxygen, 
non-invasive mechanical ventilation, invasive mechanical 
ventilation, or death. Specifically, we sought to evaluate whether 
identifiable respiratory rate patterns are meaningfully associated 
with ventilatory decompensation in COVID-19 patients.

Methods

Our prospective observational pilot study was conducted with 
approval from the Hospital Clinic of Barcelona IRB (Ethics 
Committee’s approval/ID: HCB 2020/0666). Written informed 
consent was obtained from participating patients. The study was 
performed in accordance with relevant guidelines and regulations.

Subject selection

We enrolled adults of any race and ethnicity who were admitted 
to a routine nursing ward with a diagnosis of SARS-CoV-2 infection, 
confirmed by a reverse-transcription polymerase chain reaction test. 
We excluded patients younger than 18 years old and pregnant women. 
Since we targeted patients at risk of clinical deterioration who were 
eligible for non-invasive and invasive mechanical ventilation support, 
we  also excluded patients in whom escalation to life-sustaining 
respiratory support include non-invasive modalities such as high-
flow nasal cannula oxygen therapy (HFNCO) but stop short before 
intubation and invasive mechanical ventilation because treatment 
was unlikely to prove helpful.

Protocol

We included patients who had COVID-19 and were hypoxemic, 
defined as arterial pressure of oxygen (PaO2) <80 mmHg or pulse 
oximeter saturation (SpO2) <90% while breathing ambient air. All 
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were hospitalized for treatment and required supplemental oxygen, 
to ensure a SpO2 over 91%.

According to our hospital guidelines for respiratory failure in 
COVID-19 patients, patients were considered to be in respiratory failure 
and candidates for escalation of pulmonary care when they developed 
moderate-to-severe shortness-of-breath with use of accessory muscles 
or paradoxical abdominal movements and tachypnea of ≥30 bpm; when 
the PaO2/Inspired fraction of oxygen (FiO2) ratio was ≤200; if a FiO2 > 0.4 
was needed to maintain a SpO2 > 92%; or when pH was <7.35 
accompanied by a PaCO2 exceeding 45 mmHg.

HFNCO was generally the initial treatment, followed by 
Non-Invasive Mechanical Ventilation (NIMV). Patients were 
escalated to invasive mechanical ventilation if they did not improve 
and had a ROX index [(SpO2/FiO2) / respiratory rate] <3 within 2 h, 
<3.5 within 6 h, or < 4 within 12 h after HFNCO and NIVM 
initiation (21).

Measurements

Demographic, morphometric, and clinical characteristics, as well 
as nurse-recorded vital signs including blood pressure, heart rate, 
respiratory rate, oxygen saturation, ventilation mode, supplemental 
oxygen concentration, and delivery system were recorded.

Pulmonary management was recorded, including use of HFNCO, 
NIMV, invasive mechanical ventilation, and clinically detected 
deterioration. We  also recorded episodes when nurses requested 
non-routine physician or ICU team evaluation, transfer to a higher-
acuity unit, and discharge disposition including vital status. Arterial 
blood gas analysis was not mandated per protocol, but available values 
were extracted from medical records.

Continuous respiratory monitoring was performed using the 
Circadia Contactless Breathing Monitor (model C100, Circadia 
Technologies, Ltd., London, United Kingdom). The Circadia Monitor is 
a radar-based device, and relies on tracking of time-of-flight variations 
of reflected radar pulses to estimate the rate of chest wall motion. The 
Circadia C100 System (comprising the Monitor and cloud services) is 
FDA-cleared as a continuous breathing frequency monitor intended for 
the professional healthcare facility environment. Accuracy of the system 
(specified as ±2 breaths per minute) has been validated by direct 
comparison against manually scored end-tidal CO2 and ventilatory 
effort reference data, both during spot measurements and continuous 
monitoring in awake and sleeping patients (19). Respiratory rate is 
computed at 3-s intervals using proprietary signal processing algorithms 
on the Monitor, and wirelessly transmitted to the cloud. Algorithms are 
designed to automatically reject inaccurate or erroneous respiratory rate 
values, which makes the system suitable for continuous and 
unsupervised use. Using digital time-gating methods, it is ensured that 
only signals corresponding to the patient’s bed are being recorded by the 
device. Furthermore, periodicity and waveform of recorded signals are 
analyzed in real-time to determine whether the signal corresponds to a 
breathing pattern. Practically, this means that the Monitor will only 
output respiratory rate during low-motion conditions while the patient 
is in bed, and suppresses outputs while respiratory rate cannot reliably 
be obtained (e.g., during patient absence, movement or noise sources). 
Respiratory rate as outputted by the Monitor can thus directly be used 
for subsequent feature extraction and modeling steps. For the current 
study however, the system was modified such that raw sensor data were 

recorded and transmitted to cloud-based storage, for offline processing. 
Production-equivalent signal processing algorithms were applied to raw 
sensor data to compute respiratory rate, with the only exception that the 
usual detectable range was increased from the FDA-cleared 7–38 
breaths per minute to 5–70 breaths per minute. This broader range was 
found to be more suitable considering the higher acuity of this clinical 
environment, and allowed to capture the full range of respiratory 
patterns in study participants. We began Circadia monitoring as soon 
as practical after patients consented to participate. Circadia Monitors 
were positioned about 1.5 meters from patients. Monitoring continued 
for 15 days, unless aborted for hospital discharge, initiation of invasive 
mechanical ventilation, or death. Respiratory rate data from the 
Circadia Monitor was not available to clinicians who managed 
participating patients.

Exposure and outcomes

The primary outcome was pulmonary decompensation, defined 
as an escalation in the pulmonary care beyond Venturi-mask support. 
The following levels of respiratory support were defined, from less to 
more severe: (1) ambient air; (2) nasal cannula; (3) Venti-mask; (4) 
HFNCO; (5) NIMV; (6) invasive mechanical ventilation; and (7) 
death. Our primary aim was to assess whether the information 
extracted from respiratory rate continuous monitoring is associated 
with respiratory care escalation 24 h in advance in hospitalized 
COVID-19 patients.

The exposure was short-term and long-term respiratory patterns 
associated with respiratory care escalation. Respiratory patterns 
(variability and fluctuations over time) were captured through 
features, which included respiratory rate mean, respiratory rate 
standard deviation, kurtosis of the respiratory rate, skewness of the 
respiratory rate, and trend (extracted from the slope of a linear 
regression model), all computed over three rolling periods, 30 min, 
24 h and 72 h in duration, occurring 24 h prior to respiratory care 
escalation (Supplementary Table 1).

Data analysis

Analysis was restricted to subjects who had successful Circadia 
monitoring for at least half of their hospitalization. We considered 
patients to have escalated respiratory care when they required an 
increment in their ventilatory support category, with others falling 
into the non-escalating category. Patients could experience multiple 
escalation episodes within a day. However, we considered only the 
initial escalation within each 48-h period to avoid situations where a 
prior de-escalation of treatment was quickly unsuccessful, rather than 
representing a true new worsening of the underlying pulmonary 
function. We  also excluded patients who de-escalated ventilatory 
support after joining the study. We  considered a patient to 
be de-escalating if they required HFNCO or NIMV at study inclusion 
and thereafter progressively improved (Supplementary Figure 1).

Patients who required ventilatory support escalation were 
matched to three non-escalating patients on baseline variables 
(Table 1) using minimum Euclidean distance. Escalation episodes in 
each patient were matched to a similar point in the three matched 
non-escalation patients based on time since admission. When the 
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exact corresponding time was unavailable because the non-escalation 
patient was already discharged at this time point, the last available 
time window was used. A non-escalated patient could be matched 
with more than 1 escalated patient (Supplementary Table 2).

Respiratory rate was sampled by the Circadia Monitor at 3-s 
intervals. This permitted capture of not only day-to-day changes in 
absolute levels of respiratory rate, but also within-day variation of 
respiratory rate (often missed by spot measurements). Examples of 
within-day variation are diurnal and ultradian rhythms (related to 
rest-activity patterns and the circadian rhythm) and acute or short-
term changes in respiratory rate (related to patient activity, treatment, 
decompensation, or deterioration). To express both short-term and 
long-term patterns in respiratory rate mathematically, a set of features 
was derived from continuous respiratory rate data. Features were 
computed using a 30-min rolling analysis window, sampled at 30-min 
intervals, through various aggregation methods including the mean. 
The mean respiratory rate over 30 min was further aggregated using 
additional rolling windows of 24 and 72 h, also sampled at 30-min 
increments, to obtain the 24-h and 72-h features. Features included 
the mean, minimum, maximum, and the trend (e.g., level of increase 
or decrease in respiratory rate), within the feature window. Additional 
features described the distribution of respiratory data within the 
analysis window: standard deviation (expressing the level of variance, 
or ‘width’ of the distribution), skewness (a measure of asymmetry of 
the respiratory rate distribution), and kurtosis (describing how heavy 
the tails of the distribution are, and thus how many respiratory rate 
outliers are observed). Although the latter statistical features may not 
invoke clinical intuition, they were found to be highly suitable to 
describe how erratic and volatile continuous respiratory rate data was 
in the rolling analysis window.

Since some patients had multiple escalation events, we estimated 
the standard error and confidence intervals of the associations of 
interest using bootstrap resampling of the logistic regression model 
(10,000 runs, sampling episode ID with replacement and using the 
percentile method), while at the same time adjusting for confounding 
variables. We also used the variance inflation factor (VIF) to estimate 

collinearity between respiratory features. Higher values of VIF (above 
10) indicate the existence of multicollinearity, meaning that such 
variables are highly correlated and should not simultaneously 
be included in the model (21). The model was fitted using the glm 
package in R (version 3.6.0).

Statistical analysis

We used a multivariable logistic regression model to assess the 
degree to which various respiratory rate features were associated 
with respiratory care escalation occurring 24 h later. The criterion 
for a predictor to be  significant was a value of p < 0.05  in the 
multivariable logistic regression model, uncorrected for multiple 
comparisons. Performance of the model was measured using 
traditional measures of diagnostic accuracy, specifically c-statistic 
from the logistic regression model [area under the receiver 
operating characteristic curve (ROC-AUC)], sensitivity, specificity, 
positive predictive value (PPV), and negative predictive value 
(NPV). We assumed a decision threshold >0.5 from the logistic 
regression model predicted escalation.

Sample size considerations

There was no a priori sample size estimate for our pilot study. 
Instead, we enrolled all qualifying and consenting patients over the 
study period. The achieved sample size of 125 patients, each with 
repeated measurements, allowed us to form confidence intervals for 
the parameters of interest with sufficient precision to evaluate early 
prediction of respiratory escalation. The width of the diagnostic 
accuracy confidence intervals range from 0.12 to 0.32, which we deem 
sufficiently narrow to make meaningful conclusions. We  do not 
conduct a post-hoc power analysis per se because our main goal is 
estimation of the diagnostic accuracy parameters as opposed 
to testing.

TABLE 1 Patient demographic, morphometric, and clinical characteristics.

Before matching After matching

Escalation Escalation

YES (N =  13) NO (N =  112) p value YES (N =  13) NO (N =  26) p value

Age, years 67 ± 17 61 ± 14 0.16 67 ± 17 63 ± 12 0.40

Female, n (%) 10 (77) 73 (65) 0.54 10 (77) 20 (77) 1

BMI, kg/m2 31 ± 5 28 ± 5 0.043 31 ± 5 29 ± 4 0.18

Medical history

Arterial hypertension, n (%) 8 (62) 56 (50) 0.43 8 (62) 19 (73) 0.49

Diabetes mellitus, n (%) 3 (23) 18 (16) 0.46 3 (23) 6 (23) 1

Ischemic cardiac disease, n (%) 1 (8) 10 (9) 1 1 (8) 2 (8) 1

Chronic heart failure, n (%) 2 (15) 2 (2) 0.053 2 (15) 1 (4) 0.25

COPD, n (%) 2 (15) 11 (10) 0.62 2 (15) 3 (12) 1

Asthma, n (%) 1 (8) 10 (9) 1 1 (8) 1(4) 1

Neurological disease, n (%) 1 (8) 12 (11) 1 1 (8) 1(4) 1

Variables were summarized as means ± SDs and N(%), as appropriate. BMI, body mass index; COPD, Chronic Obstructive Pulmonary Disease. Two-sample t-test, chi-square and Fisher’s exact 
test were used for comparisons, as appropriate. p < 0.05 was considered significant.

https://doi.org/10.3389/fmed.2023.1243050
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Rivas et al. 10.3389/fmed.2023.1243050

Frontiers in Medicine 05 frontiersin.org

Results

Between January 15th, 2021 and May 29th, 2021, we enrolled 166 
patients. We  excluded 14 patients due to data quality issues (10 
because of missing demographic characteristics and 4 because of 
Circadia recordings failures). We also excluded 27 subjects who were 
in the process of de-escalating ventilatory support when they joined 
the study. We finally included 125 subjects in the study (Figure 1).

Thirteen patients exhibited at least one escalation, and each was 
matched to 3 non-escalated patients. Six of the patients who required 
care escalations experienced 2–5 escalation episodes. There was thus a 
total of 28 escalation episodes that were matched to 84 non-escalation 
episodes (Supplementary Table  2). Demographic and clinical 
characteristics before and after patients matching are shown in Table 1.

The 30 min window analysis showed that the mean respiratory 
rate 24 h prior to an escalation episode was 23 bpm, with a wide range 
from 7 to 40 bpm, while in the non-escalation patients the mean 
respiratory rate was 22 bpm but the range was narrower, from 14 to 
31 bpm. Escalated patients showed significantly more variability in the 
respiratory rate than non-escalated patients with higher respiratory 
rate standard deviation and skewness (Table 2).

The variance inflation factor (VIF) for the mean of the respiratory 
rate over 1 day was 20.4, while all inflation factors were < 5. Therefore, 
mean respiratory rate over 1 day was removed, and our final model 
included 13 respiratory features. The probability that the respiratory rate 
features were associated with an escalation event 24 h later is shown in 
Figure 2. When assessing the 30 min window, no significant association 
was found between increased mean respiratory rate and risk of escalation, 
despite higher respiratory rate found prior to escalation events. The most 
remarkable result was that features describing continuous respiratory rate 

distribution (in particular standard deviation and skewness) were most 
strongly associated with higher incidence of an escalation event (Figure 2).

Our overall model had a moderate accuracy with an AUC 0.81 
(95% CI: 0.73, 0.88) and a good specificity 0.93 (95% CI: 0.87, 0.99) 
being able to correctly detect 93% of patients who did not escalate 
(Table 3; Figure 3).

Discussion

Many COVID-19 patients are unstable, and respiratory status 
often worsens over time. For example, 13 of 125 (10%) of our ward 
patients required 28 meaningful enhancements in ventilatory support 
such as transition to HFNCO or ICU admission. The clinical 
challenge, of course, is to identify patients at risk as early as practical 
so that resources and attention can be wisely allocated.

Early detection of respiratory failure and prompt initiation of 
ventilatory support reduces COVID-19 complications and mortality 
(2). Tachypnea predicts the need of mechanical ventilation (6) and 
ICU admission (7) in COVID-19 patients. Moreover, tachypnea with 
more than 24 breaths per minute is associated with a 5-fold increase 
in mortality (2). Accurate and frequent assessments of respiratory rate 
are thus an important part of COVID-19 care (22), and presumably 
also are for other serious progressive respiratory infections.

Vital signs are normally assessed at 4-8-h intervals on hospital 
wards, a frequency that has not much increased in the last half-century, 
although hospitalized patients are now frequently far sicker than 
previously. Because of their special ventilatory risk, COVID-19 patients 
seem likely to benefit from more frequent monitoring but may actually 
get less because isolation precludes easy access. The Circadia 

FIGURE 1

Subject selection flow chart.
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FIGURE 2

Forest plot of respiratory rate features odds ratio (95% confidence intervals) of being associated with an escalation event within 24  h thereafter. Higher 
values indicate higher odds of escalation. All units are in breaths per minute, except respiratory trend (breaths per minute per day).

Contactless Breathing Monitor we used is an alternative approach that 
provides a continuous estimate of respiratory rate.

An advantage of continuous monitoring is that in addition to 
respiratory rate per se, we were able to simultaneously evaluate various 
measures of respiratory rate variation over time. Features describing the 
distribution of consecutive respiratory rate measurements (skew and 
standard deviation in particular) were most strongly associated with 
escalation episodes. Analysis of these features requires continuous 
monitoring as they cannot be  estimated from intermittent spot 
measurements alone. Our results therefore suggest that continuous 
monitoring may allow for improved detection of ventilatory deterioration.

A feature of our results is that while respiratory rate per se was not 
especially predictive of future respiratory decline, the standard 
deviation and skewness of the respiratory rate were. Changes in 
variability similarly indicates abnormal conditions in other 
circumstances. For example, heart-rate variability is a well-established 
indicator of autonomic stress, whereas heart rate alone is less useful 
(23). Similarly, heart-rate variability predicts atrial fibrillation (24, 25) 
and is used as a measure of nociception (25). One potential 
explanation for these findings is that variability in respiratory rate may 
represent physiological decompensation, whereas mean respiratory 
rate changes are blunted through escalation of respiratory support.

TABLE 2 Respiratory rate features in escalated and non-escalated patients.

Escalated (28 events) Non-escalation (84 events) Mean difference (95% CI) p value

Mean, 30 min 22.5 ± 1.2 22.0 ± 0.5 −0.50 (−3.10, 2.11) 0.702

SD, 30 min 2.1 ± 0.2 1.6 ± 0.1 −0.57 (−1.04, −07) 0.022

Skew, 30 min 0.5 ± 0.2 −0.1 ± 0.1 −0.54 (−0.98, −0.086) 0.020

Kurtosis, 30 min 1.0 ± 0.5 0.8 ± 0.3 −0.27 (−1.60, 1.06) 0.689

Mean, 1 day 23.0 ± 0.1 21.9 ± 0.4 −1.16 (−3.31, 0.99) 0.280

SD, 1 day 2.9 ± 0.3 2.6 ± 0.1 −0.26 (−0.80, 0.28) 0.341

Skew, 1 day 0.4 ± 0.1 0.1 ± 0.1 −0.31 (−0.54, −0.08) 0.010

Kurtosis, 1 day 0.0 ± 0.3 −0.3 ± 0.1 −0.33 (−0.84, 0,18) 0.202

Trend, 1 day −0.7 ± 2.2 −1.9 ± 0.5 −1.18 (−5.74, 3.38) 0.600

Mean, 3 days 23.6 ± 1.0 22.0 ± 0.4 −1.52 (−3.48, 0.45) 0.127

SD, 3 days 3.4 ± 0.3 2.7 ± 0.1 −0.62 (−1.17, −0.07) 0.027

Skew, 3 days 0.3 ± 0.1 0.1 ± 0.5 −0.21 (−0.41, −0.01) 0.037

Kurtosis, 3 days −0.1 ± 0.2 −0.2 ± 0.1 −0.11 (−0.44, 0.23) 0.526

Trend, 3 days −1.5 ± 0.9 −0.6 ± 0.2 0.89 (−1.09, 2.88) 0.364

Data expressed as means ± standard errors. All units are in breaths per minute, except for Trend (breaths per minute per day). T-tests were used for comparisons. p < 0.05 (in bold) was 
considered a significant difference.
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Our model, based on 24-h pre-escalation periods, had an area under 
the receiver operating characteristics curve of 0.81 which indicates 
moderate predictive accuracy and potential clinical utility. The high 
specificity allows clinicians the possibility of accurately identify patients at 
low risk of respiratory de-compensation and thus focus efforts on patients 
most likely to deteriorate and require enhanced ventilatory support.

A limitation of our analysis is that it lacked internal or external 
validation. Initial models often over-fit data and prove less reliable when 
applied to out-of-population datasets. The model is nonetheless likely to 
remain useful, even if somewhat less predictive in other COVID 
populations. Practical implementation of our model will require software 
built-into the Circadia system or medical record systems. Our analysis 
was restricted to patients with proven SARS-CoV-2 infections. Results 
will likely differ with other respiratory viral infections, and of course 
other respiratory diseases. Nonetheless, the general concept that 
continuous respiratory rate monitoring is prognostic of ventilatory 
decompensation over a range of conditions is probably valid—although 
model specifics and coefficients will presumably differ for each.

In summary, our pilot observational study suggests that 
continuous respiratory monitoring and derived features are 
associated with the need for care escalation 24 in advance. Out-of-
sample validation remains necessary. But in the meantime, our results 
suggest that continuous respiratory monitoring is a valuable 
increment over intermittent monitoring.
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FIGURE 3

Receiver operating characteristics curve for full model.

TABLE 3 Performance of the full logistic regression model assessing the 
association between all respiratory features and subsequent respiratory 
care escalation within 24  h.

Metric Estimate (95% CI)

AUC 0 81.  (0.73, 0.88)

Sensitivity 0 42.  (0.26, 0.57)

Specificity 0 93. (0.87, 0.99)

PPV 0 85.  (0.67, 0.99)

NPV 0 62. (0.52, 0.72)

AUC, Area Under the Curve; PPV, Positive predictive value; NPV, Negative predictive value. 
All metrics were calculated after a complete fit of the model. The decision threshold was 0.5.
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