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Abstract: Real-time and efficient driver distraction detection is of great importance for road traffic
safety and assisted driving. The design of a real-time lightweight model is crucial for in-vehicle
edge devices that have limited computational resources. However, most existing approaches focus on
lighter and more efficient architectures, ignoring the cost of losing tiny target detection performance
that comes with lightweighting. In this paper, we present MTNet, a lightweight detector for driver
distraction detection scenarios. MTNet consists of a multidimensional adaptive feature extraction
block, a lightweight feature fusion block and utilizes the IoU-NWD weighted loss function, all
while considering the accuracy gain of tiny target detection. In the feature extraction component, a
lightweight backbone network is employed in conjunction with four attention mechanisms strategically
integrated across the kernel space. This approach enhances the performance limits of the lightweight
network. The lightweight feature fusion module is designed to reduce computational complexity and
memory access. The interaction of channel information is improved through the use of lightweight
arithmetic techniques. Additionally, CFSM module and EPIEM module are employed to minimize
redundant feature map computations and strike a better balance between model weights and accuracy.
Finally, the IoU-NWD weighted loss function is formulated to enable more effective detection of
tiny targets. We assess the performance of the proposed method on the LDDB benchmark. The
experimental results demonstrate that our proposed method outperforms multiple advanced detection
models.
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1. Introduction

Object detection plays a crucial role in monitoring driver distractions. Since the introduction of
AlexNet in 2012 [1], deep convolutional neural networks have become widely adopted in computer
vision [1, 2]. These networks have increasingly deeper depths, larger number of parameters and more
complex structures, all in pursuit of higher accuracy in major rankings. However, this comes at the
expense of increased network depth and computation. Today, one-stage object detectors [3, 4] are
popular in real-time applications due to their excellent speed and accuracy tradeoffs. Currently,
one-stage object detectors [3, 4] are preferred in real-time applications due to their exceptional
balance of speed and accuracy. The YOLO series, particularly YOLOv5 [5], stands out as the most
prominent architecture among one-stage detectors. It has achieved an excellent trade-off between
accuracy and speed on the COCO dataset, making it widely adopted in the industry. In the context of
driver distraction monitoring [6, 7], real-time computation is essential. The model must be deployed
on in-vehicle edge devices, which have limited CPU performance and memory. To deploy real-time
computation algorithms on these low-powered devices, their computing power must be fully
optimized. Furthermore, the algorithms themselves need to be lightweight. The emergence of
lightweight networks has focused attention on the trade-off between speed and accuracy. The
challenge lies in making the network even more lightweight and compact for easy deployment, while
still preserving accuracy. Additionally, as network optimization aims for acceleration, there is a need
to improve the accuracy in detecting challenging objects like tiny ones.

We have contributed to addressing the aforementioned concern in the following ways:

1) We propose a deep learning-based method for monitoring driver distraction that optimizes the
efficiency of detecting small targets while reducing the weight of the model and reducing computational
complexity.

2) We propose a multidimensional adaptive feature extraction block (MAFEB) that is integrated into
the network’s four attention mechanisms across the kernel space using a parallel strategy to enhance its
performance bounds. Additionally, we reduce the model parameters and storage space by combining
convolutional and batch normalization layers, resulting in a lighter model and accelerated network
inference.

3) We introduce the Lightweight Feature Fusion Block (LFFB), which consists of a CFSM module
and an EPIEM module, to effectively reduce computational complexity and memory access without
significant loss of accuracy.

4) We propose the IoU-NWD weighted loss function to address the issue of degraded detection
capability caused by the sensitivity of the IoU metric to small targets. This loss function aims to
improve the overall performance of the detector in detecting tiny targets.

The remaining portion of this paper is structured as follows: Section 2 provides an overview of the
related work. Section 3 presents a detailed description of the proposed method. Section 4 presents the
experimental results and corresponding discussion. Lastly, Section 5 concludes the paper.
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2. Materials and methods

2.1. Related work

2.1.1. Driver distraction detection

Inspired by the advancements in deep learning for object detection, several convolutional neural
network (CNN) models have been recently proposed for driver distraction detection. J. V. Abdul et
al. [8] utilized a CNN-based approach to enhance the accuracy of classifying distracted drivers by
studying driver actions from an image dataset. C. Huang et al. [9] introduced a CNN framework (HCF)
that combined ResNet50, Inception V3 [10] and Xception [11] to achieve high accuracy in classifying
distracted drivers’ behavior through deep learning-based image feature processing. S. Faiqa et al. [12]
explored the EfficientNet architecture for designing EfficientDet, utilizing EfficientNet as the backbone
network for the initial section, BiFPN architecture for feature extraction and a characterization and
location box prediction network for grouping and identifying diverted drivers. L. N. Duy et al. [13]
proposed a lightweight CNN architecture for driver behavior identification. The architecture leverages
standard convolutional and depth-separable convolutional operations, adaptive connectivity for feature
extraction and a CBAM attention mechanism to focus on salient features. The network parameters
are reduced, while improving task classification accuracy. Furthermore, Zhu et al. [38] introduced
the MT-DTA model, which combines an autoencoder with an attention model in a cascade structure
of CNNs.

2.1.2. Efficient CNNs

SqueezeNet [14] proposed Fire modules that consist of Squeeze and Expand operations in order to
compress the model and achieve lightweighting of the network. MobileNet [15–17] incorporates deep
separable convolutions instead of standard convolutions to maintain high accuracy while reducing the
number of parameters. This approach provides guiding principles for the design of subsequent
lightweight networks. ShuffleNet [18, 19] is specifically designed for mobile devices with limited
computational power. To simplify the model and overcome the computational complexity of point
convolutions, point group convolutions and channel shuffling techniques are employed. Xception [11]
replaces the traditional Inception [10, 20–22] blocks with depthwise separable convolutions to achieve
complete decoupling of cross-channel correlation and spatial correlation. The EfficientNet
family [23,24] introduces a new baseline network by scaling the three dimensions of depth, width and
resolution with simple and efficient composite coefficients. GhostNet [25] introduces an inexpensive
linear operation to generate more feature maps.

2.1.3. Tiny object detection

Object detection has been an important research direction in the field of computer vision and
pattern recognition research, where tiny object detection is more challenging because small objects do
not contain detailed information and may even disappear in the deep network. In order to solve the
above problems, researchers have made some improvements to small target detection in terms of loss
function. J. He et al. [26] designed a new formulation alpha-IoU that generalizes the existing
IoU-based losses to a new family of power IoU losses. By modulating the power parameter alpha,
alpha-IoU provides the flexibility to achieve different degrees of bbox regression accuracy when
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training the target detector. On the other hand, researchers have also made some improvements on the
feature pyramid network to detect small targets more accurately. C. Deng et al. [27] proposed the
extended feature pyramid network (EFPN) with additional high-resolution pyramid layers, using the
feature texture transfer (FTT) module to extract both super-resolution features and plausible region
details. Some researchers have also designed detectors for small target detection. X. Yang et al. [28]
designed a sampling fusion network incorporating multilayer features and effective anchor sampling
to improve the sensitivity to small targets. Also, supervised pixel attention network and channel
attention network were explored for small and cluttered target detection together by suppressing noise
and highlighting target features. Zhu et al. [39] aim to achieve a fuller utilization of multimodal
information based on the fusion of features that have special meaning and importance.

2.2. The proposed method

2.2.1. Overview

Generally, a convolutional neural network (CNN) detector comprises three major components: the
backbone, the neck and the head. The backbone is responsible for extracting the input features, while
the neck improves the assignment and fusion of these features before they are passed to the head. The
head then detects objects using the input features from the neck. In Figure 1, we demonstrate the
framework of our proposed driver distraction detection method. This framework mostly consists of a
multidimensional adaptive feature extraction block and a lightweight feature fusion block. The
multidimensional feature extraction block utilizes lightweight convolutional networks based on
channel sparse convolution as the backbone. Additionally, we introduce the multidimensional
adaptive module (MDAM) to provide the depth-separable convolutional kernel with dynamic
properties. This module enables the dynamic extraction of feature information at varying scales and
dimensions, effectively reducing computational effort.

Figure 1. Overall Architecture of MTNet.
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The Channel Feature Shuffle Module (CFSM) utilizes depth-separable convolution and channel
shuffling operations to facilitate information interaction between channel-dense convolution and
depth-separable convolution. This approach effectively reduces the model’s weight while maintaining
accuracy. The lightweight feature fusion block consists primarily of the CFSM and the Efficient
Partial Information Extraction Module (EPIEM). These modules aim to decrease computational
complexity and the number of memory accesses required for feature fusion across different scales.
EPIEM optimizes costs by considering feature map redundancy. It employs partial convolution to
reduce redundant computations and minimize frequent memory accesses, resulting in more efficient
extraction of spatial features. In order to address the sensitivity of IoU to small deviations in target
position, the NWD metric is introduced as a more appropriate measure for similarity between two
bounding boxes. This, however, may negatively impact convergence speed. To mitigate this issue, a
weighting factor is applied to NWD, which is then integrated into the loss function of the detector.

2.2.2. Multi-dimensional feature extraction block

We incorporate the improved multidimensional adaptive attention into a lightweight convolutional
neural network to enhance feature extraction in the multidimensional feature extraction block. This
enables us to inject features with multidimensional information to improve the detection task. The
feature extraction architecture consists of multiple convolutional layers and residual blocks. Within
these layers and blocks, the inclusion of MDAM extends the performance capabilities of lightweight
CNNs. This is achieved by integrating attention mechanisms into the convolutional blocks, allowing
for better adaptation to the detection of small targets.

The implementation details of MDAM are illustrated in Figure 2. This approach incorporates a
novel multidimensional attention mechanism, which computes four complementary types of attention
αSi, αCi, αfi and αwi of Wi along four dimensions of the kernel space. These dimensions include the
number of convolutional kernels, the size of the convolutional kernel space, the number of input
channels and the number of output channels. The parallel computation empowers the convolution
kernel to capture diverse contextual information. Moreover, the adoption of a single kernel space
structure in MDAM strikes a better balance between model accuracy and efficiency in comparison to
existing dynamic convolution designs. MDAM utilizes a novel multidimensional attention
mechanism with parallel strategies to learn the complementary attention of convolution nuclei along
all four dimensions of the kernel space in any convolution layer. It is worth stating that the four kinds
of attention learned are complementary to each other, and the order does not matter.

As denoted in Figure 3, the MDAM block can be defined as follows:

y =
(
αw1 ⊙ α f 1 ⊙ αc1 ⊙ αs1 ⊙W1 + · · · + αwn ⊙ α f n ⊙ αcn ⊙ αsn ⊙Wn

)
∗ x, (2.1)

where αwi ∈ R denotes the attention scalar of the convolution kernel wi; αsi ∈ Rk×k, αsi ∈ RCin and
αsi ∈ RCout denote the spatial dimension, input channel dimension and output channel dimension
computations along the kernel space of the convolution kernel Wi, respectively, and ⊙ denotes the
multiplication operations along different dimensions of the kernel space.

We assume a convolutional kernel (W) for the convolutional layer. The convolution process involves
performing a sliding window computation on the input feature map using the convolutional kernel (W).
Assuming w as an element in the convolutional kernel (W) and x as an element in the input feature
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map, the computation process for w and x is as follows:

yconv = w · x + b. (2.2)

The BN layer requires calculating the mean and variance of the elements in a minibatch. Next, the
mean value is subtracted from each element and then divided by the standard deviation. Finally, the
BN output is obtained by performing an affine transformation using and γ, β as outlined below.

µB ←
1
m

m∑
i=1

xi, (2.3)

σ2
B ←

1
m

m∑
i=1

(xi − µB)2 , (2.4)

x̂i ←
xi − µB√
σ2

B + ϵ
, (2.5)

yi ← γx̂i + β ≡ Bγ,β (xi) . (2.6)

Convolutional layers and BN layers can both be regarded as extensions of linear layers. However,
they differ in terms of their specific implementation and mechanism of action. Consequently, these two
aspects are combined:

BNγ,β(x) = γ
w · x + b − µB√
σ2

B + ϵ
+ β =

γ · w√
σ2

B + ϵ
· x +

γ√
σ2

B + ϵ
· (b − µB) + β, (2.7)

obtained as:

ŵ =
γ · w√
σ2

B + ϵ
, (2.8)

b̂ =
γ√
σ2

B + ϵ
· (b − µB) + β, (2.9)

as a result:

BNγ,β(x) = ŵ · x + b̂. (2.10)

The amount of computation is reduced using operator fusion techniques, decrease the overall
throughput of the process, enhance the localization of computation, consequently enhancing
efficiency.
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Figure 2. Architecture of Multidimensional Adaptive Modules (MDAM).

Figure 3. Four kinds of attention along the kernel dimension.

2.2.3. Lightweight feature fusion block

Studies in neuroscience have demonstrated that models with a larger number of neurons tend to
exhibit stronger nonlinear representation. However, it is important to acknowledge that the human
brain outperforms these models in terms of its superior information processing capabilities and low
power consumption. Consequently, in the current stage of vision-based specific assisted driving
systems, it is possible to optimize computational costs without introducing additional operations and
achieve significant accuracy improvements through lightweight designs. Nonetheless, the utilization
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of deep separable convolution (DSC) in lightweight networks, while common, results in the
separation of channel information during computation. Over-reliance on DSC alone causes the feature
extraction and fusion capabilities of the network to deteriorate, consequently reducing the overall
performance of the model. Therefore, enhancing the interaction capability of inter-channel
information is crucial to obtain richer features during the lightweight optimization of the network.

We introduce the Channel Feature Shuffle Module (CFSM), which comprises a channel-dense
standard convolution (Conv) and a channel-information-separated Depthwise Convolution
(DWConv). As depicted in Figure 4, the CFSM receives the image as input and facilitates the
exchange of information between Conv and DWConv through shuffling. Shuffling is used to
uniformly and effectively mix the information generated by Conv and DWConv. Initially, the input
feature map is split into two groups, each with half the original number of channels. These two
groups are then blended, with a 2-channel interval, and interleaved along the channel dimension to
create a new feature map output. This approach enables Conv’s information to enhance the model’s
representation and generalization performance by uniformly exchanging local feature information
across channels and fully integrating it into the DSC output.

Figure 4. Design of Channel Feature Shuffle Module (CFSM).

The visualization in Figure 5 illustrates that the feature maps of the different channels exhibit a
high degree of similarity during the network computation. Many other lightweight optimisation
schemes [29, 30] address this redundant feature, but neglect to explore efficient and simple utilisation.
We reduce both redundant computation and memory access by introducing the Efficient Partial
Information Extraction Module (EPIEM) to improve the extraction of spatial features.

The module, as depicted in Figure 6, is implemented using the partial convolution (PConv) and
pointwise convolution techniques. PConv performs standard convolutions (SC) on a subset of the input
channel to extract spatial features, while disregarding interactions with other channels. The number
of channels for SC is determined by the occupancy factor r = cp/c, typically set to 1/4 for balancing
computational complexity and reusability of channel features. Consequently, PConv requires only 1/16
of the computational effort (FLOPs) compared to standard convolution, leaving the remaining channels
unchanged. To fully and efficiently utilize information from all channels, a pointwise convolution
(PWConv) is subsequently applied after PConv.
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Figure 5. Visualization of redundant feature maps.

Figure 6. Design of Efficient Partial Information Extraction Module (EPIEM).

2.2.4. Weighted IoU-NWD loss function for tiny targets

The proposed detection network is trained by three loss functions, Lcls, Lobj and Lloc. Lcls is used
to calculate the loss of classification, using the binary cross entropy loss (BCE), which calculates only
the loss of classification of positive samples. Lobj calculates the CIOU of the target bounding box and
the ground truth box (GT Box) of the network prediction, which calculates only the loss of all samples.
Lloc is the loss of localization, using the CIOU Loss, which calculates only the loss of localization of
positive samples. Here, λ1, λ2 and λ3 are the balance coefficients.

Loss = λ1 Lcls + λ2 Lobj + λ3 Lloc. (2.11)

Current intersection-over-union (IoU) based metrics, including IoU itself and its extensions, are
highly susceptible to positional deviations in the context of small objects. Moreover, even a slight pixel
deviation between small and large targets can result in substantial fluctuations in IoU values, thereby

Mathematical Biosciences and Engineering Volume 20, Issue 10, 18248–18266.



18257

negatively impacting the detection performance of anchor-based detectors. As depicted in Figure 7,
each grid in the diagram corresponds to one pixel. Specifically, box A represents the true bounding
box, whereas boxes B and C represent the predicted bounding boxes. When the deviation in position
is identical, it has minimal impact on the intersection-over-union (IoU) value for normal-sized objects.
However, with regard to tiny objects, even a slight position deviation can result in a notable decrease
in the IoU value. Consequently, the IoU-based loss function is suboptimal for detecting small targets.
Drawing inspiration from Wasserstein’s novel metric for detecting small targets [31], we propose an
IoU-NWD weighted loss function that aims to enhance the performance of small target detection. This
is achieved by fine-tuning the weighting factor α, which is contingent upon the proportion of tiny
targets present in the dataset.

Lobj = α1LIoU + α2LNWD, (2.12)

α2 = 1 − α1. (2.13)

The bounding box is initially represented as a 2D Gaussian distribution. The similarity between
the resulting Gaussian distributions is then quantified using the proposed metric, known as Normalized
Wasserstein Distance (NWD) [32]. NWD, unlike the IOU metric, takes into account the width-to-
height ratio of the bounding box and is well-suited for handling boxes with different shapes. IOU, on
the other hand, fails to properly account for boxes that vary significantly in their width-to-height ratio.
Additionally, the NWD metric is robust to scale variations and can measure the similarity between
two distributions even when the bounding boxes either do not overlap or have minimal overlap. As a
result, NWD outperforms IOU significantly when it comes to detecting small objects. To account for
the NWD metric’s influence on convergence speed, we incorporate it into the component of the Lob j

loss function, which improves the ability to detect small targets.

Figure 7. Sensitivity of the IoU metric to small target position offsets.

We use the Wasserstein distance from optimal transport theory to calculate the distribution distance.
For two two-dimensional Gaussian distributions µ1 = N(m1,Σ1) and µ2 = N(m2,Σ2), the second-order
Wasserstein distance between µ2 and µ2 is defined for:

W2
2 (µ1, µ2) = ∥m1 − m2∥

2
2 + Tr

(
Σ1 + Σ2 − 2

(
Σ

1
2
2Σ1Σ

1
2
2

) 1
2
)
. (2.14)
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It can be simplified as follows:

W2
2 (µ1, µ2) = ∥m1 − m2∥

2
2 +

∥∥∥∥Σ 1
2
1 − Σ

1
2
2

∥∥∥∥2

F
, (2.15)

where ∥ · ∥F is the Frobenius parametrization.
Furthermore, for the Gaussian distributions Na and Nb modeled by the bounding boxes

A = (cxa, cya,wa, ha) and B = (cxb, cyb,wb, hb), Eq 6 can be further simplified as.

W2
2 (Na,Nb) =

∥∥∥∥∥∥
[cxa, cya,

wa

2
,

ha

2

]T

,

[
cxb, cyb,

wb

2
·

hb

2

]T ∥∥∥∥∥∥
2

2

. (2.16)

However, W2
2 (Na,Nb) is a distance metric and cannot be used directly as a similarity metric (i.e.,

values between 0 ∼ 1 as IoU). Therefore, we use its exponential form of normalization to obtain a new
metric called Normalized Wasserstein Distance (NWD):

NWD (Na,Nb) = exp

−
√

W2
2 (Na,Nb)

C

 , (2.17)

where C is a constant that is closely related to the dataset. In the next experiments, we empirically set
C to the average absolute size of the dataset and obtain the best performance.

To deal with the above problem, we design the NWD metric as a loss function LNWD and apply it to
Lob j .

LNWD = 1 − NWD (Na,Nb) . (2.18)

3. Experiments

3.1. Experiment environment

We employed the PyTorch framework to construct our models. The models were trained using a
dual-card setup consisting of an NVIDIA TITAN RTX or an NVIDIA GeForce RTX 4090 running on
the Windows 10 operating system. The hyperparameters used are as follows: the optimizer utilized is
stochastic gradient descent; the batch size is set to 32; a linear decay learning rate scheduling strategy
is implemented with an initial learning rate of 0.01 and a cyclic learning rate with the same value;
the momentum and weight decay values are set to 0.937 and 0.0005, respectively. All validation
experiments were conducted on the NVIDIA GeForce RTX 4090. In the tables and figures, we define
AP0.5 as the average accuracy across all categories when evaluating accuracy with an Intersection over
Union (IoU) threshold of 0.5. Additionally, AP represents the average accuracy with IoU thresholds
ranging from 0.5 to 0.95 in increments of 0.05, calculated as a weighted average.

3.2. Dataset

We utilized two datasets in our study: the publicly available StateFarm dataset [33] and the non-
public Lilong Distracted Driving Behavior (LDDB) dataset [34]. We selected the StateFarm dataset to
assess the practical effectiveness of MDAM and various other lightweight architectures as a detector
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feature extraction backbone network. This dataset, as illustrated in Figure 8, consists of a farm driver
distraction detection dataset comprising ten categories. It contains 22,424 training images and 67,272
images enhanced using offline data augmentation techniques such as Gaussian blur, Gaussian noise and
CutMix. On the other hand, the LDDB dataset comprises 14,808 videos captured by infrared cameras
that record six driving behaviors of 2468 participants. Manual annotations were provided for these
videos at a frame rate of five frames per second, resulting in a total of 287,804 images. To validate the
module’s efficacy, we compared it with mainstream object detection methods using the LDDB dataset.

Figure 8. Examples of the StateFarm’s dataset.

3.3. Comparison experiments

To establish the superiority of our proposed method for detecting driver distraction, we compared
it with several other detection methods using the LDDB dataset. These methods included YOLOv5s,
as well as some lightweight networks (MobileNet, GhostNet and FasterNet) used as the backbone for
YOLO. Additionally, we evaluated our proposed MTNet. The evaluation results for these different
detectors are presented in Table 1. The best performance values are highlighted in bold.

Figure 9 displays the corresponding results for a more accurate comparison. Figure 9(a),(b) depict
the performance of the various detectors in terms of accuracy and model weight. In each instance,
the best performing method is indicated with an asterisk on the respective bar. Our proposed MTNet
demonstrates exceptional performance in the detection of tiny objects on the LDDB dataset, achieving
an average accuracy of 36.9%. Additionally, the computational complexity of the model surpasses that
of other methods, boasting a level of 6.5 GFLOPs.

The detection performance comparison on the LDDB dataset is visualized in Figure 10. Other
methods exhibit false detections and misses in detecting small objects like cigarette butts. In terms of
small object detection efficiency, MTNet outperforms the other detection methods.

The proposed method demonstrated superior performance compared to other methods, as indicated
by the results presented in the table and figure. The proposed method achieves higher accuracy than
YOLOv5s on the LDDB benchmark, with values of 97.6%AP, 83.7%AP50 and 36.9%APS. Moreover,
the proposed method reduces the number of model parameters by 1.38M and computation by 9.3
GFLOPs. The detection method exhibits a superior balance between speed and accuracy compared to
other lightweight networks used as feature extraction backbone networks. The method outperforms in
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all categories of distracted driving behavior, with notable improvements in small object detection and
optimized model computation.

Table 2 presents the performance of our proposed multidimensional adaptive module (MDAM) in
comparison to other lightweight classification networks on StateFarm’s dataset. The results indicate
that our proposed MDAM exhibits superior performance in terms of classification accuracy and
computational complexity, simultaneously maintaining a smaller number of model parameters.

The corresponding metrics for accuracy, number of model parameters and computational
complexity are depicted in Figure 11. The visualization of classification results and accuracy for
certain categories is displayed in Figure 12. It is evident that alternative methods encounter challenges
with misclassification or struggling to differentiate the correct category on the StateFarm dataset, as
indicated by the highlighted red areas. In contrast, our proposed MDAM block achieves accurate
classification in multiple categories.

Figure 9. Comparison of the performance of different detectors on the LDDB dataset. The
best performing methods are marked with an asterisk.

Table 1. Performance data for different detectors on the LDDB dataset.

Models AP50 AP APS APM APL Parameters GFLOPs
MNetV2(0.5x) [16] 0.951 0.784 0.202 0.453 0.807 3.58 6.7
MNetV2(1.0x) [16] 0.966 0.811 0.274 0.537 0.851 5.13 10.1
MNetV3-small [17] 0.942 0.775 0.181 0.418 0.805 4.60 7.1
GhostNet [25] 0.948 0.795 0.274 0.506 0.831 4.75 7.6
FasterNet [30] 0.956 0.789 0.248 0.465 0.784 5.55 11.2
YOLOv5s [5] 0.974 0.835 0.354 0.556 0.86 7.02 15.8
MTNet 0.976 0.837 0.369 0.538 0.859 5.64 6.5
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Figure 10. Visualization of the performance of different detectors on the LDDB dataset.

Figure 11. Performance comparison of different classification methods on the StateFarm
dataset. The best performing method is marked with an asterisk.

Table 2. MDAM module performance comparison on Statefarm’s benchmark.

Network Acc(%) Params(M) Madds(B)
MobileNetV2 [16] 86.90 3.50 0.25
MobileNetV3-large 1.0x [17] 84.44 4.21 0.06
MobileNetV3-small 1.0x [17] 82.32 1.53 0.02
MobileNext [37] 83.23 1.94 0.08
MixNet-large [36] 83.20 5.81 0.15
MixNet-small [36] 82.88 1.94 0.07
ShuffleNet 1.0x [18] 80.64 1.26 0.04
GhostNet 1.0x [25] 84.77 3.91 0.04
CMFFNet [35] 89.95 3.03 0.15
MDAM 93.70 1.48 0.02
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Figure 12. Performance visualization of different classification methods on the StateFarm
dataset.

3.4. Ablation study

To further validate the effectiveness of each component in our method’s modules, such as the
multidimensional adaptive feature extraction block, lightweight feature fusion block and IoU-NWD
weighted loss function, we conducted an ablation study in this subsection. Here, we aimed to assess
the impact of these components on the overall performance.

MobileNetV2 serves as the backbone network model for our baseline model. We incrementally
add different components to assess their effectiveness and primarily compare the performance of the
following four detection models:

• Baseline: We simply replace YOLOv5’s feature extraction backbone network with lightweight
MobileNetV2. This is the baseline model.

• Baseline+A(MAFEB): We incorporate the multi-dimensional adaptive feature extraction block
into the backbone network of the detector architecture used for driver distraction behavior
detection.

• Baseline+A(MAFEB)+B(LFFB): The lightweight feature fusion block is further enhanced
based on the aforementioned model in order to reduce the model’s overall weight.

• Completed Model: Our proposed comprehensive detector model.

Table 3 presents the utilization of Baseline and Baseline + A to showcase the efficacy of
incorporating multidimensional adaptive feature extraction blocks into the model. Comparing
Baseline + A with Baseline + A + B confirms the superior balance between speed and accuracy in the
context of lightweight feature fusion blocks. Contrasting Baseline + A + B with the completed model
demonstrates the benefits of using the IoU-NWD weighted loss function for detecting tiny targets.

Table 3 presents the detection performance of the various models. From the table, it is evident
that each of the aforementioned components contributes to the improvement of the detection results.
Notably, the inclusion of multi-dimensional adaptive feature extraction blocks and the utilization of
IoU-NWD weighted loss function prove to be more effective in enhancing the detection accuracy of
small targets. The performance comparison graph is depicted in Figure 13. Additionally, Figure 14
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provides a visual representation of the impact of different models on the LDDB benchmark in our
ablation study.

Figure 13. Comparison of the performance of different detectors on the LDDB dataset in the
ablation experiment. The best performing method is marked with an asterisk.

Table 3. Ablation study.

Models AP AP50 APS APM APL Parameters GFLOPs
Baseline 0.966 0.811 0.274 0.537 0.851 5.13 10.1
+A 0.973 0.828 0.354 0.557 0.851 6.2 7.7
+A+B 0.967 0.821 0.345 0.537 0.851 5.64 6.5
+A+B+C 0.976 0.837 0.369 0.538 0.859 5.64 6.5

Figure 14. Performance visualization of different detectors in ablation experiments on the
LDDB dataset.
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4. Conclusions

In this paper, we propose a novel method for detecting driver distractions using deep learning. We
combine a lightweight network architecture with optimization techniques for detecting tiny objects.
To demonstrate the effectiveness of our approach, we have designed three functional blocks. First, we
propose a feature extraction block that is based on an improved lightweight network. This block injects
four adaptive attentions along the kernel space into the network using a parallel strategy. This enables
the extraction of features with multidimensional information and improves efficiency through operator
fusion operations. Second, we have designed a feature fusion block based on lightweight operator
operations. The purpose of this block is to reduce computational complexity and memory access.
Finally, we enhance the efficiency of detecting tiny targets by designing a weighted loss function based
on the NWD metric. Our experimental results demonstrate the effectiveness of the key components in
our method. Additionally, our proposed method outperforms some state-of-the-art methods on LDDB
and StateFarm benchmarks. For future work, we plan to explore the feasibility of other lightweight
optimizations.
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