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Abstract: In the paper, a Leslie-Gower predator-prey system with harvesting and fear effect is
considered. The existence and stability of all possible equilibrium points are analyzed. The bifurcation
dynamic behavior at key equilibrium points is investigated to explore the intrinsic driving mechanisms
of population interaction modes. It is shown that the system undergoes various bifurcations, including
transcritical, saddle-node, Hopf and Bogdanov-Takens bifurcations. The numerical simulation results
show that harvesting and fear effect can seriously affect the dynamic evolution trend and coexistence
mode. Furthermore, it is particularly worth pointing out that harvesting not only drives changes in
population coexistence mode, but also has a certain degree delay. Finally, it is anticipated that these
research results will be beneficial for the vigorous development of predator-prey system.
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1. Introduction

Since mathematician Lotka [1] and Volterra [2] first proposed the first predator-prey system to
explain the relationship between two populations, the predator-prey system have been widely used
by many biologists and mathematicians to describe their dynamic behaviors in populations over time.
Many scholars have identified an increasing number of complex dynamical properties in the predator-
prey system, such as global stability [3], a variety of bifurcation types: degenerate Hopf bifurcation [4],
Bogdanov-Takens bifurcation of codimension 3, which includes cusp type [5], focus type [6], saddle
type [7] and elliptic type [8].

The population growth function and functional response are two important factors in a predator-
prey system. The Leslie-Gower system [9, 10] is an improvement of the Lotka-Volterra predator-prey
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system, which has the general form: ẋ = rx(1 − x
K ) − yP(x),

ẏ = sy(1 − y
hx ),

(1.1)

where P(x) is functional response. Obviously, diverse P(x) have various effects on the prey-predator
system [11–13]. Especially, many scholars have proposed Leslie-type predator-prey system, which
included simplified Holling type IV functional response, i.e., P(x) = mx

a+x2 . Li and Xiao [14] found that
the system (1.1) produces not only Hopf bifurcation but Bogdanov-Takens bifurcation of
codimension 2 as well. Shang and Qiao [15] revealed that there exists degenerate Hopf bifurcation
and a cusp of codimension at least 4 in the system (1.1) with strong Allee effect on prey. However,
generalized Holling type IV functional response i.e., P(x) = mx

a+bx+x2 is more practical, which can be
used to describe the phenomenon of group defence in prey population and inhibition in predator
population. Shan [16] studied the interaction produced by Holling type IV functional response and
strong and weak Allee effects. Meanwhile, the system undergoes degenerate Hopf bifurcation of
codimension 3.

Many experiments [24, 25] have shown that predator do not necessarily affect prey population only
by killing. Sometimes the existence of predator may affect the behavior and psychology of the prey,
which in turn may change the number of prey . However, many scholars have only considered direct
predation from predators, ignoring the fact that the presence of predators themselves can have an effect
on the density of prey. Therefore, it is necessary to discuss the effect of fear brought to the prey by
the predator. Wang et al. [26] came up with a predator-prey system with fear effect. As the fear level
gets higher, the system stabilizes. However, when the level of fear becomes low, the system generates
multiple limit cycles. Since then, many scholars have been influenced by this idea to study predator-
prey system with fear effect [17, 27–36]. Zou [37] showed that the presence of the fear effect changes
the system from a state of chaos to a state of stability. Wang et al. [38] showed that the presence of the
fear effect favors the occurrence of oscillation in the system. Wang et al. [19] studied the properties of
a modified Leslie-Gower system and showed that fear effect enriches the dynamics of the system.

At the same time, people tend to harvest populations of organisms in the predator-prey system for
human needs, such as survival and economic interests. Thus, it is necessary to consider harvesting of
the population in the system. Specifically, we need to capture predators for some specific purposes.
Therefore, the discussion is more relevant for the harvesting of predators. In [18], authors considered
the constant-yield harvesting in predator and showed that the system produces various types of
bifurcation. In [12], authors analyzed a system with the nonlinear Michaelis-Menten type harvesting
of predator.

In this article, we investigate the predator-prey system with the constant-effort harvesting on
predator and fear effect on prey, i.e., ẋ = rx(1− x

K )
1+ay −

αxy
x2+cx+b ,

ẏ = sy(1 − y
hx ) − qmEy.

(1.2)

where q is the catchability co-efficient of the predator; m(0 < m < 1) is the fraction of the stock
available for harvesting; E is the capture effort for harvesting; r and s indicate the intrinsic growth rate
of prey and predator populations, respectively; K indicates the environmental capacity of the prey; h
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indicates the measure of the food quality of the prey for translating into predator births; a represents
the level of fear; α stands for maximum predation rate; b and c are the half-saturation constant and the
functional response constant, respectively.

For simplicity, taking the following transformations:

x =
x
K
, t = rt, y =

αy
rk2 ,

and dropping the bars, then ẋ = x(1−x)
1+ky −

xy
x2+dx+e ,

ẏ = δy(β − y
x ) − λy,

(1.3)

where k = arK2

α
, d = c

K , e =
b

K2 , δ =
sK
αh , β =

αh
rK , λ =

qmE
r are positive constants.

The article is divided into some parts: In the following section, we show the solutions are bounded
and the origin of the system (1.3) is unstable. In Sections 3 and 4, the existence and stability of
equilibria are discussed. In Section 5, various forms of bifurcations of the system (1.3) are studied.
We study transcritical bifurcation, saddle-node bifurcation, Hopf bifurcation and Bogdanov-Takens
bifurcation of codimension 2. In Section 6, the numerical simulation experiments of the system (1.3)
are presented in order to better confirm the correctness of the theoretical derivations and to
demonstrate these dynamical properties. In the end, a short conclusion is stated in the last section.

2. Boundedness of the solutions and stability at the origin

In this section, positive and bounded solutions of the system (1.3) are explored. Also, we explore
the dynamical properties of the system (1.3) at the origin.

Theorem 2.1. The solutions of the system (1.3) are always positive with the initial conditions
(x(0), y(0)) ∈ Ω =

{
(x, y) ∈ R2 | x > 0, y > 0

}
.

Proof. Clearly, the solutions of the system (1.3) can be written in the next form:

x(t) = x(0)exp
{∫ t

0

1 − x(ξ)
1 + ky(ξ)

−
y(ξ)

x(ξ)2 + dx(ξ) + e
dξ

}
,

y(t) = y(0)exp
{∫ t

0
δ(β −

y(ξ)
x(ξ)

) − λdξ
}
.

So due to the initial condition (x(0), y(0)) ∈ Ω =
{
(x, y) ∈ R2 | x > 0, y > 0

}
, all solutions of the

system (1.3) must be positive. □

Theorem 2.2. If λ < δβ, the solutions of the system (1.3) with positive initial values are bounded and
are limited in the positive bounded set

Ω =

{
(x(t), y(t)) ∈ R2

+ | 0 < x(t) < 1, 0 < y(t) < β −
λ

δ

}
.
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Proof. Observing the first equation of the system (1.3), we get

ẋ <
x(1 − x)
1 + ky

.

If x ≥ 1, then there are ẋ ≤ 0. If x < 1, then there are ẋ < x(1 − x), separating variables, we have
x < 1 − 1

C1et+1 , where C1 is a constant. Thus, we get lim
t→+∞

supx(t) ≤ 1.
Observing the second equation of the system (1.3), we get

ẏ < δy(β −
λ

δ
− y).

If y ≥ β − λ
δ
, then there are ẏ ≤ 0. If y < β − λ

δ
, then there are dy

y(β− λδ−y)
< δydt, when λ < δβ, we have

y < β − λ
δ
−

β− λδ
C2eδt+1 , where C2 is a constant. Thus, we get lim

t→+∞
supy(t) ≤ β − λ

δ
.

Therefore, the system (1.3) is bounded and the bounded region is

Ω =

{
(x(t), y(t)) ∈ R2

+ | 0 < x(t) < 1, 0 < y(t) < β −
λ

δ

}
.

□

Theorem 2.3. The origin (0,0) in the system (1.3) is unstable.
Proof. Since the system (1.3) is not defined at the origin, we first introduce a new time variable τ by

dτ =
dt

x(1 + ky)(x2 + dx + e)
.

We get the new system dx
dτ = x2(1 − x)(x2 + dx + e) − x2y(1 + ky),
dy
dτ = (δβ − λ)xy(1 + ky)(x2 + dx + e) − δy2(1 + ky)(x2 + dx + e),

(2.1)

which is topologically equivalent to the system (1.3).
Since the Jacobi matrixs of the system (2.1) at the origin is a null matrix, which means that the origin

is non-hyperbolic, we analyze the stability at the origin by the blow-up method. For the system (2.1), if
we let x = 0, then its second equation becomes dy

dτ = −δey2(1+ ky) < 0, which implies that the y-axis is
an invariant line converging to origin. Making the following transformations x = u, y = uv and τ = t/u.

Then the system (2.1) becomes the following systemu̇ = u(1 − u)(u2 + du + e) − u2v(1 + kuv),
v̇ = v(1 + kuv)(u2 + du + e)(δβ − λ − δv) − v

[
(1 − u)(u2 + du + e) − uv(1 + kuv)

]
.

(2.2)

Bringing u = 0 into the second equation of the system (2.2), we get v = 0 or v = β − λ
δ
. Then we get

two boundary equilibria (0, 0) and (0, β − λ
δ
) from the system (2.2). In addition, the Jacobi matrix of
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the system (2.2) at the two equilibria are

J(0, 0) =
(
e 0
0 e(δβ − λ − 1)

)
,

and

J(0, β −
λ

δ
) =

 e 0
(λ−δβ)[δ(d−e−β)+λ]

δ2
e(λ − δβ − 1)

 .
Clearly, the eigenvalues of this matrix J(0, 0) are e > 0 and e(δβ − λ − 1), which means (0,0) is

unstable. When λ < 1 + δβ, the matrix J(0, β − λ
δ
) has eigenvalues e > 0 and e(λ − δβ − 1) < 0, which

means (0, β − λ
δ
) is a saddle. When λ > 1 + δβ, the matrix J(0, β − λ

δ
) has eigenvalues e > 0 and

e(λ − δβ − 1) > 0, which means (0, β − λ
δ
) is a unstable node. So the origin of the system (1.3) is an

unstable point. □

3. Existence of equilibria

Apparently, the system (1.3) always has a unique boundary equilibrium point E1(1, 0). The
positive equilibria of the system (1.3) satisfy the next equations: 1−x

1+ky =
y

x2+dx+e ,

δ(β − y
x ) − λ = 0.

(3.1)

From the second equation of (3.1), we get y = (β − λ
δ
)x. In order to satisfy the existence of the

positive equilibria, β − λ
δ
> 0 is required to hold. Substituting y = (β − λ

δ
)x into the first equation

of (3.1), we have

x3 +

[
(β −

λ

δ
)2k + d − 1

]
x2 + (β −

λ

δ
− d + e)x − e = 0.

Let

f (x) = x3 +

[
(β −

λ

δ
)2k + d − 1

]
x2 + (β −

λ

δ
− d + e)x − e,

g(x) = 3x2 + 2
[
(β −

λ

δ
)2k + d − 1

]
x + (β −

λ

δ
− d + e),

∆ = B2 − 4AC, A =
[
(β −

λ

δ
)2k + d − 1

]2

− 3(β −
λ

δ
− d + e),

B =
[
(β − λ

δ
)2k + d − 1

]
(β − λ

δ
− d + e) + 9e, C = (β − λ

δ
− d + e)2 + 3e

[
(β − λ

δ
)2k + d − 1

]
.

First we note that f (x) = 0 must have a positive root because f (0) = −e < 0 and
f (1) = (β − λ

δ
)2k + (β − λ

δ
) > 0.

Theorem 3.1. For the number of positive equilibria, we have:
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1) when ∆ > 0, then the system (1.3) has only one positive equilibrium point E∗1 = (x∗1, y
∗
1), where x∗1

is a single positive root.
2) when ∆ = 0,
(i) (β − λ

δ
)2k + d − 1 < 0 and β − λ

δ
− d + e > 0, then the system (1.3) has two positive equilibria

E∗2 = (x∗2, y
∗
2) and E+ = (x+, y+), where x∗2 is a single positive root and x+ is a dual positive root.

(ii) (β− λ
δ
)2k + d − 1 ≥ 0 or β− λ

δ
− d + e = 0 or (β− λ

δ
)2k + d − 1 < 0 and β− λ

δ
− d + e < 0, then the

system (1.3) has only a positive equilibrium point E∗3 = (x∗3, y
∗
3), where x∗3 is a single positive root.

(iii) A = 0 and (β − λ
δ
)2k + d − 1 < 0, then the system (1.3) has a positive equilibrium point

E++ = (x++, y++), where x++ is a triple positive root.
3) when ∆ < 0,
(i) (β − λ

δ
)2k + d − 1 < 0 and β − λ

δ
− d + e > 0, then the system (1.3) has three unequal positive

equilibria E∗4 = (x∗4, y
∗
4), E∗5 = (x∗5, y

∗
5) and E∗6 = (x∗6, y

∗
6), where x∗4,x∗5,x∗6 are all single positive roots and

x∗4 < x∗5 < x∗6.
(ii) (β− λ

δ
)2k + d − 1 ≥ 0 or β− λ

δ
− d + e = 0 or (β− λ

δ
)2k + d − 1 < 0 and β− λ

δ
− d + e < 0, then the

system (1.3) has only a positive equilibrium point E∗7 = (x∗7, y
∗
7), where x∗7 is a single positive root.

Theorem 3.2. For the case of the equilibria in Theorem 3.1, we have g(x∗i ) > 0, where
i = 1, 2, 3, 4, 6, 7. We also have g(x+) = 0, g(x++) = 0 and g(x∗5) < 0.

4. Stability of equilibria

In this section, the stability of the equilibria is discussed.
The Jacobian matrix of the system (1.3) is:

J(x, y) =

1−2x
1+ky +

y(x2−e)
(x2+dx+e)2 −x

[
k(1−x)
(1+ky)2 +

1
x2+dx+e

]
δ y2

x2 δβ − λ − 2δ y
x

 .
Thus, we obtain the next theorem .

4.1. Stability of the equilibrium point E1

Theorem 4.1. The stability of boundary equilibrium point E1(1, 0) is discussed as follows:
1) If λ < δβ, then E1 is a hyperbolic saddle.
2) If λ > δβ, then E1 is a hyperbolic stable node.
3) If λ = δβ, then E1 is a attracting saddle-node. That is, a adequately small domain of E1 is split

into two parts by two dividing lines along the top and bottom of E1 that tend to E1. The left half-plane
is a parabolic sector and the right half-plane is two hyperbolic sectors.
Proof. The Jacobian matrix of E1 is:

JE1 =

(
−1 − 1

1+d+e
0 δβ − λ

)
.

Apparently, JE1 has two eigenvalues µ1 = −1 and µ2 = δβ − λ. Hence, if µ2 = δβ − λ > 0, i.e.,
λ < δβ, then E1 is a hyperbolic saddle; if µ2 = δβ − λ < 0, i.e., λ > δβ, then E1 is a hyperbolic stable
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node; if µ2 = δβ − λ = 0, i.e., λ = δβ, then the two eigenvalues are −1 and 0. In order to investigate
the stability of E1 when λ = δβ, we convert E1 to the origin by (X,Y) = (x − 1, y). Meanwhile, we
expand the system (1.3) near the origin to the third order, then the system (1.3) becomesẊ = −X − 1

1+d+eY − X2 + a11XY + a21X2Y − k2XY2 + P1(X,Y),
Ẏ = −δY2 + δXY2 + Q1(X,Y),

(4.1)

where a11 = k + 1−e
(d+e+1)2 , a21 = k + (d+3)e−1

(d+e+1)3 , P1(X,Y) and Q1(X,Y) are C∞ functions at least of order
fourth in (X,Y).

By the transformation (
X
Y

)
=

(
1 1

1+d+e
0 −1

) (
x
y

)
,

the system (4.1) becomes a standard formẋ = −x − x2 − b02y2 − b11xy − b03y3 − b12xy2 − b21x2y + P2(x, y),
ẏ = δy2 − δxy2 − δ

1+d+ey3 + Q2(x, y),
(4.2)

where b02 =
(1+d+e)(a11+δ)+1

(1+d+e)2 , b11 = a11+
2

1+d+e , b03 =
k2(1+d+e)−δ+a21

(1+d+e)2 , b12 =
k2(1+d+e)−δ+2a21

1+d+e , b21 = a21, P2(x, y)
and Q2(x, y) are C∞ functions at least of order fourth in (x, y).

Introduce a new variable τ through τ = −t, we haveẋ = x + x2 + b02y2 + b11xy + b03y3 + b12xy2 + b21x2y + P3(x, y),
ẏ = −δy2 + δxy2 + δ

1+d+ey3 + Q3(x, y),
(4.3)

where P3(x, y) and Q3(x, y) are C∞ functions at least of order fourth in (x, y). Since the coefficient of
y2 for the second equation of the system (4.3) is −δ < 0, the equilibrium point E1(1, 0) is a attracting
saddle-node from Theorem 7.1 in Chapter 2 in [20], which means a adequately small region of E1 is
split into two parts by two dividing lines along the top and bottom of E1 that tend to E1. The left
half-plane is a parabolic sector and the right half-plane is two hyperbolic sectors. □

4.2. Stability of the internal equilibria

In this section, we dicuss the stability of the internal equilibria by simplifying the Jacobi matrix.
Obviously, we can find that the internal equilibria satisfy the Eq (3.1).

Hence, we have

1 − 2x∗

1 + ky∗
+

y∗(x∗2 − e)
(x∗2 + dx∗ + e)2 =

1 − x∗

1 + ky∗
−

y∗

x∗2 + dx∗ + e
−

x∗

1 + ky∗
+

x∗y∗ (d + 2x∗)(
x∗2 + dx∗ + e

)2

= x∗
[
−

1
1 + ky∗

+
y∗

x∗2 + dx∗ + e
·

d + 2x∗

x∗2 + dx∗ + e

]
= x∗

[
−

1
1 + ky∗

+
1 − x∗

1 + ky∗
·

d + 2x∗

x∗2 + dx∗ + e

]
Mathematical Biosciences and Engineering Volume 20, Issue 10, 18267–18300.
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= x∗
−3x∗2 + (2 − 2d)x∗ + d − e

(1 + ky∗)(x∗2 + dx∗ + e)
,

−x∗
[

k(1 − x∗)
(1 + ky∗)2 +

1
x∗2 + dx∗ + e

]
= −x∗

[
k

1 + ky∗
·

y∗

x∗2 + dx∗ + e
+

1
x∗2 + dx∗ + e

]
= −x∗

1 + 2ky∗

(1 + ky∗)(x∗2 + dx∗ + e)
,

δ
y∗2

x∗2
= δ(β −

λ

δ
)2,

δβ − λ − 2δ
y∗

x∗
= −δ(β −

λ

δ
).

where x∗ and y∗ are the horizontal and vertical coordinates of internal equilibria, respectively.
Then, we obtain the Jacobi matrix at the internal equilibria

JE∗ =

x∗ −3x∗2+(2−2d)x∗+d−e
(1+ky∗)(x∗2+dx∗+e) −x∗ 1+2ky∗

(1+ky∗)(x∗2+dx∗+e)

δ(β − λ
δ
)2 −δ(β − λ

δ
)

 .
So the determinant and trace of this matrix are

Det(JE∗) =
x∗δ(β − λ

δ
)

(1 + ky∗)(x∗2 + dx∗ + e)
g(x∗),

Tr(JE∗) = x∗
−3x∗2 + (2 − 2d)x∗ + d − e

(1 + ky∗)(x∗2 + dx∗ + e)
+ λ − δβ.

4.2.1. Stability of the equilibria E+ and E++

Lemma 1 ( [23]). The model u̇ = v + Mu2 + Nuv + Pv2 + o(|u, v|2),
v̇ = Qu2 + S uv +Wv2 + o(|u, v|2),

(4.4)

is equivalent to the following modelu̇ = v,

v̇ = Qu2 + (S + 2M)uv + o(|u, v|2),
(4.5)

by certain nonsingular transformations in the domain of (0, 0).

Theorem 4.2. If ∆ = 0, (β − λ
δ
)2k + d − 1 < 0 and β − λ

δ
− d + e > 0, the system (1.3) has a positive

equilibrium point E+ = (x+, y+), where x+ is a dual positive root, then:

1) If λ , δβ+x+
3x2
++(2d−2)x++e−d

(1+ky+)(x2
++dx++e) and λ , δβ−δ

[
(x+−1)(−x3

++3ex++de)(1+ky+)2+(x2
++dx++e)2

(x2
+−e)(1+ky+)3(x2

++dx++e)−k(x2
++dx++e)2

]
, E+ is a saddle-node.
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2) If λ = δβ + x+
3x2
++(2d−2)x++e−d

(1+ky+)(x2
++dx++e) , E+ is a cusp. Further, if λ , λ1 and h(λ) , 0, then E+ is a cusp with

codimension 2; if λ = λ1 or h(λ) = 0, then E+ is a cusp with codimension at least 3, where

λ1 = δβ − δ

[
(x+ − 1)(−x3

+ + 3ex+ + de)(1 + ky+)2 + (x2
+ + dx+ + e)2

(x2
+ − e)(1 + ky+)3(x2

+ + dx+ + e) − k(x2
+ + dx+ + e)2

]
,

h(λ) = −
k2x+

δ2(1 + ky+)3λ
2 +

[
k(2βkx+ + 2x+ + 1)
δ(1 + ky+)3 −

x2
+ − e

δ(x2
+ + dx+ + e)

]
λ

−
β2k2x+ + 2βkx+ + βk + 2

(1 + ky+)3 +
β(x2

+ − e)
x2
+ + dx+ + e

+
2(1 − x+)(−x3

+ + 3ex+ + de)
(1 + ky+)(x2

+ + dx+ + e)2
.

Proof. Firstly, we convert the equilibrium point E+ into the origin by the translation
(X,Y) = (x − x+, y − y+), then the system (1.3) becomesẊ = a′10X + a′01Y + a′20X2 + a′11XY + a′02Y2 + P4(X,Y),

Ẏ = b′10X + b′01Y + b′20X2 + b′11XY + b′02Y2 + Q4(X,Y),
(4.6)

where

a′10 = x+
−3x2

+ + (2 − 2d)x+ + d − e
(1 + ky+)(x2

+ + dx+ + e)
, a′01 = −

a′10

β − λ
δ

, a′02 =
k2x+(1 − x+)

(1 + ky+)3 ,

a′11 =
2kx+ − k

(1 + ky+)2 +
x2
+ − e

x2
+ + dx+ + e

, a′20 = −
1

1 + ky+
+

1 − x+
1 + ky+

·
−x3
+ + 3ex+ + de

(x2
+ + dx+ + e)2

,

b′10 = δ(β −
λ

δ
)2, b′01 = λ − δβ, b′11 =

2(βδ − λ)
x+

, b′20 =
−δ(β − λ

δ
)2

x+
, b′02 = −

δ

x+
,

and P4(X,Y), Q4(X,Y) are C∞ functions at least of order third in (X,Y).

Case 1: λ , δβ + x+
3x2
++(2d−2)x++e−d

(1+ky+)(x2
++dx++e) .

Under this condition, the Jacobi matrix of the system (4.6) is as follows

JE+ =

 a′10 −
a′10

β− λδ

−(β − λ
δ
)b′01 b′01

 ,
so the eigenvalues of JE+ are µ1 = 0, µ2 = a′10 + b′01. Next we reduce the system (4.6) to its standard
form by following transformation (

X
Y

)
=

(
a′10 1

δ(β − λ
δ
)2 β − λ

δ

) (
x
y

)
.

The system (4.6) becomes the following formẋ = (a′10 + λ − δβ)x + c′20x2 + c′11xy + c′02y2 + P5(x, y),
ẏ = d′20x2 + d′11xy + d′02y2 + Q5(x, y),

(4.7)

where

c′20 = −
c5δ2a′02 − b′02δ

2c4 + c3δa′10a′11 − b′11a′10δ c2 + ca′210a′20 − b′20a′210

c
(
δc − a′10

) ,
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c′11 = −
2c4δa′02 + c3δa′11 − 2c3δb′02 − c2δb′11 + c2a′10a′11 + 2ca′10a′20 − ca′10b′11 − 2a′10b′20

c
(
δc − a′10

) ,

c′02 = −
c3a′02 + c2a′11 − b′02c2 + ca′20 − b′11c − b′20

c
(
δc − a′10

) ,

d′11 =
2c5δ2a′02 + c4δ2a′11 + c3δa′10a′11 − 2c3δa′10b′02 + 2c2δa′10a′20 − b′11a′10δ c2 − ca′210b′11 − 2b′20a′210

c
(
δc − a′10

) ,

d′20 =
c6δ3a′02 + c4δ2a′10a′11 − c4δ2a′10b′02 + c2δa′210a′20 − c2δa′210b′11 − a′310b′20

c
(
δc − a′10

) ,

d′02 =
c4δa′02 + c3δa′11 + c2δa′20 − c2a′10b′02 − ca′10b′11 − a′10b′20

c
(
δc − a′10

) ,

and c = β − λ
δ
, P5(x, y), Q5(x, y) are C∞ functions at least of order third in (x, y).

We import a new variable τ to the system (4.7) by τ = (a′10 + λ− δβ)t. For formal simplicity, we still
use t instead of τ, we have ẋ = x + e′20x2 + e′11xy + e′02y2 + P6(x, y),

ẏ = f ′20x2 + f ′11xy + f ′02y2 + Q6(x, y),
(4.8)

where e′i j =
c′i j

a′10+λ−δβ
, f ′i j =

d′i j

a′10+λ−δβ
(i + j = 2), P6(x, y), Q6(x, y) are C∞ functions at least of order third

in (x, y). Hence, if the coefficient of y2 is f ′02 , 0 for the second equation of the system (4.8), i.e.,
d′02 , 0, E+ is a saddle-node from Theorem 7.1 in Chapter 2 in [20].

By a simple calculation, we get

d′02 =
δc

δc − a′10

[
−

1 + ck
(1 + ky+)3 +

c(x2
+ − e)

x2
+ + dx+ + e

+
(1 − x+)(−x3

+ + 3ex+ + de)
(1 + ky+)(x2

+ + dx+ + e)2

]
.

That is, if

λ , δβ − δ

[
(x+ − 1)(−x3

+ + 3ex+ + de)(1 + ky+)2 + (x2
+ + dx+ + e)2

k(x2
+ + dx+ + e)2 + (x2

+ − e)(1 + ky+)3(x2
+ + dx+ + e)

]
,

E+ is a saddle-node.
Case 2: λ = δβ + x+

3x2
++(2d−2)x++e−d

(1+ky+)(x2
++dx++e) .

Under this condition, the Jacobi matrix of the system (4.6) is as follows

JE+ =

 a′10 −
a′10

β− λδ

(β − λ
δ
)a′10 −a′10

 ,
so the eigenvalues of JE+ are µ1 = 0, µ2 = 0. Next we reduce the system (4.6) to its standard form by
the following transformation (

X
Y

)
=

(
1 0
β − λ

δ
−1

) (
x
y

)
.
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The system (4.6) becomes the following form againẋ = δy + c20x2 + c11xy + c02y2 + P7(x, y),
ẏ = d20x2 + d11xy + d02y2 + Q7(x, y),

(4.9)

where
c20 = a′02c2 + ca′11 + a′20, c11 = −2ca′02 − a′11, c02 = a′02, d02 = ca′02 − b′02

d11 = 2cb′02 + b′11 − 2a′02c2 − ca′11, d20 = c3a′02 + c2(a′11 − b′02) + c(a′20 − b′11) − b′20,

and c = β − λ
δ
, P7(x, y), Q7(x, y) are C∞ functions at least of order third in (x, y).

We import a new variable τ to the system (4.9) by τ = δt, For formal simplicity, we still use t instead
of τ, we have ẋ = y + e20x2 + e11xy + e02y2 + P8(x, y),

ẏ = f20x2 + f11xy + f02y2 + Q8(x, y),
(4.10)

where ei j =
ci j

δ
, fi j =

di j

δ
(i + j = 3), P8(x, y), Q8(x, y) are C∞ functions at least of order third in (x, y).

Then we use the method of Theorem 7.3 in Chapter 2 in [20] to prove E+ is a cusp. First we make
the next definitions

W(x, y) ≜ e20x2 + e11xy + e02y2 + P8(x, y), T (x, y) ≜ f20x2 + f11xy + f02y2 + Q8(x, y).

If e20 , 0, from y +W(x, y) = 0, we can obtain

y = ϕ(x) = −e20x2 + · · · ,

then we have

φ(x) ≜ T (x, ϕ(x)) = f20x2 + · · · , χ(x) ≜
∂W
∂x

(x, ϕ(x)) +
∂T
∂y

(x, ϕ(x)) = (2e20 + f11)x + · · ·

Hence, k = 2m,m = 1, a2m = f20,N = 1, BN = 2e20 + f11, E+ is a cusp.
From Lemma 1, the system (4.10) is equivalent to the following systemẋ = y,

ẏ = f20x2 + ( f11 + 2e20)xy + Q9(x, y),
(4.11)

where Q9(x, y) are C∞ functions at least of order third in (x, y).
By a simple calculation, we get

f20 =
c
δ

[
c(x2
+ − e)

x2
+ + dx+ + e

−
1 + ck

(1 + ky+)3 +
(1 − x)(−x3

+ + 3ex+ + de)
(1 + ky+)(x2

+ + dx+ + e)2

]
,

f11 = −
c
δ

[
k(ckx+ + 2x+ − 1)

(1 + ky+)3 +
x2
+ − e

x2
+ + dx+ + e

]
,

e20 =
1
δ

[
c(x2
+ − e)

x2
+ + dx+ + e

−
1 + ck

(1 + ky+)3 +
(1 − x)(−x3

+ + 3ex+ + de)
(1 + ky+)(x2

+ + dx+ + e)2

]
.
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Furthermore, if f20 , 0 and f11 + 2e20 , 0, i.e., λ , λ1 and h(λ) , 0, then E+ is a cusp with
codimension 2; if f20 = 0 or f11 +2e20 = 0, i.e., λ = λ1 or h(λ) = 0, then E+ is a cusp with codimension
at least 3, where

λ1 = δβ − δ

[
(x+ − 1)(−x3

+ + 3ex+ + de)(1 + ky+)2 + (x2
+ + dx+ + e)2

(x2
+ − e)(1 + ky+)3(x2

+ + dx+ + e) − k(x2
+ + dx+ + e)2

]
,

h(λ) = −
k2x+

δ2(1 + ky+)3λ
2 +

[
k(2βkx+ + 2x+ + 1)
δ(1 + ky+)3 −

x2
+ − e

δ(x2
+ + dx+ + e)

]
λ

−
β2k2x+ + 2βkx+ + βk + 2

(1 + ky+)3 +
β(x2

+ − e)
x2
+ + dx+ + e

+
2(1 − x+)(−x3

+ + 3ex+ + de)
(1 + ky+)(x2

+ + dx+ + e)2
.

□

The investigation of equilibrium point E++ stability when ∆ = 0, A = 0, (β − λ
δ
)2k + d − 1 < 0 is

similar to the discussion of stability of E+. Imitating the proof of Theorem 4.2, we have the next
theorem.

Theorem 4.3. If ∆ = 0, A = 0, (β − λ
δ
)2k + d − 1 < 0, the system (1.3) has a positive equilibrium point

E++ = (x++, y++), where x++ is a triple positive root, then:
1) If λ , δβ + x++

3x2
+++(2d−2)x+++e−d

(1+ky++)(x2
+++dx+++e)

and λ , δβ − δ
[

(x++−1)(−x3
+++3ex+++de)(1+ky++)2+(x2

+++dx+++e)2

(x2
++−e)(1+ky++)3(x2

+++dx+++e)−k(x2
+++dx+++e)2

]
, E++ is a saddle-node.

2) If λ = δβ+ x++
3x2
+++(2d−2)x+++e−d

(1+ky++)(x2
+++dx+++e) , E++ is a cusp. Further, if λ , λ2 and w(λ) , 0, then E++ is a cusp

with codimension 2; if λ = λ2 or w(λ) = 0, then E++ is a cusp with codimension at least 3, where

λ2 = δβ − δ

[
(x++ − 1)(−x3

++ + 3ex++ + de)(1 + ky++)2 + (x2
++ + dx++ + e)2

(x2
++ − e)(1 + ky++)3(x2

++ + dx++ + e) − k(x2
++ + dx++ + e)2

]
,

w(λ) = −
k2x++

δ2(1 + ky++)3λ
2 +

[
k(2βkx++ + 2x++ + 1)
δ(1 + ky++)3 −

x2
++ − e

δ(x2
++ + dx++ + e)

]
λ

−
β2k2x++ + 2βkx++ + βk + 2

(1 + ky++)3 +
β(x2

++ − e)
x2
++ + dx++ + e

+
2(1 − x++)(−x3

++ + 3ex++ + de)
(1 + ky++)(x2

++ + dx++ + e)2
.

4.2.2. Stability of the equilibrium point E∗i
Suppose the existence conditions of E∗i (i = 1, 2, 3, 4, 5, 6, 7) are satisfied, then we can easily find

that the values of Det(JE∗5
) is always negative by Theorem 3.2. Therefore, E∗5 is a saddle, regardless of

the value of its trace. We can also easily find that the values of Det(JE∗i ) (i = 1, 2, 3, 4, 6, 7) is always
positive by Theorem 3.2. Hence, if Tr(JE∗i ) < 0, then E∗i (i = 1, 2, 3, 4, 6, 7) is a sink; if Tr(JE∗i ) > 0,
then E∗i (i = 1, 2, 3, 4, 6, 7) is a source; if Tr(JE∗i ) = 0, then E∗i (i = 1, 2, 3, 4, 6, 7) is a center.

Summarize the above analysis to the following theorem.

Theorem 4.4. If ∆ < 0, (β − λ
δ
)2k + d − 1 < 0 and β − λ

δ
− d + e > 0, the system (1.3) has three unequal

positive equilibria E∗4 = (x∗4, y
∗
4), E∗5 = (x∗5, y

∗
5) and E∗6 = (x∗6, y

∗
6), where x∗4,x∗5,x∗6 are all single positive

roots and x∗4 < x∗5 < x∗6. Moreover, E∗5 is always a saddle.
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Theorem 4.5. If the existence conditions of E∗i (i = 1, 2, 3, 4, 6, 7) are satisfied, the system (1.3) has a
positive equilibrium point, i.e.E∗i = (x∗i , y

∗
i ), where x∗i is single positive root. Then E∗i may be a sink or

a source or a center.

5. Bifurcation analysis

In order to explore the influence of the harvesting term on the system (1.3), we choose λ as the
bifurcation control parameter. We explore the conditions for codimension one and codimension two
bifurcations in this section, such as transcritical, saddle-node, Hopf and Bogdanov-Takens bifurcation
.

5.1. Transcritical bifurcation

Theorem 5.1. The system (1.3) undergoes a transcritical bifurcation when λ = λTC = βδ.
Proof. If λ = λTC = βδ, the Jacobian matrix at E1 can be written in the following form:

JE1 =

(
−1 − 1

1+d+e
0 0

)
.

Then we check whether the corresponding condition for transcritical bifurcation hold true by
Sotomayor’s theorem. Suppose the eigenvectors of JE1 and JT

E1
with respect to the zero eigenvalue are

V and W, they are respectively as follows

V =
(

v1

v2

)
=

( 1
1+d+e
−1

)
, W =

(
w1

w2

)
=

(
0
1

)
.

By a simple calculation, we have

Fλ(E1; λTC) =
(

0
−y

)
(E1;λTC)

=

(
0
0

)
,

DFλ(E1; λTC)V =
(
0 0
0 −1

) ( 1
1+d+e
−1

)
=

(
0
1

)
,

D2F(E1; λTC)(V,V) =

 ∂2F1
∂x2 v1v1 + 2∂

2F1
∂x∂y v1v2 +

∂2F1
∂y2 v2v2

∂2F2
∂x2 v1v1 + 2∂

2F2
∂x∂y v1v2 +

∂2F2
∂y2 v2v2


(E1;λTC)

=

 −2 k(1+d+e)2+d+2
(1+d+e)3

−2δ

 .
Therefore, we get

WT Fλ(E1; λTC) = 0,

WT [DFλ(E1; λTC)V] = 1 , 0,

WT [D2F(E1; λTC)(V,V)] = −2δ , 0.

Hence, if λ = λTC = βδ, the system (1.3) will experience a transcritical bifurcation. □
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In order to verify the existence of a transcritical bifurcation, the next numerical simulation is given
in Figure 1. From Figure 1, we can find that the system (1.3) undergoes a transcritical bifurcation.
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Figure 1. The process of transcritical bifurcation according to the bifurcation parameter λ.
(a)–(c) show the stability of boundary equilibrium point E1: (a) unstable saddle E1 and locally
asymptotically stable focus E∗1 when ∆ > 0 and Tr(JE∗1

) < 0; (b) attracting saddle-node E1;
(c) globally asymptotically stable node E1.

When k = 0.2, d = 0.05, e = 0.024, δ = 0.3, β = 2, we can directly calculate λTC = 0.6. When the
value of λ is smaller than 0.6, the system (1.3) has two equilibria E∗1 and E1, the internal equilibrium
point E∗1 is locally asymptotically stable and the boundary equilibrium point E1 is a unstable saddle
(see Figure 1(a)). That is to say, the prey and predator populations will eventually coexist in a periodic
oscillation. However, choosing other initial values, they will coexist in E∗1. But when the value of λ is
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equal to 0.6, the internal equilibrium point E∗1 disappears and the boundary equilibrium point E1 is a
saddle-node (see Figure 1(b)). Further, when the value of λ is greater to 0.6, the system (1.3) has only
one boundary equilibrium point E1, which is a globally asymptotically stable node (see Figure 1(c)).
That is to say, the predator population will eventually become extinct.

5.2. Saddle-node bifurcation

From theorem 3.1, we get a saddle-node bifurcation surface:

S N =
{
(k, d, e, δ, β, λ) : β −

λ

δ
> 0,∆ = 0, (β −

λ

δ
)2k + d − 1 < 0, β −

λ

δ
− d + e > 0

}
.

The bifurcation surface indicates that the system (1.3) will occur a saddle-node bifurcation and the
number of positive equilibria ranges from one to three when the parameter λ changes the sign of ∆.

The next theorem will state the correctness of this result.

Theorem 5.2. Under the condition of
1) β − λ

δ
> 0,

2) (β − λ
δ
)2k + d − 1 < 0,

3) β − λ
δ
− d + e > 0,

the system (1.3) undergoes a saddle-node bifurcation when the parameter λ satisfies the condition
λ = λS N . The saddle-node bifurcation parameter threshold λS N is given by ∆ = 0.
Proof. We check whether the corresponding condition for saddle-node bifurcation hold true by
Sotomayor’s theorem again. First, if λ = λS N , the Jacobian matrix at E+ can be written in the
following form:

JE+ =

(
−a12c a12

δc2 −δc

)
,

where c = β − λS N
δ

, a12 = −x+
1+2ky+

(1+ky+)(x2
++dx++e) .

Obviously, one of the eigenvalues of the matrix JE+ is zero . Suppose the eigenvectors of JE+ and
JT

E+ with respect to the zero eigenvalue are V and W , then

V =
(

v1

v2

)
=

(
1
c

)
, W =

(
w1

w2

)
=

(
δc
a12

1

)
.

Therefore, we have

Fλ(E+; λS N) =
(

0
−y

)
(E+;λS N )

=

(
0
−y+

)
,

D2F(E+; λS N)(V,V) =

 ∂2F1
∂x2 v1v1 + 2∂

2F1
∂x∂y v1v2 +

∂2F1
∂y2 v2v2

∂2F2
∂x2 v1v1 + 2∂

2F2
∂x∂y v1v2 +

∂2F2
∂y2 v2v2


(E+;λS N )

,

=

 −2(1+ck)
(1+ky+)3 +

2c(dx3
++3ex2

+−e2)
(x2
++dx++e)3

0

 .
Finally, we get
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WT Fλ(E+; λS N) = −y+ , 0,

WT [D2F(E+; λS N)(V,V)] =
2δc
a12

[
−(1 + ck)
(1 + ky+)3 +

c(dx3
+ + 3ex2

+ − e2)
(x2
+ + dx+ + e)3

]
, 0.

Hence, the system (1.3) experiences a saddle-node bifurcation when the parameter λ satisfies the
condition λ = λS N . □

In order to demonstrate the existence of a saddle-node bifurcation, the next numerical simulation is
given in Figure 2. From Figure 2, we can find that the system (1.3) undergoes a saddle-node bifurcation.
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Figure 2. The process of saddle-node bifurcation according to the bifurcation parameter
λ. (a) unique equilibrium point E∗1; (b) two internal equilibria E+ and E∗2; (c) three internal
equilibria E∗4, E∗5 and E∗6.

When k = 0.2, d = 0.05, e = 0.024, δ = 0.3, β = 2, we can easily work out that λS N = 0.510306079,
which means that the number of internal equilibria of the system (1.3) will change from one to three as
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λ varies around λS N . In Figure 2(a), the system (1.3) has only one internal equilibrium point E∗1 when
λ = 0.52, E∗1 is a unstable focus. In Figure 2(b), the system (1.3) has two internal equilibria E+ and E∗2
when λ = 0.510306079, E+ is a saddle-node and E∗2 is a unstable node. In Figure 2(c), the system (1.3)
has three internal equilibria E∗4, E∗5 and E∗6 when λ = 0.511257, both E∗4 and E∗6 are unstable node, E∗5 is
a saddle, which implies the validity of the Theorem 4.4. In all three cases above, the prey and predator
populations will all have periodic oscillations. But the period of their oscillations is not same.

5.3. Hopf bifurcation

In the preceding analysis, E∗5 is always a saddle whenever it exists and E∗i (i=1,2,3,4,6,7) may be a
sink or a source or a center. Then we only discuss equilibrium point E∗1, because other positive
equilibria E∗i (i=2,3,4,6,7) are similar to E∗1. Considering λ as the Hopf bifurcation parameter, the
Hopf bifurcation parameter threshold is given by Tr(JE∗1

) = 0, i.e. λ = λH. At the same time, it
satisfies Det(JE∗1

)|λ=λH > 0. As λ changes and pass the threshold λH, the stability of E∗1 changes
accordingly. Next we prove this conclusion.

Theorem 5.3. If ∆ > 0, the system (1.3) has only one positive equilibrium point E∗1, where x∗1 is a
single positive root, then the system (1.3) will experience a Hopf bifurcation near E∗1 at λ = λH.
Proof. We have obtained that Det(JE∗1

) > 0 and Tr(JE∗1
) = 0 when λ = λH. Therefore, we only require

to check the correctness of transversality condition for the Hopf bifurcation. That is,

d
dλ

Tr(JE∗1
)

∣∣∣∣∣∣
λ=λH

= 1 +
d

dλ

 x∗1
[
−3x∗21 + (2 − 2d)x∗1 + d − e

]
(1 + ky∗1)(x∗21 + dx∗1 + e)


∣∣∣∣∣∣
λ=λH

, 0

The transversality condition is satisfied by our numerical simulation, which means E∗1 lose its
stability through Hopf bifurcation at λ = λH.

It is necessary to determine the direction and stability of the limit cycle, then first Lyapunov number
is calculated.

Convert E∗1 to the origin by making the transformation u = x − x∗1, v = y − y∗1. Therefore, the
system (1.3) in a region of the origin is as follows

u̇ = α10u + α01v + α11uv + α20u2 + α02v2 + α30u3

+α21u2v + α12uv2 + α03v3 + P10(u, v),
v̇ = β10u + β01v + β11uv + β20u2 + β02v2 + β30u3

+β21u2v + β12uv2 + β03v3 + Q10(u, v),

where

α10 =
x∗1

[
−3x∗21 + (2 − 2d)x∗1 + d − e

]
(1 + ky∗1)(x∗21 + dx∗1 + e)

, α01 = −
x∗1(1 + 2ky∗1)

(1 + ky∗1)(x∗21 + dx∗1 + e)
, α02 =

k2x∗1(1 − x∗1)
(1 + ky∗1)3

α11 =
2kx∗1 − k

(1 + ky∗1)2 +
x∗21 − e

(x∗21 + dx∗1 + e)2
, α20 = −

1
1 + ky∗1

+
1 − x∗1
1 + ky∗1

[
d + 3x∗1

x∗21 + dx∗1 + e
−

x∗1(2x∗1 + d)2

(x∗21 + dx∗1 + e)2

]
,
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α30 =
1 − x∗1
1 + ky∗1

[
−7x∗21 − 5dx∗1 + e − d2

(x∗21 + dx∗1 + e)2
+

x∗1(2x∗1 + d)3

(x∗21 + dx∗1 + e)3

]
, α03 = −

k3x∗1(1 − x∗1)
(1 + ky∗1)4 ,

α21 =
k

(1 + ky∗1)2 +
d + 3x∗1

(x∗21 + dx∗1 + e)2
−

x∗1(d + 2x∗1)2

(x∗21 + dx∗1 + e)3
, α12 = −

k2(2x∗1 − 1)
(1 + ky∗1)3 ,

β10 = δ(β −
λ

δ
)2, β01 = λ − δβ, β11 =

2(βδ − λ)
x∗1

, β20 = −
δ(β − λ

δ
)2

x∗1
,

β02 = −
δ

x∗1
, β30 =

δ(β − λ
δ
)2

x∗21

, β21 =
2(λ − δβ)

x∗21

, β12 =
δ

x∗21

, β03 = 0,

and P10(u, v), Q10(u, v) are C∞ functions at least of order fourth in (u, v).
The first Lyapunov number

l1 =
−3π

2α01Det
3
2

{[
α10β10(α2

11 + α11β02 + α02β11) + α10α01(β2
11 + α20β11 + α11β02)

+ β2
10(α11α02 + 2α02β02) − 2α10β10(β2

02 − α20α02)
− 2α10α01(α2

20 − β20β02) − α2
01(2α20β20 + β11β20)

+(α01β10 − 2α2
10)(β11β02 − α11α20)

]
−(α2

10 + α01β10)
[
3(β10β03 − α01α30) + 2α10(α21 + β12) + (α12β10 − α01β21)

]}
.

From Theorem 1 in Section 4.4 in [23], we have the following conclusion. If l1 > 0, the limit cycle
around E∗1 is unstable and the Hopf bifurcation is subcritical. If l1 < 0, the limit cycle around E∗1 is
stable and E∗1 lose its stability by a supercritical Hopf bifurcation.

Because the formula of the first Lyapunov number l1 is too complicated, we cannot easily determine
its sign. Therefore, the rationality of the theorem will be verified in next simulation from Figure 3. □

Unlike a typical prey-predator system, the system (1.3) can easily produce Hopf bifurcation. When
k = 0.2, d = 0.05, e = 0.024, δ = 0.06931640934, β = 2, then we can easily work out that λH =

0.06931640934, which means that the system (1.3) will produce a stable or unstable limit cycle as
λ varies around λH. Also, the first Lyapunov number l1 = 1269.436132π > 0, i.e. subcritical Hopf
bifurcation occurs. In Figure 3(a), when the value of λ is greater to 0.06931640934, the system (1.3) has
a unstable focus E∗1. As the value of λ becomes smaller and equals 0.06931640934, the unstable focus
becomes a center in Figure 3(c). Further, when the value of λ is smaller than 0.06931640934, the centre
becomes a stable focus and the system (1.3) produces a unstable limit cycle in Figure 3(b). Meanwhile,
in Figure 3(a),(c), the predator and prey end up coexisting in the form of periodic oscillations regardless
of their initial values. In Figure 3(b), choosing different initial values, predator and prey either coexist
at stable focus E∗1 or in the form of periodic oscillations.
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Figure 3. The process of Hopf bifurcation according to the bifurcation parameter λ. (a)
unstable focus E∗1; (b) a unstable periodic orbits around the stable focus E∗1; (c) E∗1 is a
center; (d) partial amplification with (x, y) ∈ [0.02, 0.032] × [0.0235, 0.027] for (c).

5.4. Bogdanov-Takens bifurcation

Above we have discussed the codimension one bifurcations at nonhyperbolic equilibria, and next
we will demonstrate the possibility of Bogdanov-Takens bifurcation of codimension 2 occurring.
From Theorem 4.2, we obtain that E+ is a cusp of codimension 2 under the condition
∆ = 0, (β − λ

δ
)2k + d − 1 < 0, β − λ

δ
− d + e > 0, λ = δβ + x+

3x2
++(2d−2)x++e−d

(1+ky+)(x2
++dx++e) , λ , λ1 and h(λ) , 0.

Similarly, we also get that E++ is a cusp of codimension 2 when some conditions are satisfied from
Theorem 4.3. Next, we will study Bogdanov-Takens bifurcation with parameters λ and k.
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Theorem 5.4. If we choose bifurcation parameters λ and k, then the system (1.3) experiences a
Bogdanov-Takens bifurcation around E+ with changing parameters (λ, k) near (λBT , kBT ) for
∆ = 0, (β − λ

δ
)2k + d − 1 < 0, β − λ

δ
− d + e > 0, λ = δβ + x+

3x2
++(2d−2)x++e−d

(1+ky+)(x2
++dx++e) , λ , λ1 and h(λ) , 0, where

(λBT , kBT ) denotes the bifurcation threshold value i.e.

Det(JE+) |(λBT ,kBT )= 0,Tr(JE+) |(λBT ,kBT )= 0.

Proof. In order to gain the accurate expressions for saddle-node, Hopf and homoclinic bifurcation curve
in a small neighborhood near the Bogdanov-Takens point, we convert the system (1.3) into the standard
form of Bogdanov-Takens bifurcation.

Next, a parameter vector (ε1, ε2) near (0, 0) is introduced in order to give a perturbation to λ and k
near their B-T bifurcation values given by λ = λBT +ε1 and k = kBT +ε2. Substituting the perturbations
into the system (1.3), we have ẋ = x(1−x)

1+(k+ε1)y −
xy

x2+dx+e ,

ẏ = δy(β − y
x ) − (λ + ε2)y.

(5.1)

Let (0, 0) become the bifurcation point by introducing the transformation η1 = x − x+, η2 = y − y+,
we getdη1

dt = r00(ε) + r10(ε)η1 + r01(ε)η2 + r20(ε)η2
1 + r11(ε)η1η2 + r02(ε)η2

2 + P1(η1, η2, ε),
dη2
dt = w00(ε) + w10(ε)η1 + w01(ε)η2 + w20(ε)η2

1 + w11(ε)η1η2 + w02(ε)η2
2 + Q1(η1, η2, ε),

(5.2)

where

r00(ε) =
x+(1 − x+)

1 + (k + ε1)y+
−

x+y+
x2
+ + dx+ + e

, r10(ε) =
1 − 2x+

(k + ε1)y+ + 1
+

1 − x+
1 + ky+

·
x2
+ − e

x2
+ + dx+ + e

,

r01(ε) = −x+

[
(1 − x+)(k + ε1))
(1 + (k + ε1)y+)2 +

1
x2
+ + dx+ + e

]
, r11(ε) =

(2x+ − 1)(k + ε1))[
(1 + (k + ε1)y+)2]2 +

x2
+ − e

(x2
+ + dx+ + e)2

,

r20(ε) = −
1

1 + (k + ε1)y+
+

1 − x+
1 + ky+

[
d + 3x+

x2
+ + dx+ + e

−
x+(d + 2x+)2

(x2
+ + dx+ + e)2

]
,

r02(ε) =
x+(1 − x+)(k + ε1)2[

1 + (k + ε1)y+
]3 , w00(ε) = −ε2y+, w10(ε) = δ(β −

λ

δ
)2, w01(ε) = λ − δβ − ε2,

w11(ε) =
2(βδ)

x+
, w20(ε) = −

δ(β − λ
δ
)2

x+
, w02(ε) = −

δ

x+
,

and P1(η1, η2, ε), Q1(η1, η2, ε) is power series in (η1, η2) with terms ηi
1η

j
2 requiring i + j ≥ 3, their

coefficients depend on ε1 and ε2 smoothly.
In the following, we perform the transformation

X = η1, Y = r10(ε)η1 + r01(ε)η2,

the system (5.2) becomes dX
dt = m00(ε) + Y + m20(ε)X2 + m11(ε)XY + m02(ε)Y2 + P2(X,Y, ε),
dY
dt = n00(ε) + n10(ε)X + n01(ε)Y + n20(ε)X2 + n11(ε)XY + n02(ε)Y2 + Q2(X,Y, ε),

(5.3)
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where

m00(ε) = r00(ε), m11(ε) =
r01(ε)r11(ε) − 2r02(ε)r10(ε)

r01(ε)2 , m02(ε) =
r02(ε)

(r01(ε))2 ,

m20(ε) =
r01(ε)2r20(ε) − r11(ε)r10(ε)r01(ε) + r02(ε)r10(ε)2

r01(ε)2 , n00(ε) = r00(ε)r10(ε) + w00(ε)r01(ε),

n01(ε) = r10(ε) + w01(ε), n10(ε) = w10(ε)r01(ε) − w01(ε)r10(ε),

n02(ε) =
w02(ε)r01(ε) + r02(ε)r10(ε)

r01(ε)2 ,

n11(ε) =
r01(ε)2w11(ε) + r11(ε)r10(ε)r01(ε) − 2r01(ε)r10(ε)w02(ε) − 2r02(ε)r10(ε)2

r01(ε)2 ,

n20(ε) =
r01(ε)3w20(ε) − r01(ε)r10(ε)2r11(ε) + r01(ε)r10(ε)2w02(ε) + r02(ε)r10(ε)3

r01(ε)2 + r10(ε)r20(ε)

− r10(ε)w11(ε),

and P2(X,Y, ε), Q2(X,Y, ε) is power series in (X,Y) with terms XiY j requiring i + j ≥ 3, their
coefficients depend on ε1 and ε2 smoothly.

Then introducing the next C∞ change of coordinates in a small domain of (0, 0):

z1 = X, z2 = m00(ε) + Y + m20(ε)X2 + m11(ε)XY + m02(ε)Y2 + P2(X,Y, ε),

the system (5.3) can be written asdz1
dt = z2,

dz2
dt = g00(ε) + g10(ε)z1 + g01(ε)z2 + g20(ε)z2

1 + g11(ε)z1z2 + g02(ε)z2
2 + Q3(z1, z2, ε),

(5.4)

where

g00(ε) = n00(ε) − m00(ε)n01(ε) + m00(ε)2n02(ε) − 2m00(ε)m02(ε)n00(ε) + · · · ,
g10(ε) = n10(ε) + m11(ε)n00(ε) − m00(ε)n11(ε) − 2m00(ε)m02(ε)n10(ε) + · · · ,
g01(ε) = n01(ε) + 2m02(ε)n00(ε) − 2m00(ε)n02(ε) − m00(ε)m11(ε) − 4m00(ε)m02(ε)n01(ε) + · · · ,
g20(ε) = n20(ε) − m20(ε)n01(ε) + m11(ε)n10(ε) − 2m02(ε)m20(ε)n00(ε) + 2m00(ε)m20(ε)n02(ε)

− 2m00(ε)m02(ε)n20(ε) + · · · ,
g11(ε) = n11(ε) + 2m20(ε) + 2m02(ε)n10(ε) − 2m02(ε)m11(ε)n00(ε) + 2m00(ε)m11(ε)n02(ε)+

m00(ε)m11(ε)2 − 4m00(ε)m02(ε)n11(ε) + · · · ,
g02(ε) = n02(ε) + m11(ε) + 2m02(ε)n01(ε) + · · · ,

and Q3(z1, z2, ε) is power series in (z1, z2) with terms zi
1z j

2 requiring i + j ≥ 3, their coefficients depend
on ε1 and ε2 smoothly.

Using a new variable τ by dt = (1 − g02(ε)z1)dτ, then dz1
dτ = z2(1 − g02(ε)z1),
dz2
dτ = (1 − g02(ε)z1)

[
g00(ε) + g10(ε)z1 + g01(ε)z2 + g20(ε)z2

1 + g11(ε)z1z2 + g02(ε)z2
2 + Q3(z1, z2, ε)

]
.

(5.5)
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Let
v1 = z1, v2 = z2(1 − g02(ε)z1),

then the system (5.5) can be rewritten asdv1
dτ = v2,
dv2
dτ = h00(ε) + h10(ε)v1 + h01(ε)v2 + h20(ε)v2

1 + h11(ε)v1v2 + Q4(v1, v2, ε),
(5.6)

where

h00(ε) = g00(ε), h01(ε) = g01(ε), h10(ε) = g10(ε) − 2g00(ε)g02(ε),
h11(ε) = g11(ε) − g01(ε)g02(ε), h20(ε) = g20(ε) + g00(ε)g02(ε)2 − 2g02(ε)g10(ε),

and Q4(v1, v2, ε) is a power series in (v1, v2) with terms v1
iv2

j requiring i + j ≥ 3, their coefficients
depend on ε1 and ε2 smoothly.

We note that h20(ε) is a very complex number, so it is difficult to discern the sign of h20(ε) when ε1

and ε2 are sufficiently small. Therefore, in order for the next transformations to make sense, we must
go on to discuss the next two cases.

Case 1: For sufficiently small ε1 and ε2, if h20(ε) > 0, then we use the next transformation:

q1 = v1, q2 =
v2

√
h20(ε)

, T =
√

h20(ε)τ.

We get dq1
dT = q2,
dq2
dT = I00(ε) + I10(ε)q1 + I01(ε)q2 + q2

1 + I11(ε)q1q2 + Q5(q1, q2, ε),
(5.7)

where
I00(ε) =

h00(ε)
h20(ε)

, I10(ε) =
h10(ε)
h20(ε)

, I01(ε) =
h01(ε)
√

h20(ε)
, I11(ε) =

h11(ε)
√

h20(ε)
,

and Q5(q1, q2, ε) is a power series in (q1, q2) with terms q1
iq2

j requiring i + j ≥ 3, their coefficients
depend on ε1 and ε2 smoothly.

Let
s1 = q1 +

I10(ε)
2
, s2 = q2,

then  ds1
dT = s2,
ds2
dT = J00(ε) + J01(ε)s2 + s2

1 + J11(ε)s1s2 + Q6(s1, s2, ε),
(5.8)

where
J00(ε) = I00(ε) −

1
4

I2
10(ε), J01(ε) = I01(ε) −

1
2

I10(ε)I11(ε), J11(ε) = I11(ε),

and Q6(s1, s2, ε) is a power series in (s1, s2) with terms si
1s j

2 requiring i+ j ≥ 3, their coefficients depend
on ε1 and ε2 smoothly.
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Assume that h11(ε) , 0, then J11(ε) = I11(ε) = h11(ε)
√

h20(ε)
, 0, next through the next transformation:

X = J2
11(ε)s1, Y = J3

11(ε)s2, t =
1

J11(ε)
T,

then  dX
dt = Y,
dY
dt = ρ1(ε) + ρ2(ε)Y + X2 + XY + Q7(X,Y, ε),

(5.9)

where

ρ1(ε) = J00(ε)J11(ε)4, ρ2(ε) = J01(ε)J11(ε),

and Q7(X,Y, ε) is a power series in (X,Y) with terms XiY j requiring i + j ≥ 3, their coefficients depend
on ε1 and ε2 smoothly.

Case 2: For sufficiently small ε1 and ε2, if h20(ε) < 0, then we use the next transformation:

q′1 = v1, q′2 =
v2

√
−h20(ε)

, T ′ =
√
−h20(ε)τ.

We get 
dq′1
dT ′ = q′2,
dq′2
dT ′ = I′00(ε) + I′10(ε)q′1 + I′01(ε)q′2 + q′1

2 + I′11(ε)q′1q′2 + Q′5(q′1, q
′
2, ε),

(5.7′)

where

I′00(ε) = −
h00(ε)
h20(ε)

, I′10(ε) = −
h10(ε)
h20(ε)

, I′01(ε) =
h01(ε)
√
−h20(ε)

, I′11(ε) =
h11(ε)
√
−h20(ε)

,

and Q′5(q′1, q
′
2, ε) is a power series in (q′1, q

′
2) with terms q′1

iq′2
j requiring i + j ≥ 3, their coefficients

depend on ε1 and ε2 smoothly.

Let

s′1 = q′1 −
I′10(ε)

2
, s′2 = q′2,

we have 
ds′1
dT ′ = s′2,
ds′2
dT ′ = J′00(ε) + J′01(ε)s′2 + s′1

2 + J′11(ε)s′1s′2 + Q′6(s′1, s
′
2, ε),

(5.8′)

where
J′00(ε) = I′00(ε) −

1
4

I′10(ε)2, J′01(ε) = I′01(ε) −
1
2

I′10(ε)I′11(ε), J′11(ε) = I′11(ε),

and Q6(s′1, s
′
2, ε) is a power series in (s′1, s

′
2) with terms s′1

is′2
j requiring i + j ≥ 3, their coefficients

depend on ε1 and ε2 smoothly.
Suppose that h11(ε) , 0, then J′11(ε) = I′11(ε) = h11(ε)

√
−h20(ε)

, 0, next we use the next transformation:

X′ = J′11(ε)2s′1, Y ′ = J′11(ε)2s′2, t′ =
1

J′11(ε)
T ′,
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we have  dX′
dt′ = Y ′,
dY′
dt′ = ρ

′
1(ε) + ρ′2(ε)Y ′ + X′2 + X′Y ′ + Q′7(X′,Y ′, ε),

(5.9′)

where

ρ′1(ε) = J′00(ε)J′11(ε)4, ρ′2(ε) = J′01(ε)J′11(ε),

and Q′7(X′,Y ′, ε) is a power series in (X′,Y ′) with terms X′iY ′ j requiring i + j ≥ 3, their coefficients
depend on ε1 and ε2 smoothly.

To reduce the number of cases to be considered, we retain ρ1(ε) and ρ2(ε) to stand for ρ′1(ε) and ρ′2(ε)
in (5.9′). If the matrix

∣∣∣∣∂(ρ1,ρ2)
∂(ε1,ε2)

∣∣∣∣ is nonsingular, then transformation is a homeomorphism in a adequately
small domain of the (0, 0). At the same time, under the above condition, ρ1, ρ2 are two independent
variables. From the conclusions in [21, 22] and [23], it is obtained that B-T bifurcation is produced
when ε = (ε1, ε2) is located at a fully small domain of the (0,0). Therefore, the local formulas near the
origin of the bifurcation curves can be written as (“+” denotes h20(ε) > 0 and “-” denotes h20(ε) < 0):
1) The saddle-node bifurcation curve can be represented as

S N = {(ε1, ε2) : ρ1(ε1, ε2) = 0, ρ2(ε1, ε2) , 0};
2) The Hopf bifurcation curve can be represented as

H =
{
(ε1, ε2) : ρ2(ε1, ε2) = ±

√
−ρ1(ε1, ε2), ρ1(ε1, ε2) < 0

}
;

3) The homoclinic bifurcation curve can be represented as
HL =

{
(ε1, ε2) : ρ2(ε1, ε2) = ±5

7

√
−ρ1(ε1, ε2), ρ1(ε1, ε2) < 0

}
.

In order to study how the parameters k and λ synergistically affect the dynamic behavior of the
system (1.3), the numerically simulation of B-T bifurcation with d = 0.05, e = 0.02, β = 0.7, δ =
2.047273228 will be carried out in Figure 4. By a simple calculation, we obtain kBT = 0.25, λBT =

0.8362958526. In Figure 4(a), the system (1.3) has a cusp of codimension 2 and a unstable foucus
when (ε1, ε2) = (0, 0). Then as ε1, ε2 varies, the system (1.3) changes from having only one internal
equilibrium point to producing three internal equilibria. In Figure 4(b), the system (1.3) has only
one internal equilibrium point E∗2 when (ε1, ε2) = (0.01169, 0.0001). In Figure 4(c), the system (1.3)
produces two internal equilibria near E+ when (ε1, ε2) = (0.01167, 0.00077031), one of which is the
saddle E∗5 and one of which is the unstable focus E∗6. In Figure 4(d), the system (1.3) produces a
Hopf bifurcation, which causes the focus E∗6 to become stable and produces an unstable limit cycle.
In Figure 4(e), the unstable limit cycle gets bigger and goes through the saddle E∗5 gradually and
converts to an unstable homoclinic orbit finally when (ε1, ε2) = (0.01169, 0.0007755). In Figure 4(f),
the homoclinic orbit disappears and there exists an stable focus E∗6 and a saddle E∗5 when (ε1, ε2) =
(0.01169, 0.005). Meanwhile, in Figure 4(a)–(c), both the predator and prey end up coexisting in the
form of periodic oscillations regardless of their initial values. In Figure 4(d)–(f), choosing different
initial values, predator and prey either coexist at stable focus or in the form of periodic oscillations.

In the numerical simulation from Figure 4, we find that the fear effect and harvesting has a crucial
role in influencing the dynamical properties of the system. Due to fear effect and harvesting, the system
(1.3) undergoes multiple bifurcations and changes in stability near Bogdanov-Takens point.

In particular, we find that when the system (1.3) has three internal equilibriua E∗4, E
∗
5, E

∗
6 and at least

one of E∗4 and E∗6 is locally stable, then the existence of a homoclinic bifurcation can be inferred, since
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Figure 4. Phase portraits of the system (5.1). (a) A cusp with codimension 2 when (ε1, ε2) =
(0, 0). (b) One positive equilibrium point E∗2 when (ε1, ε2) = (0.01169, 0.0001). (c) There
exists a saddle and an unstable focus when (ε1, ε2) = (0.01167, 0.00077031). (d) There
exists a stable focus surrounded by an unstable limit cycle and a saddle when (ε1, ε2) =
(0.01169, 0.0007751). (e) There exists a stable focus surrounded by an unstable homoclinic
orbit and a saddle when (ε1, ε2) = (0.01169, 0.0007755). (f) There exists a saddle and a
stable focus when (ε1, ε2) = (0.01169, 0.005).

Mathematical Biosciences and Engineering Volume 20, Issue 10, 18267–18300.



18292

E∗5 is a saddle. Therefore, the system (1.3) must satisfy the following conditions in order to ensure

that homoclinic bifurcation occurs: λ < δβ + x∗4
3x∗24 +(2d−2)x∗4+e−d
(1+ky∗4)(x∗24 +dx∗4+e) or λ < δβ + x∗6

3x∗26 +(2d−2)x∗6+e−d
(1+ky∗6)(x∗26 +dx∗6+e) . In order

to verify the rationality of the conclusion, corresponding numerical simulation is shown in Figure 5.
From Figure 5, we can find that the system (1.3) undergoes a homoclinic bifurcation.
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Figure 5. The process of homoclinic bifurcation according to the bifurcation parameter λ.
(a) unstable limit cycle around the stable focus E∗4 and E∗5 is a saddle ,E∗6 is a stable focus; (b)
a stable focus E∗4 surrounded by a homoclinic orbit colliding with the saddle E∗5 and E∗6 is a
stable focus; (c) homoclinic orbit disappeared and E∗5 is a saddle, E∗4 and E∗6 are stable focus.

6. Simulation analysis and results

In order to visualize the effect of constant-effort harvesting on predator in the system (1.3), we
explore the dynamical phenomenons of the system (1.3) with different harvesting values through
numerical simulations.

Mathematical Biosciences and Engineering Volume 20, Issue 10, 18267–18300.



18293

We fix the following parameters for convenience:

k = 0.2, d = 0.05, e = 0.024, δ = 0.3, β = 2, (6.1)

and assume that initial values for prey and predator densities were (x(0), y(0)) = (0.1, 0.18).
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Figure 6. Different dynamical properties of E+ according to the parameter λ. (a),(b) show
the phase portraits of system (1.3): (a) E+ is a saddle-node, E∗2 is a unstable node and E1 is
a saddle; (b) E+ is a cusp of codimension 2, E∗2 is a stable focus and E1 is a saddle. (c),(d)
show the changes of prey and predator populations densities over time.

In order to further illustrate Theorems 4.2 and 4.3, we change the values of some parameters in (6.1)
to get better simulation results. Different values of λ will affect the dynamical properties of E+, which
may be either a saddle-node or a cusp. In Figure 6(a), the system (1.3) has two internal equilibria E+
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and E∗2, E+ is a saddle-node and E∗2 is a unstable node. That is to say, the prey and predator populations
will have periodic oscillation. In Figure 6(c), the form of the trajectory diagram better shows the
periodic oscillation. In Figure 6(b), the system (1.3) has two internal equilibria E+ and E∗2, E+ is a cusp
of codimension 2 and E∗2 is a stable focus. That is to say, the prey and predator populations will coexist
in E∗2. In Figure 6(d), the form of the trajectory diagram better shows their coexistence.
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Figure 7. Different dynamical properties of E++ according to the parameter λ. (a),(b) show
the phase portraits of system (1.3): (a) E1 is a saddle, and E++ is a saddle-node; (b) E++ is
a cusp of codimension 2, and E1 is a saddle. (c),(d) show the changes of prey and predator
populations densities over time.

In Figure 7(a), the system (1.3) has only one internal equilibrium point E++, E++ is a saddle-node.
That is to say, the prey and predator populations will have periodic oscillation. In Figure 7(b), the
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system (1.3) has only internal equilibrium point E++, E++ is a cusp of codimension 2. That is to say,
the prey and predator populations will have periodic oscillation after a certain time. In Figure 7(c),(d),
the form of the trajectory diagram better shows the periodic oscillation. Moreover, we can find that
although both Figure 7(c),(d) reach coexistence in the form of periodic oscillation, their periods are
different. In Figure 7(d), the increase in the number of codimension makes their periods longer and
amplitudes smaller, respectively.

Next we will explore more visually the impact of harvesting on the system (1.3). In Figure 8(a), we
can see that two populations eventually converge to the internal equilibrium point
E∗1(0.012168, 0.024337) due to the absence of harvesting i.e. λ = 0. In Figure 8(b), the two
populations still coexist in E∗1(0.02511, 0.02511) when λ = 0.3. In Figure 8(c), the two populations
still coexist in E∗1(0.027533, 0.025287) when λ = 0.3244725. Comparing the above three charts
Figure 8(a)–(c), we can find that the densities of predator and prey reaching coexistence respectively
increases with the increase of λ and the value of coexistence is smaller than the initial value. As the
harvesting increases, the system (1.3) will generate multiple stability shifts. As λ increases to 0.52,
the system (1.3) loses stability and the stable focus becomes an unstable focus. That is to say, two
populations coexist in the form of periodic oscillation when λ = 0.52 (see Figure 8(d)). As λ increases
to 0.52223, the system (1.3) is stabilized again and the unstable focus becomes an stable focus. In
Figure 8(e), when λ = 0.52223, harvesting has a delayed effect on population densities, which means
that the influence of harvesting for the prey and predator populations will not be evident from the
outset. That is to say, two populations will eventually coexist, although they will coexist in a periodic
oscillation for a long time in the beginning. As λ slowly increases, the system (1.3) begins to stabilize
and the periodic oscillation of the two populations slowly disappears. Because the stable focus
becomes a stable node, the two populations will coexist and periodic oscillation have disappeared
when λ = 0.58 (see Figure 8(f)). In Figure 8(g), when λ = 0.6, predator and prey populations
gradually converge to the boundary equilibrium point E1(1, 0), but they don’t exactly overlap. That is
to say, the predator is close to the state of extinction. In Figure 8(h), when λ = 0.7, predator
population will become extinct and prey population will reach its peak in a very short period of time.
Comparing the above four charts Figure 8(e)–(h), we can find that the densities of coexistence
gradually approach E1(1, 0) as λ increases. Further, we can also find that the density of predator
reaching coexistence decreases with the increase of λ. However, the change for density of prey
is opposite.

7. Conclusions

Many articles have demonstrated fear effect or harvesting can influence the dynamic behaviors of
predator-prey system. However, the joint effects of fear effect and harvesting in the predator-prey
system are rarely discussed by researchers. Hence, we investigated the dynamics of a predator-prey
system where prey is in possess of fear effect and predator is provided with constant-effort harvesting.
Qualitative analysis exposes that predator harvesting term has a crucial role in determining the
dynamic behaviors of the system (1.3). Firstly, the system (1.3) at the beginning is reduced to an
equivalent system with only six parameters through a suitable transformation. Secondly, we see that
the system (1.3) has bounded solutions when the harvesting satisfies certain conditions and the origin
is always unstable. Then, the parameter λ standing for harvesting can influence the stability and
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Figure 8. (a)–(h) show the trajectory diagram of the system (1.3) with (6.1).
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number of equilibria. Also, we get that the system (1.3) always possesses a boundary equilibrium
point, which may be a stable node, a saddle or a repelling saddle-node for different λ. The
system (1.3) owns positive equilibria only when the boundary equilibrium is hyperbolic saddle. For
positive equilibria, the sign of determinant of their Jacobian matrixs is easy to identify. Therefore,
there are a saddle-node or a cusp with codimension 2 choosing different parameters values.
Additionally, a cusp with codimension at least 3 also exists. Furthermore, other internal equilibria
may be saddle, sink, source or center. Meanwhile, we use Sotomayor’s theorem to prove the existence
of saddle-node and transcritical bifurcation. In particular, since the determinant of the jacobian matrix
is always positive for most of the equilibria, the system (1.3) is prone to produce Hopf bifurcation.
Also, we computed the first Lyapunov number to investigate whether the limit cycle generated by the
Hopf bifurcation is stable. Next, we chose k and λ as bifurcation parameters and proved that the
system (1.3) went through Bogdanov-Takens bifurcation with codimension 2 by showing the standard
unfolding around the cusp. At the same time, we give the conditions under which the system (1.3)
undergoes a homoclinic bifurcation when there are three internal equilibria in the system (1.3).

In the numerical simulation, we fixed a series of parameters and varied the value of λ to observe
the effect of the harvesting on the two populations. If harvesting exceed a critical threshold, predator
will eventually go extinct. When the harvesting is less than the critical threshold and slowly increases,
the equilibrium point of the system (1.3) will lose stability and the population will undergo periodic
oscillations. Then, this equilibrium point regained stability again. In addition, the system (1.3) is
highly susceptible to periodic oscillation.

The harvesting term in the system (1.3) is biologically important, affecting the number and stability
of equilibria and the generation of various bifurcations. When the harvesting in predators is too great,
i.e. λ > δβ, the predator will quickly become extinct and the prey will reach its peak. In reality, we
need to make measures to control the size of the harvesting to ensure that both species do not become
extinct. Also, selecting different harvesting sizes will lead to coexistence or periodic oscillation in the
two populations, which will help protect the survival of predator. Therefore, policy makers should
develop optimal harvesting programs to achieve ecologically sustainable development. This article
will provide some help on how predator harvesting affects the density of two populations.

In the next research work, since neither prey nor predator will remain in a fixed space due to
various reasons such as food replenishment, mate choice, and population migration, it will be
meaningful to investigate how fear effect for prey and predator harvesting together affect its spatial
dynamic distribution [39–41]. In addition, we can go on to explore the system (1.3) will have a
Bogdanov-Takens bifurcation of codimension 3.
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