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Obsessive-compulsive disorder (OCD) is a common mental disease, which can 
exist as a separate disease or become one of the symptoms of other mental 
diseases. With the development of society, statistically, the incidence rate of 
obsessive-compulsive disorder has been increasing year by year. At present, 
in the diagnosis and treatment of OCD, The clinical performance of patients 
measured by scales is no longer the only quantitative indicator. Clinical workers 
and researchers are committed to using neuroimaging to explore the relationship 
between changes in patient neurological function and obsessive-compulsive 
disorder. Through machine learning and artificial learning, medical information 
in neuroimaging can be  better displayed. In this article, we  discuss recent 
advancements in artificial intelligence related to neuroimaging in the context of 
Obsessive-Compulsive Disorder.
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1. Introduction

1.1. The current situation of obsessive-compulsive disorder

1.1.1. Epidemiology of obsessive-compulsive disorder
Obsessive-Compulsive Disorder (OCD) is a severe mental disorder characterized primarily 

by frequent, uncontrollable obsessive thoughts and compulsive behaviors. These obsessive 
thoughts are often referred to as obsessions, while the corresponding compulsive behaviors are 
seen as coping mechanisms aimed at alleviating the distress caused by these thoughts. These 
obsessions and compulsions can significantly disrupt a patient’s daily life, affecting their social 
interactions, academic performance, work, and family life (Fontenelle et al., 2006). The exact 
pathogenesis of obsessive-compulsive disorder (OCD) remains incompletely understood, but 
research suggests that it involves complex neurobiological and genetic factors. Many studies 
emphasize the role of imbalances in neurotransmitters such as glutamate, serotonin, and 
dopamine in the onset of OCD. Additionally, environmental factors, life events, and cognitive 
factors may also play a role in the development of OCD. OCD is a global issue, affecting a 
substantial portion of the population. According to statistical data, the prevalence of OCD 
worldwide is estimated to be around 2–3%, with no significant differences observed between 
different countries and regions (Robbins et al., 2019). The onset of OCD typically occurs in 
adolescence to early adulthood, although cases with later onset are also reported. The ratio of 
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males to females affected by OCD is roughly equal (Ruscio et al., 
2010). Obsessive-compulsive disorder (OCD) significantly impacts 
the quality of life for those affected. Many patients report substantial 
distress and suffering due to their OCD symptoms, which can even 
lead to complications such as depression and anxiety. Because of the 
recurrent and long-lasting nature of the symptoms, patients often feel 
fatigued and helpless. In severe cases, OCD can prevent individuals 
from engaging in normal social activities and may even result in a loss 
of social functioning (Bloch et al., 2008). The diagnosis of obsessive-
compulsive disorder (OCD) is typically achieved through clinical 
assessment and psychological testing. In recent years, neuroimaging 
and related fields of artificial intelligence have also shown promising 
results in diagnosing OCD. The World Health Organization (WHO) 
and the Diagnostic and Statistical Manual of Mental Disorders (DSM) 
provide criteria for diagnosing OCD. Clinicians often determine the 
diagnosis by inquiring about the patient’s symptoms, family history, 
and life events. While there is currently no definitive cure for OCD, 
there are multiple treatment options available to help alleviate 
symptoms and improve the quality of life for patients. Cognitive 
Behavioral Therapy (CBT) is considered the first-line treatment for 
OCD. CBT works by helping patients recognize and modify negative 
thought patterns and behavioral patterns to reduce OCD symptoms. 
For patients with more severe symptoms, medication therapy may 
be necessary. Commonly used medications include Selective Serotonin 
Reuptake Inhibitors (SSRIs) and Tricyclic Antidepressants (TCAs). In 
some cases, a combination of psychotherapy and medication therapy 
might yield better treatment outcomes (Frare et al., 2004).

In summary, obsessive-compulsive disorder (OCD) is a common 
and severe mental disorder that affects millions of people worldwide. 
While our understanding of its pathogenesis remains incomplete, 
factors such as neurobiology, genetics, environmental influences, and 
cognitive factors may all play a role in its development. Although there 
is currently no definitive cure, approaches like cognitive-behavioral 
therapy and medication therapy can help patients alleviate symptoms 
and improve their quality of life.

1.1.2. Diagnosis and evaluation of 
obsessive-compulsive disorder

Due to the prevalence of OCD and its significant impact on patients’ 
social functioning and quality of life, a clear diagnosis is particularly 
important. The diagnosis of OCD is primarily conducted through 
neuroimaging, clinical assessment, and self-report symptom scales. The 
diagnostic criteria for OCD are mainly based on internationally 
recognized classification systems for mental disorders, namely the 
Diagnostic and Statistical Manual of Mental Disorders (DSM) and the 
International Classification of Diseases (ICD) by the World Health 
Organization. In DSM-5, the criteria for diagnosing OCD require that the 
patient must meet the following conditions: (A) Presence of obsessions, 
compulsions, or both. (B) Obsessions or compulsions are time-consuming 
or cause significant distress with clinical significance or result in 
impairment in social, occupational, or other important areas of 
functioning. (C) Obsessive-compulsive symptoms are not attributable to 
the physiological effects of a substance or another medical condition. (D) 
The disorder is not better explained by another mental disorder. 
According to the ICD-11 (draft): (1) The thoughts or impulses must 
be the patient’s own. (2) At least one thought or action must be resisted 
futilely by the patient, even though they may no longer resist other 
symptoms. (3) The idea of carrying out the action itself should 

be unpleasant. (4) Thoughts, images, or impulses must recur repeatedly 
and be unpleasant. These criteria serve as essential guidelines for clinicians 
to diagnose OCD accurately.

Symptom self-assessment scales are tools widely used in the 
diagnosis of obsessive-compulsive disorder (OCD). Common 
diagnostic tools include the Yale-Brown Obsessive-Compulsive Scale 
(Y-BOCS) and the Obsessive-Compulsive Inventory-Revised 
(OCI-R) (American Psychiatric Association, 2013), among others. 
The most commonly used one is the Yale-Brown Obsessive-
Compulsive Scale. The Yale-Brown Obsessive-Compulsive Scale 
(Goodman et al., 1989) is a standardized clinician-rated assessment 
scale widely employed in cognitive, behavioral, and pharmacological 
treatment trials. It consists of a series of questions covering the 
frequency, severity, and interference level of various OCD symptoms. 
Patients rate each question based on their own experiences, helping 
clinicians understand the severity of their OCD symptoms. Other 
scales include the Maudsley Obsessional-Compulsive Inventory 
(MOCI), Zung-Ferris Obsessive-Compulsive Symptom Scale 
(ZF-OCS) (Foa et  al., 1998), and more. Despite having clear 
diagnostic criteria, diagnosing OCD remains a complex process. Due 
to the diversity of symptoms and presentations among patients, as 
well as potential overlap with other mental disorders, a comprehensive 
assessment by experienced physicians and psychologists is necessary. 
The development of neuroimaging techniques has provided new 
avenues for the diagnosis of OCD, but their application requires 
further research and validation. The combination of clinical 
assessments, symptom self-assessment scales, and neuroimaging 
examinations can lead to a more accurate diagnosis of OCD and 
provide a basis for individualized treatment plans for patients.

1.1.3. Treatment and prognosis of 
obsessive-compulsive disorder

An increasing body of evidence suggests that untreated illnesses 
with longer durations lead to poorer outcomes and prognosis 
(Fineberg et al., 2019). Therefore, it is crucial for individuals with 
obsessive-compulsive disorder (OCD) to receive appropriate 
treatment promptly in order to alleviate suffering and 
improve functioning.

1.1.3.1. Medication treatment for OCD
Medication treatment for OCD primarily includes 

antidepressants, antipsychotic drugs, and antiepileptic medications. 
As a first-line treatment, the long-term use of Selective Serotonin 
Reuptake Inhibitors (SSRIs) is the most effective. SSRIs such as 
sertraline, fluoxetine, fluvoxamine, paroxetine, and escitalopram have 
demonstrated high response rates and positive long-term outcomes 
(Kaplan and Hollander, 2003). Research has shown that SSRIs can 
provide significant benefits as early as 2 weeks into treatment (Issari 
et  al., 2016), and lower doses (e.g., escitalopram) can effectively 
prevent relapse (Fineberg et al., 2007). Clomipramine is a tricyclic 
antidepressant (TCA) that falls between SSRIs and serotonin-
norepinephrine reuptake inhibitors (SNRIs) and has a unique 
anti-OCD effect (Bontempo et  al., 2012). It was the first drug 
approved for OCD treatment. While clomipramine is effective in 
treating OCD and intravenous use is effective for refractory OCD, it 
comes with more common and severe side effects (Association, 
2013). The most dangerous clomipramine-related adverse reactions, 
similar to other TCAs, include seizures and elevated liver enzymes. 
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Serotonin-Norepinephrine Reuptake Inhibitors (SNRIs) like 
venlafaxine have short-term efficacy in treating OCD similar to 
clomipramine but with better safety and tolerability (Albert et al., 
2002). Agomelatine’s 5-HT2C antagonism mediates its anti-anxiety 
effect and helps regulate melatonin (MT1 and MT2 receptor 
antagonism) (De Berardis et al., 2013), contributing to the restoration 
of circadian rhythms in OCD patients and alleviating some 
symptoms. Antipsychotic medications like olanzapine (Koran et al., 
2005; Li et  al., 2005) can be  used in combination therapy for 
refractory OCD, often combined with SSRIs. Research has shown that 
certain antiepileptic drugs (Önder et al., 2008; Arrojo-Romero et al., 
2013), as well as aripiprazole (Soltani et  al., 2010), and 
dextromethorphan (Liddell et al., 2013), have a certain alleviating 
effect on refractory OCD. These medication options provide a range 
of choices for treating OCD, and the choice of treatment should 
be made in consultation with a healthcare provider based on the 
individual patient’s needs and circumstances.

1.1.3.2. Brain stimulation
Increasing evidence suggests that OCD is associated with 

dysfunction in the orbitofronto-striato-pallido-thalamic circuit. This 
circuit includes the dorsolateral prefrontal cortex (DLPFC), 
orbitofrontal cortex (OFC), medial prefrontal cortex (MPFC), anterior 
cingulate cortex (ACC), supplementary motor area (SMA), and basal 
ganglia (Del Casale et  al., 2011; Fineberg et  al., 2011). Severe 
treatment-resistant OCD may benefit from non-invasive techniques, 
including repetitive transcranial magnetic stimulation (rTMS) (Saba 
et al., 2015), deep transcranial magnetic stimulation (dTMS), and 
transcranial direct current stimulation (tDCS) (Carmi et al., 2019), as 
well as invasive deep brain stimulation (DBS) (Blomstedt et al., 2013) 
and electroconvulsive therapy (ECT) (Bais et al., 2014).

1.1.3.3. Psychological intervention
Cognitive-behavioral therapy (CBT) is the preferred psychological 

intervention for OCD. It is a structured, short-term, cognitive-
oriented psychotherapy method developed by A.T. Beck in the 1960s. 
Its main focus is on the patient’s irrational cognitive issues, aiming to 
change the patient’s views and attitudes towards themselves, others, or 
events to address psychological problems. For children and young 
people, CBT is prioritized over medication (Uhre et al., 2020). The 
recommended type of CBT for OCD is Exposure and Response 
Prevention (ERP). ERP is a therapy that teaches patients to face and 
tolerate the obsessions that trigger their compulsions and resist taking 
action. It has shown good therapeutic effects in patients with OCD 
(Abramowitz, 1997). Most patients experience symptom improvement 
when treated with medication alone or in combination with cognitive 
therapy (Skapinakis et al., 2016). In clinical practice, SSRI treatment 
is often combined with cognitive-behavioral therapy for the treatment 
of OCD patients (Cottraux et  al., 2005). However, even with 
theoretically appropriate treatment approaches in place, 40–60% of 
OCD patients still exhibit disabling residual symptoms, indicating the 
need for innovative drug therapies, different augmentation strategies, 
and new physical treatment techniques (Pallanti and Quercioli, 2006).

1.1.4. Artificial intelligence in 
obsessive-compulsive disorder

At present, the application of artificial intelligence in OCD 
involves all stages of the diagnosis and treatment of OCD. The data 

used include scales, sensor data and medical image data. Without a 
doubt, the scale is the most readily available data for assessing 
OCD. A 2020 study of 400 healthy controls and 200 people 
diagnosed with obsessive-compulsive disorder added additional 
items to the Y-BOCS scale to assess patients. The researchers studied 
OCD by building an artificial neural network (Shahzad et al., 2020). 
Wearables are also of interest because of the intermittent nature of 
mental illness. A 2023 study wearing wristbands for children and 
adolescents ages 8 to 17 with OCD explored the feasibility and 
acceptability of wearable biosensors to monitor OCD symptoms 
(Lønfeldt et al., 2023). Some studies have used daily voice and image 
information to diagnose and track OCD. In a 2022 study involving 
47 obsessive-compulsive disorder (OCD) and 17 healthy adolescents, 
researchers analyzed the subjects’ speech to explore the link between 
OCD severity and vocal features (Clemmensen et  al., 2022). 
Neuroimaging is highly standardized and easy to quantify, so 
neuroimaging has been paid more and more attention by researchers 
and doctors in the diagnosis and treatment of mental diseases. 
Magnetic resonance imaging (MRI) and electroencephalogram 
(EEG) are the most commonly used tests in OCD, and almost all 
neuroimaging-related AI research is based on them (Abd-Alrazaq 
et al., 2022).

1.2. The application of neuroimaging in 
obsessive-compulsive disorder

In recent years, the use of neuroimaging in the diagnosis of 
OCD has been increasing. Particularly, techniques like functional 
magnetic resonance imaging (fMRI) and single-photon emission 
computed tomography (SPECT) can help reveal the characteristics 
of brain activity in OCD patients. Through neuroimaging, we can 
observe abnormal brain activity in regions associated with OCD, 
providing more biological evidence for the research and 
treatment of OCD.

1.2.1. Magnetic resonance imaging (MRI)
Functional Magnetic Resonance Imaging (fMRI) technology 

typically refers to magnetic resonance imaging (MRI) techniques that 
analyze brain activity using the Blood Oxygenation-Level-Dependent 
(BOLD) phenomenon. Over the past few decades, neuroimaging 
research has discovered abnormal structure and function in the 
cortical-striatal-thalamic-cortical (CSTC) circuitry of OCD patients. 
Following the induction and provocation of OCD symptoms, 
functional magnetic resonance imaging (fMRI) has observed 
corresponding changes in the activation of the orbitofrontal cortex, 
dorsolateral prefrontal cortex (PFC), and anterior cingulate cortex 
(ACC), as well as the caudate nucleus, insula, amygdala and border 
structure (Simon et al., 2010). For example, after using fluvoxamine 
or behavioral therapy to improve OCD, there is a reduction in 
symptom-provoked activation in the orbitofrontal cortex, dorsolateral 
prefrontal cortex, and ACC (Nakao et al., 2005). One study suggested 
that OCD symptoms were associated with increased activation in the 
bilateral prefrontal cortex, left insula, right superior frontal gyrus, left 
caudate nucleus, and right thalamus (Schienle et  al., 2005). 
Conversely, there is research indicating that effective OCD treatments 
such as selective serotonin reuptake inhibitors (SSRIs), ERP, or deep 
brain stimulation (DBS) can restore normal activity in the 
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orbitofrontal cortex (OFC) observed in fMRI (Saxena et al., 1999; 
Mataix-Cols et  al., 2003, 2004; Banca et  al., 2015). These studies 
collectively support the role of functional dysregulation in the CSTC 
circuit in the development of OCD.

1.2.2. Electroencephalogram
An electroencephalogram (EEG) is a graphical representation 

obtained by amplifying the spontaneous bioelectric potentials of the 
cerebral cortex of the brain, recorded from the scalp using precise 
instruments (Biasiucci et al., 2019). It plots electrical potential on the 
vertical axis and time on the horizontal axis, thus creating a graphical 
representation of the relationship between electrical potentials and 
time. EEG is relatively inexpensive, non-invasive, portable, and easy 
to manage. However, research using EEG to investigate Obsessive-
Compulsive Disorder (OCD) is relatively limited compared to 
fMRI. This might be due to the difficulty in standardizing the positions 
for signal reception during recording, making it challenging to 
determine the precise location of the electrophysiological source 
(Michel and Brunet, 2019). To pinpoint specific locations, 
low-resolution brain electromagnetic tomography (LORETA) may 
be required (Dattola et al., 2020). The occurrence of OCD is believed 
to be associated with excessive activity of erroneous signals in the 
brain, such as increased amplitudes of error-related negativity (ERN) 
(Riesel, 2019). Using auditory oddball paradigms can elicit specific 
P300 waveforms in OCD patients (Sur and Sinha, 2009). Some 
research suggests that changes in EEG waveforms can predict 
treatment responses of OCD patients to psychotherapy and 
medication (Krause et  al., 2016). In another study that examined 
resting-state EEG before and after medication treatment, lower 
pre-treatment activity in the oral precentral gyrus and the medial 
frontal gyrus in the beta band was associated with greater treatment 
response (Fontenelle et al., 2006).

1.2.3. Positron emission tomography
Positron emission tomography (PET) can provide quantitative 

biological information in the body. Depending on the contrast agent 
used, PET can explore the distribution and expression of different 
substances in the human body. TSPO is responsible for the 
translocation of cholesterol from the outer mitochondrial membrane 
to the inner mitochondrial membrane, thus limiting the rate of 
neurosteroid biosynthesis, and the increase of TSPO levels after brain 
injury mainly occurs in the injured primary or secondary regions that 
express activated glial cells. Therefore, in OCD, researchers often use 
radioligands based on TSPO to study the synthesis of neurosteroids 
(Zhang et al., 2021).

1.3. The development trends of artificial 
intelligence research in 
obsessive-compulsive disorder

As shown in Figure 1, over the past decade, research related to 
artificial intelligence in the field of obsessive-compulsive disorder 
(OCD) has grown significantly. We can observe that AI research based 
on neuroimaging represents only a portion of this growth. A 
considerable number of articles are centered around scales related to 
OCD diagnosis, while some studies are based on social media and 
smart wearable devices.

1.4. Other reviews in this field

At present, a considerable number of researchers have noted the 
importance of neuroimaging and artificial intelligence in OCD, so 
there are some reviews to summarize the above research. A study 
published in 2022 summarized the progress of the Consortium of 
enhanced neuroimaging and genetics in OCD over the last 5 years 
through meta-analysis. However, the research based on the project 
mainly uses brain imaging to measure and statistically analyze various 
parts of the brain, and lacks large-scale artificial intelligence 
applications (Van den Heuvel et  al., 2022). A 2022 study, which 
included 24 studies, looked at whether patients with neuropathy 
would benefit from cognitive therapy. In the study, however, obsessive-
compulsive disorder accounted for only two (Vieira et al., 2022). And 
a 2023 review discussed machine learning in the core areas of mental 
illness based on brain imaging. However, the imaging methods 
included in this study only included MRI (Lv et al., 2023).

1.5. Paper search and reading

As shown in Figure 2, we conducted a search using keywords such 
as “obsessive-compulsive disorder,” “artificial intelligence,” “machine 
learning,” and “deep learning” in PubMed. Considering the rapid 
developments in computer science, we limited our search to literature 
published within the last decade. We  ended up with 148 articles. 
Subsequently, we began the screening process. Initially, we excluded 
articles that were not relevant to our research topic. Following that, 
we excluded articles related to other disorders that may share some 
symptoms with obsessive-compulsive disorder. Additionally, articles 
that did not utilize neuroimaging data for their research were 
excluded. Finally, we removed articles that presented highly redundant 
experimental methods. After these screenings, we included 25 studies 
related to the application of artificial intelligence in obsessive-
compulsive disorder in this paper, as shown in Figure 3.

1.6. Article structure

The first section of the article primarily introduces the current 
state of diagnosis, treatment, and research related to obsessive-
compulsive disorder (OCD) and artificial intelligence. The second 
section of the article focuses on the application of artificial intelligence 
in OCD based on various neuroimaging techniques. The third section 
of the article discusses the research potential of artificial intelligence 
based on other neuroimaging modalities in the field of OCD, as well 
as the application of artificial intelligence based on neuroimaging in 
other mental disorders.

2. Application of artificial intelligence 
in obsessive-compulsive disorder 
neuroimaging

2.1. MRI

MRI (Magnetic Resonance Imaging) stands as the most prevalent 
modality for cerebral examinations, offering high resolution to depict 
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structural alterations within the cranium. As shown in Figure 4, a 
standard MRI examination should encompass T1, T2, and FLAIR 
sequences. Furthermore, MRI imaging possesses the versatility to 
create distinct imaging sequences by adjusting imaging protocol 
parameters, enabling a comprehensive multi-dimensional depiction 
of the brain. In examinations related to psychiatric disorders, DTI 
(Diffusion Tensor Imaging) and fMRI (Functional Magnetic 
Resonance Imaging) are commonly employed sequences, as shown in 
Figure 5. As shown in Figure 6, Diffusion Tensor Imaging (DTI), an 
evolution and refinement of Diffusion Weighted Imaging (DWI), 
presently stands as the sole non-invasive examination method capable 
of effectively observing and tracking brain white matter fiber bundles 
Blood Oxygen Level Dependent Functional Magnetic Resonance 
Imaging (bold-fMRI), an imaging technique developed since the 

1990s, aims to explore brain function by detecting localized alterations 
in magnetic field properties arising from the discord between local 
increases in cerebral blood flow and oxygen consumption during 
neuronal electrical activity generation (Uğurbil, 2012). Therefore, in 
neurological examinations, MRI demonstrates efficacy in both organic 
and non-organic psychiatric disorders.

2.1.1. Conventional MRI
In a 2013 study, researchers from the Psychiatry Institute of the 

University of São Paulo School of Medicine included 37 patients. They 
used MRI to mark regions of interest in both hemispheres, including the 
lateral and medial Orbitofrontal Cortex (OFC), Anterior Cingulate 
Cortex (ACC), Caudate Nucleus, Putamen, Pallidum, Thalamus, and 
Thalamus. These regions were designated as predictor variables. The 
severity of obsessive-compulsive disorder (OCD) symptoms in the 
patients was assessed using the Y-BOCS (Yale-Brown Obsessive-
Compulsive Scale). Researchers utilized support vector regression (SVR) 
to construct a predictive model for OCD symptom severity. The results 
indicated a Pearson correlation coefficient of 0.49 (p = 0.002) between the 
Yale-Brown Obsessive-Compulsive Scale for Dimensional Assessment 
(DY-BOCS) total scores and the predicted symptom severity. For the 
total scores of the traditional Yale-Brown Obsessive-Compulsive Scale 
(Y-BOCS), the correlation coefficient was 0.44 (p = 0.006). The regions 
most informative for discrimination were the left medial orbitofrontal 
cortex and the left shell of the caudate nucleus. These findings suggest 
that machine learning methods such as SVR analysis can identify 
neurobiological markers from individual structural MRI datasets to 
predict the severity of OCD symptoms (Hoexter et al., 2013).

In a 2014 study, researchers recruited 86 people with OCD and 86 
healthy people. In this study, all subjects underwent structural 
magnetic resonance imaging. They develop a new method of 
multivariable feature selection based on support vector machine, and 
compare it with mass univariate T-test selection and recursive feature 
elimination. The researchers believe that their method includes more 
brain regions, and each region contains more voxels, so it is a more 
comprehensive way to characterize OCD based on structural magnetic 
resonance of the head (Parrado-Hernández et al., 2014).

FIGURE 1

The literature on artificial intelligence for OCD from 2013 to 2022.

FIGURE 2

The selection process of papers in the review.
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In a 2016 study, researchers recruited 33 people with OCD and 
33 healthy people who served as a control group. The age, sex, and 
education levels of the patients and healthy people were basically 
the same. All participants underwent a 3-T structural magnetic 
resonance examination of the head. The researchers segmented the 
gray and white matter on the MRI images and measured the 
volume of the gray and white matter parts, respectively. The 
accuracy of SVM (75.76%) was lower than that of Gaussian 
regression (77.27%) on gray matter images, while the accuracy of 
SVM (81.82%) was lower than that of Gaussian regression (80.30%) 
on white matter images. This study suggests that the anatomical 
features of GM and WM may help distinguish patients with OCD 
from those with HCS. The SVM-based approach using WM volume 
showed the highest accuracy in revealing inter-group differences 
in the population, indicating its diagnostic potential in detecting 

highly enriched OCD patients at the individual level (Hu 
et al., 2016).

In a 2017 study, researchers recruited 74 people from the primary 
psychiatric services and bulletin of the Association of Tourette 
Syndrome and Obsessive-Compulsive Disorder (ASTOC) in Brazil, 
38 of whom had OCD and 36 of whom were healthy. All subjects 
included in this study underwent a 1.5-T head magnetic examination. 
The researchers segmented the brain structure, labeling a total of 117 
brain regions as features. A total of seven methods were used to screen 
features, and support vector machines were used for modeling. In 
distinguishing between healthy people and OCD, the best accuracy 
rate of the model is 71.64%; in distinguishing between healthy people 
and low level OCD, the best accuracy rate of the model is 77.12%; in 
distinguishing between healthy people and high level OCD, the best 
accuracy rate of the model is 71.86%; in distinguishing low level OCD 

FIGURE 3

The percentage of each neuroimaging in this review.

FIGURE 4

Picture of brain Conventional MRI, (A) T1, (B) T2, (C) FLAIR.
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and high level OCD, the best accuracy rate of the model is 71.86%. The 
optimal accuracy of the model is 73.68%. Although the database size 
is small, Chi Squared, Gain Ratio and Symmetrical Uncertainty are 
good feature selection methods (Trambaiolli et al., 2017).

In a 2021 study, 57 patients from Amsterdam UMC were enrolled 
to predict the clinical outcomes of patients undergoing deep brain 
stimulation. The researchers used Y-BOCS to assess the patients’ 
OCD levels. Due to the long time span of the patients included in this 
study, the imaging parameters of the imaging tests received by the 
patients were inconsistent. The researchers measured both gray and 
white matter in the subjects’ brains. The researchers modeled the 
model using 50-fold cross-validation and evaluated the model using 
AUC, accuracy, sensitivity, and specificity. The researchers found a 
significant association between Y-BOCS scores at 12-month 
follow-up and the volume of gray matter in the left nucleus, while 
none of the machine learning models built by support vector 
machines showed acceptable predictive power. Among them, the best 
model was established by the gray matter volume of the nucleus, with 
an accuracy of 57.30% (Liebrand et al., 2021).

In a 2022 study, researchers proposed a new anatomical subtype 
of OCD associated with gray matter. The researchers recruited 100 
people with obsessive-compulsive disorder and 100 healthy controls. 
The obsessive-compulsive disorder patients were identified by two 

psychiatrists according to the fifth edition of the Diagnostic and 
Statistical Manual of Mental Disorders. All patients with OCD 
included no other psychiatric disorders. The included control 
patients not only had no personal history of mental illness, but also 
had no first-degree relatives with mental illness. In this study, all 
included subjects underwent magnetic resonance examination. The 
researchers measured brain regions based on CAT 12. The 
researchers used maps of 268 brain regions to characterise them and 
used a semi-supervised method called HYDRA to categorize people 
with OCD into subtypes. The researchers found that structural 
heterogeneity was higher in patients with OCD than in healthy 
patients. In OCD, researchers believe there are two distinct subtypes 
(Han et al., 2022).

2.1.2. Functional Magnetic Resonance Imaging
In a 2015 study, researchers recruited 56 patients from Seoul 

National University Hospital. The individual structural covariance 
based on cortical surface and thickness was characterized and 
modeled using support vector machines (SVM) to explore its use as 
a biomarker to predict the therapeutic effect of serotonin reuptake 
inhibitors. In this study, all subjects underwent MRI, followed by SRI 
therapy for 4 months, and underwent clinical reassessment of 
Y-BOCS, HAM-D, and HAM-A compositions. Based on the 
percentage change in Y-BOCS score after 4 months, subjects with an 
increase of ≥35% in Y-BOCS score were considered to have 
responded to treatment, and all other subjects were considered to 
have not responded to treatment. The researchers modeled the cortex 
using support vector machines after extracting features from 148 
regions. The accuracy of distinguishing between the therapeutic and 
non-therapeutic models was 89.0%, the accuracy of distinguishing 
between the therapeutic and healthy models was 95.6%, and the 
accuracy of distinguishing between the therapeutic and healthy 
models was 90.7% (Yun et al., 2015).

In a 2017 study, researchers collected 108 enrollees from Kyoto 
Prefectural University of Medicine, of whom 56 had OCD and 52 were 
healthy. Among these subjects, Y-BOCS was used to evaluate whether 
they had obsessive-compulsive disorder. After standard 
preconditioning of 140 regions of interest (ROI) covering the entire 
brain, the researchers evaluated the interregional FC for each 
participant and then obtained the FC matrix. The researchers built the 
classifier by combining two machine learning algorithms: SLR and 
L1-SCCA. The model created by the researchers could classify people 
with OCD and healthy people with 73 percent accuracy and an AUC 
of 0.81. The researchers also tested the model using an external test 
set, with an AUC of 70.1%. The researchers’ model was better at 
classifying patients who were taking medication than those who were 
not (Takagi et al., 2017).

In a 2018 study, researchers recruited a total of 42 people with 
OCD from UCLA, clinics, and other sources. All patients were 
diagnosed by a psychiatrist through YBOCS. All enrolled patients 
underwent 3T FMRI. The researchers extracted features from a total 
of 196 spherical ROIs and established a functional matrix. Finally, the 
researchers used support vector machine to establish a machine 
learning network based on default mode network and visual network, 
respectively, to predict the treatment effect. Among them, the accuracy 
of the model based on default mode network is 67.9%, and the 
accuracy of the model based on visual network is 70.0% (Reggente 
et al., 2018).

FIGURE 5

Picture of brain DTI.

FIGURE 6

Picture of brain DWI.
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A study from 2019 involved the inclusion of 40 patients with 
Obsessive-Compulsive Disorder (OCD) and 38 gender, age, and 
education level-matched Healthy Controls (HCs), who underwent 
resting-state functional magnetic resonance imaging (fMRI) scans. 
The patients were recruited from the Fourth Affiliated Hospital of 
Qiqihar Medical University and the Qiqihar Mental Health Center in 
China. The researchers conducted an analysis on the imaging data 
using seed-based functional connectivity (FC) and Support Vector 
Machine (SVM). SVM classification analysis revealed that a 
combination of left Crus I to left superior medial prefrontal cortex 
(MPFC) connectivity and right Crus I  to left central MPFC 
connectivity could be used to differentiate between OCD patients and 
controls. The sensitivity was 85.00%, specificity was 68.42%, and 
accuracy was 76.92%. This study underscores the contribution of 
cerebellum-default mode network (DMN) connectivity in the 
pathophysiology of OCD and provides new insights into OCD 
research (Lv et al., 2020).

In a 2019 study, researchers enrolled 54 people with OCD from 
Sichuan University’s West China Hospital and matched 54 healthy 
people. All participants included in the study were right-handed and 
native Chinese speakers. Y-BOCS was used to assess the degree of 
obsessive-compulsive disorder, HAMA was used to assess anxiety, and 
HAMD was used to assess depression. All subjects underwent 3T 
magnetic resonance imaging. Brain images obtained by the team were 
calculated for ALFF, fALFF, ReHo and FCS, respectively. Based on the 
above four calculations, the researchers used support vector machine 
modeling to classify patients and healthy people. The accuracy rate of 
the model based on ALFF was 95.37%, the accuracy rate of the model 
based on ReHo was 86.11%, the accuracy rate of the model based on 
fALFF was 82.41%, and the accuracy rate of the model based on FCS 
was 74.07%. However, the four models have different concerns. The 
main brain regions used for ALFF classification include left vmPFC, 
right dorsal lateral prefrontal cortex and bilateral insula; The main 
brain regions used by ReHo for classification include bilateral 
orbitofrontal cortex (OFC), left ACC, left putamen, and left precentral 
gyrus; The main brain regions used for fALFF classification include 
right superior frontal lobe, bilateral precentral gyrus, right superior 
temporal gyrus, anterior cingulate cortex (ACC), and left cuneus and 
left lingual gyrus; The main brain regions used for FCS classification 
include bilateral superior frontal lobe, left vmPFC, left ACC, left 
superior parietal, bilateral lingual gyrus, and right putamen (Bu 
et al., 2019).

In a 2019 study, researchers retrospectively recruited patients who 
were admitted to West China Hospital of Sichuan University from 
2012 to 2015. The researchers included 68 people diagnosed with 
OCD and healthy people of similar age, sex, and education. In this 
study, all subjects underwent a 3 T magnetic resonance examination. 
The power spectrum is obtained by transforming the time series into 
the frequency domain. The square root is calculated at each frequency 
of the power spectrum, and the root mean square in the low frequency 
range (0.01 ~ 0.08 hz) is obtained. This average is defined as 
ALFF. fALFF is calculated as the ratio of power in the low frequency 
range to power in the entire frequency range (0–0.25HZ). Finally, the 
spatial falff map was normalized, and each voxel was divided by the 
mean value of the whole brain falff to obtain the spatial map “mfALFF.” 
Based on mfALFF, the researchers used a support vector machine to 
build a model that classified OCD patients and healthy people. The 
final accuracy of the model was 72%, and the model focused on the 

left superior temporal gyrus, right middle temporal gyrus, left superior 
marginal gyrus and parietal lobule (Yang et al., 2019).

In a 2021 study, researchers enrolled a total of 44 people with 
OCD and 25 healthy controls, all recruited through clinics and 
communities in Los Angeles. In this study, all subjects underwent a 
3 T magnetic resonance examination. The researchers performed 
deconvolution to extract HRF parameters from fMRI data. HRF is 
characterized by three parameters - response height (RH), time-to-
peak (TTP), and time-to-peak (FWHM). The researchers tested two 
hypotheses: (1) HRF is sensitive to neuropathology: individuals with 
OCD will exhibit HRF aberrations compared to HC at baseline; and 
(2) HRF is sensitive to treatment and predicts treatment response. 
Pre-treatment HRF predicted treatment outcome (OCD symptom 
reduction) with 86.4% accuracy, using machine learning 
(Rangaprakash et al., 2021).

In a 2022 study, researchers enrolled 188 patients with OCD who 
visited the Clinic of the National Institute of Mental Health & Neuro 
Sciences and 200 healthy people of similar age and sex. Due to 
incomplete imaging data or clinical data, the investigators excluded 13 
patients and 25 healthy individuals, so a total of 175 obsessive-
compulsive disorder patients and 175 healthy individuals were 
included in the study. The researchers used EMPaSchiz as a neural 
network model. EMPaSchiz extracted six resting brain FMRI features, 
including three region-based features and three connection-based 
features. The model was 80.3% accuracy, 82.7% sensitive, 79.2% 
precise, and 77.8% specific. The researchers compared this network 
with a model built using other features, confirming that EMPaSchiz 
had a better effect. EMPaSchiz, which uses schizophrenia data for 
transfer learning, has also achieved good results (Kalmady et al., 2022).

In a 2022 study, researchers enrolled 54 patients from the 
outpatient department of Anhui Medical University. Patients who 
meet the DSM-V diagnostic criteria for OCD are jointly diagnosed by 
two clinicians. The severity of a patient’s symptoms is diagnosed by 
YBOCS. All enrolled patients underwent 3T magnetic resonance 
imaging. The researchers constructed a whole-brain connection 
matrix based on 268 subregions from brain images and used 
Connectome-based predictive modeling to model the matrix. First, 
we successfully predicted compulsion scores, but not obsession sores 
for a negative functional network and a positive structured network. 
We then found that the functional connectivity of triple networks (SN, 
DMN, and FPN), specifically SN-FPN, is primarily helpful in 
predicting individual forcing severity, with SN being a key predictor 
in structural prediction networks. These results suggest that structural 
SN and triple network jointly contribute to forcing (Zhu et al., 2022).

In a study conducted in 2022, the researchers recruited 128 
participants diagnosed with Obsessive-Compulsive Disorder (OCD), 
comprising both adults (aged 24–45 years) and adolescents (aged 
12–17 years), as well as an unaffected control group (n = 64). 
Neurocognitive assessments included tests for cognitive interference 
and error processing. Unsupervised machine learning was employed 
by the researchers to identify subgroups or clusters within the OCD 
patient cohort based on task-based functional magnetic resonance 
imaging assessments. Their primary focus was on the activation 
patterns within three large-scale brain networks associated with 
cognitive control and performance monitoring, which are relevant to 
OCD. The researchers identified three patient clusters, reflecting a 
“normative” cluster that shared brain activation patterns with the 
unaffected control group and two other clusters, namely an 
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“interference-dominant” cluster and an “error-dominant” cluster. 
These clusters were then further examined for associations with 
demographic and clinical characteristics. Following correction for 
false discovery rates, it was observed that the interference-dominant 
cluster exhibited significantly longer reaction times compared to the 
other patient clusters, although no other covariate differences were 
detected between the clusters. These findings enhance the precision of 
patient characterization, redefining previous neurobehavioral studies 
of OCD, and providing a starting point for neuroimaging-guided 
treatment selection (De Nadai et al., 2023).

In a 2023 study, researchers used a total of 1,024 obsessive-
compulsive disorder patients and 1,028 healthy people from the 
ENIGMA-OCD consortium. All enrolled patients underwent either 
1.5T or 3T magnetic resonance imaging. All researchers analyzed 
differences in resting state functional connectivity between OCD 
patients and healthy controls (HCS). We  assessed population 
differences in whole-brain functional connectivity at the regional and 
network levels and investigated whether functional connectivity could 
be used as a biomarker to identify patient status at the individual level 
using machine learning analysis. Extract a Time series from 434 
regions of interest using a combination of functional and structural 
maps. The linear support vector machine (SVM) model implemented 
in scikit-learn (v1.0.2, Python v3.9.5) was used for multivariate 
classification. Performance was assessed using 20 repeated stratified 
quintuples cross validation (CV) and measured as the mean area 
under the receiver operating characteristic curve (AUC). Eventually, 
the researchers created multiple models that classified normal and 
OCD patients. The overall performance of the models is low, but the 
significance is significant, and the AUC of different models is between 
0.567 and 0.673. In contrast, adult patients are more easily 
distinguished from strong normal people than children patients. The 
drug patients were more easily distinguishable from the normal 
people than the non-drug patients. Researchers believe that people 
with OCD have extensive FC aberrations, low overall connectivity, 
and few hyperconnections. Notably, most of the important low 
connections lie within the sensorimotor network (Bruin et al., 2023).

2.1.3. Diffusion Weighted Imaging
In a 2020 study, researchers recruited 176 Children from the 

Hospital for Sick Children and Holland Bloorview Kids Rehabilitation 
Hospital, 56 of whom had ADHD, 81 named autism spectrum 
disorder and 39 named obsessive-compulsive disorder. All patients 
were examined on the same 3 T MRI machine. We used similarity 
network fusion to measure cortical thickness, subcortical volume, 
white matter fraction anisotropy (FA), and behavior in these patients. 
The researchers used random forest modeling to classify patients by 
disease type. The Mean specificity performance of the final model was 
>80%, and Mean sensitivity performance was >62–75%. In this model, 
we  found that cortical thickness in areas important for social or 
language-related behavior (inferior frontal gyrus, insula, inferior 
parietal cortex, temporal cortex) and executive function (upper and 
middle frontal gyrus), as well as inattention scores, were the main 
categorical features (Jacobs et al., 2021).

2.1.4. Diffusion Tensor Imaging
In a 2014 study, researchers enrolled 28 people with OCD and 28 

healthy people from the Mental Health Center of Sichuan University’s 
West China Hospital. All subjects underwent 3 T magnetic resonance 

examination and obtained DTI images. The researchers built a 
classification model based on support vector machines to distinguish 
between OCD patients and non-OCD patients. The model was 
verified using the leave-one method. In the established model, the 
accuracy rate is 84%. The researchers looked at Y-BOCS scores in 
patients and the distance of patients from the hyperplane in the SVM, 
and found that individuals with higher Y-BOCS scores tended to 
be  further from the hyperplane, while individuals with lower 
impairment levels tended to be closer to the hyperplane, so it can 
be inferred that the model classifies patients and non-patients based 
on OCD symptoms measured by Y-BOCS. In this model, the brain 
regions mainly based on the classification model were bilateral 
prefrontal and temporal white matter, subfronto-occipital fasciculus, 
parietal frontal fasciculus, splenic corpus callosum and left middle 
cingulate fasciculus (Li et al., 2014).

In a 2016 study, researchers enrolled 56 patients from the 
Department of child and adolescent Psychiatry and Psychology at the 
Clinical Hospital of Barcelona. All patients had complete 
neuroimaging (including structural MRI and DTI), All underwent 
neuropsychological assessments (Wechsler Intelligence Scale, 
Wechsler Memory Scale, Verbal Fluency Test, Trail Making Test, Rey 
Complex Figure Test, and the Stroop Test) and genetic data testing 
(including rationale of candidate genes selection, single nucleotide 
polymorphism [SNP] selection criteria, genotyping methodology, and 
quality control). Entropy-based information gain (IG) measurements 
were used for feature selection and two supervised machine learning 
methods (SVM and NB) were used for modeling to identify patients’ 
OCD severity. The Accuracy of SVM is 0.96 in the internal verification 
of leave-one method. Sensibility: 0.94; Specificity: 1.00; Precision: 0.95; 
AUC: 0.98. The Accuracy of SVM is 0.69 on the external verification 
set. Sensibility: 0.71; Specificity: 0.67; Precision: 0.63; AUC: 0.75. The 
Accuracy obtained by NB in the internal verification of the remaining 
one method is 0.94; Sensibility: 0.87; Specificity: 0.89; Precision: 0.87; 
AUC: 0.88. The Accuracy obtained by NB on the external verification 
set is 0.65; Sensibility: 0.81; Specificity: 0.50; Precision: 0.75; AUC: 
0.77. Therefore, the researchers suggest that SVM and NB may 
be useful in finding predictors of diagnosis in patients with early-onset 
OCD (Mas et al., 2016).

In a 2018 study, researchers enrolled a total of 48 OCD patients 
from the Department of Psychiatry at the First Affiliated Hospital of 
Kunming Medical University and 45 healthy people recruited through 
other channels. In this study, all subjects were right-handed Han 
Chinese aged 18 to 55 years. All obsessive-compulsive patients were 
assessed by Y-BOCS, and those with prominent symptoms of 
depression and anxiety were excluded. All subjects underwent a 3 T 
magnetic resonance examination and obtained DTI images. Grey 
matter, white matter and cerebrospinal fluid were segmented and 
smoothed. The model is established by support vector machine and 
verified by leave-one method. Four models were developed, with an 
accuracy of 72.04%, a Sensitivity of 70.83%, a Specificity of 73.33, and 
an AUC of 0.71. The accuracy of Specificity based on WMV was 
61.29%, Sensitivity 64.58%, Specificity 57.78, AUC 0.61. The accuracy 
of FA-based Specificity was 80.65%, Sensitivity 81.25%, Specificity 
80.00, AUC 80.00; The accuracy, Sensitivity, Specificity and AUC of 
MD were 77.42, 75.00%, 80.00, and 0.84 (Zhou et al., 2018).

In a 2019 study, researchers enrolled a total of eight people with 
obsessive-compulsive disorder. All patients underwent 3 T magnetic 
resonance imaging and all had DTI images. The researchers 
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introduced Hamlets, a layered harmonic filter for learning tracks from 
diffusion MRI, into the DTI analysis. HAMLET is an algorithm that 
is able to map raw diffusion MRI data directly onto a directional graph 
of trace presence and direction. This method can automatically display 
the anatomical structure of slMFB (superolateral branch of the Medial 
Forebrain Bundle) after MRI is obtained (Coenen et al., 2019).

2.1.5. Electroencephalogram
Electroencephalogram (EEG) sensor measurements represent a 

temporal process that quantifies the sum of electrical activity 
occurring at a cortical location in terms of amplitude, as shown in 
Figure 7. This signal is rich in information that can be extracted 
using various techniques. Apart from being cost-effective and easy 
to implement, resting-state EEG offers the advantage of capturing 
dynamic changes in neuronal networks with high temporal 
resolution. Due to these advantages, EEG can be utilized for early 
diagnosis of psychiatric disorders and serve as a reliable biomarker. 
In high-risk individuals, EEG has been shown to exhibit high 
sensitivity (de Bock et al., 2020). Patients in a psychiatric high-risk 
state exhibit a higher prevalence of pathological abnormalities in 
their electroencephalograms (EEG) (Gschwandtner et al., 2009). In 
chronic mental illnesses, electroencephalograms (EEG) also hold 
significant clinical utility. Numerous studies have demonstrated the 
value of EEG in patients with schizophrenia, reaffirming its clinical 
relevance (Barros et  al., 2021). In Alzheimer’s disease, 
electroencephalography (EEG) is also considered a potential tool for 
predicting cognitive decline in patients (Lopez et al., 1997).

In a study conducted in 2015, a classification of individuals with 
obsessive-compulsive disorder (OCD) was performed using single-
channel complexity features (19 features) and inter-hemispheric 
dependency features (8 features) extracted from the data. This 
classification was carried out using a support vector machine. In this 
study, the model built using the prefrontal region of the brain had the 
highest accuracy of 85 ± 5.2% (Aydin et al., 2015).

In a 2021 study, the researchers enrolled patients with nine diagnoses 
of six diseases from the Seoul Metropolitan Government-Seoul National 
University (SMG-SNU) Boramae Medical Center. The study included a 
total of 945 patients, including 95 healthy people who served as controls. 
All subjects underwent EEG examination. These patients were classified 
using three machine learning algorithms and verified using 10x cross-
validation. To select the model, the researchers compared the 

performance of SVM, RF, and EN in terms of AUC. EN showed the 
highest accuracy, with a mean AUC of 87.59 ± 7.92% across all diseases 
(SVM = 86.02 ± 8.89%, RF = 87.18 ± 8.08%) (Park et al., 2021).

In a 2023 study, researchers recruited 550 EEGs stored from the 
Uskudar University Cognitive Neuroscience Laboratory, 81 for bipolar 
disorder, 95 for attention deficit and hyperactivity disorder, 67 for 
depression, there were 34 obsessive-compulsive disorder, 75 opioid 
addiction, 146 post-traumatic stress disorder, 52 schizophrenia and 84 
healthy individuals. The researchers used 80% of the data as the 
training set and 20% as the training set. The classification model was 
established using C5.0, random forest (RF), support vector machine 
(SVM) and artificial neural networks (ANN). In the established 
model, the highest accurate value is 0.841, which is obtained from the 
C5.0 model and the SVM model (Emre et al., 2023).

2.2. Summary

Table  1 shows the application of artificial intelligence in 
neuroimaging of obsessive-compulsive disorder included in this 
article. We show the year of publication, main researchers, data types 
used, and main methods used. Researchers tend to use MRI for 
research. fMRI is the data type most commonly used by researchers. 
EEG, which has less research, possibly due to the difficulty in 
processing EEG data, there are few sightings of effective information, 
and no studies have used PET/CT as experimental data, mainly due 
to the difficulty of data acquisition.

3. Discussion

3.1. Existing methods

As artificial intelligence continues to advance in the field of 
medicine, machine learning is playing an increasingly important role 
in the risk prediction, diagnosis, and treatment of Obsessive-
Compulsive Disorder (OCD). Currently, in AI-related research, there 
are two main types of neuroimaging examinations for OCD: MR 
(Magnetic Resonance) and EEG (Electroencephalogram). 
Undoubtedly, MR is the most widely utilized neuroimaging modality. 
This is primarily due to MR’s non-invasive ability to capture the 
pathological and physiological abnormalities in the core brain, enabling 
the application of tailored early interventions based on pathology. 
Current research indicates that in the early stages of psychiatric 
disorders, changes in brain structure such as global or gray matter 
reduction can be identified from patients’ head scans. Meanwhile, MR’s 
various imaging modalities provide researchers with more 
comprehensive medical information, allowing the construction of 
more robust models. Techniques like DTI (Diffusion Tensor Imaging) 
can be used to examine white matter microstructure, thus quantifying 
the directionality and coherence of water diffusion. Resting-state 
functional MRI (rfMRI) studies have identified abnormal functional 
connectivity (FC) in OCD. Another study based on DWI (Diffusion 
Weighted Imaging) has suggested that the pathophysiology of OCD 
may involve not only abnormalities in the myelination status of the 
cortico-striato-thalamo-cortical circuit but also in the myelination 
status of posterior brain regions and temporal areas (Watanabe et al., 
2018). Another significant examination modality is EEG 

FIGURE 7

EEG schematic diagram.
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(Electroencephalogram). Resting-state EEG is a simple, cost-effective 
examination method, thus it is widely favored for the assessment of 
various neurological conditions. Resting-state EEG can capture rapid 
dynamic changes in neural network activity with high temporal 
resolution, and as such, is considered capable of identifying biomarkers 
for numerous psychiatric disorders (Mikanmaa et al., 2019).

3.2. Potential methods in 
obsessive-compulsive disorder 
neuroimaging

As mentioned earlier, artificial intelligence in neuroimaging has 
made significant strides in the context of Obsessive-Compulsive 

Disorder (OCD). However, in the realm of medical imaging, the 
application of artificial intelligence remains largely limited to MR 
(Magnetic Resonance) and EEG (Electroencephalogram) due to their 
widespread availability. Additionally, some clinical practitioners have 
turned to PET (Positron Emission Tomography) for diagnosis and 
treatment in neurological disorders. PET’s advantage lies in its ability 
to assess neurotransmitters at the molecular level. 
Radiopharmaceuticals can bind to specific targets, reflecting the 
patient’s brain metabolism and elucidating the mechanisms 
underlying disease onset and progression. A study has indicated that 
in OCD, certain metabolism-related biomarkers such as 
N-acetylaspartate (NAA) and choline (Cho) may exhibit abnormal 
concentrations. The 18 kDa translocator protein (TSPO), formerly 
known as the peripheral benzodiazepine receptor, is primarily located 

TABLE 1 Summary of papers on machine learning on OCD neuroimaging.

year Research team Data Method Algorithm Result

2013 Marcelo Q Hoexter et al. Conventional MRI Machine learning SVR –

2014 Emilio Parrado-

Hernández et al.

Conventional MRI Machine learning SVM –

2014 Fei Li et al. DTI Machine learning SVM Accuracy: 84%

2015 Je-Yeon Yun et al. fMRI Machine learning SVM OCD-R vs. OCD-NR(accuracy): 89.0%/OCD-R vs. 

HC(accuracy): 95.6%/HC vs. OCD-NR(accuracy): 

90.7%

2015 Serap Aydin et al. EEG Machine learning SVM Accuracy: 85 ± 5.2%

2016 Xinyu Hu et al. Conventional MRI Machine learning SVM/GP Gray matter(accuracy): 75.76% /77.27%; white 

matter(accuracy): 81.82%/80.30%

2016 Sergi Mas et al. DTI Machine learning SVN/NB SVM(accuracy): 96.00%/NB(accuracy): 94.00%

2017 Lucas R. Trambaiolli et al. Conventional MRI Machine learning FS Controls vs. All OCD(accuracy): 71.64%/Controls vs. 

Low OCD(accuracy): 77.12%/Controls vs. High 

OCD(accuracy): 71.86%/Low OCD vs. High 

OCD(accuracy): 73.68%

2017 Yu Takagi et al. fMRI Machine learning SLR + L1-SCCA Accuracy: 73.00%

2018 Nicco Reggente et al. fMRI Machine learning SVM Fault mode network(accuracy): 0.67.9%/visual 

network(accuracy): 70.00%

2018 Cong Zhou et al. DTI Machine learning SVM Accuracy: 80.65%

2019 Dan Lv et al. fMRI Machine learning SVM Accuracy: 76.92%

2019 Xuan Bu et al. fMRI Machine learning SVM Accuracy: 95.37%

2019 Xi Yang et al. fMRI Machine learning SVM Accuracy: 72.00%

2019 Volker A. Coenen et al. DTI Machine learning HAMLET –

2020 Grace R. Jacobs et al. DWI Machine learning RF Sensitivity>62–75%/specificity>80%

2021 Luka C. Liebrand et al. Conventional MRI Machine learning SVR Accuracy: 57.30%

2021 Su Mi Park et al. EEG Machine learning EN/SVM/RF EN(AUC): 87.59 ± 7.92%/SVM(AUC): 86.02 ± 8.89%/

RF(AUC): 87.18 ± 8.08%

2022 Shaoqiang Han et al. Conventional MRI Machine learning HYDRA –

2022 Sunil Vasu Kalmady et al. fMRI Deep learning EMPaSchiz Accuracy: 80.30%

2022 Chunyan Zhu et al. fMRI Machine learning CPM –

2022 Alessandro S. De Nadai 

et al.

fMRI Machine learning – –

2022 D Rangaprakash et al. fMRI Machine learning - Accuracy: 86.40%

2022 İlkim Ecem Emre EEG Machine learning SVM Accuracy: 84.10%

2023 Willem B. Bruin et al. fMRI Machine learning SVM AUC: 0.673
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in the outer mitochondrial membrane of steroid-producing cells. 
Brain TSPO expression is relatively low under physiological 
conditions but is upregulated in response to neuroglial cell activation. 
TSPO can be used to detect various neuroinflammatory conditions, 
and as such, TSPO is associated with the pathogenesis and 
progression of numerous neuropsychiatric and neurodegenerative 
diseases. Single Photon Emission Computed Tomography (SPECT) 
also holds a significant position in neuroimaging examinations for 
OCD patients. A SPECT-based study reported reduced availability of 
dopamine transporter protein in the striatum and decreased 
availability of serotonin transporter protein in the thalamus and 
midbrain, achieved through the use of SPECT scans and [123I]β-CIT, 
which labels dopamine transporter (DAT) and serotonin transporter 
(SERT) (Hesse et al., 2005). Furthermore, certain organic changes 
that lead to psychiatric disorders can be  examined using CT 
(Computed Tomography). In fact, in neuroimaging research, progress 
has been made in all imaging modalities that can provide insights 
into a patient’s brain condition. These OCD-related biomarkers are 
identifiable through artificial means. Therefore, the primary 
limitation hindering researchers from building models based on 
other imaging methods is the lower prevalence of these alternative 
imaging techniques in OCD and the difficulty in gathering a sufficient 
number of patients.

3.3. Application of artificial intelligence in 
neuroimaging of other mental disorders

3.3.1. Schizophrenia
Schizophrenia is a chronic and complex neurological disorder that 

affects both social and cognitive functioning. It is characterized by the 
presence of positive symptoms (e.g., hallucinations and delusions), 
negative symptoms (e.g., blunted affect), and cognitive deficits. 
Approximately 75% of patients experience auditory hallucinations, 
with auditory hallucinations being the most common (Jauhar et al., 
2022). For the same reasons as in obsessive-compulsive disorder, EEG 
and MRI remain the predominant neuroimaging modalities in the 
context of artificial intelligence research related to schizophrenia. In a 
study conducted in 2022, researchers utilized an openly accessible 
Kaggle dataset to investigate alterations in electroencephalographic 
patterns during auditory processing and their potential in 
discriminating between individuals with schizophrenia and healthy 
controls (Roach, 2021); (Barros et al., 2022). In a study conducted in 
2020, head magnetic resonance (MR) images of individuals diagnosed 
with schizophrenia were acquired from multiple centers. A three-
dimensional convolutional neural network was established to classify 
individuals into groups of those with schizophrenia and healthy 
controls (Oh et al., 2020). In a study conducted in 2020, researchers 
proposed an innovative multi-level convolutional neural network that 
effectively amalgamated diverse neuroimaging-derived features. This 
network demonstrated effectiveness in discriminating between 
individuals with schizophrenia and those with autism spectrum 
disorders (Du et al., 2020).

3.3.2. Depression
Depression is a highly prevalent mental disorder and is gradually 

becoming one of the leading causes of global disease burden. Given 
its rapidly increasing prevalence and significant impact on individuals’ 

personal lives and interpersonal relationships, depression can lead to 
social withdrawal and impose a substantial burden on public health. 
The COVID-19 pandemic has further exacerbated the mental health 
challenges faced by the public. Magnetic resonance imaging (MRI) 
remains one of the primary imaging modalities for depression. In a 
study conducted in 2023, structural MRI images were utilized to 
predict aspects of late-life depression, including anhedonia, suicidal 
tendencies, appetite, sleep disturbances, and anxiety (Cao et al., 2023). 
An EEG-based automated diagnostic system for depression has been 
suggested for early and accurate detection of mood disorders (Uyulan 
et al., 2022). In addition to artificial intelligence research in the field 
of neuroimaging mentioned above, studies analyzing patients’ voices 
have also become a focal point in the diagnosis of depression due to 
the often pronounced changes in energy, communication abilities, and 
emotions seen in individuals with this condition. In a study conducted 
in 2023, researchers employed pre-trained large-scale language 
models and parameter-efficient fine-tuning techniques to establish a 
neural network model capable of assessing the severity of depression 
in patients based on their spoken text (Lau et al., 2023). In another 
study conducted in 2022, researchers collected demographic 
information and acoustic data from 56 Mandarin-speaking elderly 
individuals with Major Depressive Disorder (MDD). They developed 
a deep learning model to diagnose early-onset late-life depression 
using raw voice signals recorded by patients on their smartphones 
(Lin et al., 2022).

3.3.3. Alzheimer’s disease
Alzheimer’s disease (AD) is a progressive brain disorder and a 

critical global health, public health, and population health concern. 
Progressive memory loss and cognitive impairment are the primary 
features of Alzheimer’s disease. In fact, early diagnosis of 
Alzheimer’s disease heavily relies on neurocognitive tests, brain 
imaging, and cerebrospinal fluid analysis. Therefore, unlike other 
psychiatric disorders, access to brain imaging data for Alzheimer’s 
disease patients is more readily available. As of 2023, numerous 
studies have been conducted using MRI for the diagnosis of 
Alzheimer’s disease. In a study conducted in 2022, a novel model 
was developed, which utilized brain tissue segmentation from MRI 
data. This model employed a combination of Extreme Gradient 
Boosting (XGBoost) and Support Vector Machine (SVM) 
techniques to classify Alzheimer’s disease based on segmented brain 
tissues (Tuan et al., 2022). Simultaneously, there is a substantial 
body of research focused on diagnosing Alzheimer’s disease based 
on EEG (Electroencephalogram) data (Bi and Wang, 2019; 
Alessandrini et al., 2022). Furthermore, due to the accumulation of 
hyperphosphorylated and pathologically misfolded tau proteins 
being a primary and most common hallmark of Alzheimer’s disease 
(AD), there is also research exploring early detection of the 
prodromal stages of AD using tauPET, as shown in Figure 8 (Jo 
et al., 2020).

3.3.4. Post-traumatic stress disorder
Trauma exposure can lead to a range of psychiatric disorders, 

including depression, anxiety disorders, bipolar mood disorders, 
personality disorders, psychosis, and trauma-related disorders, 
particularly post-traumatic stress disorder (PTSD). PTSD is a 
pathological diagnosis characterized by a history of trauma exposure 
and the presence of symptoms lasting for at least 1 month. These 
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symptoms stem from at least one of four clusters: intrusion, avoidance, 
negative alterations in mood and cognition, and arousal and reactivity 
(Compean and Hamner, 2019). In a study conducted in 2023, an 
EEG-based approach was employed, integrating Convolutional Neural 
Networks (CNN) and Long Short-Term Memory (LSTM) networks 
in a multi-input CNN-LSTM architecture. This deep learning model 
demonstrated high accuracy in identifying fear emotions from 
physiological signals (Masuda and Yairi, 2023). In another study 
utilizing resting-state functional MRI (rs-fMRI), data from 91 
individuals diagnosed with post-traumatic stress disorder and 126 
trauma-exposed individuals without PTSD were included. This 
research employed a combination of deep learning and graph theory-
based brain features to detect post-traumatic stress disorder at the 
individual level using rs-fMRI data (Zhu et al., 2021).

3.3.5. Anxiety disorder
Anxiety disorders are a common group of mental health disorders 

that are often characterized by excessive arousal, excessive fear and 
worry that are disproportionate to actual threats or dangers, and 
significantly interfere with normal daily functioning (Olthuis et al., 
2016). Anxiety disorders often combine with multiple mental 
disorders, such as mood disorders, substance abuse, or personality 
disorders (Andrews et al., 2001; Olatunji et al., 2007; Barrera and 
Norton, 2009). There are many types of anxiety disorders, including 
social anxiety disorder, panic attacks, generalized anxiety disorder, 
agoraphobia, dissociative anxiety disorder, and selective mutism. In a 
2023 study, researchers used data from the IMAGEN database to 
incorporate patient MRI to assess anxiety in adolescents. Using three 
machine learning methods, logistic regression (LR), support vector 
machine (SVM), and Random forest (RF), the researchers built 
models to demonstrate the correlation between gray matter volume 
and anxiety (Chavanne et al., 2023). In a 2022 study, researchers used 
EEG data to classify people with a wide range of anxiety disorders and 
healthy people. The accuracy of the model was 97.83 ± 0.40%, 
sensitivity 97.55 ± 0.31%, specificity 97.78 ± 0.36% of specificity, and 
F1 97.95 ± 0.17% (Shen et al., 2022).

4. Conclusion

With the advancement of medicine, clinical practitioners have 
gained a deeper understanding of numerous psychiatric disorders. 

Mental illnesses, once stigmatized as “madness,” are gradually 
being accepted as manageable or treatable conditions. For 
healthcare professionals and patients alike, quantifying the 
diagnosis of mental disorders serves multiple purposes. On one 
hand, it aids in demystifying the enigma surrounding mental 
illness, thereby reducing potential discrimination. On the other 
hand, it facilitates more precise diagnoses and personalized 
treatment strategies. Although the application of artificial 
intelligence in neurological disorders is still in its infancy, some 
researchers are content with extracting interpretable biomarkers. 
Nevertheless, this field holds significant promise. AI based on 
neuroimaging possesses the capability to identify subtle alterations 
in mental illnesses by extracting complex and abstract features, 
surpassing diagnostic capabilities rooted solely in clinical 
experience. In this article, we discuss the application of artificial 
intelligence in neuroimaging of individuals with Obsessive-
Compulsive Disorder (OCD). Most of the studies included in this 
article are based on brain atlases. We  believe that extracting 
interpretable features based on brain atlases is an important 
research direction in the field of psychiatric neuroimaging. 
Therefore, we consider this to be highly beneficial for researchers 
in the field of mental disorders conducting quantitative studies on 
psychiatric illnesses. The application of artificial intelligence in 
OCD has two important implications. First of all, AI can directly 
build diagnosis and treatment prediction models for patients from 
images and medical record information, which not only reduces 
the workload of clinicians, but also provides important support for 
clinical work. Secondly, in the process of interpreting or feature 
screening the machine learning model established by 
neuroimaging, the occurrence and development principle of OCD 
is actually explored. Researchers can further deepen their 
understanding of OCD by identifying differences in neuroimage 
performance associated with OCD. Furthermore, the widespread 
adoption of neuroimaging examinations across various types of 
psychiatric disorders, coupled with comprehensive, systematic, and 
long-term follow-up data, may pave the way for the development 
of large-scale AI models in this field.
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FIGURE 8

A sample of brain PET/CT, (A) PET, (B) CT.
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