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Amoeboid cell movement andmigration are wide-spread across various cell types
and species. Microscopy-based analysis of the model systems Dictyostelium and
neutrophils over the years have uncovered generality in their overall cell
movement pattern. Under no directional cues, the centroid movement can be
quantitatively characterized by their persistence to move in a straight line and the
frequency of re-orientation. Mathematically, the cells essentially behave as a
persistent random walker with memory of two characteristic time-scale. Such
quantitative characterization is important from a cellular-level ethology point of
view as it has direct connotation to their exploratory and foraging strategies.
Interestingly, outside the amoebozoa and metazoa, there are largely
uncharacterized species in the excavate taxon Heterolobosea including
amoeboflagellate Naegleria. While classical works have shown that these cells
indeed show typical amoeboid locomotion on an attached surface, their
quantitative features are so far unexplored. Here, we analyzed the cell
movement of Naegleria gruberi by employing long-time phase contrast
imaging that automatically tracks individual cells. We show that the cells move
as a persistent random walker with two time-scales that are close to those known
in Dictyostelium and neutrophils. Similarities were also found in the shape
dynamics which are characterized by the appearance, splitting and annihilation
of the curvature waves along the cell edge. Our analysis based on the Fourier
descriptor and a neural network classifier point to importance of morphology
features unique to Naegleria including complex protrusions and the transient
bipolar dumbbell morphologies.
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1 Introduction

Combinatorial use of persistent motion and reorientation is a common feature found in
cell movement. Be it bacterial swimming or amoeboid crawling, persistent movement allows
cells to gain most distance in one preferred direction so as to facilitate efficient escape from
hazards or conversely attraction to nutrients. Reorientation on the other hand is not only
required to adjust direction of persistent movement but also to facilitate cells to randomly
explore and survey uncertain extracellular environments (Viswanathan et al., 1999;
Bartumeus et al., 2002). In E. coli bacteria, the cell movement consists of a period of
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straight run interrupted by a stall or “tumble” where flagellar
rotation reverses and cells reorient in random directions. The
frequency of tumbling is regulated through a chemosensory
system so as to provide orientation bias towards an attractant or
away from a repellent. The exact nature of such motility pattern
determines how well E. coli cells disperse (Taktikos et al., 2013). In
the amoeboid movement, pseudopodal protrusions enriched in
branched F-actin networks (Pollard, 2007) are formed transiently
and can guide cells in different orientations. In addition, a confined
region of the plasma membrane needs to retract in order to realize
net displacement. In many cell types, cortical F-actin that is
crosslinked with myosin II is enriched in such contractile
membrane regions (Chi et al., 2014). Persistent movement arises
when a cell has mono-polarity meaning that it has a single
dominating leading edge and a retracting trailing end. The
occurrence and location of these organizational events along the
plasma membrane determine the sequential appearance of plasma
membrane protrusions and rear retractions, ultimately influencing
the direction, speed, and duration of cell movements.

Quantitative time-series analyses of cell displacement and cell
shape change are important for explicit characterization of random
cell motion. In many cases, cell displacement can be approximated
as a particle obeying persistent random walk. Phenomenologically,
the simplest form of differential equation that describes such
stochastic dynamics is the Langevin equation (Dunn and Brown,
1987; Selmeczi et al., 2005; Selmeczi et al., 2008)

d �v t( )
dt

� −β �v t( ) + σ �ξt (1)

where �v is the velocity vector, β is the decay rate, σ is the noise
strength, and �ξt is 2D white Gaussian noise. Random walk of E. coli
can be approximated by Brownian motion having a short-term
memory. In eukaryotic crawling, cell trajectories of fibroblast cells
(Gail and Boone, 1970) and endothelial cells (Stokes et al., 1991) are
also consistent with this simple persistent random walk model. In
many other cell types, random walk includes memory that depends
on the velocity and orientation which can be described by
modifications to the above model (Takagi et al., 2008; Li et al.,
2011). There are also random walk statistics called Lévy-walk with
step lengths that follows a long tail (power-law) distribution
(Viswanathan et al., 1999). There, the Mean Square Displacement
(MSD) essentially diverges and the trajectories are characterized by
self-similarity of the step lengths (Reynolds, 2010; Reynolds and
Ouellette, 2016). Because Lévy-walk has very small probability of
revisiting the same location, it is thought to arise in systems such as
bird foraging that require an efficient search strategy. At the cellular-
level, effector T-cells (Harris et al., 2012) and swarming bacteria
have been reported to exhibit Lévy-flight like statistics (Ariel et al.,
2015; Huo et al., 2021).

To date, quantitative understanding of random walk behavior
of amoeboid cells is limited to data from a handful of cell-types;
these are mostly timelapse microscopy images of cultured
metazoan cells and amoebozoa Dictyostelium. From microbial
ethology and evolutionary biology perspectives, however, we
should note that amoeboid movement is found not only in
animals, fungi and amoebozoans (Prostak et al., 2021) but also
in largely uncharacterized species in the excavate taxon
Heterolobosea namely Naegleria spp. and the slime mold

acrasids (Brown et al., 2012). The ancestors of the opisthokont
lineage and Naegleria diverged more than a billion years ago
(Parfrey et al., 2011). Knowing the details of motility
characteristics in Naegleria should help us understand the
common design of the motility trait that is either deeply
conserved across taxa or acquired independently by strong
selective advantages.

Among members of genus Naegleria, non-pathogenic Naegleria
gruberi (hereafter refer to as N. gruberi) is the better characterized
species whose genome has been sequenced (Fritz-Laylin et al., 2010).
In its amoebic phase, N. gruberi grows and divides by feeding on
bacteria through phagocytosis (Fulton, 1970). Under low electrolyte
conditions, it quickly shifts to the non-feeding flagellated state by
rapid de novo synthesis of microtubules (Walsh, 2007). In the
amoebic state, the overall cell cortex is enriched in F-actin with
marked accumulation around membrane ruffles (Velle and Fritz-
Laylin, 2020). An early work using reflection interference
microscopy has revealed that N. gruberi adhere and form discrete
dot-like contacts to non-treated glass surfaces and migrate (Preston
and King, 1978). These so-called “focal contacts” leave behind
footprints of membrane residues on the glass substrate as the
cells crawl away (Preston and King, 1978). With the advent of
genomics and molecular cell biology, it has become clear that N.
gruberi possess the essential side-branching nucleator of
F-actin—the Arp2/3 complex and its activators WASP and SCAR
(Fritz-Laylin et al., 2017; Velle and Fritz-Laylin, 2020; Prostak et al.,
2021). Inhibition of Formin reduces directional persistence, and
inhibition of the Arp2/3 complex reduces the cell speed (Velle and
Fritz-Laylin, 2020). N. gruberi also has Myosin II (Sebé-Pedrós et al.,
2014) and a potential orthologue of Integrin beta (Morales et al.,
2022), although whether they exist in other groups in Excavata is
unclear (Velle and Fritz-Laylin, 2019).

While the above works indicate likely similarity of actin-
dependent processes involved in cell crawling in an evolutionary
distant eukaryote, quantitative characterization of the cell-level
motility pattern is so far lacking. Do N. gruberi cells exhibit
persistent random walk behavior? What is the characteristic time
scale of persistence and reorientation if any? How similar are their
movements compared to the well-studied systems such as
Dictyostelium and immune cells? In this report, we performed
quantitative analysis on cell movements and shape change of N.
gruberi. Our analysis demonstrates that N. gruberi cells exhibit
persistent random walk driven by a large morphology change
that involves appearance, splitting and annihilation of uniquely
complex pseudopodium protrusions.

2 Results

2.1 An overview of cell movement and cell
morphology

To quantitate the movement ofN. gruberi on a two-dimensional
flat surface, we performed phase contrast time-lapse microscopy. A
non-coated glass coverslip was employed as a cell substrate
throughout this study. Figure 1A shows representative phase
contrast images of N. gruberi in liquid growth media (Materials
and Methods). The cells under our culture condition exhibited one
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or more hyaline protrusions that appeared dark in phase contrast
images (Figure 1A arrows). In the example shown, protrusions
extended along the glass surface for 15–50 s and the one that
became dominant (i.e. the leading edge) extended in the
direction of the overall cell movement (Figure 1A, 0 s). Marked
cytoplasmic streaming from the center of the cell towards these
extensions was observed (Supplementary Movie S1). A new
protrusion appeared and extended first in the lateral direction
(Figure 1A 20 s, 60 s arrow) and steered towards the front. It was
then bent sideway before being retracted (Figure 1A 40 s, 80 s).
Duration of the pseudopod extension/retraction cycle varied
between 15–50 s (Supplementary Figure S1; Supplementary
Movie S2). Concomitant reversal of cytoplasmic streaming was
observed during retraction of pseudopods. A small bud-like bulge
at the trailing end of a cell which we shall refer to as “uroid” appeared
as a residue of a retracted pseudopod that was retained for an
extended period of time (Figure 1A white circle). The uroid
contained thin filopodia-like projections as described earlier
(Preston and King, 1978).

Under our culture condition, the cells appeared to re-orient in
random directions at irregular timing. We performed long time cell
tracking by employing an automated stage that was programmed to
track target cells (see Methods). Figure 1B shows representative cell
trajectories obtained from the automated tracking. The trajectories
consisted of a period of straight movement that lasted for about
30–200 s and a time period of relative low displacement and re-
orientation (Figure 1B). The movement is thus, at surface, akin to
the run-and-tumble behavior of E. coli. There was a close link
between the run/re-orientation dynamics with the cell shape. During
a straight run, cells took a fan-like shape (Figure 2A; Supplementary
Movie S3). The tail remained narrow while the front was occupied
by a broad lamellipodia that expanded then split into branches of

pseudopods (Figure 2A, 0–16 s). These bifurcating protrusions often
fused to restore a large lamellar extension (Figure 2A, 20 s). On the
other hand, cells re-oriented when the bifurcated protrusions
remained separate. In most cases, the uroid persisted during
front splitting and thus the cells took a Y- or trident shape
(Figure 2B; Supplementary Movie S4). There were also cases
where the uroid disappeared in Y-shaped cells (Figure 2C;
Supplementary Movie S5). The two fronts expanded in the
opposing directions and gave rise to a transient “dumbbell-like”
bipolar morphology (Figure 2C, 70 s). After 10 s, one end shrunk
and became the uroid while the other end became the next front
(Figure 2C, 80 s). There was little centroid displacement during this
period which lasted for about 40 s.

2.2 Random walk statistics

To characterize the random-walk statistics, we quantified the
mean square displacement (MSD) and the instantaneous speed
defined by the centroid displacement in 1 s time interval from
trajectories of N = 10 cells (Figure 3). Even with the help of
automated stage tracking, fast movement of N. gruberi made it
difficult to track cells for long time duration before they come close
to the edge of the plate or collided with one another. Thus, to obtain
MSD, single trajectories were each divided into sub-trajectories of
100–3,600 s time-window and treated as independent data samples
(Figure 3A). The slope of the MSD from the individual trajectories
was 1.5–2.0, where the mean and standard deviation are 1.77 and
0.08 (Figure 3B; Supplementary Figure S2A). The time-dependency
of the MSD indicates that the random walk of N. gruberi falls
somewhere between pure Brownian (exponent of 1) and ballistic
(constant velocity) motion (exponent of 2). Figure 3C and

FIGURE 1
An overview ofN. gruberimovement. (A) Representative phase contrast images from a time-series of a migratingN. gruberi cell. Arrows: protruding
edges. Circles: a bud-like rear structure (“uroid”). (B) First 360 s of randomly selected centroid trajectories. 4 trajectories are separately shown for visibility.
Scale bar: 100 μm.
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Supplementary Figures S2B–F show the distribution of the
instantaneous velocity. The distribution followed 2-dimensional
Gaussian with zero-mean and standard deviation of 51 μm/min
(0.86 μm/s) (Figure 3C, Supplementary Figures S2B–F). This feature
is distinct from Dictyostelium random motility which is non-
Gaussian (Takagi et al., 2008). The median of the absolute speed
was 60 μm/min (1.0 μm/s) which is close to the average speed

reported in earlier literatures (King et al., 1981; Thong and
Ferrante, 1986).

The temporal auto-correlation of the centroid speed (velocity auto-
correlation; VAC) (Supplementary Figure S2G) shows, on average, that
there are two characteristic decay times that cross over at around 10 s
(Figure 3D). By assuming that VAC follows the sum of two exponential
function (Selmeczi et al., 2005) with velocity �v:

FIGURE 2
Protrusion dynamics and the cell shape change. (A) A fan-shaped cell with front splitting during a persistent run. (B) Front splitting followed by
reorientation (curvature kymograph for the sequence is shown in Figure 5A). (C)Dumbbell shape arise after front splitting and disappearance of the uroid
(curvature kymograph for the sequence is shown in Supplementary Figure S4E). Arrows: orientation of centroid movement. Inverted triangles:
propagating curvature waves.
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〈 �v t + τ( ) · �v t( )〉t � Φ1e
− τ
T1 +Φ2e

− τ
T2 (2)

we obtained decay time T1 and T2 of approximately 6 s and 90 s,
respectively, where the weight Φ1 and Φ2 are 0.36 μm2/s2 and
0.87 μm2/s2 (Figure 3D Red curve). Based on the Bayesian
information criterion (BIC) (Schwarz, 1978), two exponential
functions gave the lowest value compared to one or three
(Supplementary Figure S2H). When the length of time sequence
chosen for the analysis was doubled from 50 s to 100 s, deviation of
the parameter values was within an order of magnitude
(Supplementary Figure S2H magenta curve). Decay time T2 of
approximately 90 s was also evident from the time derivative of
VAC (Supplementary Figure S2I).

To check for orientational preference in thememory, we plotted the
relationship between velocity and acceleration (change in �v in 1 s
interval) (Supplementary Figures S2J, K). The mean acceleration
orthogonal (a⊥) to the velocity was near zero regardless of |v|
(Figure 3E; green circle) with non-zero variance (Figure 3E green
stars) which suggests that the orientation of N. gruberi has no
apparent left-right asymmetry. On the other hand, the mean
acceleration parallel (a‖) to the velocity was near zero at small
velocity then decreased towards the negative at large velocities
(Figure 3E). The standard deviation (Figure 3E; blue stars) increased
somewhat at high |v|, however rarity of these fast step events prevented
us from obtaining reliable averages. These features of acceleration are
similar to those reported for Dictyostelium (Takagi et al., 2008). The
negative acceleration parallel to the migration direction at high |v|
implies that the cells do not maintain high |v| during re-orientation.
Accordingly, when we plot reorientation angle θ as a function of |v|
(Figure 3F) we see that most of re-orientation occurs below |v| = 1 μm/
sec. Above 1 μm/s the cells are moving in a straight line; i.e. cosθ = 1.

2.3 Generalized Langevin equation

To gain further insights on the specifics of the random walk
statistics, it is instructive to compare the data with the behavior of
simple idealized equations. The velocity auto-correlation that
follows the sum of two exponential indicates that random walk
dynamics cannot be captured simply by the Ornstein-Uhlenbeck
process (Eq. 1) which only has a single exponent (Dunn and Brown,
1987). A straight-forward and minimal extension to Eq. 1 is to
include additional memory with the decay rate γ as an integral in the
form of generalized Langevin-equation (Selmeczi et al., 2005)

d �v t( )
dt

� −β �v t( ) + α2∫t

−∞
e−γ t−t′( ) �v t′( )dt′ + σ �ξt (3)

Here, α is the strength of memory effect, and �ξt is a normalized
Gaussian white noise that satisfies

〈 �ξt〉 � 0, 〈 �ξt �ξ
T

t′〉 � 1 0
0 1

( )δ t − t′( ),〈 〉 is an ensemble average

and δ(t) is the delta function, σ is the noise strength (Selmeczi
et al., 2005). By introducing

�V t( ) � α∫t

−∞
e−γ t−t′( ) �v t′( )dt′ (4)

the equation of motion becomes

d �v t( )
dt

� −β �v t( ) + α �V t( ) + σ �ξt (5a)
d �V t( )
dt

� α �v t( ) − γ �V t( ) (5b)

Based on the values of T1, T2,Φ1,Φ2 obtained above, we
calculated the parameter values of the generalized Langevin

FIGURE 3
Statistics of the centroid movement. (A) The trajectories used for detailed analysis (N = 35). The origin is set at the initial position. Scale bar: 500 μm.
(B) The ensemble averaged MSD. Red solid curve line: exponent 1.8, which is the result of fitting the ensemble averaged MSD. Shaded region: standard
deviation. (C) Probability distribution of | �̂v|. Red solid curve: a fitting curve from a 2-dimensional isotropic Gaussian distribution with a standard deviation
of 0.86 μm/s. (D) The ensemble averaged VAC. Red solid curve: the sum of two exponential functions (Eq. 2). (E) Acceleration parallel (blue) and
orthogonal (green) to the velocity. The binned average (circle) and the standard deviation (star). (F) Persistence of displacement orientation in a unit time
step. Cosine of the angle change θ in the velocity in 1 s interval. The binned average (circles) and the standard deviation (error bars).
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equation (Eqs 5a, b) from the analytically obtained VAC at the
steady state (see Eq. 29).

Trajectories, the MSD and the VAC were obtained by
numerically calculating Eqs 5a, b with the parameters obtained
above (Table 1). The individual trajectories consist of combination
of persistent movement and turns (Figure 4A). The slope of MSD
hadmean and standard deviation of 1.80 ± 0.06, which matched well
with the experimental data (Figure 4B). The distribution of |v|
showed a single peak that was slightly smaller compared to the
experimental data (Figure 4C). The median was 56 μm/min
(0.94 μm/s) in the simulation, which matched well with 60 μm/
min in the experiment. The velocity autocorrelation consists of two
slopes that crossed over at around 10 s (Figure 4D red), which was
similar to the crossover in the experimental data (Figure 4D black).
Velocity dependence of acceleration also matched well with the
experimental data (Figure 4E). On the other hand, the range of cell
speed at which turning occurred in the simulations was somewhat
broader (0–1.2 μm/s) compared to the real cell (0–0.8 μm/s)
(Figure 4F). While the MSD and the VAC characteristics were
well captured by the memory effect described in Eq. 3, deviation
from the model became evident when comparing autocorrelation
separately for the centroid movement (absolute velocity | �v|) and the
orientation ( �v/| �v|) (Supplementary Figure S3). In the experimental
data, it is only the autocorrelation of the orientation �v/| �v| not | �v| that

showed two decay times (Supplementary Figure S3A, B). In the
generalized Langevin-equation, the velocity and the orientation
share the same time scales, and thus the autocorrelation of both
the orientation �v/| �v| and | �v| decayed with the two exponents
(Supplementary Figures S3C, D).

2.4 Cell shape dynamics

Rather than pursuing extensions of the particle-based formalism
such as those that treat the two timescales separately (Li et al., 2008;
Takagi et al., 2008), we sought to more directly characterize cell
reorientation by analyzing the cell shape dynamics. Based on
binarized cell mask images and a boundary tracking algorithm
(Nakajima et al., 2016; see also Supplementary Figure S4A),
500 points along the edge of cell masks were tracked in the
laboratory frame for the local curvature and the normal velocity
(Figure 5A, B; see also Supplementary Figures S4B, D, F for another
sample). A protruding edge can be seen as a positive local-maximum
in the curvature (Figure 5A yellow regions). The advancing front of a
cell can be discerned by its positive velocity (Figure 5B, yellow
regions), and the trailing uroid by the negative velocity (Figure 5B,
blue regions). At the cell front, a new protrusion frequently appeared
to split off from a pre-existing protrusion (Figures 5A, B white

TABLE 1 Parameters for the generalized Langevin equation. The experimental data were fitted with the analytical VAC (Eq. 29).

α [s−1] β [s−1] γ [s−1] σ [μm · s−3/2] σX [μm]
GLE 0.0741 0.116 0.0641 0.266 0

GLE w/positional uncertainty 0.0741 0.116 0.0641 0.266 0.155

FIGURE 4
Statistics of the persistent random walker trajectories. (A) Simulated trajectories. (B)MSD; the ensemble average (circle) and the standard deviation
(shade) (red). Experimental data (black) are duplicated from Figure 3B for comparison. (C,D) Probability distribution of | �̂v| (C) and VAC (D) (red).
Experimental data from Figures 3C, D (black) are duplicated for comparison. (E) Acceleration, parallel (red) and orthogonal (black) to the velocity. The
average (cross mark) and the standard deviation (triangle). Blue and green markers show the experimental data in Figure 3E. (F) The average of cos θ
(red circle) and the standard deviation (red error bar). Experimental data from Figure 3F (black circle and error bar) are duplicated for comparison.
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arrows). These appeared in the kymograph as branching positive
curvature regions that propagated rearward until they were
annihilated at or near the uroid (Figures 5A, B black arrows).
The sequence of curvature wave dynamics represents well the
shape dynamics as seen in the snapshots (Figures 5C, D orange
arrows; see also Figure 2B white arrows for a protrusion from split to
annihilate).

The curvature wave dynamics are surprisingly similar to those
obtained for Dictyostelium and neutrophil-like HL60 cells (Driscoll
et al., 2012; Imoto et al., 2021) with a noticeable difference that
splitting was more frequent and thus numerous. The other
difference compared to Dictyostelium and HL60 cells is the
occasional and transient appearance of dumbbell-like shape
(Supplementary Figures S4C, E, G; Supplementary Movie S5).
When it appears, the centroid velocity orientation showed
discontinuous change (Supplementary Figure S4C, black arrow).
In the kymograph representation, a dumbbell-like cell shape appears
as two or three stable curvature waves (Supplementary Figure S4E,
black arrow). Most positions had zero velocity (Supplementary
Figure S4G, black arrow), indicating stalling of cell shape change.

These observations indicate that as the dumbbell shape appeared,
the cell stopped and randomized its orientation. There were also rare
cases where the cell maintained mono-polarity for an extended
period of time (Figures 5E–G; Supplementary Movie S6; see
Supplementary Figure S5 for additional samples). There, new
curvature waves emerged frequently and traveled fast before
disappearing at the tail (Figure 5E). The position where curvature
waves appeared always showed positive velocity, while the positions
where curvature waves disappeared showed negative velocity
(Figures 5E, F). These patterns in the kymograph correspond
well with the observation of fast curvature waves that propagate
from the advancing cell front and disappear at the uroid (Figure 5G).

A further analysis showed a close relationship between the
curvature wave and the centroid movements. The protruding and
the retracting membrane regions can be identified as positive
curvature regions with positive (Figure 6A, white dots) or
negative (Figure 6A black dots) velocity respectively. The
orientation of the normal vector at the protruding region
showed high correlation with the direction of centroid velocity
(Figure 6B blue). The retracting regions oriented in the opposite

FIGURE 5
Cell boundary analysis. (A,B) The curvature (A) and the normal velocity (B) of the cell boundary taken from a representative cell exhibiting random
walk. White arrows: splitting. Black arrows: pair annihilation. (C,D)Magnified view of a subsection in (A,B). Orange arrows indicate protrusions that split (C)
or annihilated (D). (E,F) The curvature (E) and the normal velocity (F) of the boundary taken from a cell with high persistence. (G) Snapshots of the cell
analyzed in (E,F). The white arrow: the direction of the centroid movement. The inverted triangles mark the uroid.
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directions which appeared somewhat broader in distribution
(Figure 6B orange). To further analyze the dynamics of the
curvature wave, high curvature regions (Figure 6C white) at
each time frame were assigned as individual protrusions
(Figure 6C green). While there were multiple protrusions in
the protruding region, a dominant leading edge can be
detected from identifying a single protrusion whose normal
vector angle was the closest to that of the centroid velocity
(Figure 6C magenta). Once a curvature wave became the
leading edge, it remained so for about 2.8 s as measured from
its average lifetime (Figure 6D). Another interesting feature of
the membrane extensions is that they gave birth to secondary
pseudopods or were steered to other directions. The typical
angular velocity associated with this dynamic was 0.1 rad/s
(Figure 6E). Together with the two timescales of decay
(Supplementary Figure S3B), these behaviors indicate that
the centroid velocity angle by itself follows 1D persistent
random walk. From experimentally obtained parameters of
the leading edge lifetime (2.8 s) and the angular velocity
0.1 rad/s, the 1D model (see Materials and Methods, Cell
Boundary Analysis section) yielded decay time of 142 s on
average which matched well with the experimental data
(Figure 6F).

2.5 Fourier-based morphology space
analysis

To obtain a quantitative morphometry, we chose by eye
21 representative mask images each for the 3 shapes; fan-shape,
split and dumbbell (Supplementary Figure S6A) and calculated the
Fourier power spectrum of the cell edge coordinates and their
principal components were calculated (see Materials and
Methods). We found that the first two principal components
were sufficient to obtain well separated clusters that represented
the shape class (Figure 7A). All cell masks analyzed were distributed
within a confined domain in the PC1fourier -PC2fourier space
(Supplementary Figure S6B). The fan-shaped data were located at
a low PC1fourier and high PC2fourier region (Figure 7A circles). The
split-shape were found in the low PC1fourier—low PC2fourier region
(Figure 7A asterisks). The dumbbell-shape was located at high
PC1fourier and high PC2fourier (Figure 7A triangles). To see what
shape features the principal components represented, we reverse
calculated an artificial form by obtaining Fourier spectrum as a
product of synthetic principal component vector to the eigen vector
matrix composed of the basis of Fourier spectrum (see Methods). In
brief, PC1fourier indicated the aspect ratio i.e., elongation, PC2fourier
the head width, PC3fourier the rear steepness (Supplementary Figure

FIGURE 6
Relation between themembrane protrusions and the centroid velocity angle. (A) The protruding front (white) and the retracting rear (black) detected
from the velocity kymograph are overlaid on top of the curvature kymograph (see Methods). (B) The angular histogram of the protruding front (blue) and
the retracting rear (orange) relative to the cell orientation as determined by the centroid velocity. (C) The position of protrusive regions (“curvaturewaves;”
green). The region that co-extendedmost closely in the direction of the cell centroid motion (“leading protrusion;”magenta). The binarizedmask of
the protrusion region (white) obtained from the curvature kymograph is shown in the background. (D)Duration time histogram of the leading protrusion
(magenta in (C)). (E)Histogram of the angular velocity in the protrusion orientation [the vector normal to the cell contour at positions indicated in green in
(C)]. Solid lines are exponential fit to the data (D,E). (F) Estimated VAC decay time Test for the representative data.
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S6C). Here, the main contribution to PC1 were from the wave
number 1 and −1 with coefficients of 0.68 and 0.73. For PC2, the
contribution from wave number 1, −1, 2, and 3 was
0.62, −0.59, −0.49, −0.12, respectively. Contribution from other
modes was small with coefficients less than 0.03.

How the cell shape changed during turning can be analyzed by
tracking the time sequence in the PC1fourier—PC2fourier space.
Figure 7B shows three independent samples of re-orienting cells.
Here, cells were mainly located in the negative PC1fourier region with
occasional visits to the positive PC1fourier region. This is consistent
with the above observation that cells took fan- or branched-shape
(negative PC1fourier) in addition to rare occurrence of dumbbell-
shape (positive PC1fourier). Figure 7C shows three independent
samples of the dumbbell-shape forming cells. The counter-
clockwise circular trajectories in the PC1fourier—PC2fourier space
signify a transition from the fan-shape to splitting then to the
dumbbell-shape. On the other hand, Figure 7D shows three
independent trajectories that remained in the negative
PC1 region for extended period of time. These cells at least
during the time window of observation fluctuated between the
fan-shape and the bifurcating fingers. There was no clear
relationship between the morphometry state (PC1fourier,
PC2fourier) and the cell speed (Supplementary Figures S7A, B).

There was, however, negative correlation between the centroid
speed and the rate of state transition d PC1fourier{ }/dt but not
with d PC2fourier{ }/dt (Supplementary Figures S7C, D). As the
former relation was seen in the negative direction
d PC1fourier{ }/dt <0, it signifies that cells accelerate when
recovering from dumbbell-shape.

Besides the rate of state transition in the principal components,
there should be a direct relationship between the Fourier
components Cn themselves and the centroid movement.
Autocorrelation analysis showed that the decay rates for C-3, C3,
and C4 were 7.6, 8.9, and 10.6 s, respectively (Figure 7E) and thus
matched most closely to the short decay time of VAC. As for the
centroid velocity itself, according to the deformation tensor-based
theory of cell movement (Ohta et al., 2016), it should be
proportional to Cnm ≡ _C−nCm − C−n _Cm where −n + m = 1. More
specifically, Cnm is a complex number whose absolute value |Cnm|
and the angle arg (Cnm) are expected to be proportional to the speed
and the velocity angle of the centroid respectively. In NIH3T3 cells,
it has been shown that velocity is proportional to the elongation C-2

and triangular C3 modes of deformation multiplied by their time
derivatives; i.e. C23 � _C−2C3 − C−2 _C3 (Ebata et al., 2018). However,
in N. gruberi, we found little correlation between C23 and the
centroid velocity (Supplementary Figures S7E–G). Instead, we

FIGURE 7
Fourier analysis of the cell contour. (A) Principal component space (PC1fourier, PC2fourier) obtained from 63 manually selected binarized snapshots
(left panel). Representative cell masks (right panels). (B) Time series in PC1fourier-PC2fourier space from 3 representative timelapse sequences (colors). The
time spent in the negative PC1fourier region per total trajectory time was 676 s/814 s (blue), 287 s/382 s (orange), and 459 s/578 s (green). (C) Time
evolution of PC1fourier and PC2fourier of 10 s around a large turn that involves transition to the dumbbell shape (3 representative events; colors). Black
arrow indicates the direction of time evolution. (D) Time evolution of PC1fourier and PC2fourier during persistent migration. Colors indicate different time
series [duration: 269 s (blue), 1,039 s (orange), or 3,600 s (green)]. (E) Autocorrelation ofCn (n =± 2, ± 3, ± 4). The decay rate: 12.2 (C2), 18.0 (C-2), 8.9 (C3),
7.6 (C-3), 10.6 (C4), and 4.4 (C-4) seconds. (F) Distribution of angles of centroid velocity and C34. (G,H) The x- (G) and y-components (H) of centroid
velocity plotted against real (G) and imaginary (H) parts of C34. Red circles and blue bars indicate average and standard deviation of centroid velocity
binned with the value of C34. Orange lines indicate the result of fitting with linear proportionality.
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found that it was C34 � _C−3C4 − C−3 _C4 that correlated highly with
the centroid velocity angle (Figure 7F) and x- and the y-component
of the centroid velocity (Figures 7G, H). The difference between
Naegleria and NIH3T3 may be attributed to the fact that Naegleria
has many pseudopods that are complex in shape as analyzed below.

2.6 Deep learning-based morphology
analysis

To further investigate the cell shape characteristics, we employed
a convolutional neural network that was previously trained to
classify cell shapes based on similarity to Dictyostelium-like,
HL60-like, or fish keratocyte-like shapes (Imoto et al., 2021).
While the method is not suited to track shape change over time
due to discrete change in the morphometry space that is sometimes
introduced by uncertainty in the cell orientation during mask
alignment, it has an advantage of providing an objective
morphometry that is independent of known feature basis. On
average, Naegleria was classified as Dictyostelium-like (high
PC1cnn, low PC2cnn) (Figure 8A). This was natural as it has been
shown to pick up branching shapes that are elongated overall in the
migrating direction (Imoto et al., 2021). We noticed substantial
variability, however, in the individual cell shapes (Figure 8B; black)
that exceeded those normally observed in Dictyostelium (Figure 8B;
green). Shapes that deviated in the PC1cnn direction were mapped to
dumbbell-like domain in the Fourier descriptor-based
morphometry (Figure 8C; orange). Those that deviated towards

low PC1cnn were mapped to the domain that showed numerous
pseudopods (Figure 8D; orange). Datapoints that fell at or near the
HL60-like domain (low PC1cnn, low PC2cnn) were mostly fan-like
(Figure 8C; blue; Figure 8D; blue) and their occurrence per
timeseries showed positive correlation with the MSD exponent
(Figure 8E). This is consistent with the notion that more mono-
polarized the cells are, the more ballistic the cell trajectories become.

3 Discussion

In this report, we analyzed movements of N. gruberi cells by
quantifying their speed, directionality, and shape change. The
locomotive speed of N. gruberi cells was around 60 μm/min,
which is similar to that reported in early literatures (King et al.,
1981; Thong and Ferrante, 1986). It is substantially larger in
magnitude compared to that of fibroblast ~0.4–1.0 um/min (Welf
et al., 2012; Passucci et al., 2019), and even larger compared to fast
migrating cells such as vegetative Dictyostelium 5 μm/min (Li et al.,
2008), and neutrophils 17 μm/min (Hartman et al., 1994). Despite
the large speed difference, we found common features between N.
gruberi and other cell types whose random motility have previously
been characterized. The exponent of MSD was approximately
1.8 meaning that the random walk is non-Fickian and non-
ballistic at least at surface. Stronger deceleration at higher
velocity implies non-ballistic movement, where the non-memory
term, i.e., fluctuating components plays a dominant role in
determining the next move. Similar exponent is known in

FIGURE 8
Shape analysis by a CNN-based classifier. (A,B) Time-average (A) or snapshot (B) of PC1CNN and PC2CNN from N. gruberi images (black) were
superimposed on the PC1CNN -PC2CNN phase space ofD. discoideum (green), HL60 (red), and fish keratocyte (yellow). (C) Snapshot data in (B; black) was
classified into split (black), fan (blue) or dumbbell (orange) based on PC1fourier and PC2fourier. (D) PC1fourier and PC2fourier of HL60-like (blue), cells with
PC1CNN lower than −1.6×106 (orange), or the other cells (black) classified with CNN. (E) Ratio of frames whose shape was classified as HL60 in deep
leaning-based classification.
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MDCK cells (Dieterich et al., 2008), A549 cancer cells (Kwon et al.,
2019) hematopoietic progenitor cells (Partridge et al., 2022), and
T cells (Jerison and Quake, 2020). Of particular note is that the time-
scale where such exponent was observed for N. gruberi was about
10–100 s which is within the order of magnitude required for a cell
to move one cell-body length. This seems also to be the case for
MDCK cells where the exponent of 1.8 was observed at much longer
time-scale of 4–20 min with corresponding length scale
4 μm–20 μm. All in all, our data combined with the observations
above from earlier literatures suggest that the time scale at which
cells move in a straight line is the major determinant of cells’
displacement.

The other common feature found in this study was the presence
of two characteristic decay time in the VAC (Selmeczi et al., 2008).
ForN. gruberi, these were T1 = 6 and T2 = 90 s, which are in the same
order of magnitude as that of Dictyostelium in the vegetative (T1 =
5.2 and T2 = 228 s) and the starved (T1 = 11 and T2 = 108 s) states (Li
et al., 2008). Although equivalent measurements have not been
documented for neutrophils, their cell shape changes had typical
time scale of 8 s (Hartman et al., 1994) and the persistence time
during chemotaxis was 103 s (Itakura et al., 2013; Haastert, 2021).
From the MSD measurement, the persistent time of Dictyostelium
and neutrophil-like HL60 were 151 s and 278 s, respectively (Imoto
et al., 2021). Interestingly, VAC of Human keratinocyte-like cells
(HeCaT) whose speed was much slower (0.18 μm/min) could also be
fit with the sum of two exponential functions [T1 = 76 s and T2 =
860 s; (Selmeczi et al., 2005)]. The characteristic time scale of around
10 s was attributed to the time scale of actin polymerization in the
protruding pseudopodia (Haastert, 2021). However, the pseudopod
lifetime in N. gruberi was rather long; about 15–50 s. The
discrepancy may be attributed to the sister pseudopods that
formed from the main pseudopods which were not analyzed in
our manual tracking. In some cases, the pseudopod itself also
appeared to bend in one direction. In support of this notion, the
autocorrelation of C-3 and C4 had decay time of 7–10 s which
matched well with the first decay time of VAC.

On the other hand, the second decay time of VAC (90 s;
Figure 3D) was close to the timescale of directional persistence
i.e. “run” phase estimated from the curvature wave dynamics (142 s;
Figure 6F). As for the average cell speed, we found strong correlation
between the centroid velocity with the coupling of deformation
modes C-3 and C4, instead of C-2 and C3. This suggests that the
orientation of N. gruberi cells depends not on the primary
membrane protrusions but on their sister sub-structures. A
further pseudopod-level analysis at finer time-scale is required to
clarify the relation between the deformation modes and the
branching pseudopods. The rare cells with high persistency did
not take high PC1fourier value (Figure 7D) which was opposite of
Dictyostelium (Tweedy et al., 2013). This likely stems from the fact
that, in N. gruberi, the elongated form was usually dumbbell-shaped
which occurred when the cells stalled and reoriented.

The splitting pseudopod may entail a mechanism similar to
those found in amoebozoan and metazoan cells where dendritic
actin meshworks are regulated by excitable and oscillatory dynamics
(Huang et al., 2013). The presence of local inhibitor of pseudopod
formation in neutrophils and Dictyostelium (Xu et al., 2017) and
potential lack of such in Naegleriamay underlie the difference in the
number of pseudopods. Alternatively, there may be local reduction

in the actin cortex that are stochastic in nature. Although
protrusions observed under our culture conditions did not
appear as blebs, marked flow of cytosol towards the membrane
observed during extension of a protrusion suggests local pressure
release. Protruding form triggered by the pressure difference at a
fluid-fluid interface is known as viscous fingering. The movement
speed of N. gruberi was 5 times as large as that of neutrophils and
Dictysotelium, but closer to that known for fragments of Physarum
which also exhibit marked cytoplasmic streaming (Rieu et al., 2015)
and persistent random walk (Rodiek and Hauser, 2015). Such high
velocity and potential interface instability may underlie the observed
branching of pseudopods. Another unique shape feature was the
dumbbell-like cell shape. According to a recent theoretical model of
lamellipodia-based dynamics, a similar “two-arc shape” appeared
when the protrusive force was high (Sadhu et al., 2023). The
dumbbell-shape may thus be a prevalent shape feature that was
heretofore overlooked due to peculiarity of the model cells. Indeed, a
similar dumbbell-shape has been reported in fragmented Physarum
polycephalum (Rieu et al., 2015).

In the E. coli run-and-tumble, the underlying biochemical
network has been proposed to be optimally designed to extract
binary information in a noisy environment (Nakamura and
Kobayashi, 2021). Some bacterial species make use of multiple
run modes that differ in how they are modulated in the presence
of chemoattractants (Alirezaeizanjani et al., 2020) suggesting
diversity and depth at which random walk strategies are likely
employed in prokaryotes. In Dictyostelium amoebae, the run
length increases under starvation (Haastert and Bosgraaf, 2009)
which may be related to their foraging strategy. In immune cells,
high correlation between cell speed and persistence is thought to
underlie their search efficiency in vivo (Shaebani et al., 2020;
Shaebani et al., 2022). Cancer cells show persistent random walk
in the metastatic state while weakly persistent in non-metastatic
state (Huda et al., 2018). Although chemoattractants for N. gruberi
are so far unknown, in Naegleria fowleri, formylated peptides are
known to act as chemokine (Marciano-Cabral and Cline, 1987)
meaning that it enhances cell polarity and movement in the absence
of gradient. Cell-cell variability in such response may explain how a
minority of N. gruberi cells under our experimental condition
showed persistent monopolarity. Naegleria fowleri are one of
several known “brain-eating” amoebae that cause fatal central
nervous system infection called amebic meningoencephalitis.
Their pathogenicity is thought to be related to their capacity to
enter brain by penetrating nasopharygeal mucosa and migrate along
olfactory nerves (Thong and Ferrante, 1986). In future works, it
should be informative to study how the properties quantified in this
work are modulated by chemotactic and chemokinetic factors and
how they are related to exploratory and invasive strategies.

4 Materials and methods

4.1 Cell culture

Naegleria gruberi strain NEG-M was obtained from American
Type Culture Collection (ATCC 30224). For routine cell
propagation, small bits of frozen stock were scraped off using a
sharp needle onto a fresh lawn of Klebsilella aerogenes on a NM agar
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plate (Peptone, Dextrose, K2HPO4, KH2PO4, 2% bactoagar)
(Fulton, 1970). The two-member culture plate was incubated at
30°C for a few days until cleared plaques appeared. To start axenic
culture, growing cells were picked from the edge of a plaque and
suspended in Milli-Q water. 10 μL of the cell suspension was added
to 25 mL modified HL5 media (Fulton, 1970) supplemented with
40 ng/mL vitamin B12 and 80 ng/mL folic acid, 10% fetal bovine
serum (FBS, Sigma 172,012) and 1% Penicillin-Streptomycin
(Gibco) in a 75 cm2 canted-neck plastic flask (Corning 431464U).
Cells were allowed to attach to the bottom of the flask and incubated
at 30°C for 3 days before harvesting for imaging.

4.2 Time-lapse imaging

Axenic growing cells were dislodged from the flask bottom by
gentle agitation. Cells were pelleted by centrifugation at 7 × 102 G
for 3 min and resuspended in fresh HL5 media. The medium
contains 5 mM KH2PO4/Na2HPO buffer and thus provides
required electrolytes (King et al., 1979) for optimal migration.
The cell density was adjusted to 3.3 × 102 cells/mL for the
observations. 3 mL of the cell suspension was plated on a
35 mm glass bottom dish (No. 0 20 mm hole diameter,
MatTek). The plate was set to the stage of an inverted
microscope (IX81, Olympus) equipped with either a thermal
plate or a closed stage-top incubator set to 30°C and left still
for 30 min before starting time-lapse image acquisition. All image
acquisition was performed at 30°C.

Phase contrast images were obtained by ×40 (LUCPLFLN)
objective lens and a sCMOS camera (Prime 95B, Photometrics). To
track target cells at multiple non-overlapping fields of view,
Micromanager software with a custom written plugin was
employed. Timelapse images were obtained from 2 or
3 positions at an interval of 1 s for up to 1 h. Each position was
chosen so that initially only a single cell at the center existed in the
entire field of view. In between each image acquisition, the cell
centroid was calculated from a mask obtained by applying the
“Make Binary” function in ImageJ to the most recent image. The
automated stage was then recentered to cancel out the centroid
displacement.

4.3 Analysis

4.3.1 Characteristics of cellular trajectories
Binary masks from timelapse images were prepared using

LABKIT (Arzt et al., 2022). Trajectories of cell centroid were
extracted from the mask images using the ImageJ plugin
TrackMate (Ershov et al., 2022). The generalized Langevin
equation (Eqs 4–6a, b) was numerically solved using the Euler-
Maruyama method at 2-milisecond interval with the TorchSDE
library (Li et al., 2020; Kidger et al., 2021). Simulated data were
sampled at 1 s interval. Velocity �̂v and acceleration �̂a were calculated
from the difference in the sampled positions �̂r at time tn � nδt with
an interval δt:

�̂v tn( ) � �̂r tn+1( ) − �̂r tn( )( )
δt

(6a)

�̂a tn( ) � �̂v tn+1( ) − �̂v tn( )( )
δt

. (6b)

MSDmsd(mδt), probability distribution of speed p(v), velocity
autocorrelation vac(mδt), mean and standard deviation of
acceleration conditional on speed (�̂a‖(v′), �̂a⊥(v′), σ â‖(v′), σ â⊥(v′)),
and conditional-averaged strength of turning 〈cos θ〉(v′) were
calculated from the trajectories for both the experiment and
simulation data according to following equations:

msd mδt( ) � 〈 �̂r tn+m( ) − �̂r tn( )( )2〉n (7a)
κ v′( ) � { i, n( )

∣∣∣∣∣v′≤ ∣∣∣∣∣ �̂vi tn( )
∣∣∣∣∣< v′ + δv} (7b)

p v′( ) � #κ v′( )
# i, n( ){ } δv (7c)

vac mδt( ) � 〈 �̂vi tn( ) · �̂vi tn+m( )〉 i,n( ) (7d)
�̂a‖ v′( ) � 〈âi,‖ tn( )〉 i,n( )∈κ v′( ), �̂a⊥ v′( ) � 〈âi,⊥ tn( )〉 i,n( )∈κ v′( ) (7e)

σ â‖ v′( ) � std âi,‖ tn( )( ) i,n( )∈κ v′( ), σ â⊥ v′( ) � std âi,⊥ tn( )( ) i,n( )∈κ v′( )
(7f )

âi,‖ tn( ) � �̂ai tn( ) · �̂vi tn( )
�̂vi tn( )
∣∣∣∣∣ ∣∣∣∣∣ , âi,⊥ tn( ) � �̂ai tn( ) × �̂vi tn( )

�̂vi tn( )
∣∣∣∣∣ ∣∣∣∣∣ (7g)

〈cos θ〉 v′( ) � 〈 �̂vi tn( )
�̂vi tn( )
∣∣∣∣∣ ∣∣∣∣∣ · �̂vi tn+1( )

�̂vi tn+1( )
∣∣∣∣∣ ∣∣∣∣∣〉 i,n( )∈κ v′( )

(7h)

where 〈 〉X is the average over X, subscript i indicates the i-th
trajectory, # is the number of items in the following set {}, std
denotes the unbiased standard deviation, and δv � 0.1 μm/s is the
bin width. Additionally, we checked the detail of the time evolution
of velocity by calculating the autocorrelation of the magnitude and
the angle:

�̂v
∣∣∣∣∣ ∣∣∣∣∣autocorrelation mδt( ) �

〈 | �̂vi| tn( ) − 〈| �̂vi′| tn′( )〉 i′,n′( )) | �̂vi| tn+m( ) − 〈| �̂vi′| tn′( )〉 i′,n′( ))〉 i,n( )((
(8a)

arg �̂v( )autocorrelation mδt( ) � 〈 �̂vi tn( )
�̂vi tn( )
∣∣∣∣∣ ∣∣∣∣∣ · �̂vi tn+m( )

�̂vi tn+m( )
∣∣∣∣∣ ∣∣∣∣∣〉 i,n( )

. (8b)

4.3.2 Velocity distribution
We fit a Gaussian distribution to both vx and vy to determine the

standard deviation σG. For �̂v that follows 2-dimensional Gaussian
distribution, the distribution of | �̂v| is readily derived from the chi-
square distribution with 2 degrees of freedom where the square of
| �̂v|/σG follows:

p
�̂v
∣∣∣∣ ∣∣∣∣2
σ2
G
∈ vsq, vsq + dvsq[ ]( ) � 1

2 exp −vsq

2( )dvsq
∴p �̂v

∣∣∣∣∣ ∣∣∣∣∣ ∈ v′, v′ + dv′[ ]( ) � 1
2 exp − v′2

2σ2
G

( )d �̂v
∣∣∣∣ ∣∣∣∣2/σ2G( )
d �̂v
∣∣∣∣ ∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣ �̂v
∣∣∣∣ ∣∣∣∣�v′dv′

� v′
σ2G

exp − v′2

2σ2G
( )dv′. (9)

To note, the peak of the above distribution is located at | �̂v| � σG.
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4.3.3 Fitting VAC
To fit the experimental data with the generalized Langevin

equation (Eqs 5a, b), we employed the analytical solution for the
velocity autocorrelation vacss. For the observed velocity
�̂v(tn) � δt−1 ∫tn+1

tn
�v(t)dt, the autocorrelation is:

vacss mδt( ) ≡ 〈 �̂v tn+m( ) · �̂v tn( )〉nss

� ϕ+e
− m−1( )λ+δt 1 − e−λ+δt

λ+δt
( )2

+ ϕ−e
− m−1( )λ−δt 1 − e−λ−δt

λ−δt
( )2

(10a)

λ ± � β + γ( ) ± ������������
β − γ( )2 + 4α2

√
2

(10b)

ϕ± � σ2
1 ± β − γ( )
β − γ( )2 + 4α2

1 ± β − γ( )
4λ±

+ 1 ∓ β − γ( )
β + γ( )( ). (10c)

Optimal values of α, β, γ, σ were obtained by minimizing the
mean square error between vacss(mδt) and vacexp(mδt).

4.3.4 Positional uncertainty
Parameters in Table 1 were obtained by fitting VAC at

τ ≥ 2 sec . As for the simulation only with generalized Langevin
equations (Eqs 5a, b), VAC matched poorly for the shortest time
interval of our data (τ � 0 and 1 s) due to measurement
uncertainty arising from finite time step and spatial resolution
of the observation. Because acceleration was also defined as the
velocity difference in this time interval, the magnitude of
acceleration in the simulations was off by one order of
magnitude from the real cell data. We emulated these effects
in the simulations by including white Gaussian noise with the
observed standard deviation σX (seeMethods, Table 1). The value
of VAC changed only at the shortest time window of τ � 0 and 1 s
by this correction.

To represent positional uncertainty, we incorporated additive
noise in the model so that

�̂r tn( ) � �r tn( ) + σX �ξ
X( )
n (11)

where �ξ
(X)
n is white gaussian noise which satisfies 〈 �ξ X( )

n 〉 �
0,
→〈 �ξ X( )

n
�ξ
X( )T
m 〉 � 1 0

0 1
( )δnm where δnm is the Kronecker delta,

and thus independent of all the other variables. σX is the
strength of the positional noise, �r(tn) is the position sampled at
time tn, calculated by integrating �v(t) in time according to Eqs 5a, b.
The observed velocity �̂v′(t) used in the analysis is defined as follows:

�̂v′ tn( ) � �̂r tn+1( ) − �̂r tn( )
δt

. (12)

Due to the positional noise, the analytical solution of the velocity
autocorrelation at steady state becomes

vacssX mδt( ) ≡ 〈 �̂v′ tn+m( ) · �̂v′ tn( )〉ssn �
vacss 0( ) + 2σ2X

δt2
m � 0( )

vacss δt( ) − σ2X
δt2

m � 1( )
vacss mδt( ) m≥ 2( )

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
.

(13)
The optimal values of α, β, γ, σ, σX were obtained by minimizing

mean square error between vacssX(mδt) and vac exp(mδt).

4.3.5 Cell boundary analysis
A MATLAB code for the active contour method (Driscoll

et al., 2012)—BoundaryTrack (Nakajima et al., 2016; Fujimori
et al., 2019) was used to plot kymographs of the curvature and
protrusion velocity of the cell binary mask contour. In brief, the
kymographs show time-evolution of curvature or normal vector-
projected velocity on the contour. The angle of normal vector was
also obtained using this code.

4.3.5.1 Boundary point tracking by BoundaryTrack
Initially, BoundaryTrack detects the sequence of boundary

pixels of the mask starting clockwise from the upper-left
most point (Supplementary Figure S4A left). At each frame,
the boundary was divided into equally spaced 500 points,
where the upper-left most point was assigned index 1
(Supplementary Figure S4A center). The boundary points in
two consecutive frames were linked so that the mean square of
the distance between the linked points was minimized
(Supplementary Figure S4A right). As for the latter frame,
the index of the point linked with the first point in the
previous frame was reset to 1. From the assigned boundary
points, the curvature and the velocity were calculated. In
particular, the velocity was obtained by calculating the
displacement of the points assigned with the same index
over time.

4.3.5.2 Comparing the protrusion velocity and the cell
centroid velocity

To detect the forward region of the cell, the i-th boundary point
at time t in the velocity kymograph ui(t){ }i�1,...,500 were smoothed by
fitting the velocity values at boundary points in each time with the
following joint function:

ui t( ) �
A1 t( ) cos π

L I t( ){ }min i − C I t( ){ }| |, i − C I t( ){ } ± 500| |( )( ) i ∈ I t( )( )

−A2 t( ) cos π

500 − L I t( ){ }min i − �C I t( ){ }∣∣∣∣ ∣∣∣∣, i − �C I t( ){ } ± 500
∣∣∣∣ ∣∣∣∣( )( ) i ∉ I t( )( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
I t( ) � i{ | i1 ≤ i≤ i2} i1 ≤ i2( )

i i≤ i2 ≤ i1}| ∪ i{ | i2 ≤ i1 ≤ i{ } i2 < i1( ){
where A1, A2 ≥ 0, I(t) is a continuous front region bounded by two
ends i1(t) and i2(t). The center I(t){ }, length L I(t){ }, the center of
rear region �C I(t){ } were defined in the coordinate with the periodic
boundary condition, as follows:

C I t( ){ } �
i1 + i2( )/2 i1 ≤ i2( )
i1 + i2 + 500( )/2 i2 < i1 ∧ i1 + i2 ≤ 500( )
i1 + i2 − 500( )/2 i2 < i1 ∧ i1 + i2 > 500( )

⎧⎪⎪⎨⎪⎪⎩
�C I t( ){ } �

i1 + i2( )/2 i2 < i1( )
i1 + i2 + 500( )/2 i1 ≤ i2 ∧ i1 + i2 ≤ 500( )
i1 + i2 − 500( )/2 i1 ≤ i2 ∧ i1 + i2 > 500( )

⎧⎪⎪⎨⎪⎪⎩
L I t( ){ } � i2 − i1 i1 ≤ i2( )

500 − i1 − i2( ) i2 < i1( ){ .

To investigate the relation of front or rear region with the
direction of cell centroid velocity, we calculated the angle
difference between the normal vector at the center of front or
rear region and the centroid velocity.
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4.3.5.3 Curvature wave tracking and the leading edge
detection

To track the curvature waves, we first detected protrusive
regions as follows. Depending on the curvature ci(t){ }i�1,...,500,
position #i in the curvature kymograph were classified as either
“protrusive” (ci(t)> c(2)), “flat” (c(1) < ci(t)≤ c(2)) or “caved”
(ci(t)≤ c(1)) where the thresholds c(1), c(2) were obtained by
the Otsu’s method. At each time point t, continuous
protrusive regions (j = 1, 2, 3 . . . ) were defined as set Icj,t of
neighboring protrusive boundary points i between two
ends (iLj,t, iRj,t) ∈ ILR(t):

ILR t( ) � iLj,t, i
R
j,t( ) ∈ Z2{ ∣∣∣∣∣ ciLj,t−1 t( )≤ c 2( )( ) ∧ ciRj,t+1 t( )≤ c 2( )( )

∧ ∀i s.t. iLj,t ≤ i≤ i
R
j,t ∨ i≤ iRj,t ≤ iLj,t ∨ iRj,t ≤ iLj,t ≤ i( ),(

ci t( )> c 2( ))}
Icj,t �

i | iLj,t ≤ i≤ iRj,t{ } iLj,t ≤ iRj,t( ){i i≤ iRj,t ≤ iLj,t
∣∣∣∣∣ } ∪ {i | iRj,t ≤ iLj,t ≤ i} iRj,t < iLj,t( )⎧⎨⎩

C Icj,t{ } � iLj,t + iRj,t( )/2 iLj,t ≤ iRj,t( )
iLj,t + iRj,t + 500( )/2 iRj,t < iLj,t ∧ iLj,t + iRj,t ≤ 500( )
iLj,t + iRj,t − 500( )/2 iRj,t < iLj,t ∧ iLj,t + iRj,t > 500( )

⎧⎪⎪⎨⎪⎪⎩
where C Icj,t{ } is the center of j-th protrusive region.

Next, we traced the curvature waves by linking the j-th fragment
at frame t and the j′-th fragment at frame t + 1 if Icj,t and I

c
j′,t+1 have

overlapping points. Thus, the set of linked fragments Jc was defined
as follows:

Jc � j, j′, t( )∣∣∣∣∣∃i ∈ Icj′,t+1, i ∈ Icj,t{ }.
From each pair of the linked fragments (j, j′, t) ∈ Jc, we obtained

the angular velocity ωc
j,j′(t) of a protruding region as follows:

ωc
j,j′ t( ) � φ

C Ic
j′,t+1{ } t + 1( ) − φ

C Icj,t{ } t( )( )/Δt

where φi(t) is the angle of the normal vector at point i at time t. The
representative angular velocity ωc were obtained by fitting the
histogram of |ωc

j,j′(t)| to an exponential distribution for all the
linked fragments.

To investigate the relation between the curvature wave and the
centroid velocity angle, we selected a single dominant wave jd(t)
whose angle of normal vector φ

C Ic
jd(t),t{ }(t) was closest to that of the

centroid velocity at time t. The lifetime τdk{ } of the leading edge was
measured by calculating the time window during which the leading
edge was assigned to a particular curvature wave. To this end, we

computed the time interval between the time points tdk ∈ Td at which

jd(tdk) become un-linked to the dominant wave at the next time

frame jd(tdk + 1):
Td � tdk

∣∣∣∣ jd tdk( ), jd tdk + 1( ), tdk( ) ∉ Jc{ }
τdk � tdk+1 − tdk − 1( )Δt

where the index k is given so that tdk is listed in the ascending order,
i.e., tdk < tdk+1 for all integer k. We fit a histogram of τdk for all the
linked fragments with exponential distribution to obtain the typical
duration time of driving wave τd.

4.3.5.4 Estimating the time scale of centroid velocity
autocorrelation

The angular velocity ωc and the duration time τd obtained
above were used to estimate the autocorrelation of the angle of
cell centroid velocity ψ(t). The time evolution of ψ(t) was
modeled as 1D persistent random walk with time scale τd and
step size ωcτd. Then the probability distribution of the angle
difference Δψ ∈ (−∞,∞) is:

p ψ t( ) − ψ 0( ) � Δψ( ) � 1��������
π ωc( )2τdt

√ exp − Δψ2

ωc( )2τdt( ).
Therefore, the autocorrelation AC(t) is:

AC t( ) � ∫∞

−∞
p ψ t( ) − ψ 0( ) � Δψ( ) cosΔψ dΔψ

� Re ∫∞

−∞
1��������

π ωc( )2τdt
√ exp − Δψ2

ωc( )2τdt + iΔψ( )dΔψ⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠
� exp − ωc( )2τd

4
t( ).

Thus, the estimated decay time of the autocorrelation is Test �
4/(ωc)2τd.

4.3.6 Cell morphology analysis
4.3.6.1 Fourier-based shape analysis

To quantify cell shape, we calculated the elliptic Fourier
descriptor (Kuhl and Giardina, 1982). First, we extracted the
outline of cell binary mask with a homemade code according to
(Nakajima et al., 2016; Fujimori et al., 2019). The periphery of a cell
mask Γ was defined as a folded line parametrized with length
0≤<L connecting the pixels �qi on the edge, where each pixel i
has pixel i − 1 and i + 1 in its 4 nearest neighbor pixels:

Γ � �q ( )
∣∣∣∣∣∣∣∣0≤< L, �q ( ) � �qi +  − i( ) �qi − �qi+1( ) i≤< i + 1( )

�qL−1 +  − L − 1( )( ) �qL−1 − �q0( ) L − 1≤<L( ){ }{ . (14)

Next, the polygonal outline was converted to 160 equally spaced
points �̂qi{ }159

i�0 on a relative position on Γ:

�q′i �
����
3000
A

√
�q

i

160
L( ) (15a)

�̂qi � �q′i −
1
160

∑159
j�0

�q′j
j

160
L( ) (15b)

which is rescaled according to the total number of pixels A in the
mask, and the coordinate was set so that the origin is at the cell
centroid.

The elliptic Fourier descriptor was calculated by taking the
discrete Fourier transformation of �̂ri with wave number k:

�̃qk � ∑159
i�0
R −2πk i

160
( ) �̂qi, k � 0, 1, . . . , 159 (16)

whereR(·) is a rotational matrix. Its power spectrum Sk � | �̃qk|2 was
calculated. Cn and C-n are complex number equivalents of �̃qn−1
and �̃q161−n .
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4.3.6.2 Fourier descriptor PCA
We calculated principal component vectors from the

representative dataset containing 63 snapshots. From the power
spectrum vector �S ≡ (S0, S1, . . . S159) for each mask in the
representative dataset, averaged power spectrum vector �S and the
covariance matrix η � (ηkl)k,l�0,1,...,159

�S � 〈 �S〉 (17)
ηkl � var Sk( ) k � l

cov Sk, Sl( ) k ≠ l
{ (18)

were calculated, where var and cov denotes the variance and
covariance. The m-th eigenvalue and eigenvector (λm, �em) of
matrix η were defined so that the conditions λ1 ≥ λ2 ≥ . . . ≥ λ160
and �em · �em′ � δmm′ are met. To note, thus obtained values of �S, λm,
and �em were used to analyze all the data. Using the eigenvectors, the
m-th principal component

PCm � �S − �S( ) · �em (19)

was calculated for each power spectrum vector of mask.
To characterize cell shape change dynamics, we calculated

autocorrelation ACPC of PC1 and PC2 values. Using the PC
values of cell i at time tn, ACPC is:

P̃C1i tn( ) � PC1i tn( ) − 〈PC1i tn′( )〉n′
P̃C2i tn( ) � PC2i tn( ) − 〈PC2i tn′( )〉n′

ACPC mδt( ) � 1
2
〈P̃C1i tn( )P̃C1i tn+m( ) + P̃C2i tn( )P̃C2i tn+m( )〉 i,n( ).

To restore the shape of cell from a set of principal components
(PC1, PC2, . . . , PC160), �S and �̂qi were sequentially calculated:

�S � �S + ∑160
m�1

PCm �em (20)

�̂qi �
1
160

∑159
k�0

R 2πk
i

160
( ) ��

Sk
√
0

( ). (21)

The pixels �qi included in the edge were obtained by rounding off
�̂qi. To show the recovered edge as an image, we made a binary image
which has white color only on the pixels �qi.

4.3.6.3 CNN-based shape analysis
CNN-based PCA and classification were performed based on the

morphometry obtained previously (Imoto et al., 2021). In brief, each
snapshot image of N. gruberi was input to the pre-trained CNN, and
the morphology features were obtained as output. The principal
components of these features were calculated using the PCA
parameters obtained in (Imoto et al., 2021). The time average of
the principal components was taken from all the frames in each time
series. According to the morphology features, each snapshot was
classified into three morphology classes: Dictyostelium-like, HL60-
like, and fish keratocyte-like. Since only two snapshots were
classified as keratocyte-like, we conducted the further analysis on
Dictyostelium-like, HL60-like classes. The HL60 class ratio was
calculated for each timeseries, as the number of snapshots
classified as HL60 divided by the total number of snapshots in
the timeseries.

4.3.7 Analytical solution of VAC at steady state
without positional noise

First, we define VAC as an ensemble-averaged inner product of
true velocities at two timepoints:

vac Δt; t( ) � 〈 �v t( ) · �v t + Δt( )〉. (22)
To obtain the dynamics of thus defined VAC, �v(t) can be

obtained as itô-integral of generalized Langevin equation with 2-
dimensional Brownian motion �Bt � (Bx,t, By,t)T:

d

vx t( )
Vx t( )
vy t( )
Vy t( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �
−β α
α −γ

0 0
0 0

0 0
0 0

−β α
α −γ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
vx t( )
Vx t( )
vy t( )
Vy t( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠dt + σ

dBx,t

0
dBy,t

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(23)

d eCt
vx t( )
Vx t( )( )[ ] � σeCt

dBx,t

0
( ), C � β −α

−α γ
( ) (24a)

d eCt
vy t( )
Vy t( )( )[ ] � σeCt

dBy,t

0
( ) (24b)

∴ vx t( )
Vx t( )( ) � e−Ct

vx 0( )
Vx 0( )( ) + σ∫t

0
eCt′

dBx,t′
0

( )dt′[ ] (25a)

vy t( )
Vy t( )( ) � e−Ct

vy 0( )
Vy 0( )( ) + σ∫t

0
eCt′

dBy,t′
0

( )dt′[ ]. (25b)

Especially, the velocity can be calculated from the eigenvalues λ±

defined above and corresponding eigenvectors �e± ≡ ex,±
ey,±

( ) of C

with eCt � �e+ �e−( ) eλ+t 0
0 eλ−t

( ) �eT+
�eT−

( ):
vx t( ) � ex,+

ex,−
( )T

e−λ+t �eT+
e−λ−t �eT−

( ) vx 0( )
Vx 0( )( ) + σ∫t

0

eλ+ t′−t( )ex,+
eλ− t′−t( )ex,−

( )dBx,t′[ ]
(26a)

vy t( ) � ex,+
ex,−

( )T
e−λ+t �eT+
e−λ−t �eT−

( ) vy 0( )
Vy 0( )( ) + σ∫t

0

eλ+ t′−t( )ex,+
eλ− t′−t( )ex,−

( )dBy,t′[ ]
(26b)

�e± � cos θ±
sin θ±

( ), tan θ± � β − γ ∓
������������
β − γ( )2 + 4α2

√
2α

. (26c)

Using the representation of �v(t) above and the property of

Brownian motion ∫f t( )d �Bt � �0, d �Btd �B
T
t′ � δ t − t′( ) dt 0

0 dt
( ),

VAC is:

vac Δt; t0( ) �
〈 ∑

χ�x,y

ex,+
ex,−

( )T
e−λ+t0 �eT+
e−λ−t0 �eT−

( ) vχ 0( )
Vχ 0( )( )⎡⎣ ⎤⎦ ex,+

ex,−
( )T

e−λ+ t0+Δt( ) �eT+
e−λ− t0+Δt( ) �eT−

( ) vχ 0( )
Vχ 0( )( )⎡⎣ ⎤⎦⎧⎨⎩ ⎫⎬⎭

+2σ2∫t0

0

ex,+
ex,−

( )T
eλ+ t′−t0( )ex,+
eλ− t′−t0( )ex,−

( )⎡⎣ ⎤⎦ ex,+
ex,−

( )T
eλ+ t′− t0+Δt( )( )ex,+
eλ− t′− t0+Δt( )( )ex,−

( )⎡⎣ ⎤⎦dt′〉.

(27)

Since λ± is always positive when α, β, γ> 0, the first term of VAC
disappears with time at the rate of e−2λ−t0 . The lower limit of
integration also disappears at the same rate. The only time-
independent term comes from the upper limit of integration and
is the steady state solution of VAC:

vac Δt; t( ) 66→t → ∞
ϕ+e

−λ+Δt + ϕ−e
−λ−Δt (28a)
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ϕ± � 2σ2
e4x,±
2λ±

+ e2x,+e
2
x,−

λ+ + λ−
( ) (28b)

where the second line is another representation of ϕ± defined above.
Finally, considering the sampling procedure where the velocity is
observed as the difference of discretely sampled positions, the
representation of vacss is obtained by time integration of VAC:

vacss kδt( ) � 1

δt2
〈 �r tn+k+1( ) − �r tn+k( )( ) · �r tn+1( ) − �r tn( )( )〉n

� 1

δt2
〈 ∫tn+k+1

tn+k
�v t′( )dt′( ) · ∫tn+1

tn

�v t″( )dt″( )〉n
� 1

δt2
∫ k+1( )δt

kδt
dt′∫δt

0
dt″ 〈vac t′ − t″; tn( )〉n

� ϕ+e
− k−1( )λ+δt 1 − e−λ+δt

λ+δt
( )2

+ ϕ−e
− k−1( )λ−δt 1 − e−λ−δt

λ−δt
( )2

.

(29)
In the third raw, we used the relation 〈vac(t′ − t″; tn)〉n �

lim
n→∞ vac(t′ − t″; tn) � lim

t→∞ vac(t′ − t″; t) because time average
should converge to the steady state solution if the VAC itself converges.
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