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Objectives: The increasing use of computed tomography (CT) for adaptive

radiotherapy (ART) has raised concerns about the peripheral radiation dose.

This study investigates the feasibility of low-dose CT (LDCT) for postoperative

prostate cancer ART to reduce the peripheral radiation dose, and evaluates the

peripheral radiation dose of different imaging techniques and propose an image

enhancement method based on deep learning for LDCT.

Materials and methods: A linear accelerator integrated with a 16-slice fan-beam

CT from UIH (United Imaging Healthcare, China) was utilized for prostate cancer

ART. To reduce the tube current of CT for ART, LDCT was acquired. Peripheral

doses of normal-dose CT (NDCT), LDCT, and mega-voltage computed

tomography (MV-CT) were measured using a cylindrical Virtual Water™

phantom and an ion chamber. A deep learning model of LDCT for abdominal

and pelvic-based cycle-consistent generative adversarial network was employed

to enhance the image quality of LDCT. Six postoperative prostate cancer patients

were selected to evaluate the feasibility of low-dose CT network restoration

images (RCT) by the deep learning model for ART. The three aspects among

NDCT, LDCT, and RCT were compared: the Hounsfield Unit (HU) of the tissue,

the Dice Similarity Coefficient (DSC) criterion of target and organ, and dose

calculation differences.

Results: In terms of peripheral dose, the LDCT had a surface measurement point

dose of approximately 1.85 mGy at the scanning field, while the doses of NDCT

andMV-CTwere higher at 22.85mGy and 29.97mGy, respectively. However, the

image quality of LDCT was worse than NDCT. When compared to LDCT, the

tissue HU value of RCT showed a significant improvement and was closer to that

of NDCT. The DSC results for target CTV between RCT and NDCT were also

impressive, reaching up to 94% for bladder and femoral heads, 98% for rectum,

and 94% for the target organ. Additionally, the dose calculation differences for
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2023.1227946/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1227946/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1227946/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1227946/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1227946&domain=pdf&date_stamp=2023-11-01
mailto:jh1215@foxmail.com
https://doi.org/10.3389/fonc.2023.1227946
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1227946
https://www.frontiersin.org/journals/oncology


Gan et al. 10.3389/fonc.2023.1227946

Frontiers in Oncology
the ART plan based on LDCT and NDCT were all within 1%. Overall, these findings

suggest that RCT can provide an effective alternative to NDCT and MV-CT with

similar or better outcomes in HU values of tissue and organ damage. More testing

is required before clinical application.
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Introduction

At present, radiotherapy is one of the main methods for

postoperative prostate cancer treatment. The intensity modulated

radiotherapy (IMRT) and volumetric-modulated arc therapy

(VMAT) are commonly used techniques for prostate cancer due

to their highly conformal dose distributions and dose homogeneity.

However, the highly conformal dose distributions of the technology

bring an important problem that needs to be solved: the application

of the above technique is the ideal result under the condition that

the tumor target is a stationary rigid body, as radiotherapy was

fractional delivered. In the subsequent fractions, the position and

shape of targets and organs change greatly due to the rectal

peristalsis and vesical fulling, and make the targets deviate from

the radiation field, resulting in underdose of tumors or overdose of

organs. In addition to the setup errors, the position of the actual

target and planned target changed. Therefore, the most commonly

used method in clinical practice is to add margins by expanding the

clinical target volume (CTV) to the planning target volume (PTV).

The margins are generally over 6–8 mm according to different

immobilization methods and weight change of the patient. The

position change of organs is an important reason for the

unsatisfactory effect of abdominal tumor radiotherapy. For the era

of image-guided radiotherapy (IGRT), this is a difficult and hot spot

that has been paid more and more attention (1, 2). The medical

images acquired by different devices were spatially transformed

with the planning CT for radiotherapy, and based on image

registration technology, the region of interest (ROI) of the images

can be strictly matched to calibrate setup errors among

radiotherapy fractions (3–5). However, IGRT cannot completely

correct the position deviation of the target due to rectal peristalsis,

vesical fulling, and intestinal gas. Online adaptive radiotherapy

(ART) technology is an effective approach to correct for

morphological changes and setup errors in a patient’s anatomy

(6). In the process of radiotherapy, ART uses different medical

images, such as CT, magnetic resonance (MR), or kilo-voltage cone

beam CT (CBCT) performed in the treatment room to reassess

current position and shape of target volumes and normal anatomy

(7, 8). The target and normal tissues were delineated according to

the online images, and the radiotherapy plan was adjusted to reduce

the dose to normal organs. Compared with CT, MR images cannot

provide the electron density information for dose calculation during
02
the treatment planning process (9). The CBCT images cannot

provide clear soft-tissue contrast images with obvious artifacts

due to x-ray scattering and noise (10).

Daily CT is being implemented for prostate cancer radiotherapy

due to the deformation of the bladder and the rectum. This

naturally leads to the problem of image dose and then to the

issue of peripheral dose. The peripheral dose delivered to the patient

is dependent on the number of ART. The dose within the imaged

area for CBCT used for radiation therapy is well reported, and their

measurements of patient dose have been published. The typical dose

of the isocenter for a single CBCT is 1.5–3.0 cGy (11–15). The risk

of cancer induced by ionizing radiation has been confirmed, and the

risk of a secondary cancer is greatly increased by radiotherapy.

Therefore, how to implement ART with the lowest peripheral dose

is an urgent problem to be solved.

Low-dose CT (LDCT) was first proposed by Naidich et al. in

1990, which was defined as a new idea of keeping other scanning

parameters unchanged and appropriately reducing the tube current

to meet the diagnostic requirements and reduce the radiation dose

to the patients (16, 17). It leads to a decrease in the number of

photons received by the detector, and the projection data are

polluted by noise (18). The reconstructed CT images have a lot of

noise and artifacts, which affect the identification of anatomical

structures (16). At present, cycle-consistent generative adversarial

network (CycleGAN) is widely used in the conversion of different

modal images (19–21). The CycleGAN adopts a dual-generator

network structure and a cycle-consistent loss function to achieve

network parameter training, which has become a commonly used

network structure in LDCT image denoising processing (22, 23).

Obviously, the implementation of ART based on low-dose CT after

image denoising can reduce the peripheral dose. Furthermore, there

are no studies evaluating the peripheral dose for ART based

on LDCT.

In this study, a cylindrical Virtual Water™ phantom and ion

chamber were used to measure the dose of LDCT, NDCT, and

mega-voltage computed tomography (MV-CT). An image

enhancement model for the abdomen and pelvis based on a

Content-Noise Cycle-Consistent Generative Adversarial Network

(CNCycle-GAN) was used to improve the quality of LDCT to low-

dose CT network restoration images (RCT). Then, the objective

evaluation parameters of the images and automatic delineation

performance were used to evaluate whether RCT met the ART
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requirements. The purpose of this study was to assess the amount of

peripheral dose of LDCT and evaluate the long-term results of the

new technique on patients using ART.
Materials and methods

Peripheral dose measurement

The dose delivered to a patient receiving LDCT, NDCT, or MV-

CT was determined by irradiating a cylindrical Virtual Water™

phantom (Figure 1). In the central axis, the cylindrical phantom

contains 29 Virtual Water™ plugs that can be removed for ion

chamber insertion. The length and diameter of the phantom are

30 cm, and the image scan length was selected to be 15 cm; the

central plane was chosen at the center of the phantom. The

peripheral dose measurements of NDCT and LDCT were

performed on an uRT-linac 506c. This machine integrates a 16-

slice helical CT to acquire diagnostic-grade FBCT. The dose of MV-

CT was measured with an Accuray TomoTherapy.

The Exradin A1SLMR Ion Chamber was selected to load into

the measurement circle of the phantom to measure the dose. The

collecting volume of the ion chamber is 0.053 cm3, and the collector

diameter is 1.0 mm. The ion chamber has been calibrated by x-ray

in the University of Wisconsin-Madison Dosimetry Calibration

Laboratory. The beam quality of x-ray generally is described by a

half-value layer (HVL), and the HVL of the x-ray used to calibrate

the ion chamber is 6.77 mm Al.

Along the vertical central axis, the ion chamber was placed at

0.5 cm (distance from center) and then at 1.5 cm, 2.5 cm, 4.5 cm,

8.5 cm, 12.5 cm, and 14.5 cm, the distance of the last point was

5 mm from surface, and all measurement points were on the central

(internal) plane of the phantom. Along the long axis, the ion
Frontiers in Oncology 03
chamber was placed at 0 cm (distance from center) and then at

1 cm, 2 cm, 4.5 cm, 7.5 cm, 13.5 cm, and 19.5 cm, and both

measurement points were positioned at 5 mm distance from the

surface. This arrangement enables the measurement of radiation

doses in and out of the field.

Figure 2 shows a lateral and transversal view of the phantom

and the image length by a 15-cm-long CT scan. The NDCT used to

derive the peripheral doses was a clinically validated protocol for

pelvis, the tube voltage was 120 kV, and the tube current was 233

mA. The protocol takes a helical scan and the slice thickness is

3 mm. The LDCT scan conditions were consistent with the NDCT

except for the tube current; the tube current of LDCT was 23 mA to

be consistent with the scanning current of the network model. In

theory, the dose distributions of NDCT and LDCT should follow a

scaling factor of 10 (233 mA/23 mA). The same scan length was

used on a helical scan of MV-CT to measure the peripheral dose.

The scanning protocols for abdominal patients were used.
LDCT enhancement method

As for LDCT enhancement for patients in this study, the uRT-

linac 506c accelerator from UIH was used to acquire LDCT to

achieve IGRT for prostate cancer. The image enhancement model

based deep learning for abdominal and pelvic region was selected

(24). The images of 76 patients with abdominal and pelvic tumors

who received radiotherapy were selected, and each patient

underwent two helical scans with normal dose (tube voltage, 120

kV; tube current, 233 mA) and low dose (tube voltage, 120 kV; tube

current, 24 mA) in IGRT, and then the training model was

established based on the image data and CNCycle-GAN network.

As shown in Figure 3, the CNCycle-GAN network was

proposed to achieve bidirectional conversion between two domain
FIGURE 1

The cylindrical Virtual Water™ phantom in place on the treatment couch.
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images (A, LDCT; B, NDCT). Different from CycleGAN, CNCycle-

GAN uses two content noise convolutional networks as generators,

GA:A→B, to convert LDCT to NDCT, GB:B→A, to convert NDCT

to LDCT. Each generator is adversarially trained DB and DA with

the corresponding convolutional network discriminator.
Network training

For network training, we partitioned the NDCT and LDCT

images of 76 patients for network parameter optimization. Prior to

optimizing network parameters, we performed data preprocessing

by normalizing CT image pixel values layer-by-layer within the

range of (0, 1) based on preset window width (WW) and window
Frontiers in Oncology 04
level (WL), thereby enhancing model training efficiency. We set the

WL at 400 HU and the WW at 2,800 HU. To improve the network

robustness and reduce memory limitations during training, we

randomly cropped normalized images into image blocks of

256256 size, and applied data augmentation techniques such as

random rotation and flip.

During the network training phase, we utilized the Adam

optimization method to train the CNCycle-GAN network. The

training duration was set to 250 epochs. There were two stages

implemented for controlling the learning rate during training:

initially, the learning rate was set to 0.0002 for the first 150

epochs and subsequently linearly decreased to zero in subsequent

epochs. The mini-batch size was set as 4. Prior to training, network

parameters were initialized with values generated from a standard
FIGURE 3

Architecture of the CNCycle-GAN network.
FIGURE 2

Schematic of the dose measurement positions in versions of the phantom, with the shade area representing the CT scan field.
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normal distribution. We use PyTorch architecture to implement the

CNCycle-GAN network, and using NVIDIA Quadro RTX 4000

GPUs to train the network parameters.
Evaluation method

We compared the peripheral dose measurement for LDCT,

NDCT, and MV-CT of the central axis and along the long axis of

the measurement phantom. The lower peripheral dose was shown

to be safer for patients.

We selected six postoperative prostate cancer patients who

received online-ART based on NDCT on uRT-linac 506c during

March 2023; the prescription dose is 66 Gy/33 fractions to the PTV.

During one fraction of adaptive radiation therapy, patients

underwent a single low-dose CT helical scan at the end of the

NDCT scan. This was a prospective study approved by the local

institutional review board, and all patients enrolled were informed

and signed consent forms before treatment. The LDCT images were

restored to RCT images by the above-mentioned deep learning

network model. The LDCT, RCT, and NDCT image pairs were used

for the quantitative evaluation. The resulting RCT images were

compared to the original LDCT and NDCT images using the HU

values from four different types of tissues (muscle, fat, bladder, and

bone). Three square ROIs with pixels on one slice of each patient

were selected for a quantitative evaluation of the muscle (Figure 4)

and fat regions. ROIs in each tissue were randomly selected. The

positions of the ROIs are located on the regions of the same soft

tissue area. Two slices at 6-mm intervals per patient were selected

for the bladder and the bone, and one square ROI with pixels was

positioned in the regions of the same tissue area on the

selected slice.
Frontiers in Oncology 05
We use the Dice Similarity Coefficient (DSC) criterion to

evaluate the structure familiarity in the segmentation process. To

evaluate the performance difference between the RCT and NDCT

images, a senior radiation oncologist was invited to contour the

CTV, the bladder, the rectum, and the femoral heads. The

contouring results of RCT and NDCT were compared using DSC.

The plan (N_plan) at the fraction with ART performed on

NDCT for the six cases was copied to the corresponding RCT to

generate the reference plan (R_plan), and the dose of R_plan was

calculated based on the same parameters. The dose distribution

differences were compared between R_plan and N_plan from

assessing the D95%, D2% (dose to 95% and 2% of volume), and

Dmean (mean dose) of the target PTV. For organ at risk (OAR)

doses, the V20 Gy (the percentage of volume receiving 20 Gy dose),

D2%, and Dmean were compared for the rectum, the bladder, and the

femoral heads.
Results

Peripheral dose measurement

For the LDCT, NDCT, and MV-CT helical scan, the peripheral

dose of the central axis at the central plane of the measurement

phantom is shown in Figure 5. The results show that the peripheral

dose of MV-CT, NDCT, and LDCT to the central axis at the

measurement point of surface (0.5 cm distance from surface) was 30

mGy, 22.85 mGy, and 1.85 mGy, respectively, and the dose of

0.5 cm measurement point (0.5 cm distance from central point) was

26.83 mGy, 12.1 mGy, and 0.89 mGy, respectively. In the scanning

field, the closer to the surface at the central axis, the higher the dose

of MV-CT, NDCT, and LDCT. The results show that the peripheral
FIGURE 4

Example of evaluating the regions of interest (ROI) distribution; three muscle square ROIs were placed on a selected slice of LDCT, NDCT, and RCT
for a postoperative prostate cancer test patient.
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dose of MV-CT was highest at the same measurement points, and

the dose of LDCT was lowest. The dose of MV-CT was

approximately 27 times that of the LDCT, the NDCT was

approximately 13 times. LDCT was significant in reducing

radiation risk especially for daily CT scanning in prostate cancer.

The peripheral doses close to 5 mm from the surface along the

long axis were recorded, and results are shown in Figure 6. The field

edge is marked at 7.5 cm from the center plane as the nominal scan

length is 15 cm. By comparison, the results show that the peripheral

dose of NDCT (average dose: 15.56 mGy) and that of MV-CT

(27.82 mGy) were much higher than that of LDCT (1.22 mGy) in

scanning field. The peripheral doses of both NDCT and LDCT

began to drop off when the distance from the field edge was

approximately 7.5 cm, and the doses of MV-CT began to drop off
Frontiers in Oncology 06
substantially at 5 cm distance from the field edge. Outside the

scanning field, the farther away from the field edge, the lower the

dose of the NDCT, LDCT, and MV-CT, and the dose of MV-CT

was the lowest. The dose of NDCT (0.85 mGy) was higher than that

of LDCT (0.26 mGy) at the same measurement point 12 cm away

from the field edge. As the peripheral dose of MV-CT was higher

than NDCT, there was no advantage in terms of image quality and

segmentation accuracy compared to LDCT. Hence, we exclude MV-

CT from the evaluations on image quality and suitability for

radiation therapy.

The dose distributions of NDCT and LDCT approximately

followed a scaling factor of ~10 (233 mA/23 mA), in agreement with

the expectation based on theory, except for a few points. We

believed that there were two possible reasons; one was the
FIGURE 6

Peripheral dose measurement for LDCT, NDCT, and MV-CT in the long axis at the measurement points (5 mm distance from surface); the dotted
line represents the edge of the scan field.
FIGURE 5

Peripheral dose measurement for LDCT, NDCT, and MV-CT in the central axis at the central plane of the measurement phantom.
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measurement error of the instrument during LDCT dose

measurement. Secondly, during CT scanning, the stability of the

tube current led to errors in the actual image dose.
Deep-learning-based LDCT enhancement

The axial, sagittal, and coronal slices of LDCT, RCT, and NDCT

for one representative cases are shown in Figure 7. The image

quality of RCT for all three planes show substantial improvement in

terms of voxel values, spatial uniformity, and artifact suppression,

compared to those of the original LDCT. When the tube current

decreased, additional artifacts appeared in the middle due to the

photon starvation effect. When the patient was overweight or has

metal or other high-density materials (bones) in the body, the

radiographic hunger effect may be more pronounced.

The mean and standard deviation for the HU of the four

evaluation tissues in LDCT, RCT, and NDCT are summarized in

Table 1. Obviously, the differences in average HU for the four

evaluation tissues between RCT and NDCT were substantially
Frontiers in Oncology 07
suppressed compared to those between the original LDCT

and NDCT.

The DSC results of each structure delineated by a radiation

oncologist on the RCT, LDCT, and NDCT image are summarized

in Table 2. The results showed that the DSC of the bladder and the

femoral heads reached approximately 98%, and that of the CTV and

rectum reached approximately 94%. The results indicated that the

delineation results of target and OARs on RCT were consistent with

that on the NDCT image, which met the clinical requirements.

Compared with LDCT, the results of RCT had significant

differences in the CTV, the bladder, and the rectum. The

differences in ROIs are shown in Figure 8.

The plan to perform ART on the NDCT was re-calculated on the

RCT to verify the dose calculation accuracy of the RCT image. Figure 9

shows the dose differences in the PTV, the rectum, the bladder, and the

femoral heads between N_plan and R_plan. The results show that the

differences in PTV on D95%, D2%, and Dmean are all within 1% between

N_plan and R_plan. For the OARs, the dose differences of the femoral

head right and the femoral head left are all within 0.5%. The differences

of rectum and bladder are all within 1%.
FIGURE 7

NDCT, LDCT, and RCT images from axial, coronal, and sagittal plane from one of the postoperative prostate cancer patients.
TABLE 1 Mean and standard deviations of the Hounsfield Unit (HU) values of the regions of interest (ROIs) in the four evaluation tissues in LDCT, RCT,
and NDCT.

LDCT RCT NDCT

Muscle Mean 46.80 44.05 43.85

SD 1.86 4.8 4.75

Fat Mean −103.24 −144.57 −143.95

SD 12.93 7.20 6.079

Bladder Mean 19.02 −8.15 −4.45

SD 5.98 6.06 11.62

Bone Mean 222.86 246.76 256.85

SD 29.74 24.03 22.43
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Discussion

Online-ART utilizing online image is a relatively new technique

that is being rapidly implemented into clinical use to solve the former

problem regarding target and organ deformation. The uRT-linac 506c

linear accelerator integrates a diagnostic level FBCT, providing a high
Frontiers in Oncology 08
image quality online ART workflow. However, conducting ART in all

33 stages of postoperative prostate cancer radiotherapy will bring

peripheral radiation dose to the patient. Frequent CT scans will

increase the radiation dose to normal tissues of patients, thus

increasing the risk of cancer. Therefore, we need to minimize

radiation dose while ensuring high image quality for ART.
TABLE 2 Comparison of DSC results between RCT, LDCT, and NDCT.

CTV Bladder The femoral head right The femoral head left Rectum

DSC (LDCT, NDCT) 0.79 ± 0.05 0.89 ± 0.04 0.97 ± 0.02 0.97 ± 0.02 0.61 ± 0.07

DSC (RCT, NDCT) 0.94 ± 0.02 0.98 ± 0.03 0.98 ± 0.01 0.98 ± 0.02 0.95 ± 0.06

p-value <0.01 <0.01 >0.05 >0.05 <0.01
fro
FIGURE 8

Different ROIs in LDCT, RCT, and NDCT.
FIGURE 9

The dosimetric comparison of target and OAR between N_plan and R_plan.
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In this present study, additional doses of three image scanning

methods, LDCT, NDCT, and MV-CT were measured to

demonstrate the advantages of LDCT. A deep learning model of

LDCT for abdominal and pelvic cancer patients was used to

improve the image quality of LDCT scanned by reducing the tube

current. In order to explore the feasibility of the RCT processed by

the deep learning model in ART, the accuracy of delineation and

dosimetry were compared between NDCT and RCT. The result

showed that the image quality of RCT images was closer to that of

NDCT. Compared with the NDCT, the DSC of target CTV reached

94%, and that of the normal tissue including bladder, femoral head,

and rectum reached more than 95%. Compared with LDCT, the HU

values of muscle, bone, bladder, and fat were greatly improved, and

were closer with NDCT. There was no statistical significance in the

dosimetry with the ART plan based on the RCT.

To the best of our knowledge, this is the first study to explore

the feasibility of LDCT application in ART through deep learning,

and compare the additional doses generated by different image

scanning methods. The method proposed in this paper provides a

powerful reference for online ART of LDCT, and can reduce the

additional radiation exposure received by patients. However, there

is no scientific evidence for LDCT images based on deep learning to

be used for plan optimization at present. Therefore, the

implementation of LDCT-based ART still needs to be explored

and studied in subsequent clinical work. Another limitation of this

study is that the training data require simultaneous collection of

patients’ NDCT and LDCT. Patients need to sign an informed

consent form, which limits the sample size of the training dataset.

Can LDCT and localization CT used for daily image-guided

radiotherapy be used as training data to extend the training

dataset of the model? We will test the feasibility of this method in

the future. In addition, the small size of patients for validation is also

the limitation of this study. In the future, we will collect more data

from a larger number of patients and a wider range of

cancers to validate the potential of the proposed method in

clinical applications.
Conclusion

As IGRT and online ART are becoming increasingly prevalent

in clinical use, they need to balance the risks associated with

additional peripheral doses. In this study, a low-dose CT scanning

for postoperative prostate cancer was performed by reducing the

tube current of NDCT. A deep learning model of LDCT for the

abdomen and pelvis was used to improve the image quality, and the

peripheral dose of LDCT scanning to the patient was quantified and

evaluated by a phantom and an ion chamber. Finally, in our

opinion, it is feasible to use RCT images to achieve ART for

postoperative prostate cancer and patients can benefit from the

peripheral dose generated by image scanning compared with

NDCT. In the future, we will collect more patient data to verify

the feasibility of our proposed approach and develop online ART

based on LDCT.
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