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Semaphorin 7a aggravates TGF-
b1-induced airway EMT through
the FAK/ERK1/2 signaling
pathway in asthma

Haiying Peng, Fei Sun, Yunxiu Jiang, Zihan Guo, Xinyi Liu,
Anli Zuo and Degan Lu*

Department of Respiratory, The First Affiliated Hospital of Shandong First Medical University &
Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong
Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
Background: TGF-b1 can induce epithelial-mesenchymal transition (EMT) in

primary airway epithelial cells (AECs). Semaphorin7A (Sema7a) plays a crucial

role in regulating immune responses and initiating and maintaining transforming

growth factor b1 TGF-b1-induced fibrosis.

Objective: To determine the expression of Sema7a, in serum isolated from

asthmatics and non-asthmatics, the role of Sema7a in TGF-b1 induced

proliferation, migration and airway EMT in human bronchial epithelial cells

(HBECs) in vitro.

Methods: The concentrations of Sema7a in serum of asthmatic patients was

detected by enzyme-linked immunosorbent assay (ELISA). The expressions of

Sema7a and integrin-b1 were examined using conventional western blotting and

real-time quantitative PCR (RT-PCR). Interaction between the Sema7a and

Integrin-b1 was detected using the Integrin-b1 blocking antibody (GLPG0187).

The changes in EMT indicators were performed by western blotting and

immunofluorescence, as well as the expression levels of phosphorylated

Focal-adhesion kinase (FAK) and Extracellular-signal-regulated kinase1/2

(ERK1/2) were analyzed by western blot and their mRNA expression was

determined by RT-PCR.

Results: We described the first differentially expressed protein of sema7a, in

patients with diagnosed bronchial asthma were significantly higher than those of

healthy persons (P<0.05). Western blotting and RT-PCR showed that Sema7a and

Integrin-b1 expression were significantly increased in lung tissue from the

ovalbumin (OVA)-induced asthma model. GLPG0187 inhibited TGF-b1-
mediated HBECs EMT, proliferation and migration, which was associated with

Focal-adhesion kinase (FAK) and Extracellular-signal-regulated kinase1/2

(ERK1/2) phosphorylation.
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Conclusion: Sema7a may play an important role in asthma airway remodeling by

inducing EMT. Therefore, new therapeutic approaches for the treatment of

chronic asthma, could be aided by the development of agents that target the

Sema7a.
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1 Introduction

Asthma, characterized by airway inflammation, airway

hyperresponsiveness (AHR), and airway remodeling (AR), is a

chronic and heterogenic disease of the respiratory system mainly

due to occupational or environmental exposure to industrial

products, microorganisms, and other allergens (1, 2). The

prevalence of asthma is still on the rise, with an estimated 358

million people worldwide affected by asthma, according to a global

burden of disease study in 2015 (3). Most asthmatic patients can be

controlled with bronchodilators and inhaled corticosteroids (4).

However, an estimated 5-10% of patients are refractory to the

treatment and thus require further therapy and even

hospitalization, which results in impaired quality of life and a

disproportionate cost to healthcare systems (5). AR may play an

important role in the clinical severity of refractory asthma (6, 7).

Therefore, it is necessary to further understand the factors that

regulate the pathological features of asthma, including chronic

inflammation and AR.

The chronic inflammatory response in the airways of asthmatic

patients may result in alterations in the composition and distribution

of cellular constituents of the airway wall, which is termed AR (8, 9).

As a key feature of asthma, AR leads to irreversible airflow obstruction

and persistent airway hyperresponsiveness and contributes to the

symptomatology of the disease as well as irreversible loss of lung

function (10, 11). Currently, inhaled corticosteroids and long-acting

b2 agonists remain the mainstay for guideline-based control and

management for asthma (12). However, such therapeutics are neither

proven to prevent nor reverse AR although they can ameliorate

inflammation (13). Moreover, AR may occur early in childhood to

an equivalent degree in the airways, not necessarily subsequent to

inflammation (14). Therefore, it is necessary to further explore the

pathogenesis of AR in allergic asthma.

The semaphorin (Sema) protein family consists of more than 20

members and are extracellular signaling proteins that are

instrumental in the development and maintenance of several

organs and tissues (15). As a member of the Sema family, Sema7a

(also known as CD108) is a glycosylphosphatidylinositol-linked

membrane protein and is expressed constitutively and broadly in a

variety of lymphoid, bone, endothelial, and nerve cells (16, 17). By

binding to its receptor, integrin-b1 or plexin C1, with high affinity,

Sema7a stimulates cytokine production in some inflammatory cells

and is essential to the effector phase of the inflammatory immune
02
response (18–20). The interaction of Sema7a with its receptor

activates multiple signaling pathways, including phosphorylated

focal-adhesion kinase phosphorylated (p-FAK), phosphorylated

extracellular-signal-regulated kinase 1/2 (p-ERK1/2), nuclear

factor kappa B (NF-kB), transforming growth factor b2 (TGF-

b2)/Smad, and others (21, 22). A battery of studies has found that

the Sema7a-integrin-b1 axis is a pivotal pathway in cell migration,

angiogenesis and endothelial damage and is implicated in some

disorders (22–24). Nevertheless, whether Sema7a has a role in the

development of allergic asthma remains obscure.

Epithelial-mesenchymal transformation (EMT) is characterized

by epithelial cell damage–repair-redamage-repair and is considered

to be an initiating factor in AR in asthma (25, 26). As the first

barrier to contact allergens, the bronchial epithelium plays an

important role in airway EMT by secreting a variety of

proinflammatory factors (27). Many signaling pathways,

including transforming growth factor (TGF-b), epidermal growth

factor (EGF), and tumor necrosis factor (TNF-a), are involved in

the EMT process (28). Among them, TGF-b1 is a major inducer of

EMT (29, 30). When expressed in the pulmonary epithelium, TGF-

b1 can lead to the development of several AR features, including

subepithelial fibrosis, epithelial shedding, and extracellular matrix

deposition in the subepithelial layer by inducing EMT in bronchial

epithelial cells (29, 31). In primary airway epithelial cells (AECs)

obtained from asthmatic patients, TGF-b1 can induce EMT in a

Smad3-dependent manner, suggesting dysregulated epithelial

repair in asthmatic airways (32). Although some studies have

documented that Sema7a contributes to atherosclerosis by

mediating endothelial dysfunction and promotes the growth and

migration of oral tongue squamous carcinoma cells by regulating

the course of EMT (21, 33), little is known about whether Sema7a is

involved in AR in allergic asthma by promoting the process of EMT.

To sum up, the expressions of Sema7a in serum of asthmatic

patients and in lung tissue of ovalbumin (OVA) -induced mice were

first examined. Then, whether the expression of Sema7a was

associated with pathological features of allergic asthma was

evaluated. Next, the roles of Sema7a in TGF-b1-induced EMT in

human bronchial epithelial cells (HBECs) were investigate. Finally,

the main signaling pathways involved in the effect of Sema7a were

further probed. Our findings suggest that Sema7a may play a

fundamental role in AR by inducing EMT through the FAK and

ERK1/2 signaling pathway in HBECs and mice model of

chronic asthma.
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2 Methods

2.1 Humans

Ten patients with asthma were consecutively recruited from the

Department of Respiratory Medicine and Intensive Care Medicine

at the First Affiliated Hospital of Shandong First Medical University

between October 1, 2021, and April 30, 2022. All of them met the

criteria for asthma described in the report of the Global Initiative for

Asthma (34). The disease activity of asthma was assessed according

to the Asthma Control Test (ACT). Serum samples were collected,

and those whose percentage of eosinophils in peripheral blood

exceeded 3% were enrolled. A total of 20 healthy individuals who

underwent health check-up in our hospital and whose age and sex

were matched with those of asthmatic patients were selected as

controls. None of them have chronic airway diseases/cancer or

autoimmune diseases. This study was approved by the Medical

Ethics Committee of The First Affiliated Hospital of Shandong First

Medical University. Informed consent was obtained from all

subjects who were enrolled in the present study.
2.2 Mice

A total of 18 female BALB/c mice aged 6-8 weeks were

purchased from Pengyue Experimental Animal Breeding Co. Ltd.

(Jinan, China) and housed in the Laboratory Animal Center of our

hospital under SPF conditions. The feeding environment of the

mice included a temperature−controlled house with 12 h light−dark

cycles and free access to a standard laboratory diet and water (35).

The mice were randomly divided into 3 groups: the control group

(control, n=6), asthma group (asthma, n=6) and anti-Sema7a group

(anti-Sema7a, n=6). All animal procedures were performed

according to the National Institutes of Health (NIH) Guide for

the Care and Use of Laboratory Animals (36). Moreover, all

protocols were approved by the Ethics Committee for Laboratory

Animals Care and Use in First Affiliated Hospital of Shandong First

Medical University, Shandong, China.
2.3 Experimental model of chronic asthma

As described previously (37), the asthma group was sensitized

with 0.2 ml sensitinogen (20 µg OVA+2 mg aluminum hydroxide)

(Sigma−Aldrich, Beijing, China) on days 1, 7 and 14. From day 21

on, the OVA-sensitized mice were exposed to aerosolized 3% OVA

(Sigma−Aldrich, Beijing, China) after anesthesia with 1% sodium

pentobarbital (38) in a 30 cm×24 cm×50 cm chamber for 8

consecutive weeks: three times a week, 30 min each time. Anti-

Sema7a antibody (6 µg/mouse) (AF1835, goat IgG; R&D Systems,

Minneapolis, MN, USA) was administered intratracheally 30 min

before each of the antigen challenges. In addition, mice in the
Frontiers in Immunology 03
control group were sensitized and challenged with phosphate-

buffered saline (PBS) alone (Figure 1A).
2.4 Measurement of allergen-induced AHR

Airway responsiveness (R) and dynamic compliance (C) to

methacholine challenge were evaluated 24 h following the last OVA

challenge as previously reported (39). Briefly, mice were

anesthetized with 0.12-0.15 ml 1% pentobarbital sodium

intraperitoneally (22, 40). After the mice were fully anesthetized,

a cannula was subsequently inserted into the trachea, and the mice

were connected to the flexiVent system (Scireq). Subsequently, the

mice were mechanically ventilated at a rate of 150 breaths/min, a

tidal volume of 5 mL/kg, and a positive-end expiratory pressure of

3 cm H2O (35). They were initially challenged with saline followed

by challenge with increasing concentrations of methacholine (0, 5,

10, and 20 mg/ml; Sigma−Aldrich; Merck KGaA) for 10 sec at each

dose. R and C were calculated as percentage increases over baseline

(saline challenge).
2.5 Enzyme-linked immunosorbent assay

Mice were euthanized by cervical vertebrae dislocation

immediately after lung function measurement (41). Right-lung

lavage was performed with 2 ml PBS, and bronchoalveolar lavage

fluid (BALF) was collected and centrifuged at 4°C and 80xg for

10 min. The concentrations of IL-4 (SEA077Mu), IL-5

(SEA078Mu), IL-13 (SEA060Mu) and TGF-b1 (SEA124Mu) in

the BALF were determined using ELISA kits (Cloud-Clone,

Wuhan, China) according to the manufacturer’s protocol.
2.6 Histological analysis

The left lungs of mice were fixed in 4% paraformaldehyde at

room temperature for 24 h (42). Then, the lung tissues were

embedded in paraffin and cut into 5-mm-thick sections.

Inflammatory infiltration and airway wall thickness were

evaluated by hematoxylin and eosin (H&E) staining. Collagen

deposition within the mouse airway wall was assessed by

Masson’s trichrome staining (Masson). To assess goblet cell

proliferation in the airway wall, the sections were stained with

periodic acid-Schiff stain (PAS) (35).

Before staining, serial 5-mm-thick sections were dewaxed in

xylene and rehydrated through a series of decreasing concentrations

of ethanol (43). Sections were placed in sodium citrate (pH 6.0,

G1201-1 L, Servicebio, Wuhan, China), boiled for 10 minutes, and

cooled to room temperature for antigen retrieval. The appropriate

amount of endogenous peroxidase blocker was added to the sample,

which was incubated at room temperature in the dark for 10 min
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and then rinsed with PBS. The sections were treated with goat

serum (SP-9001, Zhongshan, Beijing, China) at room temperature

for 15 min to block nonspecific binding and incubated overnight at

4°C with rabbit polyclonal antibody against Sema7a (1:400, bs-

2702R, Bioss, Beijing, China) diluted in PBS. After washing in PBS

three times (5 min each time), the sections were incubated with

anti-rabbit IgG antibody conjugated to horseradish peroxidase

(HRP) (SP-9001, Zhongshan, Beijing, China). Next, DAB

chromogen solution was added to the slide for 5 min at room

temperature, washed extensively with PBS, and counterstained with

hematoxylin for 20 s. Finally, slices were dehydrated with a gradient

alcohol series, cleared in xylene and sealed with neutral gum. All
Frontiers in Immunology 04
sections were observed using a BX51 microscopic imaging system

(Olympus Corporation, Japan).
2.7 Cell culture

The human bronchial epithelial cell line (16HBECs) was

obtained from Fuheng Biology (Shanghai, China) and cultured in

keratinocyte culture medium (KM) and penicillin−streptomycin.

16HBECs were treated with different concentrations of TGF-b1
(2.5, 5 and 10 ng/ml) for 12 h, 24 h or 48 h with or without

pretreatment with integrin-b1 blockers (GLPG0187) (2 µm, 5 mm,
B

C D E

F G H

A

FIGURE 1

Airway inflammation and AHR in an OVA-challenged mouse model. (A) The establishment of chronic asthma mouse model; (B) The level of Sema7a
in serum of patients with asthma was higher than that in serum of healthy subjects. (C) The asthma group had higher IL-4 levels in the BALF than the
control group and the anti-Sema7a group had lower IL-4 levels than the asthma group. (D) The asthma group had higher IL-5 levels in the BALF
than the control group and the anti-Sema7a group had lower IL-4 levels than the asthma group. (E) The asthma group had higher IL-13 levels in the
BALF than the control group and the anti-Sema7a group had lower IL-4 levels than the asthma group. (F) The asthma group had higher TGF-B 1
levels in the BALF than the control group and the anti-Sema7a group had lower IL-4 levels than the asthma group. (G) It does not reveal significant
differences among the three groups of baseline airway responsiveness (at 0 mg/ml methacholine); Stimulated by acetylcholine, the C was
significantly descended in asthma group compared with control group, while enhanced in anti-Sema7a group compared with asthma group.
(H) Stimulated by acetylcholine, the R was significantly enhanced in asthma group compared with control group, while descended in anti-Sema7a
group compared with asthma group. Data represent means ± SD. *P < 0.05, **P < 0.01.
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10 µm) for 1 h . The ce l l s were harve s t ed for the

following experiments.
2.8 Cell proliferation assay

Cells were detached from the 25 cm3 cell-culture flask with 0.25%

trypsin-EDTA (1×) (25200-056, Gibco, Thermo Scientific), and they

were counted and suspended at a density of 5×105/ml in KM culture

medium. Then, cells were seeded onto 96-well plates at a density of

2000 cells/well for 24 h and subsequently incubated with KM culture

medium containing various dilutions of TGF-b1 and integrin-b1 (0

ng/ml TGF-b1 + 0 µm GLPG0187, 5 ng/ml TGF-b1 + 0 µm

GLPG0187, 5 ng/ml TGF-b1 + 2 µm GLPG0187, 5 ng/ml TGF-

b1 + 5 µm GLPG0187, 5 ng/ml TGF-b1 + 10 µm GLPG0187) at 37°C

in a 5%CO2 humidified atmosphere for 12, 24, 48 and 72 h. Following

incubation for the indicated times, 10 µl Cell Counting Kit-8 (CCK-8)

solution was added to each well and incubated for 2 h at 37°C with 5%

CO2 to examine the effect of integrin-b1 on 16HBECs proliferation.

Cell proliferation was determined by measuring the absorbance at 450

nm using a microplate spectrophotometer.
2.9 Reverse transcription−quantitative PCR

Total RNA in mouse lung tissues was extracted using an RNA

Isolation Kit (RC101, Vazyme, Nanjing, China) according to the

manufacturer’s instructions. First-strand cDNA was generated from

1 µg of total RNA using an RT SuperMix RT kit (R323, Vazyme,

Nanjing, China) to prime the reverse transcription reaction

according to the manufacturer’s protocol. Gene expression was

determined by SYBR Real-Time PCR Master Mix (Q711, Vazyme,

Biotechnology). The primer pairs were synthesized by Takara

(Table 1). Target mRNA levels were determined using the

quantification cycle (Cq) values normalized against the expression

of GAPDH. Gene expression was calculated using the 2-DDcq

method (44).
2.10 Western blot analysis

The tissue and cell proteins were extracted by using RIPA

buffer, phenylmethanesulfonyl fluoride (PMSF), and phosphatase
Frontiers in Immunology 05
inhibitors. Protein concentration was determined with a protein

assay kit (P0012; Beyotime Biotechnology, Shanghai, China)

according to the protocol described previously (43). The samples

were separated by 7.5-10% sodium dodecyl sulfate−polyacrylamide

gel electrophoresis (SDS−PAGE), and the bands were

electrotransferred to a 0.45 mm polyvinylidene fluoride (PVDF)

membrane. After blocking with 5% skim milk, the membrane was

incubated at 4°C overnight with rat monoclonal antibody for

Sema7a (1:500, MAB2068, R&D Systems), rabbit monoclonal

antibody for integrin-b1 (1:2,000, ab179471, Abcam), mouse

monoclonal antibody for E-cadherin (1:1,000, ab231303, Abcam),

rabbit monoclonal antibody for fibronectin (1:1,000, ab268020,

Abcam), a-SMA (1:10,000, ab124964, Abcam), focal-adhesion

kinase (FAK) (1:500, SAB4502495, Sigma), extracellular-signal-

regulated kinase1/2 (ERK1/2) (1:20,000, M5670, Sigma), p-FAK

(1:1000, ab81298, Abcam), and p-ERK1/2 (1:1000, SAB4301578,

Sigma). The secondary antibody was incubated at room

temperature for 1 h and washed with PBS three times. An

enhanced chemiluminescence detection system was used to detect

target proteins, with b-tubulin as the loading control. All data were

analyzed by ImageJ Software (version 10.4, Tree Star Inc.).
2.11 Statistical analysis

All data are expressed as the means ± standard deviations (SD).

The results were analyzed using GraphPad Prism 8 software.

Pairwise comparisons were performed using Student’s t test, and

comparisons among multiple groups were conducted using one-

way analysis of variance. Values of P < 0.05 indicated

statistical significance.
3 Results

3.1 Expression of Sema7a in serum was
enhanced significantly in asthmatic
patients

Previous studies have found that Sema7a is expressed on airway

eosinophils and plays an important role in immunoglobulin-E (Ig-

E)-mediated airway inflammation (45, 46). Therefore, we examined

whether Sema7a expression in serum differs between allergic

asthmatic individuals and healthy individuals. As shown in

Figure 1B, the level of Sema7a in patients with asthma was

significantly higher than that in healthy subjects (Figure 1B; P <

0.01). These findings suggest that Sema7a is likely implicated in the

development of allergic asthma.
3.2 Expression of Sema7a and integrin-b1
in lung tissue was obviously increased in
OVA-treated mice

Sema7a is preferentially expressed on activated T cells,

eosinophils, and thymocytes (47–49). The Sema7a gene is
TABLE 1 Primer sequences for the target genes.

Target gene Primer sequence (5’→3’)

Mice Sema7a forward TACCAGGGTCTATGGCGTTTTC

Mice Sema7a reverse GCCCATGTGGTAGCCTTTGA

Mice Integrin-b1 forward GGGTATTT GTGAATGTGGTGCTT

Mice Integrin-b1 reverse TTTGGTGAGATTGAAGTGGGAGC

Mice GAPDH forward AGAAACCTGCCAAGTATGATGACA

Mice GAPDH reverse GGAAGAGTGGGAGTTGCTGTTG
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moderately expressed in the heart, lung, and pancreas in mice.

Sema7a can mediate macrophage and dendritic cell migration and

tumor lymphatic metastasis through integrin-b1 receptors (50). We

asked whether the expression status of Sema7a and integrin-b1
protein is different between PBS-treated mice and OVA-treated

mice. To this aim, we established a chronic asthmatic mouse

model. As shown in Figures 2A, D, Sema7a and integrin-b1 were

both expressed in lung tissue in mice. Sema7a and integrin-b1
expression were significantly higher than those of the control group

(Figures 2B, C, E, F; P < 0.01). Although Sema7a expression was

observed in bronchial epithelial cells of both asthmatic and control

mice, immunohistochemical analyses revealed that the expression of

Sema7a in asthmatic epithelial cells was significantly higher than that

in the control group (Figures 2G–I; P < 0.01). These findings indicate

that Sema7a is likely involved in the pathogenesis of allergic asthma.
3.3 AHR and AR were alleviated by Sema7a
blockade in a chronic asthmatic model

AR is one of the key features of asthma and has an essential role

in disease progression (51), which often correlates with the severity
Frontiers in Immunology 06
of clinical disease (52, 53). AR is regarded as an important factor

contributing to AHR and irreversible airflow limitation (54–56). In

the present study, the association between Sema7a and AHR and

AR was subsequently probed. As illustrated in Figures 1G, H, there

were no significant differences among the three groups of baseline

airway responsiveness (at 0 mg/ml methacholine) (Figures 1G, H; P

> 0.05). Stimulated by acetylcholine, R was significantly enhanced

and C was decreased in the asthma group compared with the

control group (Figures 1G, H; P < 0.01), while R was significantly

decreased and C was enhanced in the anti-Sema7a group mice

compared with the asthma group mice (Figures 1G, H; P < 0.01). In

addition, the ELISA results showed that the levels of these

inflammatory factor cytokines in serum were significantly

decreased in anti-Sema7a group mice compared with the OVA-

challenged group (Figures 1C–F; P < 0.05). At 200× objectives with

H&E staining, the accumulation of airway inflammatory factors,

turbulence of bronchial epithelial cells, stenosis of the bronchial

cavity, and thickening of the airway wall were observed in OVA-

challenged mice. All of the abovementioned pathological changes

were alleviated by preadministration of anti-Sema7a, as shown in

Figure 3. These findings clearly suggest that Sema7a and integrin-b1
play a role in the process of AR in a mouse model of allergic asthma.
B C

D E F

G H

A

I

FIGURE 2

Protein and mRNA expression in lung tissues of Sema7a and Integrin-b1 in each group. (A, B) The level of Sema7a protein in lung tissue of asthma
group was higher than control group. (C) The level of Sema7a mRNA in lung tissue of asthma group was higher than control group. (D, E) The level
of Integrin-b1 protein in lung tissue of asthma group was higher than control group. (F) The level of Integrin-b1 mRNA in lung tissue of asthma
group was higher than control group. (G–I) Immunohistochemical analyses revealed that the expression of Sema7a in asthmatic epithelial cells was
significantly higher than that in the control group. Data represent means ± SD.**P < 0.01.
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3.4 Sema7a and integrin-b1 were induced
by TGF-b1 in 16HBECs

The loss of airway epithelial integrity and EMT during AR

contributes significantly to asthma pathogenesis (26, 29, 57). To

elucidate whether the effects of Sema7a on AR were linked to EMT,

16HBECs were treated with 5 ng/ml TGF-b1, which markedly

induced EMT in 16HBECs (Figures 4A, B) (58). A previous study

reported that Sema7a and its receptor Integrin-b1 contributed to

vascular endothelial cell injury and the pathophysiology of

atherosclerosis (21, 22, 59). To determine the functional role of

Integrin-b1 in the EMT of 16HBECs treated with TGF-b1, the
protein expression levels of EMT-related proteins were analyzed

using western blotting. As shown in Figures 4C–E, compared with

the control group, TGF-b1 significantly upregulated the expression

of Integrin-b1, a-SMA, and fibronectin but downregulated E-

cadherin (P < 0.01). Therefore, TGF-b1-induced Sema7a and

Integrin-b1 expression may play a critical role in promoting a

mesenchymal phenotype.
3.5 TGF-b1-induced EMT could be reduced
by GLPG0187 in 16HBECs

Integrins are heterodimeric receptors that serve to elicit a series

of signal transduction events and sense the extracellular
Frontiers in Immunology 07
environment that participates in the control of cell cycle

progression and apoptosis (a, b) (60). As a member of the

integrin subfamily, Integrin-b1 is expressed on T lymphocytes,

epithelial cells, and fibroblasts (61–63). The integrin-b1 blocking

antibody GLPG0187 was used to detect the interaction between

Sema7a and integrin-b1. 16HBECs were treated with different

concentrations of GLPG0187 before TGF-b1 treatment to identify

the function of Sem7a in EMT in asthma. As shown in Figures 4C,

E, GLPG0187 significantly increased the expression of E-cadherin

and decreased the expression of mesenchymal markers like

fibronectin and a-SMA (P < 0.01). Additionally, CCK-8 was

conducted and showed that proliferation in TGF-b1+ GLPG0187

cells was significantly lower (Figures 4F; P < 0.01). Taken together,

these findings suggest that Sema7a may promote EMT through

Integrin-b1 in 16HBECs.
3.6 Sema7a may aggravate EMT through
the FAK/ERK1/2 signaling pathway in
16HBECs

FAK/ERK1/2 acts as a downstream signal pathway of the

Sema7a-integrin-b1 axis, which mediates vascular endothelial

dysfunction and tumor metastasis (21, 64). To further

characterize the mechanism underlying the promotion of

16HBEC proliferation and migration by Sema7a, the expression
B

C D

E F

A

FIGURE 3

Histological examination of lung tissue was performed 24 h after the final OVA challenge. Lung tissues were fixed, sectioned at 5 um thickness, and
stained with hematoxylin-eosin (HE), periodic acid-Schiff (PAS), and Masson stain. (A, B) Quantified results of airway wall thickness (Wat) analyzed by
Image-Pro® Plus 6.0 software. (C, D) Quantified results of airway wall thickness (Wat) analyzed by Image-Pro® Plus 6.0 software. (E, F) Quantitative
analysis of collagen deposition by Image-Pro® Plus 6.0 software. Data represent means ± SD. *P < 0.05, **P < 0.01.
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levels of FAK, ERK, P-FAK and P-ERK1/2 were assessed using

western blotting analysis. As shown in Figures 4G, H, GLPG0187

decreased phosphorylated FAK and ERK1/2 levels, suggesting that

attenuation of FAK and the ERK1/2 pathway was caused by

downregulation of cell surface integrin-b1 (P < 0.01). The

molecular investigation indicates that Sema7A may promote

TGF-b1-mediated EMT, cell migration and proliferation by

activating Integrin-b1 and its downstream FAK and ERK1/2

signaling pathways.
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4 Discussion

This work extends our current understanding of the

mechanisms regulating EMT, provides new insights into the role

of Sema7a cytokines in bronchial asthma with respect to AR, and

strengthens the basis for the Sema7a-integrin-b1 axis in the

treatment of human allergic asthmatic EMT and fibrotic diseases.

First, we found that the levels of Sema7a in the serum of asthmatic

patients were increased (Figure 1B). Second, Sema7a was
B

C D

E F

G H

A

FIGURE 4

(A, B) 5ng/ml of TGF B 1 could induce obvious EMT changes in 16HBE cells. (C–E) TGF-b1 upregulated the expression of Integrin-b1, along with
the upregulation of a-SMA and fibronectin, but downregulated E-cadherin compared with the control group; GLPG0187 significantly increased
the expression of the Integrin-b1, E-cadherin and decreased that of the mesenchymal markers, fibronectin, a-SMA in a concentration-dependent
manner. (F) GLPG0187 can reduce the 16HBE cells proliferation rate induced by TGF-b1. (G, H) TGF-B1 significantly upregulated the expression
of the FAK, P-FAK, ERK and P-ERK, while the GLPG0187 can reduce the expression of the above signaling pathway indicators, **P < 0.01,
#P>0.05.
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overexpressed in airway and lung tissue in asthmatic mice and

promoted airway EMT, which was blocked by an integrin receptor

antagonist, GLPG0187. To the best of our knowledge, this is the first

study to assess the effect of Sema7a on bronchial epithelial cells in

chronic asthma. Finally, GLPG0187 alleviated chronic airway

inflammation and AR mainly through the FAK and ERK

signaling pathways.

Sema7a is a membrane−associated GPI−linked protein that is

mainly expressed on the surface of eosinophils and can also be

present in the form of secretion (46, 65, 66). Because eosinophils

play an important role in the transmission of airway allergic

diseases such as asthma, we hypothesize that Sema7a may be a

critical cytokine in the development of allergic airway diseases in

asthma (67). First, our study identified, for the first time, the

expression of Sema7a in serum and found these to be enhanced

in asthma patients (Figure 1B; P < 0.01). These results are consistent

with those of Esnault et al. who found elevated Sema7a levels in

asthma patients (45). Previous studies have shown that TGF-b1 is

mainly produced by eosinophils accumulated in the peribronchial

and perivascular lesions (68). Asthma is characterized by

subepithelial fibrosis, and ample evidence exists that eosinophils

have a significant pathologic role in promoting airways fibrosis. In a

murine fibrosis model, TGF-b1 has been reported to induce the

expression of Sema7a in the murine lung (69). One study showed

that Sema7a expression is stimulated by TGF-b1 in the murine

lung, with Sema7a being a critical regulator of tissue remodeling in

TGF-b1-induced pulmonary fibrosis (70). Thus, we speculate that

sema7a may promote chronic airway inflammation and AR in

asthma. Gan et al. also supported our hypothesis and found that

TGF-b1 stimulates fibrocyte accumulation via a Sema7a–

dependent, integrin-b1–dependent pathway (65). Our research

showed that Sema7a and its receptor integrin-b1 were

overexpressed in lung tissue in OVA-treated mice (Figures 2A–F;

P < 0.01); treatment with anti-Sema7a was effective in alleviating

AR in the model of chronic asthma. This has been confirmed in the

study of Nobuaki Mizutani and Takeshi Nabe (46), in which

treatment with anti-sema7a antibody suppressed subepithelial

fibrosis in the lungs of Ig-E-sensitized mice. These results suggest

that Sema7a is involved in the development of AR by activating its

receptor integrin-b1 in asthma.

Epithelium damage and deficiency have been reported to result

in EMT, which is considered to be intricately involved in AR and is

the main cause of fixed airflow limitations that occur during asthma

attacks (26, 71). In contrast, inhibition of the EMT process can

alleviate AR in asthma. The increased expression of Sema7a in

epithelial cells is closely related to the severity of atherosclerosis

(21), and Sema7a has been shown to not only exacerbate

inflammation but also promote fibrosis that is associated with

EMT (70, 72); in an animal model, the expression of Sema7a in

lung tissue was dependent on TGF-b1 (73). The present study

supported the findings of the above investigations: integrin-b1 was

overexpressed in TGF-b1-stimulated 16HBECs (Figures 4C, D, P <

0.01); GLPG0187 reduced the expression of integrin-b1 and

attenuated the HBEC proliferation and EMT changes induced by

TGF-b1 (Figures 4C–E, P < 0.01). However, the TGF-b1 present in
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the fetal bovine serum used in the cell culture medium in Stephane

Esnault and Elizabeth A. Kelly study does not appear to increase

sema7a on eosinophils (74). The inconsistent results of the above

studies may be due to the different cell lines. Furthermore, it has

been reported that not only integrin-b1 but also Sema7a together

with its receptor, plexin C1, regulates cell migration. For instance,

the sema7a interaction with plexin C1 expressed on dendritic cells is

known to impair their migration (75). However, the interaction

between plexin C1 and Sema7a was not further studied in our study;

whether Sema7a can inhibit cell migration or EMT by activating

plexin C1 remains to be studied. In summary, our results further

confirmed the role of the Sema7a-integrin-b1 signaling axis in AR

and suggested that it promotes airway EMT and is involved in the

pathogenesis of asthmatic AR. Epithelial fibrosis is also an

important pathological feature of airway remodeling in asthma.

Thus, Sema7a and its integrin-b1 receptor may be potential

therapeutic targets for allergic asthma.

The molecular investigation indicated that Sema7a-integrin-b1
and its downstream FAK and ERK1/2 signaling pathways promote

nonvascular endothelial growth factor (VEGF) A/vascular

endothelial growth factor receptor (VEGFR) 2-mediated cell

migration and angiogenesis (23), and FAK/ERK1/2 is involved in

T-cell-mediated inflammatory responses (20). Previous studies have

shown that Sema7a is not only related to the inflammatory immune

response but also regulates axon growth via the mitogen-activated

protein kinase (MAPK) signaling pathway (73, 76). ERK constitutes

one branch of the MAPK pathway responsible for the invasion of

cancer cells by primarily breaking down the extracellular matrix

(ECM) (77). A study showed that blockage of integrin-b1 or

inhibition of FAK, mitogen-activated protein kinase (MEK) 1/2,

or NF-kB significantly reduced the expression of cell adhesion

molecules and THP-1 monocyte adhesion in Sema7a-

overexpressing human umbilical venous endothelial cells (21). In

summary, Sema7a may be involved in asthma airway EMT through

the FAK/ERK1/2 signaling pathway. To gain insight into the

mechanisms underlying the observed effects of Sema7a, we

examined several proteins in the TGF-b1/FAK/ERK/1/2 signaling

pathway and identified whether GLPG0187 can affect the kinase

activity of FAK and its downstream targets. We analyzed the

phosphorylation levels of FAK and ERK1/2 by performing

western blotting. Interestingly, the levels of phosphorylated FAK

and phosphorylated ERK1/2 were decreased in GLPG0187-

pretreated cells (Figures 4G, H, P < 0.01), suggesting the

involvement of FAK/ERK1/2 phosphorylation in the early stage

of AR activation.

In conclusion, the present study demonstrated that Sema7a may

contribute to asthma AR pathology by affecting HBEC function and

airway EMT. GLPG0187 significantly increased the expression of E-

cadherin and decreased that of the mesenchymal markers

fibronectin and a-SMA in a concentration-dependent manner.

These findings may explain the underlying mechanisms of the

loss of airway epithelial integrity in OVA-induced asthma by

promoting the phosphorylation of FAK and ERK. Collectively,

these findings may provide insight into the multifaceted role of

Sema7a in chronic asthma. With further studies, Sema7a or
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integrin-b1 is expected to be used as an immunotherapeutic

treatment target for asthma.

Epithelial fibrosis is also an important pathological feature of

airway remodeling in asthma. Thus, Sema7a and its integrin-b1
receptor may be potential therapeutic targets for allergic asthma.
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