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Throughout history humanity has searched for an optimal approach to the use of
opioids that maximizes analgesia while minimizing side effects. This review reflects
upon the conceptualization of the opioid receptor and the critical role that the
pharmaceutical sciences played in its revelation. Opium-containing formulations
have been delivered by various routes of administration for analgesia and other
therapeutic indications for millennia. The concept of a distinct site of opium
action evolved as practitioners developed innovative delivery methods, such as
intravenous administration, to improve therapeutic outcomes. The introduction
of morphine and synthetic opioids engendered the prevalent assumption of a
common opioid receptor. Through consideration of structure-activity
relationships, spatial geometry, and pharmacological differences of known
ligands, the idea of multiple opioid receptors emerged. By accessing the high-
affinity property of naloxone, the opioid receptor was identified in central and
peripheral nervous system tissue. The endogenous opioid neuropeptides were
subsequently discovered. Application of mu-, delta-, and kappa- opioid
receptor-selective ligands facilitated the pharmacological characterization
and distinctions between the three receptors, which were later cloned and
sequenced. Opioid receptor signal transduction pathways were described and
attributed to specific physiological outcomes. The crystal structures of mu,
delta, kappa, and nociceptin/orphanin FQ receptors bound to receptor-selective
ligands have been elucidated. Comparison of these structures reveal locations of
ligand binding and engagement of signal transduction pathways. Expanding
knowledge regarding the structure and actions of the opioid receptor fuels
contemporary strategies for driving the activity of opioid receptors toward
maximizing therapeutic and minimizing adverse outcomes.
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Introduction

In 2021 and 2022, over one hundred and sixty thousand people lost their lives to the

opioid epidemic in the United States (1) leaving behind heartbroken family members,

devastated friends, and grieving communities. The chronic pain crisis is a separate but

related ongoing public health problem with an intersection of individuals that suffer and

struggle between these two neurological conditions. Analgesic options are frequently

inadequate leaving those with the most severe pain the only option of opioid therapy,

which carries the very serious risk of addiction among other adverse side effects and

social stigma. This struggle with seeking adequate pain relief while managing and/or

minimizing risk of addiction is an ongoing duality with which humanity has struggled

throughout recorded history. Through considering how we as a human society have
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approached a global problem, we can understand better how we

have come to a current state of the same problem. This reflection

may yield insights as to how the ongoing opioid epidemic may

be most effectively addressed in the present day. This review

does not represent a comprehensive survey of the extensive

chemical, pharmacological, physiological, and molecular

biological literature on mu, delta, kappa, or nociceptin/OFQ

receptors or on the opioid receptor epidemics. Excellent reviews

on those topics have been contributed elsewhere and some have

intentionally been cited within this piece. Rather, this review

seeks to reflect upon how the concept of a site of action

(receptor) for opium and later morphine emerged, particularly

through the pharmaceutical sciences.

Recognition of the pain-relieving effects of Papaver

somniferum, or the Red Poppy from which opium is extracted,

goes back millennia. While the therapeutic effects of opium were

readily appreciated historically, so were the deleterious effects.

The drive to find an optimal analgesic compound based on

opium that does not cause addiction has fueled the efforts many

healers, doctors, chemists, pharmacologists, molecular biologists,

regulators, funders, and sponsors for thousands of years. How to

create an opium formulation or a new opioid compound that has

all the benefits of analgesia without sedation or addiction is a

reverberating question throughout the history of healing,

medicine, and science. Understanding where and how opium/

morphine acts upon the body to exert these effects has always

been considered key to that search. As several thousand years of

opium use unfolded, so the concept of a “site of action” of

opium (and later morphine) began to emerge. The idea of a cell

site or a receptor site took shape perhaps as early as the 1600s

when practitioners using opium to treat chronic pain began to

innovate in methods to deliver opium formulations closer to the

site of action. By the mid 1800s, practitioners experimenting with

direct injections began to engage in the debate as to the site of

action of opium, specifically whether injected opioids act locally

or systemically. The early 1900s saw the development of opioid

analog antagonists that reversed the action of opioid agonists; by

the mid-century, the understanding of the stereospecificity of the

opioids accelerated acceptance of the concept of a common

opioid receptor site. In the early 1970s, through using the high

affinity attributes of the opioid antagonist naloxone, the existence

of the opioid receptor was revealed. By the 1990s, the amino acid

sequences of all three opioid receptors were established. Through

molecular manipulation of the opioid receptors, a greater

understanding of how biologically activated opioid receptors

exert their therapeutic and adverse effects has been gained.

Pursuit of how to maximize the therapeutic effects and minimize

the adverse effects now centers around how to drive opioid

receptors or combinations of receptors toward that goal. Through

this article, we review the development and persistence of the

initial formulations of opium, the beginning of alternative forms

of percutaneous drug delivery, the monumental impact of

medicinal chemistry on the extraction of morphine, and

introduction of the antagonists. All these stages in the history of

the use of opium greatly aided the emergence of the concept of

the opioid receptor and ultimately the discovery of the opioid
Frontiers in Pain Research 02
receptor in the nervous system. Note how the goal of finding a

better analgesic through innovation is a common theme

throughout nearly all of time.
Botanical period

Evidence of early human recognition of a biological response to

parts of the Papaver somniferum is offered in the form of both

written uses for medicinal purposes and artistic renderings of

poppy flowers, sometime in association with various goddesses of

harvest and of healing (2). Throughout this time, opium was

recognized as a routine constituent of botanical medical mixtures.

Between 132 and 62 BCE, Crateuas, physician to King Mithridates

the VI of Pontus, composed a 40 ingredient antidote that was

originally intended to protect the monarch from poisoning (3).

The Mithridatium, as the formulation was called, contained 40

ingredients, including toxins from various snakes, scorpions, and

sea-slugs, but also opium. Following Mithridates’ military defeat

by Pompey and his death, the composition was discovered,

preserved, translated and communicated to the world (3).

Andromachus the Elder of Crete was employed by the emperor

Nero as his physician in the first century. Crete was known for

botanical expertise and herbal exports. Educated in this herbal

knowledge, Andromachus offered effective herbal remedies

including the Theriac Andromachus, a 64 constituent formulation

intended to be an improvement over the Mithridatium with

notably a perceived “much greater quantity of opium” (4).

Andromachus is said to have enshrined the formulation [entitled

Galene or “Tranquility” (4, 5)] into a Greek poem (5) which was

revised and used in botanical medicine for 2000 subsequent years

and came to be thought of as an effective treatment for many

ailments and diseases beyond the original intent as an antidote

to poisoning. The Greek pantheon includes the Goddess of the

cure, Panacea (Panakeia), a name that became synonymous with

a universal remedy (3). Thus the Theriac Andromachus was

thought by many to be a panacea for many ailments for many

centuries (e.g., malaria and plague (4), neurological disorders and

organ failure (5)).

The historically famous Greek physician Galen, court physician

of Marcus Aurelius (5) and Lucius Verus, also expanded the

formulation Theriac Andromachus to 70 ingredients to be

delivered either orally, ocularly, or topically (3, 4) representing,

perhaps, the first documented intentional transdermal delivery of

an opioid therapeutic. In subsequent centuries a definitive

diaspora of variations of Theriac Andromachi was consumed by

monarchs (e.g., King Alfred the Great (4) and Queen Elizabeth I

(5)) and communities [Germany, Italy (5), and France] alike,

often with broad public acceptance, support, and celebration (6).

The effectiveness of mithridatium or theriac was broadly viewed

to be dependent on adherence to what was considered the proper

protocols of manufacturing. In other words, if a batch did not

provide the intended therapeutic outcome, the explanation given

was insufficient quality control (5). The manufacturing of theriac

therefore was thought to be best performed publicly, and, as

such, became the focus of national annual festivals in Germany,
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and France and Italy (5). Some of the ingredients were difficult to

come by (5), the process took multiple days to prepare (e.g., 40)

and a varying number of years (up to 12) were needed to allow

it to mature (4). Public displays of manufacturing evolved to the

development of regulatory inspections of facilities and final

material (4). The word “theriac” derives from the Greek word

“theria” refers to “wild beast” (3) but later evolved in translations

somehow to became recognized as “treacle”, a term more

commonly associated with molasses in modern times. It may be

that sweeteners were added to the formulation as part of the

pharmaceutical preparations contributing to the evolution of the

term (5). “Venetian Treacle” was an Italian form of theriac that

was widely exported (4).

In 1745, nearly 2000 years after the introduction of theriac,

English physician William Herberden published an impactful and

definitive critique (7) of the persistent and continuing use of

theriac as contradictory to the state of scientific and medical

knowledge of his time. He asserted that the inclusion of the

number of competing ingredients, the proportions of ingredients,

and the combination lacked clear rationale. He particularly called

out concern with the risks of opium in the mixture. Herberden

writes:

“As many people busy themselves with the practice of Physic,

who are unqualified to know what they are doing, it may be

advisable, for the sake of such as fall into their hands, to

discountenance a medicine, which, upon the tradition of

sovereign virtues, or as a sudorific, is often applied at random,

and, by means of the Opium, does much mischief. But its use

may be of ill consequence not only in the hands of the vulgar,

but even of a skillful Physician; for Opium or any powerful

drug, mixed up into an electuary with so many other things,

is against all rules of pharmacy; the prescriber lies too much

at the mercy of the person who mixes the ingredients, whether

what he gives for an ordinary dose shall not contain a

dangerous or fatal quantity of opium: and indeed it is hardly

to be expected, in such a multiplicity of ingredients, that the

usual dose will contain a just proportion of all of them, and

of course, the Physician will be greatly in the dark whenever

he prescribes it” [p. 14–15, Heberden, 1745 (7)].

This critique had significant impact and heralded the decline of

the use of theriac globally (6). Mithridatium and Therica

Andromachus (Galene) appear for the last time in the London

Pharmacopoeia in 1746, in the German Pharmacopoeia in 1872,

and the French Pharmacopoeia 1884 (4). The London

Pharmacopoeia of 1788 explicitly repudiated the use of theriac;

the French Codex of 1908 noted definitive removal of theriac

from approved use (6), noticeably approximately 2000 years after

the product was introduced.

The first intravenous injection of opium is attributed to the

English architect of St. Paul’s Cathedral, Sir Christopher Wren

(1632–1723), who used a goose quill to inject opium solution

into a dog vein using an animal bladder as the reservoir (8). He

reported that the dog was sedated. The pharmacist Friedrich

Sertürner isolated morphine from opium in the early 1800s,
Frontiers in Pain Research 03
which represented the first time an alkaloid was isolated from a

plant product (9), an event of noted significance in chemistry.

He tested the new compound in rats, mice, cats, and dogs

(10, 11) and observed the effects to be similar to that of opium.

It is said that when Serturner was suffering from a toothache

that he took his purified product and noted the alleviation of his

own pain (9). Through experimentation on himself and three

young male human research participants (11) he identified dose-

effect relationships. He observed that 30 mg of the drug induced

a light euphoria, 60 mg of the drug induced fatigue, and 90 mg

resulted confusion and sedation (9).

Shortly after Serterner’s extraction, morphine was manufactured

and available for oral delivery. An advantage of the extraction and

purification of morphine was the ability of practitioners to offer

patients morphine for pain in predictable doses, greatly reducing

the risk of overdose from non-standardized opium tinctures (9).

However, significant prevalence of use did not expand until the

introduction of the hypodermic needle. In 1836, the French

physician G.V. Lafargue adopted a vaccination approach to

introduce a morphine paste subcutaneously. He dipped the point

of a vaccination lancet in morphine and then introduced it under

the skin, horizontally, for a few seconds (10); he reportedly

performed the procedure repeatedly to his own forearm and

noticed himself becoming sedated (8). The first medical reports of

the use of opium for controlling post-operative pain was reported

using oral laudanum formulations in the late 1700s and early

1800s; opium rectal suppository was introduced as a post-

operative medication in 1891 (8). The concept of local vs. systemic

action of opioid was, in fact, already under consideration and

debate in the mid 1800s. In 1853, the hypodermic needle was

introduced via application of a syringe and hollow needle to

deliver morphine directly into a painful area by Dr. Alexander

Wood to a female patient suffering neuralgia (10). The intent was

to anesthetize the peripheral nerves at the local level (10), but the

patient also experienced significant sedation (8) which would

suggest a systemic action. A second individual, Charles Hunter,

tried to replicate the strategy in 1) a painful site and 2) a site

distal from the painful site. He noted delivery of morphine to

both sites gave equal alleviation of pain. From this, he deduced

that the effect of morphine was due to systemic action of opioid

whereas Dr. Wood continued to assert a local action. This

difference in interpretation escalated into a dispute in the medical

literature that included an argument regarding who should receive

credit for introducing the technique. Ultimately the community

gave credit to Wood for introducing the technique and Hunter for

establishing a systemic action needle (10). Another example of

early recognition of the potential benefit of direct delivery to the

presumptive site of opioid action was the first local spinal

injections (12), initially of cocaine, in 1885 by Leonard Corning.

In 1899–1901, morphine mixed with cocaine or other local

anesthetic was delivered spinally by physicians on three separate

continents including Dr. Matas of New Orleans (13),

Dr. N. Racoviceanu-Pitesti of Romania (14), and Dr. Otojiro

Kitagawa of Japan (15). The spinal site of action would remain

largely underexplored until the report of morphine delivery via

chronic catheterization of rat by Rudy and Yaksh in 1976 (16).
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Dr. Wood went on the optimize the hypodermic method by

graduating the barrel of the syringe and reducing the size of the

needle (10). Repeated hypodermic injections of morphine (up to

1000s of injections in a single patient) to treat neuralgia became

commonplace. In 1870, Professor Thomas Clifford Allbutt of the

University of Cambridge wrote about his increasing discomfort

with his awareness that many doctors were treating patients

“who have been injecting themselves daily or more than daily

during long periods of time for neuroalgesia which seem as far

from the cure as they were at the outset” (10). Of his own

patients he noted that “they all find relief in the incessant use of

the syringe and they all state that without the syringe life would

be insupportable” (10). The dual advantage of morphine’s

increased potency relative to opium and the direct access to the

systemic circulation to provide faster distribution to the active

site (the opioid receptors as yet unidentified) further drove the

increase in morphine use, particularly for use in the military

during warfare (11). Appreciation of the risks of addiction and of

infection were delayed for many years but were generally

understood by 1885 (10). In the late 1800s and the early 1900s,

the United States and other countries began the establishment of

legislation and agreements to restrict the use, manufacture,

imports, and sales of opium (11).
Medicinal chemistry

Although Friedrich Sertürner is credited with the first

publication of the isolation of morphine, it has been proposed

that several other chemists and pharmacists extracted substances

from opium presumed to be the active compound as early as the

mid-1600s (11). Following the isolation of morphine, the next

significant steps were elemental analysis and identification of the

chemical formula of morphine by the French chemist Auguste

Laurent in 1847 (11) followed by establishment of the structural

formula by Sir Robert Robinson in 1925, an accomplishment

that contributed to his later receipt of the Nobel Prize in

Chemistry in 1947 (11). Note the greater than 100 years that

spanned the time between the isolation of morphine from opium

to establishing the structure. In 1956, Gates and Tschudi

confirmed Robinson’s structure through the first synthesis of

morphine (17).

Of similar significance in the realm of medicinal chemistry was

the synthesis and commercialization of diacetylmorphine, later

called heroin. Diacetylmorphine was synthesized (along with

acetylcodeine and acetylmorphine) by the English chemist

Charles Romley Alder Wright in 1874 (18). This event is broadly

viewed as an effort to synthesize a new opioid compound with

less addiction propensity than morphine representing another

point in history where the universal goal to seek a better

analgesic was pursued. Alder Wright enlisted a colleague, Dr.

F.M. Pierce, MD, to assess these acetylated opioids in dog and

rabbit, but the results were not interpretable since morphine was

not included as a positive control (19). In 1888, a group at the

University of Edinburgh conducted studies of impact of dose on

the effects of morphine and a series of derivatives, including
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diacetylmorphine, in frog and rabbit pharmacological assays of

tetanus and depression (20); they observed that diacetylmorphine

had a greater effect than morphine on depressing spinal cord

and respiratory centers in these assays (19) although these

observations may not have been broadly appreciated.

In the early 1890s, the head of Bayer’s Pharmaceutical science

laboratory, Arthur Eichengrün and his assistant Felix Hoffmann,

set about acetylating a variety of compounds such as tannins,

salicylic acid, and morphine (19). Bayer was reportedly interested

to identify an improved antitussive medication to control

coughing particularly in patients with respiratory disease with

limited side effects, a common objective in opioid development.

Following a series of pre-clinical experiments and clinical trials,

the head of the Bayer laboratory of Pharmacology, Heinrich

Dreser, reportedly observed that diacetylmorphine suppressed

cough and stimulated respiration and seemed to have little

respiratory depressant effects (18), the latter of which was

incongruent with standard opioid pharmacology. Although they

could not claim the patent due to the prior art in the publication

of Alder Wright, Bayer made the decision to manufacture and

market diacetylmorphine staring in 1898 as a cough suppressant

under the name “Heroin” which is presumed to be associated

with the word Heroish, referring to “powerful” and “extreme”

(19). As heroin and other opioids were marketed intensely and

broadly distributed, the incidence of heroin abuse escalated rapidly.

During the last third of the 19th century, regulation of the

medical use and pharmacological production in the United States

was the domain of the individual states; many states reportedly

elected to refrain from establishing controls over opium and

opiate manufacture and medical use (21). Consequently, opium

and opiates were broadly available, intensely marketed, and

widely used. Crude opium imports to the United States escalated

from 1870 to 1895 (21). By the early 1900s, legislation was

enacted to restrict (1914, Harrison Act, U.S. Congress) and then

later ban (1924, USA) the medical use of heroin (19). New legal

restrictions resulted in a decline in crude opioid imports from

1900 to 1910 (21).

It is also noteworthy that the medical heroin experience was

accompanied by introduction of a variety of other morphine

analogs including hydrocodone (a component of Vicodin) and

hydromorphone (Dilaudid) (18), important medicines in

widespread use for control of pain in the present day (18).

Following the conclusion of World War II, the Allied Powers

acquired access to the records of the infamous (22) German

industrial chemical conglomerate I.G. Farbenindustrie (23). The

United States State Department sent members of the Technical

Industrial Intelligence Committee to evaluate their research

activities. During this process, the chemical composition known

as Hoecht 10820 (6-dimethylamino-4,4-diphenyl-3-heptanone)

was identified as of therapeutic interest. I.G. Farbenindustrie

scientists had synthesized in 1938 (24) and developed it under

the name amidon (23), or polamidon or palamidon (24). By

1948 6-dimethylamino-4,4-diphenyl-3-heptanone was assigned

the generic name of methadon which ultimately became

methadone. Eli Lilly acquired the patent (for $1) and marketed it

as Dolophine. Methadone (together with buprenorphine) is now
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listed among the WHO’s 100 essential medicines for its

effectiveness in addiction treatment due to its long half-life (25).

It is also recognized for curbing the spread of HIV due to

reduced behaviors associated with HIV transmission (25, 26). In

addition to methadone, pethidine (meperidine or Demerol) was

also initially synthesized by I.G. Farbenindustries in the late

1930s (24).

Another significant phase in opioid chemical research was a

comprehensive study of structure-activity relationships. This

effort was initiated by the United States’ Committee on Drug

Addiction of the National Research Council (1929–1939) and

then assumed by the National Institutes of Health (18). Here

again the objective was to understand the impact of structural

modification on the pharmacology to identify or design an

optimal opioid medication with reduced side effects, in other

words, to find a better analgesic. Over 150 morphine derivatives

and 300 synthetic compounds were studied at the University of

Michigan for their standard opioid pharmacological effects.

Although several important contributions emerged from this

program (e.g., oxycodone and oxymorphone), identification of a

strategy to maximize the therapeutic effects over adverse effects

remained elusive (18).

Synthesis of the highly potent oripavine series represents the

next notable development, occurring in the 1960s. This series

includes etorphine, used in large animal veterinary practicr to

sedate large mammals such as elephants (27), as well as the

partial agonist buprenorphine, which has become an important

treatment option for opioid use disorder. In 1963, Janssen (28)

reported the development of the 4-anilidopiperidine class of

opioid agonists and introduced fentanyl as a opioid with

significantly greater potency relative to morphine. Highly

lipophilic, fentanyl is effectively delivered by nearly every route

of administration and has been used intravenously as an

anesthetic and to treat post-operative pain, oral/transmucosally

(e.g., fentanyl lollipop) to treat cancer pain, and transdermally

(e.g., fentanyl patch) to treat chronic severe pain in opioid

tolerant patients as well as other transmucosal immediate release

fentanyl preparations such as oral/buccal sublingual and

nasomucosal delivery strategies (29). Broad availability has also

rendered the dosage forms abusable via a variety of routes of

administration. Fentanyl is attributable to a significant fraction of

the current opioid epidemic, amplified notably by illicit

manufacture (29, 30). In recent years, the ultra-potent potent

analog carfentanil, which has historically also been used in large

mammalian veterinary practice and wildlife herd management,

has increased in illicit use and contributed to opioid overdoses

(31), as has a broad array of fentanyl analogs that are

manufactured illicitly and trafficked into the United States (30).
Receptor revelation through
stereoselective pharmacology

The idea that opioids bind to a macromolecular protein

receptor that resides in or on the surface of a neuron (32)

emerged during the mid-20th century and was based in large
Frontiers in Pain Research 05
part upon the synthesis and introduction of a number of opioid

derivatives that opposed the actions of morphine, what we now

know as the opioid antagonists.

N-Allyl- opioids: The first demonstration of antagonism of

morphine by another opioid is uniformly attributed to the work

of a German chemist, J. Pohl, published in 1915 (12, 18). Pohl

was reportedly interested in the observation of a colleague who

had decided that allyl compounds stimulated the respiratory

system. Pohl theorized that by adding an allyl group to opioid

alkaloids, the effects of opioids on the nervous system may be

countered (12). He then observed that his synthetic product of

N-allylnorcodeine reversed the respiratory depression induced by

morphine in rabbit and dog (12, 18). This monumental

observation of millennial importance heralded the introduction

of a potential antidote for the lethal effects of opium, a key

constituent of a mixture (Mithridatium) that was originally

intended to serve as an antidote to poison itself. Given the

significance of such a step forward, it is surprising that a period

of 25 years would elapse before the next step was taken. In the

early 1940s, N-allyl-Oallyl-normorphine and N-allylnormorphine

(nalorphine) were synthesized and demonstrated to reverse

respiratory depression induced by morphine as well as other

opioid agonists in both animal subjects and humans. The

ensuing pharmacological studies of the effects of nalorphine and

nalorphine + diverse opioid agonists resulted in complex

outcomes thoroughly reviewed contemporaneously by the

renowned clinical pharmacologist Dr. Louis Lasagna. To

summarize the initial observations, it was noteworthy that

nalorphine, when given at morphine equivalent doses, did not

induce classic signs of opioid side effects such as vomiting,

sedation, restlessness, and Straub tail but at higher doses did

have comparable LD50 values. In humans, a variety of aversive

or dysphoric side effects were noted with N-allylnormorphine

when given alone, but sedation induced by morphine or other

opioids was often reversed. Analgesia was evident at high doses.

In considering the mechanism for how nalorphine reversed the

effects of opioids, the theory of competitive antagonism at

specific “cell sites” (12) or receptors (33) was advanced. It was

also recognized that such a mechanism did not fully explain the

complex pharmacology exhibited by nalorphine (12), such as the

findings of Houde and Wallenstein that nalorphine antagonized

morphine analgesia at lower doses to a greater extent than at

higher doses (34). Throughout the ensuing twenty-five years,

multiple N-Allyl-opioid antagonist (nalorphine, levallorphan)

pharmacological experiments were performed using a variety of

opioid agonists (e.g., morphine, methadone, levorphan,

dihydrocodine, phenazocine among others) observing dependent

measures (thermal reflex, intestinal spasm, lenticular opacity);

this literature was efficiently summarized by Grumbach and

Chernov (33). The parallelism of the rightward shifts observed in

morphine dose-response curves in the presence of nalorphine by

multiple investigators (35–38) in diverse species with distinct

dependent measures combined with their own internally

controlled comparison using ten distinct opiate agonists offered

compelling evidence in support of a common receptor site (33)

for opioid agonists (isolated and/or introduced in the 19th
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century) and the opioid antagonists (synthesized in the 20th

century). Naloxone: In 1961 N-Allylnoroxymorphine, naloxone,

was introduced and reported to antagonize oxymorphone

analgesia in mice, respiratory depression in human (39), and

later meperidine, alphaprodine as well as oxymorphone in

human (40). This new tool would ultimately have a sweeping

impact on science and humanity. Naloxone became the primary

gold standard to define any opioid ligand and the primary tool

to save lives following opioid overdose, following its introduction

to the market in 1971 (41). Unlike the opioid agonist-

antagonists, naloxone reversed the effects of morphine but had

no agonist activity when delivered as a single agent. This distinct

pharmacological profile supported the proposal that opioid

antagonists competed with agonist directly at a receptor and

diminished residual views that the antagonists acted by

stimulating respiration (34).

Stereospecificity: A key feature of mid-twentieth century opioid

neurochemistry was the recognition that, in many cases, opioid

ligands are chiral and one enantiomer demonstrated significantly

greater analgesia (efficacy and/or potency) than the

corresponding mirror image species (42). Well-known examples

included (-) methadone, (-) morphine, and a variety of related

compounds whereby the D (-) configurations were active and the

L (+) configurations were often inactive (32, 42). It was noted

that since the physicochemical characteristics of enantiomers

were identical, this diminished the likelihood of

biopharmaceutical or pharmacokinetic explanations for the

differences in effects. Any differences in effect would most likely

be attributable to differences in spatial geometry and

corresponding receptor interactions (42). Differences in effect

were expected to be due to affinity or intrinsic activity with the

presumptive receptor, as yet uncharacterized. It was recognized

that stereospecificity, such as was observed with the opioid

receptor ligands, typically was associated with interaction with

proteins such as receptors (32). The summation of all the

medicinal chemistry research from Pohl (1915) through

Portoghese (1966) (42) focused on an assumed receptor protein

that resides on a neuron and accounts for the pharmacological

effects of opioids (32). In his 1952 (43) and 1954 (44)

publications, Beckett described the key elements of a potential

receptor binding site for morphine. This theoretical receptor

surface contained specific aspects that could associate with the

common chemical features of opioid ligands (32) These elements

were designed from spatial complementarity with key chemical

moieties in opioid isomers and from the antagonistic activity of

nalorphine. It was suggested that each of the morphine analogs

could assume conformations that would interact stereospecifically

with a putative receptor that binds morphine. The principle of

stereospecificity of opioid drug action was fundamental in the

development of a specific receptor for morphine.
Identification of the opioid receptors

The idea that opioids may engage more than one receptor

subtype was initially proposed by Portoghese in 1965–1966
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(42, 45). He suggested that multiple receptor species may explain

the observed diverse structure-activity features of known opioid

molecules that did not seem to fit a simplistic form of drug-

receptor interaction, such as binding to the identical site on the

same receptor. Shortly thereafter, Martin advanced the concept

of receptor dualism (agonists produce the same effect but

occupy different receptors) to explain distinct pharmacological

effects observed with nalorphine compared to morphine, and

that the abstinence syndrome associated with nalorphine and

cyclazocine (a mixed opioid agonist/antagonist compound of the

benzomorphan class) differed qualitatively from that of morphine

abstinence syndrome (34, 46). These diverse responses to

morphine, nalorphine, and cyclazocine were observed by Martin

in dog. For example, morphine and cyclazocine induced different

abstinence syndromes and did not demonstrate analgesic cross-

tolerance to one another. Martin and colleagues proposed three

different opioid receptors termed mu, kappa, and sigma(34, 47,

48). The initial opioid receptor subtype trio ultimately evolved to

include the delta opioid receptor for the distinct pharmacological

profile of the enkephalin neuropeptides (49) and to exclude

sigma since the sigma receptor does not display several signature

features of opioid receptors (50). The experiments reported by

Lord and colleagues (51). Comparing the action of morphine,

Leu- and Met-Enkephalin, and β-endorphin in two distinct tissue

preparations (guinea pig ileum and mouse deferens) further

supported the existence of mu and delta opioid receptors; the

authors also suggested the existence of kappa opioid receptors (51).

It was initially thought that exposure of radiolabeled opioid

agonist to brain tissue would reveal the opioid receptor through

increased specific binding of the radiolabeled opioid in regions

expected to be important in opioid pharmacology. However, such

experiments did not demonstrate a selected region with

appreciable stereospecific binding of radiolabeled morphine,

dihydromorphine, or levorphanol (32). A second pharmacological

strategy demonstrated that intraparenchymal delivery of naloxone

to the addicted rat induced withdrawal (52) in specific regions.

Similarly, delivery of morphine to specific rat brain sites induced

analgesia (53) as did delivery to the spinal cord (16). Not

surprisingly, these effects were more pronounced when delivered

to different regions; however, since the dependent measures were

completely different, minimal insight as to where the receptor is

more highly expressed could be gained. Improving the portion of

binding that was stereospecific came about when high specific

activity antagonists, such as [3H]naloxone (54) were used as the

radiolabeled probe ligand, enabling low concentrations to be

applied combined with improved cold washing of homogenates,

which removed nonspecific bound ligand (32). In 1973, Candace

Pert and Solomon Snyder reported stereospecific [3H]binding of

naloxone that was exquisitely restricted to both central (brain) and

peripheral nervous system tissue (intestine); [3H]naloxone was

competed by unlabeled naloxone as well as a variety of (-) opioids,

but not (+)-opioids nor centrally acting non-opioid ligands such

as serotonin, norepinephrine, choline, or histamine among others

(54). This report was the clearest and most direct evidence of

opioid receptor binding and biochemical evidence of an opioid

receptor. Concurrently, Eric Simon and his colleagues evaluated
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the binding of the high affinity and high potency opioid agonist [3H]

etorphine which, unlike other radiolabeled agonists of the time, did

demonstrate stereospecific binding in rat brain that was competed by

naloxone and (-)-levorphanol [but not (+) dextrorphan, the

enantiomer of levorphanol] (55). A third contemporary study

reported stereospecific binding of [3H]dihydromorphine in

synaptic plasma membrane fractions of rat brain, binding that was

competed by (-)-methadone (but not (+) methadone (56)). Taken

together, these three positive findings are largely viewed as the first

biochemical evidence for the existence of the opioid receptor.

Shortly following the documentation of the existence of the opioid

receptor, it was reported that opioids reduced cAMP levels in rat

brain homogenate (57) and in neuroblastoma derived cell lines

(58). These data established the inhibition of neuronal adenylate

cyclase as a key signaling mechanism of opioids. The endogenous

opioid receptor ligands were also intensely pursued (59) and the

opioid neuropeptides were introduced: enkephalins (60), β-

endorphin (61, 62), and dynorphin (63). [the endomorphin-1 and

−2 neuropeptides were discovered about twenty years later (64)].

The next decade of pharmacological research revealed much about

the development of the classic features of opioid tolerance,

dependence, and signal transduction. The design, synthesis and

introduction of antagonists (65–68) and agonists (69–72) that were

selective for mu (67, 69), delta (65, 71, 72), and kappa (66, 68, 70)

opioid receptors greatly aided subsequent studies that elucidated

the individual pharmacology of each receptor subtype in terms of

analgesia, opioid tolerance, cross-tolerance, dependence, signal

transduction, and other distinct features of each receptor.
Molecular biology

Significant strides in molecular biology enabled the pivotal

advances in opioid research with the cloning of the mu (73–76),

delta (77, 78), and kappa (79–81) opioid receptors in the early

1990s. It is noteworthy that, although prior pharmacological

studies suggested multiple subtypes within each mu, delta, and

kappa receptor class, only one gene was defined for each (82).

Pasternak and colleagues intensely pursued and defined multiple

splice variants of the mu opioid receptor that are congruent with

observed mu opioid receptor pharmacological variability (82).

Other explanations of pharmacological variability are thought to

be attributable to physical combinations of opioid receptors

associating functionally within the bilipid membrane with other

receptors of their class [e.g., mu-mu homodimers (83)] or other

opioid receptors [e.g., mu-delta heterodimers (84)] or other non-

opioid receptors [mu-alpha2A heteromers (85)] among others.

In previous eras, the opportunity to understand the opioid

receptor-ligand interaction depended on the ability of the

medicinal chemist to manipulate the molecule. Now, the ability

to physically alter the receptor(s) themselves facilitated the

resolution of the anatomical features of the receptors important

for extracellular ligand binding and the aspects of the

intracellular components of the receptor important for signal

transduction (82). Identification of the physical receptors enabled

molecular manipulations to delete or “knock-out” (KO)
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different “mu knock-out mice” generated by diverse research

groups, the effects of morphine on analgesia, inhibition of GI

transit, immunosuppression, hyperlocomotion, reward, withdrawal,

and respiratory depression were consistently and absolutely not

detected (86). In contrast, morphine’s effects remained detectable

in both delta KO (87) and kappa KO (88) mice. This genetic

specificity solidly placed the mu opioid receptor as the primary

opioid receptor that has driven the therapeutic and adverse effects

of opium and opium derivatives that have concurrently benefited

and plagued humanity for millennia.

The cloning of the opioid receptors also enabled precise

pursuit of their expression in and trafficking throughout the

peripheral and central nervous systems with the development of

molecular tools such as receptor antibodies (89–91) and mRNA

strategies (92). Delineating the expression of the mu opioid

receptor with respect to the circuitry of the sensory nervous

system ascending and descending pathways, GI tract, brainstem,

ventral tegmental area, among other brain regions has been key

to understanding the complex pharmacology of opioids in terms

of both therapeutic and adverse effects. Tracking receptor

behavior under conditions of opioid exposure has revealed

differential cellular internalization of the receptors (93). For

example, morphine exposure typically does not result in receptor

internalization whereas the high potency mu opioid receptor

peptide DAMGO and methadone do (94). The process of opioid

receptor internalization is considered to be driven by the

activation of beta-arrestin which leads to association of the

receptor with clathrin-coated pits and endocytosis (95).

Congruent with that proposal, beta-arrestin2 knock out mice

have demonstrated reduced desensitization of mu opioid

receptors and reduced development of opioid tolerance (but not

dependence) (96). Notably, the signaling via Gi and cAMP was

unaffected. The idea that mu opioid receptor agonists can

differentially drive signal transduction pathways has engendered

significant effort to characterize the signal transduction profile of

established opioid agonists as well as the development of new

“biased” agonists intended to optimize engagement of signal

transduction pathways that maximize therapeutic outcomes and

minimize adverse outcomes (97). TRV130 is a mu opioid

receptor-selective agonist with bias for Gi signaling over

β-arrestin-2 signaling that was developed through empirical

structure activity-based lead optimization (98). Compared to

morphine, TRV130 demonstrated increased analgesic potency in

mice and rats, but reduced β-arrestin-2 recruitment, receptor

internalization, colonic motility impairment (mice), and

respiratory suppression (rats)(99). In 2020 the FDA approved

TRV130 (Oliceridine) for intravenous use in the treatment of

severe acute pain. A review of clinical findings indicates that

oliceridine demonstrates comparable efficacy to morphine with

reduced incidence of gastrointestinal side effect. Whether

oliceridine reduces the incidence of opioid-induced respiratory

depression is not clear (100). It should also be noted that

enthusiasm for the biased agonism approach has been tempered

by questions raised regarding recently introduced lead biased

compounds (101).
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It is also recognized that for most G-protein coupled receptors,

the structure of their interface with their associated signal

transducers under states of agonism or antagonism has yet to be

fully resolved (102). As determining the molecular sequence of

each opioid receptor has been critical to understanding its role in

the physiology and pharmacology of opioid receptor ligand

effects, it stands to reason that resolution of the mu opioid

receptor interfaces with its cognate signaling transducers may be

essential in designing effective mu opioid receptor-biased ligands.

In early 2012, Nature published four reports of resolution of

the crystal structures of the three classic opioid receptors (mu

(103), delta (104), kappa (105)) as well as the amino acid-

sequence related (67%), but pharmacologically distinct,

nociceptin/orphanin FQ receptor (106). The crystal structures

were notably resolved in ligand-bound conformations, specifically

associated with their respective antagonists (107). Granier and

colleagues determined the crystal structure of mouse mu opioid

receptor when bound to the mu opioid receptor-selective

morphinan antagonist β-FNA (103) and the crystal structure of

the delta opioid receptor when bound to the delta-opioid

receptor-selective antagonist, naltrindole (104). Wu and

colleagues (105) reported the crystal structure of the human

kappa opioid receptor when bound to the kappa opioid receptor

selective antagonist, JDTic. Thompson and colleagues (106)

described the crystal structure of the human nociceptin/orphanin

FQ receptor kappa opioid receptor when bound to the kappa

opioid receptor selective antagonist, peptide mimetic Compound

24. Comparison of the structure of mu, delta, kappa, and N/OFQ

indicate common sites within the transmembrane (TM) domains

that foster receptor interactions with the functional groups of the

ligand that impact efficacy. This is also known as the “message”

region of the ligands. The part of the ligand that confers receptor

selectivity is known as the “address” region. Common receptor

sites in distinct areas of the binding pocket, with which

antagonists interact via the address region, were also identified

for the four crystallized receptors (107, 108). These findings

represented significant advances that would greatly inform

subsequent opioid therapeutic drug design.

It is important to note that the aforementioned studies

captured the receptor structures while bound to their respective

antagonists, which maintains the receptors in an inactive state.

Follow-up studies captured the crystal structures of mu, delta,

and kappa receptors in the presence of agonists, a state of

activation. For example, Huang and colleagues reported a crystal

structure of the active state mu opioid receptor when bound to

morphinan agonist BU72 and a receptor stabilizing G protein

mimetic camelid antibody fragment (nanobody 39 or Nb39)

(109). This report enabled direct comparison to the crystal

structure of the inactive state of the receptor when bound to

morphinan antagonist β-FNA (103). Subtle differences were

noted in the interactions of the two ligands with the extracellular

surface and ligand binding pocket of the mu opioid

receptor (109). Claff and colleagues (110) defined the crystal

structure of human delta opioid receptor in the presence of two

distinct delta opioid receptor-selective agonists, the peptide

KZGCHM07 and small molecule DPI-287; this initiative
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uncovered key distinctions between peptide and small molecule

agonist interactions with delta opioid receptor as well as

important features of opioid receptor activation and delta opioid

selectivity of N,N-diethylbenazemide ligands.

Che and colleagues (111) obtained a crystal structure of a

human kappa opioid receptor in the active state in the presence

of the agonist MP1104 and the active-state stabilizing nanobody

Nb 39 as was used by Huang et al. to stabilize the active site of

the mu opioid receptor (109). Che et al. observed significant

conformational alterations in activated kappa opioid receptor

particularly in the binding pocket. Additionally, residues in the

receptor were identified that are important in enabling biased

signaling. Application of the information from this report

combined with structure-based computation modeling informed

the design of biased ligands MP1207 and MP1208 which are

G-protein biased mu and kappa opioid receptor-selective partial

agonists (112).

In order to further expand understanding of how the mu

opioid receptor selectively activates the Gi signaling pathway,

Koehl and colleagues (113) elucidated the structure of the mu

opioid receptor complexed with Gi in its active state (bound to

DAMGO). Comparing the mu opioid receptor-Gi complex to

prior structures of GPCRs bound to Gs provided insight as to

how the mu opioid receptor selectively favors coupling with Gi/o

vs. other G proteins. Expanding on that strategy, Wang and

colleagues (114) obtained a crystal structure of mu opioid

receptor-Gi complex bound to PZM21 and FH210, which are

G protein biased mu opioid receptor agonists. Through comparing

this structure to prior crystallized mu opioid receptors complexed

with β-FNA, BU72, and DAMGO, common sites of interaction

were identified as well as distinct elements thought to be

associated with biased signaling. This information guided design of

new PZM21 analogs with improved pharmacological profiles.
Conclusion

We are a few years past the arrival of the global COVID-19

pandemic which has resulted in millions of virus-related deaths

worldwide and has escalated both the chronic pain public health

crisis and the opioid epidemic. Pandemic-related increases in

chronic pain are proposed to be expected (115) and the

biomedical research and medical communities are advised to be

ready to respond. After centuries of pharmaceutical research, the

most effective analgesic opioid compounds in our pharmacopeia

remains morphine, oxycodone, and fentanyl among other strong

opioids that all continue to also carry the adverse side effects

that have vexed humanity for millennia. It is noteworthy that the

most effective and life-saving anti-addiction medications we have

are also mu opioid receptor ligands (methadone, buprenorphine,

and naloxone), each with unique pharmacokinetic and

pharmacological features that yield their therapeutic effects.

The origin of the modern effort in the United States to identify

strategies to control pain while avoiding addiction is attributed to

the establishment in 1921 by New York City’s Bureau of Social

Hygiene, a Committee on Drug Addictions (116). This group
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later invited the National Research Council to provide leadership to

the mission and the Committee (later the College) on Problems of

Drug Dependence (CPDD) was established. CPDD was associated

with the National Academy of Sciences, National Research Council

from 1929 to 1976 after which it became an independent

organization fostering exchange on addiction between scientists,

clinicians, industry, and government officials. The National

Institute on Drug Abuse (NIDA) was established in 1974 and

has led the national initiatives on drug addiction research since.

NIDA has notably supported key research programs that led to

identification of the opioid receptor (54) and endogenous opioid

neuropeptides (117) in nervous tissue, the cloning of the mu

opioid receptor (76), identification of opioid receptor heteromers

(84), development of bivalent opioid ligands (118–121) and

biased agonists (122) and anti-opioid vaccines (123). These and

other important discoveries were supported by members of NIH

Pain consortium alongside NIDA (e.g., NINDS, NCCIH, NINR,

NIDCR, NCI, NIA, NICHD, NIAMS, NIMH, NEI, NIGMS,

NIDDK, NIAAA, NIMHD, NIBIB, NIDCD, NCATS, NHLBI,

FIC, CC) that maintain a commitment to solving the problems

of addiction and pain. The Helping to End Addiction Long-Term

(HEAL) initiative (124), is the latest and perhaps most unifying

effort to seek a new analgesic that is safe and without adverse

side effects.

In 1966 Dr. Phil Portoghese wrote the following: “The problem

of delineating the geometry of analgesic receptors and ideally,

elucidating the chemical components which comprise such

entities, will challenge the best efforts of the medicinal chemist

for years to come”(42). It seems that we are now in the “years to

come” and may be so for a long time. The best efforts of the

medicinal chemist, pharmacologist, molecular biologist,

neuroanatomist, structural biologists, clinicians, and many other

experts are still challenged to understand the opioid receptors

and to innovate new and safer approaches to access the notably

effective alleviation of severe pains offered by the opioid

medications. Together we are working toward a world in which
Frontiers in Pain Research 09
opioid addiction is no longer an epidemic and all people receive

safe and effective care for their pain.
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