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Opioids exacerbate
inflammation in people
with well-controlled HIV
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Introduction: People with HIV (PWH) are known to have underlying

inflammation and immune activation despite virologic control. Substance use

including opioid dependence is common in this population and is associated

with increased morbidity and reduced lifespan. The primary objective of the

present study termed opioid immunity study (OPIS), was to investigate the impact

of chronic opioids in PWH.

Methods: The study recruited people with and without HIV who had opioid use

disorder (OUD). Study participants (n=221) were categorized into four groups:

HIV+OP+, n=34; HIV-OP+, n=66; HIV+OP-, n=55 and HIV-OP-, n=62 as

controls. PWH were virally suppressed on ART and those with OUD were

followed in a syringe exchange program with confirmation of OP use by urine

drug screening. A composite cytokine score was developed for 20 plasma

cytokines that are linked to inflammation. Cellular markers of immune

activation (IA), exhaustion, and senescence were determined in CD4 and CD8

T cells. Regression models were constructed to examine the relationships of HIV

status and opioid use, controlling for other confounding factors.

Results: HIV+OP+ participants exhibited highest inflammatory cytokines and

cellular IA, followed by HIV-OP+ for inflammation and HIV+OP- for IA.

Inflammation was found to be driven more by opioid use than HIV positivity

while IA was driven more by HIV than opioid use. In people with OUD, expression

of CD38 on CD28-CD57+ senescent-like T cells was elevated and correlated

positively with inflammation.

Discussion: Given the association of inflammation with a multitude of adverse

health outcomes, our findings merit further investigations to understand the

mechanistic pathways involved.
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1 Introduction

Opioid misuse is a worldwide problem with approximately 3

million people in the US and 16 million people globally living with

opioid use disorder (OUD). One third of people with OUD administer

drugs via injection, a risk factor for infectious complications (1, 2) and

risk for HIV transmission by sharing needles or unprotected sex (3–5).

About one in ten people with HIV (PWH), suffer from OUD (2). It is

well documented that despite virologic control with antiretroviral

therapy (ART), PWH can manifest increased cellular immune

activation (IA) and excessive inflammation (6) that are considered

to be a leading cause of accelerated aging, co-morbidities, and

functional immune abnormalities (7, 8). Substance use and addictive

disorders are also associated with systemic inflammation that could

impact the onset and progression of various diseases (9, 10). In animal

models, chronic opioid use increases inflammation and immune

activation (11). Whether chronic opioid use exacerbates systemic IA

and inflammation in PWH is not known. To delineate if chronic OP

use impacts the immune system in PWH we conducted a study

termed OPIS (OPioid Immunity Study) for which we enrolled PWH

with OUD. To understand the independent effects of OUD and HIV,

we included people without HIV (PWoH) with OUD, as well as PWH

without OUD, and PWoHwithout OUD. Independent and interactive

effects of opioids and HIV as well as immune senescence and immune

exhaustion were examined. This understanding is important for

developing therapeutic strategies because of the known deleterious

effects of inflammation and immune activation on health outcomes.

PWH and PWoH with OUD were recruited from the syringe

services program (SSP) of the Infectious Diseases Elimination Act

(IDEA) clinic in Miami that provides general health and HIV care

including ART to people with history of OUD as well as syringe

exchange and follow up for people undergoing medication-assisted

treatment (12). Comparison groups without OUD consisting of

PWH and PWoH were recruited from the Infectious Diseases

clinics and community outreach. Opioids were the focus of the

study, but we took into consideration concomitant use of other

drugs including stimulants and applied rigorous statistical methods

to control for confounding factors. The study revealed that polydrug

use was frequent in this population. The overlapping and distinctive

characteristics of HIV and OUD as well as impact of other drugs on

the immune system in the study population were ascertained.
2 Materials and methods

2.1 Study participants

Study participants (n = 221, Table 1) were recruited (Supplementary

Figure 1A) based on HIV-1 status (HIV+/-) and OUD status (OP+/-)

into four study groups: HIV+OP+; HIV-OP+; HIV+OP-; and HIV-

OP-. Participants ranged from 24-68 years of age. The inclusion criteria

required PWH to have been on ART for 6months or more with plasma

HIV RNA <200 copies/mL. OP+ participants were required to have

been using opioids for 90 days or more and to test positive for opioids

on urine drug testing at study visits. Urine samples were collected in 14-

drug urine drug screen (UDS) cups to ascertain concomitant use of
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other drugs (listed in Table 2, 12panelnow.com). Clinical data, nature of

opioid drugs, other drugs and responses to questionnaires were collected

in a REDCap Database (13). Since recruitment of HIV+OP+ was most

arduous, we used this group to drive demographic decisions for

recruitment of matching people in other groups as closely as possible.

The study period was from September 2020 - May 2022. We used

rigorous statistical models throughout the study to control the

confounding effect of the demographic differences between the study

groups on study outcomes. Peripheral venous blood was collected in

heparin tubes, processed for plasma and peripheral blood mononuclear

cells (PBMCs) as previously described (14), and cryopreserved until

used (Supplementary Figure 1B). Additional samples were collected

subsequently for other study objectives which are not included in

this manuscript.
2.2 Multiparameter flow cytometry

Cryopreserved PBMCs were thawed and rested for 3 hours and

analyzed by flow cytometry as previously described (8, 15). Briefly,

cells were washed, resuspended in phosphate-buffered saline (PBS)

with Fc receptor blocking solution (FcX), and stained using a

multicolor flow panel (reagents listed in Supplementary Table 1).

After fixation in 1% paraformaldehyde in PBS, samples were

acquired on a spectral flow cytometer (Cytek Aurora) and data

was analyzed by FlowJo software (v10.8.1). CD4 and CD8 T cells

were gated from the Live (Aqua-) CD45+CD19-CD3+ cells and

analyzed for phenotypic markers of immune activation (CD38,

HLADR), immune checkpoints (CTLA-4, TIGIT, PD-1, LAG-3,

TIM-3), and terminal differentiation and cellular senescence (CD28,

CD57). Absolute CD4 and CD8 counts for white blood cells (WBC)

were determined on a hematology analyzer (Sysmex XP-300).
2.3 Plasma biomarker analysis

Twenty biomarkers consisting of markers of inflammation

(sTNFR-I, sTNFR-II, sCD25, TNFa, IL-6, IL-8, IL-17, IL-22, IL-

1a, IL-1b, hsCRP, and D-dimer), cell adhesion (ICAM-1, VCAM-

1), monocyte activation and microbial translocation (sCD14,

sCD163 LBP), monocyte chemotaxis (CCL2), and anti-

inflammation (IL-10), were analyzed using flow-based

multiplexed bead Luminex assays as published previously (6, 16).

Intestinal fatty acid binding protein (iFABP) levels were determined

by ELISA (Bio-techne). For each participant (i), the expression of

each plasma biomarker (j) was z-score normalized across the 20

biomarkers: zij= (xij – �X)/S, and a composite cytokine score was

created by taking the average of 20 normalized biomarkers.
2.4 Statistical analysis

Participant demographics (Table 1) and clinical profiles (Table 2)

were compared between four groups (Chi-Square or Kruskal-Wallis) or

two groups (Fisher's Exact or Mann-Whitney U Tests) (v9.2.0

GraphPad Prism Inc). Phenotypic and plasma biomarkers were
frontiersin.org
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compared between groups with non-parametric Kruskal-Wallis Tests

and corrected for multiple comparisons by controlling the FDR using

the Benjamini and Hochberg approach (v9.2.0 GraphPad Prism Inc).

Principal component analysis (PCA) on normalized plasma biomarker

values (NIPALS), linear regression (base R), coefficient comparison for

linear models (lavaan), negative binomial regression (MASS), and

regression plots (ggeffects) were performed using R and RStudio

(v.4.2.1/v.4.2.2; v.2022.07.2).

Regression models were constructed to (1) examine the

relationships of HIV status and opioid use on the outcome

variables, (2) control for other variables that may be important

and may also differ among 4 groups in sex at birth, race, ethnicity,

and age, and (3) investigate other substance use in addition to

opioid use. Barbiturates could only be included in the cytokine

model due to the small number of barbiturate users (n=1). In initial

models, we included HIV status, opioid use (fentanyl,
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buprenorphine, morphine, methadone, oxycodone and tramadol),

and stimulant use (cocaine, amphetamine, methamphetamine and

MDMA), demographic covariates, other substance use covariates,

and three two-way interactions (HIV status X opioid use, HIV

status X stimulant use, opioid use X stimulant use), followed by

models with pairs of these two-way interactions, followed by models

with single interactions. If, at the end of this process, no interactions

were significant, they were removed from the final model. If some

interactions were significant, they were kept in the final models.

For analyses using linear models, in cases where coefficients for

both HIV status and opioid use were significant, a near-duplicate

model was conducted, but one in which the HIV status and opioid

use coefficients were constrained to be equal. This constrained

model was compared with the unconstrained model using an

anova Chi-square difference test and the results of this test are

reported. Furthermore, to determine if we could combine
TABLE 1 Demographic characteristics of the study groups.

Population HIV+OP+ HIV-OP+ HIV+OP- HIV-OP- Comparison among groups

N = 221 34 65 59 63

Median Age in Years (Range) 46 (28-63) 39 (24-63) 52 (32-68) 47 (24-60) p < 0.001a

Gender – n (%) p < 0.05b,†

Female 13 (38%) 15 (24%) 27 (46%) 30 (47%)

Male 21 (62%) 49 (75%) 29 (49%) 34 (53%)

Transgender Woman 0 (0%) 0 (0%) 3 (5%) 0 (0%)

Race – n (%) p < 0.0001b,†

White or Caucasian 25 (74%) 50 (77%) 21 (36%) 19 (30%)

Black or African-American 5 (15%) 12 (18%) 36 (61%) 40 (63%)

Native American 1 (3%) 0 (0%) 0 (0%) 0 (0%)

Native Hawaiian 1 (3%) 1 (2%) 0 (0%) 0 (0%)

Other Race 2 (6%) 2 (3%) 2 (3%) 4 (6%)

Ethnicity – n (%) NSb

Hispanic or Latino 14 (41%) 18 (29%) 18 (31%) 23 (35%)

Non-Hispanic or Latino 19 (56%) 45 (69%) 41 (69%) 41 (65%)

Unknown Ethnicity 1 (3%) 1 (2%) 0 (0%) 0 (0%)

HCV antibody seropositivity – n (%) 24 (71%) 38 (58%) 8 (14%) 3 (5%) p < 0.0001b,†

HIV status – median (IQR)

Baseline CD4 T-cell count (cells/uL) 694 (566-888) 831 (652-1031) 545 (369-913) 1008 (726-1351) p < 0.001a

Baseline CD4/CD8 Ratio 0.70 (0.55-1.23) 1.66 (1.34-2.52) 0.71 (0.46-1.06) 2.16 (1.53-3.44) p < 0.001a

Baseline HIV Viral Loads, RNA copies/mL* 20 (20-70) NA 20 (20-90) NA NSc

Duration of HIV infection, months 48 (24-87) NA 216 (126-324) NA p < 0.0001c

Duration of ART, months 36 (24-48) NA 180 (120-264) NA p < 0.0001c
*20 = limit of detection;
NA = Not Applicable;
NS = Not Significant;
aKruskal-Wallis;
bChi-Square;
cMann-Whitney Test;
† = Number of participants removed from demographic comparisons due to small cell size (Gender (n=3), Race (n=13), HCV (n=1)).
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buprenorphine-only opioid use with non-buprenorphine opioid use

into a single predictor of opioid use, we performed preliminary

regression analysis with separate predictors for buprenorphine use

and non-buprenorphine opioid use, followed by comparison of

coefficients for non-buprenorphine with buprenorphine in

constrained and unconstrained models. Because the coefficients

were not significantly different (Chi-square=0.208, df=1, p=0.648),

further regression models were run with all opioid use combined.

Because exposure to Hepatitis C (HCV) might be expected to differ

between OP+ and OP- participants, we conducted a set of

preliminary regression models with HCV antibody status added

to models (we did not have HCV viral load). HCV was not a

significant predictor for any of our outcomes and so was dropped

from the final models. Finally, to examine whether duration of HIV

infection (months) and duration on ART (months), both recorded

from self-report, might explain greater variation in our outcomes

than HIV status alone, separate and combined models with these

predictors were run. Only the outcome of cytokine score showed a

relationship with duration of HIV infection or duration on ART.

However, the model with HIV status, duration of HIV infection,

and duration on ART was not significantly better than the model

with HIV status alone (F(195, 193)=2.50, p=0.08); since both duration

of HIV infection and duration on ART might have some recall bias

and likely greater measurement error than confirmed HIV status,

and the model was not significantly better, HIV status was used in

final regression models.
Frontiers in Immunology 04
3 Results

3.1 Study population

Characteristics of participants are shown in Table 1. Groups

differed in some demographic characteristics such as age, race, sex,

and HCV seropositivity (Supplementary Table 2) but these

demographic characteristics were included in regression models

for statistical control. As shown in Table 1, PWH were virally

suppressed and had >500 CD4 T cell counts. The median duration

of HIV infection and ART was less in the HIV+OP+ group than in

the HIV+OP- group (48 vs. 216 months, p<0.0001; 36 vs. 180

months, p<0.0001, respectively). Although 95% of the participants

with OUD had a known history of injection drug use (IDU), 65%

self-reported active IDU at the time of their enrollment into the

study (Table 2).

Urine drug screen (UDS) results are shown in Table 2.

Among opioid users, Fentanyl was the most common opioid in

UDS, followed by Buprenorphine, alone (27% of OP+) or in

combination with other opioids (3% of OP+). Among

other drugs, cocaine was most frequent with moderate to high

use in all four groups; it was significantly different overall

across the 4 groups (p<0.0001, Table 2). Cocaine use was most

frequent in people with OUD, while alcohol intake was more

frequent in the HIV-OP- group compared to OP+ groups

(Supplementary Table 2).
TABLE 2 Participant clinical profile, baseline urine drug screen (UDS).

Population HIV+OP+ HIV-OP+ HIV+OP- HIV-OP- Comparison among groups

N = 221 34 65 59 63

# of Substances –
Median (IQR)

2 (2-3) 3 (2-3) 1 (0-2) 1 (0-2) p < 0.001a

Reported Injection Drug Use – n (%) 17 (50%) 47 (72%) 1 (2%) 0 (0%) p < 0.0001b

Opioid – n (%)

Fentanyl 17 (50%) 54 (83%) 0 (0%) 0 (0%) p < 0.001c

Buprenorphine 16 (47%) 14 (22%) 0 (0%) 0 (0%) p < 0.05c

Morphine* 4 (12%) 11 (17%) 0 (0%) 0 (0%) NSc

Methadone 1 (3%) 1 (2%) 0 (0%) 0 (0%) NSc

Oxycodone 1 (3%) 1 (2%) 0 (0%) 0 (0%) NSc

Tramadol 0 (0%) 1 (2%) 0 (0%) 0 (0%) NSc

Stimulant – n (%)

Cocaine 21 (62%) 46 (71%) 27 (46%) 19 (30%) p < 0.0001b

Amphetamine 3 (9%) 4 (6%) 4 (7%) 2 (3%) NA

Methamphetamine 2 (6%) 6 (9%) 3 (5%) 3 (5%) NA

MDMA** 0 (0%) 6 (9%) 0 (0%) 1 (2%) NA

Other Substances – n (%)

(Continued)
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3.2 Systemic inflammation is associated
with opioid use regardless of HIV status

Expression of 20 plasma biomarkers constituted predominantly

of inflammatory cytokines was higher among the OP+ groups (HIV

+OP+ and HIV-OP+, p<0.0001) indicating greater inflammation

among people with OUD (Figure 1A). In an unsupervised PCA, the

first principal component (PC1) explained 29.9% of the variance
Frontiers in Immunology 05
and better differentiated the 4 groups of participants than the

second principal component (PC2), (Figure 1B). The HIV-OP-

group had the lowest median PC1 (-0.045) while the HIV+OP+

group had the highest median PC1 (0.043). The top five

components (loadings) in PC1 included sTNFR-II, sCD25,

sTNFR-I, TNFa, and sCD14, which are soluble biomarkers of

inflammation (Figure 1C). In group comparisons, the two opioid

use groups had significantly greater expression of these same five
TABLE 2 Continued

Population HIV+OP+ HIV-OP+ HIV+OP- HIV-OP- Comparison among groups

Benzodiazepines 9 (29%) 8 (12%) 2 (3%) 6 (10%) p < 0.01b

Cannabinoid 8 (24%) 17 (26%) 14 (24%) 25 (40%) NSb

Ethyl-Glucuronide 4 (12%) 11 (18%) 12 (20%) 23 (35%) p < 0.05b

Barbiturates 0 (0%) 1 (2%) 0 (0%) 0 (0%) NA
*Also a metabolite of Heroin, **MDMA = Ecstasy,
aKruskal-Wallis;
bChi-Square;
cFisher’s Exact Test (OP+ only);
NS = Not Significant;
NA = Not Applicable due to small cell size.
A B

D

E F

C

FIGURE 1

Systemic inflammation is associated with opioid use regardless of HIV status (A) Normalized cytokine heatmap by group (columns) and 20 cytokines
(rows). Mean of normalized cytokines by participant group are displayed. (B) PCA of normalized cytokine values, by participant group, using non-
linear iterative partial least squares (NIPALS). PC1 explains 29.9% of total variance. PC2 explains 9.9% of total variance. (C) Top variable loadings in
PC1. (D) Concentration values of the top 5 cytokines by participant group. Limit of detection is indicated with a horizontal dotted line.
Nonparametric Kruskal Wallis test was corrected for multiple comparisons by controlling the FDR (original FDR method of Benjamini and Hochberg).
Adjusted p-values: ****p<0.0001, ***p<0.001, **p<0.01, *p<0.05. (E) Violin plots of cytokine scores, by participant group. Red represents HIV+OP+
(n=34), Blue represents HIV-OP+ (n=65), Purple represents HIV+OP- (n=59), and Green represents HIV-OP- (n=62). Individual plots are plotted with
mean and SEM values. Nonparametric Kruskal Wallis test was corrected for multiple comparisons by controlling the FDR (original FDR method of
Benjamini and Hochberg). Adjusted p-values: ****p<0.0001, ***p<0.001, **p<0.01, *p<0.05. (F) Scatter dot plots with mean and SEM values.
Visualization of adjusted predictions of cytokine score for effects of HIV status and OP use status (while holding other covariates constant) from
linear regression models (see Table 3 for regression details).
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biomarkers (Figure 1D) as well as greater expression of additional

biomarkers such as IL-6, IL-10, CCL2, IL1-b, and IL-8 in both PWH

and PWoH (Supplementary Figure 4). Additionally, the two groups

with opioid use had greater expression of IL-1a in PWH and

VCAM-1, sCD163, IL-17a, hsCRP, D-dimer, LBP, and ICAM-1

in PWoH (Supplementary Figure 4).

Group comparisons based on a composite cytokine score showed

that the median cytokine score was highest among the OP+ groups

(HIV+OP+, 0.38 ± 0.55; HIV-OP+, 0.21 ± 0.58), compared to the OP-

groups (HIV+OP-, -0.11 ± 0.31; HIV-OP-, -0.31 ± 0.29) (Figure 1E).

The HIV+OP+ group had the highest cytokine score, which was

greater than that in the HIV+OP- (p<0.001) and HIV-OP-

(p<0.001) groups. To understand whether cytokine score is affected

more by HIV infection, opioid use, or other factors (including other

substance use), a linear regression model was conducted (Table 3).

Higher cytokine score was associated both with opioid use (OP+)

(p<0.001) and HIV+ status (p<0.01) (Table 3 and Figure 1F). In this

model, the opioid effect was significantly larger than the HIV effect

associated with greater expression of inflammatory cytokines

(p<0.0007, Chi-squared difference test, X2 = 11.77, df=1).

Demographic characteristics and other substance use were not found

to be significantly associated with cytokine score (Table 3). There were

no significant interactions between HIV infection and opioid use, HIV

infection and stimulant use, or opioid use and stimulant use (and these

interactions were dropped from the final model, as explained in the

methods). Lacking a significant interaction suggests additive
Frontiers in Immunology 06
independent effects of HIV infection and opioid use in their

association with higher expression of inflammatory cytokines.
3.3 Immune activation (HLADR+CD38+)
and PD1 expression on CD8 T cells are
associated with HIV and opioid use

T cell IA was analyzed based on the dual expression of HLA-DR

and CD38 on CD4 and CD8 T cells (Supplemental Figure 2). Group

comparisons based on CD8 T cell IA showed significant differences

among groups (Figure 2A). Compared to the HIV-OP- group (2.7%

± 3.0), CD8 T cell IA was significantly greater in all other groups;

the HIV+OP+ group had the highest expression (10.6% ± 8.9,

p<0.0001), followed by the HIV+OP- group (8.9% ± 11, p<0.001)

and HIV-OP+ group (5.6% ± 6.9, p<0.05). CD8 T cell IA was

greater in the HIV+OP+ group compared to the HIV-OP+ group

(p<0.05). Expression of PD1, considered to be a marker of immune

activation, was highest in CD8 T cells of the HIV+OP+ group

(19.2% ± 8.3) as compared to the HIV+OP- (13.8% ± 7.7, p<0.05)

and HIV-OP- (10.88% ± 5.9, p<0.001) groups (Figure 2B).

Frequencies of other checkpoint markers of exhaustion (TIM-3,

LAG-3, CTLA-4, TIGIT) were not significantly different among the

groups in CD4 and CD8 T cells (data not shown).

To understand whether IA is affected more by HIV infection,

opioid use, or other substance use, a negative binomial regression

model was conducted, controlling for other factors (including other

types of substance use) (Table 4). HIV+ status, but not opioid use

(OP+), was associated with higher expression of CD8 HLADR

+CD38+ (p<0.001, Table 4 and Figure 2C). Higher PD1 expression

on CD8 T cells was associated with both HIV+ status (p<0.05) and

opioid use (OP+) (p<0.001) (Table 4 and Figure 2D). There were no

significant interactions between HIV infection and opioid use, HIV

infection and stimulant use, or opioid use and stimulant use in any

of these models (and these interactions were dropped from the final

model, as explained in the methods).

In group comparisons, IA and PD1 expression in CD4 T cells

were not different between the 4 groups (Supplemental Figure 3A, B).

However, negative binomial regression models, controlling for other

factors, indicated that higher expression levels of CD4 IA (HLADR

+CD38+) and PD1 were associated with HIV+ status (p<0.05), but

not opioid use (OP+) (Table 4 and Supplementary Figures 3C, D).

Stimulant use was associated with increased IA (HLADR+CD38+)

and PD1 expression in CD4 T cells and IA HLADR+CD38+) in CD8

T cells compared to non-stimulant use (Table 4). There were no

significant interactions between HIV infection and opioid use, HIV

infection and stimulant use, or opioid use and stimulant use in any of

these models (and these interactions were dropped from the final

model, as explained in the methods).
3.4 CD38 expressing terminally
differentiated senescent-like T cells are
associated with opioid use

Since chronic HIV infection is associated with premature

cellular senescence (17), we examined the frequencies of
TABLE 3 Linear regression results: predictors of cytokine score (n=220).

Variable Cytokine Score
Coefficient (SE)a

Intercept -0.14 (0.18)

Year -0.27 (0.06) ***

Gender (Male) -0.09 (0.06)

Ethnicity (Hispanic) 0.03 (0.08)

Race (African American) -0.12 (0.08)

Race (Other) -0.13 (0.14)

Age 0.001 (0.003)

HIV Infection 0.18 (0.08) **

Opioid Use 0.44 (0.08) ***

Stimulant Use 0.05 (0.07)

Cannabinoid Use -0.04 (0.07)

Alcohol Use 0.04 (0.08)

Benzodiazepine Use -0.11 (0.09)

Barbiturate Use -0.05 (0.43)

Smoking 0.07 (0.07)

R Squared 0.32

F-statistic 8.315 on 14 and 199

P-value <5.8e-14***
ap-values: ***p<0.001, **p<0.01.
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TABLE 4 Negative binomial regression results: predictors of immune activation and senescence in CD4 and CD8 T cells.

Variable

Immune Activationa

Coefficient (SE) b
Immune Senescencea

Coefficient (SE) b

CD4
HLADR
+CD38+

CD8
HLADR
+CD38+

CD4
PD1+

CD8
PD1+

CD4
CD28-
CD57+

CD8
CD28-
CD57+

CD4
CD28-CD57
+CD38+

CD8
CD28-CD57
+CD38+

Intercept -5.17 (0.61) *** -4.00 (0.57) ***
-2.42 (0.30)

***
-3.01 (0.32)

***
-5.11 (0.84)

***
-1.76 (0.33)

***
-2.30 (0.71) ** -2.96 (0.50) ***

Gender (Male) -0.02 (0.19) -0.04 (0.18) 0.03 (0.09) 0.07 (0.10) 0.18 (0.27) 0.05 (0.11) 0.25 (0.23) -0.10 (0.16)

Ethnicity (Hispanic) 0.18 (0.21) 0.11 (0.20) -0.16 (0.11) -0.09 (0.12) 0.07 (0.31) 0.01 (0.12) -0.13 (0.26) -0.01 (0.18)

Race (African
American)

0.37 (0.23) 0.16 (0.22) 0.18 (0.12) -0.01 (0.13) 0.74 (0.33) * 0.21 (0.13) -0.18 (0.28) 0.18 (0.20)

Race (Other) 0.31 (0.36) 0.03 (0.37)
0.53 (0.20)

**
-0.04 (0.22) 1.37 (0.54) * 0.27 (0.23) -0.08 (0.50) -0.08 (0.35)

Age 0.01 (0.01) -0.01 (0.01)
0.01 (0.01)

**
0.01 (0.01)

*
0.04 (0.01) * 0.01 (0.01) -0.01 (0.01) 0.01 (0.01)

HIV Infection 0.41 (0.18) * 0.90 (0.17) ***
0.18 (0.09)

*
0.23 (0.10)

*
0.16 (0.26) 0.12 (0.10) 0.46 (0.22) * 0.50 (0.15) **

Opioid Use 0.19 (0.22) 0.25 (0.21) 0.06 (0.11)
0.46 (0.12)

***
-0.03 (0.32) 0.15 (0.13) 0.89 (0.27) ** 1.22 (0.20) ***

Stimulant Use 0.52 (0.20) ** 0.90 (0.19) ***
0.24 (0.10)

*
0.08 (0.11)

0.77 (0.28)
**

0.17 (0.11) 0.06 (0.24) 0.48 (0.17) **

Cannabinoid Use -0.13 (0.19) -0.12 (0.18) -0.08 (0.10) -0.05 (0.10) -0.21 (0.27) 0.05 (0.11) -0.12 (0.23) -0.29 (0.16)

(Continued)
F
rontiers in Immunolog
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FIGURE 2

Immune activation (HLADR+CD38+) and PD1 expression on CD8 T cells are increased in populations with HIV and opioid use. (A, B) Scatter dot
plots with bars, mean and SEM values for frequencies of HLADR+CD38+ (A) and PD1+ (B) in CD8 T cells. Red represents HIV+OP+ (n=25), Blue
represents HIV-P+ (n=29), Purple represents HIV+OP- (n=25), and Green represents HIV-OP- (n=26). Nonparametric Kruskal Wallis test was
corrected for multiple comparisons by controlling the FDR (original FDR method of Benjamini and Hochberg). Adjusted p-values: ****p<0.0001,
***p<0.001, *p<0.05. (C, D) Scatter dot plots with mean and SEM values. Visualization of adjusted predictions for effects of HIV status and OP use
status (while holding other covariates constant) from negative binomial regression models used to predict HLADR+CD38+ (C) and PD1 (D) in CD8 T
cells (see Table 4 for regression details).
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senescent-like phenotype (CD28-CD57+) and CD38 (18) on T cells.

Although CD28-CD57+ subsets in CD4 and CD8 T cells did not

differ between groups (data not shown), CD38 expression on CD28-

CD57+ CD4 T cells was higher in both OP+ groups (p<0.001)

compared to HIV-OP- (Figure 3A). On CD8 T cells, CD38

expression on CD28-CD57+ was higher in both OP+ groups

(p<0.0001) and HIV+OP- (p<0.05) compared to HIV-OP- as well

as HIV+OP+ (p<0.001) compared to HIV+OP-. In negative

binomial regression models, controlling for other factors, both

HIV+ status and opioid use (OP+) were associated with

significantly greater CD38+ expression on CD28-CD57+ cells in

CD4 (p<0.05 and p<0.01, respectively, Table 4 and Figure 3B) as

well as CD8 T cells (p<0.01 and p<0.001, respectively, Table 4 and

Figure 3C). There were no significant interactions between HIV

infection and opioid use, HIV infection and stimulant use, or opioid

use and stimulant use in CD38 expression on CD28-CD57+ T cells

(and these interactions were dropped from the final model, as

explained in the methods). In both CD4 and CD8 T cell

compartments, the cellular phenotype CD28-CD57+CD38+, was

significantly positively associated with cytokine score and

biomarkers such as sTNFR-I, sTNFR-II, sCD25, IL-17, TNFa, IL-
6, IL-22, sCD14 (Figure 3D).
4 Discussion

Excessive inflammation and immune activation are known to

be prevalent in PWH and have been linked to higher risk for

comorbidities (19, 20). Systemic inflammation is also known to be

associated with substance use and addictive disorders that could

impact the progression of diseases (9). Our research team was

uniquely positioned to enroll people with and without OUD among

both PWH and PWoH in this study. Furthermore, we used rigorous

statistical methods, taking into consideration demographic

differences, polydrug use and strict confirmation of opioid use,

for our immunological studies. We have shown that opioid use was

independently associated with higher inflammation while only HIV

status independently contributed to cellular immune activation.
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Our OUD cohort specifically mirrors the trend of synthetic opioid

usage with a majority of those using opioids testing positive for

potent fentanyl and analogues in the study (whether intentionally or

unintentionally). This study is timely in its unique examination of

the immune response to fentanyl use, the third wave of the overdose

crisis, as well as fentanyl and stimulant co-use, the deadly fourth

wave (21–24). The first two waves consisted of prescription opioids

and heroin, respectively. It is possible that the use of fentanyl is a

reflection of the nature of the current drug supply available on the

streets. Stimulant use has previously been shown to be associated

with significant increase in T cell immune activation (25). While

controlling for HIV infection and opioid use, stimulant use was

associated with greater immune activation. Our models will need to

control for new entrants into the opioid epidemic such as Xylazine

in the future (26).

Excessive T cell immune activation in virally suppressed PWH

and its role in HIV disease progression are well known in the

literature (6, 20, 27). One study reported that PWH with history of

IDU and OUD, who were on oral methadone treatment, had greater

levels of inflammation and immune activation than PWH with no

history of OUD (11, 28). Our study participants with OUD involved

predominantly IDU with self-reported consistent opioid use for >90

days until the day of study enrollment and a positive opioid test in

the UDS preceding the blood draw which was done on the

enrollment day. In our cohort, higher CD8 T cell immune

activation in people with OUD was only found to have a

significant HIV effect (except for CD8 PD1+). While in vivo

activation of CD4+ T cells is more dependent on the specificities

for persistence of antigens, CD8+ T cells can be activated by

inflammatory cytokines, independent of Ag specificity (29–31).

The apparent difference seen with CD4 and CD8 immune

activation in our study might be explained by the differential

responsiveness of CD4+ and CD8+ T cells toward inflammatory

cytokines. Higher CD8 T cell activation found in HIV+OP+ could

reflect their response to inflammation.

Using the UDS, we also noted the high frequency of polydrug

use, particularly cocaine among stimulant use, among participants

in all 4 groups. We found that stimulant use (unlike opioid use,
TABLE 4 Continued

Variable

Immune Activationa

Coefficient (SE) b
Immune Senescencea

Coefficient (SE) b

CD4
HLADR
+CD38+

CD8
HLADR
+CD38+

CD4
PD1+

CD8
PD1+

CD4
CD28-
CD57+

CD8
CD28-
CD57+

CD4
CD28-CD57
+CD38+

CD8
CD28-CD57
+CD38+

Alcohol Use -0.22 (0.22) 0.14 (0.20) 0.01 (0.11) 0.18 (0.12) -0.39 (0.31) -0.10 (0.12) 0.10 (0.26) 0.17 (0.19)

Benzodiazepine Use -0.40 (0.30) -0.15 (0.26) -0.14 (0.14) -0.14 (0.15) -0.29 (0.41) 0.01 (0.16) -0.42 (0.34) 0.08 (0.24)

Smoking -0.12 (0.25) 0.31 (0.25)
-0.31 (0.12)

*
-0.002
(0.14)

-1.07 (0.34)
**

-0.25 (0.14) -0.20 (0.30) -0.18 (0.21)
an=103 for each regression,
bp-values: ***p<0.001, **p<0.01, *p<0.05.
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except for CD8 PD1+) was independently associated with an

increase in CD4 and CD8 T cell- immune activation. These

observations suggest that stimulants and opioids may have

different interactions with immune cells. Additional studies are

necessary to fully understand the downstream effects of polydrug

use on immunity, to better design treatments for people with OUD.

Our results aligned with previous reports examining the state of

inflammation in virally suppressed PWH with IDU and OUD (9,

28, 32, 33), showing increased expression of IL-6 (opioid use) (32),

IL-8, sTNFR-II (methadone use) (28), and LBP, hsCRP, sTNFR-I,

sTNFR-II, sCD14, sCD163 (heroin use) (28, 32, 33). In our study,

plasma biomarkers were selected based on their reported

association with inflammation (sTNFR-II, sTNFR-I, sCD25,

TNFa, IL-6, IL-8, IL-1a, IL-1b, IL17A (Th17), IL-22 (Th17)) (34),

cardiovascular disease (ICAM-I, VCAM-I, hsCRP), co-morbidities

(IL-6, VCAM-I, ICAM-I, sTNFR-II, and sTNFR-I), monocyte

activation and microbial translocation (sCD14, sCD163, iFABP,

D-dimer, LBP) (32), HIV disease progression (MCP1/CCL2,

sCD14) and mortality (sCD14) in the context of HIV. We probed

new biomarkers that have not been reported (sCD25, VCAM-I,

ICAM-I, CCL2) that provide additional insight into the systemic

inflammation profile with fentanyl use and HIV infection.
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Based on regression modeling, an opioid effect was greater than

an HIV effect on inflammation. The route of injection drug use can

also impact systemic inflammation. Compared to oral use, the act of

drug injection and penetration of the epidermal barrier may

constitute exposures that can cause infections, exacerbating

inflammation (35). Our results show that HIV infection and

chronic opioid use are each independently associated with systemic

inflammation but chronic opioid use is further associated with

systemic inflammation among PWH, with HIV+OP+ having the

highest systemic inflammation. Further investigation is warranted to

find the potential link between inflammation and their clinical

significance among people who use fentanyl.

In PWoH, opioid use was associated with higher expression of

plasma biomarkers VCAM-1, sCD163, IL-17a, hsCRP, D-dimer,

LBP, and ICAM-1. Studies of OUD, without HIV infection, have

shown increased plasma inflammatory cytokines levels (TNF-a,
CRP, IL-8, IL-6, and BDNF) (36). Our extensive cytokine panel has

broadened what is currently known in the field. Although we saw a

higher expression of the anti-inflammatory molecule IL-10 with

opioid use, this cytokine may reflect a response to inflammation

through negative feedback regulation that affects the control and

resolution of inflammation.
A B

D

C

FIGURE 3

CD38 expressing terminally differentiated senescent-like T cells are highly expressed in populations with opioid use. (A) Violin plots by participant
group with mean and SEM confidence intervals for frequencies of CD28-CD57+CD38+ in CD4 and CD8 T cells. Nonparametric Kruskal Wallis test
was corrected for multiple comparisons by controlling the FDR (original FDR method of Benjamini and Hochberg). Red represents HIV+OP+ (n=25),
Blue represents HIV-OP+ (n=29), Purple represents HIV+OP- (n=25), Green represents HIV-OP- (n=26). Adjusted p-values: ****p<0.0001,
***p<0.001, **p<0.01, *p<0.05. (B, C) Scatter dot plots with mean and SEM values. Visualization of adjusted predictions for effects of HIV status and
OP use status (while holding other covariates constant) from negative binomial regression models used to predict CD28-CD57+CD38+ in CD4 (B)
and CD8 (C) in T cells (see Table 4 for regression details). (D) Spearman correlation matrix of 20 individual normalized cytokines and normalized
cytokine score with CD28-CD57+CD38+ expression on CD4 and CD8 T cells. Adjusted p-values: ****p<0.0001, ***p<0.001, **p<0.01, *p<0.05,
indicate significant correlation between two variables in the box.
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Chronic HIV infection is associated with premature cellular

senescence, especially in the context of aging as shown by

decreased cell density, increased levels of p16, and decreased

telomere length (37). Concurrent substance use disorder in PWH

may contribute to accelerated aging by increasing persistent

inflammation (37). In the context of OUD and HIV, our study

specifically examined cellular phenotypic features and plasma

biomarkers of immune senescence. CD38 is an immunomodulatory

molecule, expressed on multiple immune cell types, and is involved

with different functions such as inflammation, cellular migration,

phagocytosis, antigen presentation, and NAD+ metabolism during

inflammation (38). Increased expression of CD38 is associated with

aging and senescence, resulting in age-related NAD decline and

mitochondrial dysfunction (39). There is also an association

between inflammation and CD38 in association with NAD decline

(40). In regression modeling, we demonstrated no significant

interactions between HIV infection and opioid use, suggesting

additive independent effects of HIV and opioid use associated with

the expression of CD38 on senescent-like T cells. Overall, CD38

expression on terminally differentiated senescent-like T cells was

positively associated with composite cytokine score and individual

biomarkers such as sTNFR-I, sTNFR-II, sCD25, IL-17, TNFa, IL-6,
IL-22, and sCD14, suggesting that the accumulation of senescent cells

with secretion associated senescent phenotype (SASP) (41) could be a

major cause of ongoing inflammation.

A limitation of our study was the lower number of recruited

PWH with OUD (HIV+OP+) in comparison to the other groups. At

the Syringe Services Program, about 42% of the participants are

victims of structural inequities and social determinants of health such

as homelessness (42), leading to unique challenges to recruitment that

have been previously reported (43). Specifically, at an individual level,

challenges included language barriers, transportation issues, and

profound mistrust of medical research and vaccines (43–45). It was

also challenging to recruit virally suppressed PWH on ART which

was an inclusion criterion and contributed to the lower numbers and

shorter duration of ART use in HIV+OP+ versus HIV+ OP-

participants. However, controlling for ongoing viremia is also a

strength of our study as it dissociates the effects of replicating virus

on immune measures. In our cohort, we investigated for presence of

antibodies against HCV, a common viral infection associated with a

history of injection drug use, and previous studies have linked HCV

viremic PWH and IDU with elevated levels of immune activation

(46). In regression modeling, HCV antibody status did not have a

significant effect on inflammation, immune activation, and

senescence in our cohort (data not shown) but we did not have

data on active HCV infection.

Another limitation is the potential heterogeneity introduced by

concurrent substance use, e.g. stimulants (22) in a study aiming to

investigate effect of opioids. This is, however, the reality of

substance use, and including data of additional substances in

people who were predominantly opioid users adds to the clinical

usefulness of our findings (21–24). To mitigate the effects of this

heterogeneity, we carefully measured the use of other substances

and statistically controlled for each additional substance used. This

approach enabled us to show the immune effects of stimulant use
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(the most prevalent other substance use) independent of opioid use.

Despite noted limitations, our stringent statistical approaches

were able to identify the link between inflammation, immune

activation, and chronic opioid use in virally suppressed PWH

which has relevance to HIV disease progression and non-AIDS

comorbidities as well as to future interventions toward permanent

HIV remission. Our study warrants a better mechanistic

understanding of how the syndemic of HIV and OUD and OUD

by itself alters immune status to provide insight for developing new

approaches to improve the health outcomes in this population.
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SUPPLEMENTARY FIGURE 1

Opioid Immunity Study (OPIS) Study Design. (A) Four groups are recruited based

on HIV status and opioid use status. Urine samples are collected to test opioid
and polydrug use. Red represents HIV+OP+, Blue represents HIV-OP+, Purple

represents HIV+OP-, andGreen represents HIV-OP-. Participants of all genders
are recruited into the study. (B) Blood samples are collected and processed to

collect plasma and peripheral bloodmononuclear cells to analyze inflammation
and immune activation. Design Figure was created with BioRender.com.

SUPPLEMENTARY FIGURE 2

Gating strategy used to define HLADR+CD38+ within CD4 and CD8 T cells

population of peripheral blood mononuclear cells. Doublets were excluded.
Representative plots from an HIV+OP+ individual.

SUPPLEMENTARY FIGURE 3

Immune activation (HLADR+CD38+) and PD1 expression on CD4 T cells are

increased in populations with HIV and opioid use. (A, B) Scatter dot plots with
bars, mean and SEM values for frequencies of HLADR+CD38+ (A) and PD1+

(B) in CD4 T cells. Red represents Gp1 (HIV+OP+, n=25), Blue represents Gp2
(HIV-OP+, n=29), Purple represents Gp3 (HIV+OP-, n=25), Green represents

Gp4 (HIV-OP-, n=26). Nonparametric Kruskal Wallis test was corrected for
multiple comparisons by controlling the FDR (original FDR method of

Benjamini and Hochberg). (C, D) Scatter dot plots with mean and SEM

values. Visualization of adjusted predictions for effects of HIV status and OP
use (while holding other covariates constant) from negative binomial

regression models for predicted HLADR+CD38+ (C) and PD1 (D) in CD4 T
cells (see Table 4 for regression details).

SUPPLEMENTARY FIGURE 4

Concentrations of inflammatory biomarkers. Scatter dot plots with bars by

group with mean and SEM confidence intervals of 20 non-normalized
cytokines. Red represents HIV+OP+ (n=34), Blue represents HIV-OP+

(n=65), Purple represents HIV+OP- (n=59), and Green represents HIV-OP-
(n=62). Nonparametric Kruskal Wallis test was corrected for multiple

comparisons by controlling the FDR (original FDR method of Benjamini and
Hochberg). Adjusted p-values: ****p<0.0001, ***p<0.001, **p<0.01, *p<0.05.

The limit of detection is indicated with a dotted line.

SUPPLEMENTARY TABLE 1

Panel of surface markers and reagents used in multiparameter
flow cytometry.

SUPPLEMENTARY TABLE 2

Multiple group comparisons of significant variables in cohort demographics

and participant clinical profile, baseline urine drug screen (UDS).
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