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Mycotoxin contamination of corn is a pervasive problem that negatively impacts
human and animal health and causes economic losses to the agricultural
industry worldwide. Historical aflatoxin (AFL) and fumonisin (FUM) mycotoxin
contamination data of corn, daily weather data, satellite data, dynamic geospatial
soil properties, and land usage parameters were modeled to identify factors
significantly contributing to the outbreaks of mycotoxin contamination of corn
grown in Illinois (IL), AFL >20 ppb, and FUM >5 ppm. Two methods were used:
a gradient boosting machine (GBM) and a neural network (NN). Both the GBM
and NN models were dynamic at a state-county geospatial level because they
used GPS coordinates of the counties linked to soil properties. GBM identified
temperature and precipitation prior to sowing as significant influential factors
contributing to high AFL and FUM contamination. AFL-GBM showed that a
higher aflatoxin risk index (ARI) in January, March, July, and November led
to higher AFL contamination in the southern regions of IL. Higher values of
corn-specific normalized di�erence vegetation index (NDVI) in July led to lower
AFL contamination in Central and Southern IL, while higher wheat-specific NDVI
values in February led to higher AFL. FUM-GBM showed that temperature in July
and October, precipitation in February, and NDVI values in March are positively
correlated with high contamination throughout IL. Furthermore, the dynamic
geospatial models showed that soil characteristics were correlated with AFL and
FUM contamination. Greater calcium carbonate content in soil was negatively
correlated with AFL contamination, which was noticeable in Southern IL. Greater
soil moisture and available water-holding capacity throughout Southern IL were
positively correlated with high FUM contamination. The higher clay percentage in
the northeastern areas of IL negatively correlated with FUM contamination. NN
models showed high class-specific performance for 1-year predictive validation
for AFL (73%) and FUM (85%), highlighting their accuracy for annual mycotoxin
prediction. Our models revealed that soil, NDVI, year-specific weekly average
precipitation, and temperature were the most important factors that correlated
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with mycotoxin contamination. These findings serve as reliable guidelines for
future modeling e�orts to identify novel data inputs for the prediction of AFL and
FUM outbreaks and potential farm-level management practices.

KEYWORDS

Aspergillus, Fusarium, machine learning, gradient boosting, neural network, aflatoxin,

fumonisin, soil

1. Introduction

Mycotoxin contamination of food and feed crops, such as

corn, in the United States (US) leads to annual losses estimated

in the range of $418 million to $1.66 billion (Vardon et al.,

2003; Wu, 2006; Mitchell et al., 2016; Johns et al., 2022). These

toxins are produced by distinct fungal species of Aspergillus and

Fusarium (Proctor et al., 2018; Munkvold et al., 2019) and are

well characterized by their severe health impacts on humans,

livestock, and animals (Vardon et al., 2003). In corn, aflatoxins

(AFL) are primarily caused by A. flavus and A. parasiticus,

and fumonisins (FUM) are produced by F. verticillioides and F.

proliferatum (Woloshuk and Shim, 2013). The severity of disease

epidemics and associated mycotoxin contamination is driven by

environmental and agronomical conditions, with the former being

the most relevant. Each fungal species has optimal conditions that

favor inoculum formation and dispersal, disease development, and

mycotoxin production. For example, for A. flavus, the optimal

growth temperatures are 30 to 35◦C (Abdel-Hadi et al., 2012),

while for F. verticillioides, temperature ranges between 20 and

25◦C (Medina et al., 2014) are ideal for growth. These temperature

optima tend to favor the growth of aflatoxin-producing fungal

species such as Aspergillus spp. in southern latitudes (Klich, 2002;

Kerry et al., 2021), whereas these optima favor the growth of

Fusarium spp. in northern latitudes (Zingales et al., 2022). The

geographical distribution of these fungi in the US will most

likely change due to climate change leading to an expansion of

the temporal and latitudinal temperature growth optima of these

mycotoxigenic fungi (Nnadi and Carter, 2021; Yu et al., 2022;

Zingales et al., 2022). Additionally, in general, hot conditions favor

A. flavus conidiation and dispersal and Fusarium infection of corn

(McMillian et al., 1985; Payne et al., 1986, 1988; Diener et al., 1987;

Widstrom et al., 1990; Payne and Widstrom, 1992; Guo et al., 1996;

Sétamou et al., 1997; Scheidegger and Payne, 2003; Cotty and Jaime-

Garcia, 2007). Furthermore, kernel water activity (0.92–0.97 aw)

and insect injury contribute to mycotoxin production (Warfield

Colleen and Gilchrist David, 1999; Miller, 2001; Munkvold, 2003;

Bush et al., 2004).

The agroecosystem and production of fungal mycotoxins

involve soil biogeochemical characteristics that impact both crops

and fungi. For example, carbonate content, saturated hydraulic

Abbreviations: AFL, Aflatoxins; FUM, Fumonisins; ARI, Aflatoxin risk index;

GBM, Gradient boosting machine; NN, Neural network; FHB, Fusarium head

blight; BIC, Bayesian information criterion; NDVI, Normalized di�erence

vegetation index; Veg. Index, Vegetative index; PCRP, Precipitation; TAVG,

Average temperature; ML, Machine learning; H, High level; L, Low level.

conductivity, pH, bulk density, and texture, among others,

influence soil microbial communities, and which species of fungi,

including pathogens, might dominate in a given soil environment

(Weil and Brady, 2002). Soil property variability is related to

factors such as geologic deposition, age of material, climate,

duration of soil development, land use history, and other factors.

Much of the soils in Northern IL were formed in glacial and

periglacial deposits from the Wisconsin glacial episode of the late

Pleistocene associated with various advances and retreats of the

continental Laurentide ice sheet, while soils in the more southern

portion of the state developed from older parent materials with

a difference in soil age of approximately 100,000 years or more

(Bergstrom et al., 1976). The soil in Northern IL is richer in

clay and carbonate materials. Previous studies in IL have shown

a north–south difference in historical mycotoxin contamination

(Castano-Duque et al., 2022). The 40◦ latitude in IL marks a

geographical and meteorological boundary in the state that leads

to differences in weather from mixed humid to wintry conditions

(Köppen, 2011; Beck et al., 2018). Correspondingly, warmer, more

humid conditions in Southern IL, provide relatively more favorable

conditions for the fungi to infect corn and produce mycotoxins at

lower latitudes compared to higher latitudes.

Integrated pest and disease management strategies that

aim to minimize economic losses associated with mycotoxin

contamination need to account for spatial and temporal-specific

factors as well as weather, crop health and genetics, past agronomic

practices, and soil characteristics. Mycotoxin contamination

assessment tools are key for growers and stakeholders to be

informed of the potential probabilities of mycotoxin outbreaks

and facilitate the deployment of strategies aimed at controlling

disease and grain contamination (Focker et al., 2020). Satellite-

acquired databases, including the normalized difference vegetation

index (NDVI), have been previously used in studies evaluating

mycotoxins in European wheat and led to higher mycotoxin

model accuracy (Wang et al., 2022). Several studies have shown

significant correlations among climate, soil properties, NDVI, and

agricultural management practices with AFL contamination in

Africa, as reviewed by Keller et al. (2022). AFL studies conducted

in Eastern and Western Kenya (Mutiga et al., 2014) support the

utility of remote-sensing data such as NDVI, rainfall, and soil

properties (such as organic carbon content, pH, total exchangeable

bases, salinity, texture, and soil type) to accurately predict AFL

contamination (Smith et al., 2016). Soils and their interactions with

hydroclimate are highly variable (Smith et al., 2019; Vergopolan

et al., 2022) and influence fungal andmicrobial populations in soils.

Predicting mycotoxin contamination through models has

benefited corn production in other countries, but US corn growers,
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which produce the most corn in the world, have yet to realize

such benefits. Published models assess mycotoxin contamination

of milk in Eastern Europe (Van der Fels-Klerx et al., 2019) and

mycotoxin risk in small grains, corn, and other cereal crops in

Italy (Leggieri et al., 2021), Serbia (Liu et al., 2021), Europe (Wang

et al., 2022), and Korea (Lee et al., 2018). Machine learning

(ML) technologies such as artificial neural networks have been

developed in Europe to identify mycotoxin contamination in corn

kernels post-harvest using electronic nose technology in northern

Italy (Leggieri et al., 2021). Mycotoxin contamination prediction

modeling involves other factors, such as fungal development and

dispersal. Spore dispersal modeling is an actively developing field

of research worldwide, as reviewed by González-Domínguez et al.

(2023). Furthermore, the impact of AFL predictive risk models

in sub-Saharan Africa has been reviewed by Keller et al. (2022),

showing the economic impact of these technologies. The basis of

these models served as a general roadmap to model the prediction

of AFL and FUM contamination in IL-US. In the US, modeling of

fungal diseases has been done by the Fusarium head blight (FHB)

risk assessment tool from the US Wheat and Barley Scab Initiative

(https://www.wheatscab.psu.edu/) that uses modeling approaches

to alert wheat and barley growers of FHB risk (Shah et al., 2018).

A US-based predictive model based on insurance claims used

as a proxy for mycotoxin contamination values is available for

corn (Yu et al., 2020, 2022). However, insurance claims are not

necessarily equivalent to actual mycotoxin values. Previous US

models targeted the prediction of multinomial levels of AFL and

FUM contamination and showed that ML approaches can detect

weather factors pre-harvest that significantly impact mycotoxin

accumulation in IL (Castano-Duque et al., 2022).

The need for US-focused models is even more important when

considering that mycotoxin contamination is predicted to increase

in the years to come due to climate change (Van der Fels-Klerx

et al., 2016, 2019). Climate change models predict increased fungal

growth and subsequent toxin production (Battilani et al., 2016)

due to negative effects on crop host health and the interaction

of multiple abiotic factors such as drought, leading to losses

in corn production (Long Stephen et al., 2006; Battilani et al.,

2016; Peng et al., 2020). Increasing temperatures, longer drought

periods, and rising carbon dioxide levels (Vaughan et al., 2014,

2016) as the effects of climate change are expected to continue

leading to increased crop vulnerability combined with favorable

conditions for fungi such as Aspergillus spp. to grow and produce

toxins. These conditions will lead to an increase in plant stress

hormones that have been shown to alter plant defense responses

(Guo et al., 2008), making the crop more vulnerable to fungal

infection and mycotoxin contamination. Therefore, it is predicted

that climate change has the potential to negatively impact northern

corn-producing states (Corn Belt), as projected weather conditions

will increase AFL-related risk (Wu et al., 2011). Risk assessment

analysis using 16 climatic models from 2031 to 2040 in the US

has shown that 89.5% of corn-growing counties will experience

an increase in AFL prevalence, and this projection includes corn

in the northern states, suggesting the spread of fungal infection

and mycotoxin contamination from southern regions toward the

northern Corn Belt (Yu et al., 2022), where it has the potential to

be even more devastating to corn production. Models developed

by using mycotoxin data from major US corn-growing states

and trained using weather, satellite, and geographically dynamic

features for US-focused areas are critically needed. They will benefit

corn growers by mitigating losses projected to occur in extreme

weather events associated with climate change.

We developed a mycotoxin model that is geospatial dynamic

and IL-focused to identify novel risk factors correlated with

mycotoxin contamination, we applied machine learning predictive

models. We provided new information about the influence of soil

properties and remote-sense data (NDVI) on the prediction of AFL

and FUM contamination in corn. Understanding the correlations

of these factors with mycotoxin contamination can lead to region

time-specific targeted integrated pest management practices to

prevent AFL and FUM outbreaks, thus serving as guidelines to

identify factors that contribute to the contamination risk.

2. Materials and methods

2.1. Mycotoxin data

We used 14 years of historical contamination data, daily

county-specific weather data, remotely sensed satellite reflectance

data, and data on soil-specific features. Feature engineering

(Battilani et al., 2013; Van der Fels-Klerx et al., 2019) was used in

combination with gradient boosting models (GBMs) (Friedman,

2001) and neural networks (NNs) to predict (Torgo, 2016) AFL

and FUM. In this study, we used 1,772 observations of mycotoxin

concentrations, AFL, and FUM from IL-grown corn. Data on

the response variable were obtained from historic yearly survey

summaries for 2003–2004 and 2008–2021 (data for 2020 were not

available due to the COVID-19 pandemic) published by the IL

Department of Agriculture. The years used for model validation

were selected from these data based on the percentage of incidence

of high contamination events. AFL was measured in 2010 (960

data points, 4% incidence of high contamination levels) and FUM

was measured in 2016 (960 data points, 8.1% incidence of high

contamination levels). The sample collection was done as described

by Castano-Duque et al. (2022); briefly, the kernel sample collection

was performed at harvest by randomly collecting 2.3–4.5 kg of

whole kernels from four corn producers from each county. While

mycotoxin analyses were conducted as soon as possible after

collection, to minimize post-harvest mycotoxin accumulation, the

samples were dried and stored at 4◦C. This mycotoxin data set

was zero-inflated, with high contamination levels being rare events

(Castano-Duque et al., 2022). This issue was considered during

data preparation for ML analysis by using the synthetic minority

oversampling technique (Torgo, 2016) that allowed us to generate

a balanced data set of the high and low contamination events.

2.2. Output variables and correlation
analysis

We categorized into discrete variables the AFL and FUM

contamination values by following the US Food and Drug

Administration’s legal threshold limits for mycotoxins in
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feed (https://www.fda.gov/food/natural-toxins-food/mycotoxins).

For AFL, a high category was considered for concentrations

>20 ppb (20 ng/g) and low for levels 20 ppb or lower

(Supplementary material 1). For FUM, a high contamination

level was for concentrations >5 ppm (5,000 ng/g), and the rest of

the observations were low (Supplementary material 1). The FUM

threshold used is the FDA guidance for equids and rabbits, which

is lower than for other classes of livestock. A correlation analysis

was performed among all the predictors and output variables using

a confidence level of 0.95 for the correlation and clustering method

in R (Team, 2017).

2.3. Weather, satellite, and soil data

Soil physical and chemical properties, satellite reflectance

data, and soil moisture were analyzed to account for geographic,

geomorphic, and surficial geological heterogeneity relating to crop

health and soil habitat suitability for mycotoxin-producing fungi.

All the satellite data were extracted and summarized by the county

after refining them to reflect only land uses for corn and wheat

(Boryan et al., 2011). For the extraction of crop specificity of

satellite data, a data mask layer was generated for corn acreage for

each year of study from the National Agricultural Statistics Service

Cropland Data layer (NASS CDL—https://nassgeodata.gmu.edu/

CropScape/) data set (Boryan et al., 2011). NASS CDL provides 30-

meter grid cell estimates of crop type grown for the Conterminous

United States for each year starting in 2005 to the present. Each

grid cell represents a best estimate of crop type for a 30-meter by

30-meter division of land. To make the data mask, in each year of

study, for each grid cell classed as corn in Illinois, a value of 1 was

assigned, while a value of 0 was assigned for all other land uses.

Each time-series normalized difference vegetation index (NDVI)

layer from the MODIS satellite data was multiplied by the mask

so that only pixels of MODIS with their centroids falling within

corn acreage were tabulated for the county-level NDVI averages

(Didan, 2021). The same process was repeated for wheat, with a

separate mask file produced from the NASS CDL and separate

NDVI county-level averages produced.

Soil properties were similarly aggregated to the county level

by using the NASS CDL data mask. In this case, values of 1

were assigned to cropland, and values of 0 were assigned to other

land uses such as forest or urban (Boryan et al., 2011). Soil

properties were then queried for all pixels with a value >0 in

the Soil Properties data layer from UC Davis and USDA NRCS

(Walkinshaw et al., 2022). Mean values for all soil properties for

cropland were tabulated to represent cropland soil properties by

county. Climatological soil moisture estimates were obtained for

the top 5 cm of the soil in IL from SMAP-HydroBlocks at 30m

resolution, developed by combining microwave satellite remote

sensing, radiative transfer modeling, machine learning, and a high-

resolution land surface model (Vergopolan et al., 2020, 2021).

The physical soil properties available for examination within

the mycotoxin model context were water-holding capacity,

hydraulic conductivity, bulk density, and soil texture (sand, silt, and

clay content). Soil chemical properties include calcium carbonate

content, cation exchange capacity, electrical conductivity, pH, and

organic matter content. Estimates were determined for the 800

× 800m pixels for various soil depth increments using measured

values and interpolation techniques (Walkinshaw et al., 2022).

The soil data were queried for soil properties by examining

the intersection of each pixel with the cropland reported in the

national cropland data layer of the National Agricultural Statistics

Service of the USDA (Boryan et al., 2011). This national cropland

data layer (CropScape—https://nassgeodata.gmu.edu/CropScape/)

provides estimates of cropping land use for 30m × 30m land

units (pixels) throughout the contiguous continental US for a 5-

year summary period prior to the publication date (the summary

period used was 2017–2021). For each county, the cropland was

characterized for the final 5 years of the study. Only the land

area that was planted in crops for the period of study was

summarized for its soil properties, which were aggregated to the

county-wide level as mean soil property estimates. These estimates

excluded urban, forested, and other land uses not pertaining to

crop production.

Soil moisture estimates (m3 H2O/m3-soil) were extracted

from the SMAP-HydroBlocks (Vergopolan et al., 2021) 2015 to

2019 soil moisture average. SMAP-HydroBlocks is a satellite-

based surface soil moisture product available at 30m resolution

over the conterminous United States. SMAP-HydroBlocks is

derived from NASA’s Soil Moisture Active-Passive product and

the HydroBlocks-Radiative Transfer Model using a “cluster-based

merging scheme” (Vergopolan et al., 2020) that is parameterized

using machine learning-guided refinements based on relations

among other in situ, satellite-based observation, and land use-land

cover characteristics (Vergopolan et al., 2020). The data product

provides soil moisture estimates for the top 5 cm of the soil

surface at 6-h intervals. In turn, SMAP-HydroBlocks is sensitive to

rainfall, drought, and evapotranspiration dynamics relevant to the

microenvironment of mycotoxin-producing fungi.

Historical daily average air temperature, precipitation,

and general vegetation index data were obtained from GRO-

Intelligence (https://gro-intelligence.com/). A non–crop-specific

vegetative index from GRO-intelligence was calculated from

satellite data by taking into consideration multiple light spectra

to enhance the presence of green vegetation by calculating the

normalized difference vegetation index (NDVI), and this NDVI

will be called veg_index to differentiate it from crop-specific

NDVI. Crop-specific NDVI was calculated for each pixel of

reported corn production for each year studied and for each pixel

of reported winter wheat production for each year studied. The

NDVI values, which were identical to the pixels of soil property

estimates, were also summarized with a county-wide mean to

characterize NDVI for corn and wheat-cropped land over time.

NDVI was calculated from the MODIS satellite data (Didan, 2021)

by obtaining the difference between the near-infrared reflectance

and the red reflectance divided by the sum of the near-infrared

and the red reflectance given in the MODIS data set. Higher values

of NDVI are given when vegetation is healthy and green, as it

absorbs red light and reflects near-infrared light. These NDVI

values are available every 16 days from the MODIS satellite from

February 2000 to 2023 and are reported in a 250-m resolution. We

extracted these time-series values from MODIS data for the pixels

determined to be growing either corn or wheat for each 16-day
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period available using Google Earth Engine. The crop-specific

NDVI and veg_index (general NDVI) data were then interpolated

into weekly summaries for the periods of study.

Historic meteorological data, soil properties data, and NDVI

data were linked to the county-level mycotoxin data by using the

county and the year as common information. After linking toxin

data with weather, NDVI, and soil data, there were 1,772 data points

across 99 counties.

2.4. Features engineering and data
imputation for the AFL modeling

Daily average precipitation (mm) and air temperature (◦C)

data, averaged per county for the 14 years of historical data,

were acquired from GRO-Intelligence. Furthermore, we used the

geographical centroids of each county (latitude and longitude)

and the climate zones (Friedman, 2001). For AFL models, we

engineered a weekly aflatoxin risk index (ARI) as the cumulative

sum per week of daily ARI. The monthly ARI was previously

described (Castano-Duque et al., 2022); herein, we modified it

to calculate a daily ARI (Eq. 1). These ARI equations have been

applied to data from Eastern Europe in particular from Ukraine,

which has a climate equivalent to IL (Van der Fels-Klerx et al.,

2019).

ARI = growth or weighted_growth× afla or weighted_afla×

dispersal× (1 + ECB_damage) (1)

In the daily ARI, fungal growth was calculated on a daily basis

(Battilani et al., 2013) as described by Castano-Duque et al. (2022).

Weighted fungal growth (10% of original growth) was generated

for days of the month throughout the year when there was no corn

in the field. The distribution of mycotoxin levels in relation to the

thermal climate zone in IL (Friedman, 2001) has been examined

and linked to differences in mycotoxin contamination distribution

(Castano-Duque et al., 2022). In IL, there are two climate zones:

a mixed-humid climate zone with a monthly outdoor temperature

below 7◦C during the winter and a cold climate zone with 5,900

heating degree days per year (18.3◦C basis) (Baechler and Love,

2004). These climatological differences were considered in the

model by assuming that the planting date in the mixed-humid

zone started about 15th May and in the cold zone in April. This

was assumed to be different in the cold and mixed-humid counties

due to differences in no-corn in the field times in northern and

southern states (January to April, 15th May, and December for

cold and January to April and December for mixed-humid). These

dates were included by calculating the ARI (Eq. 1). One of the

assumptions in our model is that during days of the year when

there is no corn in the field, the fungal growth was 90% less. The

daily AFL production index was calculated (Battilani et al., 2013) as

described by Castano-Duque and Vaughan (Castano-Duque et al.,

2022). The spore dispersal was set as an ON/OFF switch (Van der

Fels-Klerx et al., 2019; Castano-Duque et al., 2022). The assumption

in ourmodel is that if there is any daily precipitation, the dispersal is

OFF, and if there is no daily precipitation, the dispersal is ON.Wind

and other variables are involved in the spore dispersal ofAspergillus

(Segers et al., 2023) and Fusarium (Hoffmann et al., 2021) species;

nevertheless, only precipitation was used in this model due to the

consistency of daily historical records throughout the geographical

region studied in this case study. Insect damage was calculated for

European corn borer damage by using growing degree days (Tbase

= 6C and Tcut = 30◦C) and the logistic equation (Maiorano et al.,

2009) (Eq. 2).

A= 7.3

Um= 0.013

Lambda= 1,236.913

R2 = 0.718

e= exp(1)

ECB_damage = A× exp{−exp[(µm x e/A)×

(lambda − cumGDD + 1]} (2)

where ECB (European corn borer) represents damage to the ear

by insects, A represents the asymptotic maximum damage level

observed in the field approximated to the higher first decimal, µm

represents the maximum specific damage rate, λ represents the

intersection of the tangent in the inflection point with the x-axis,

and accGDD represents the accumulated GDD. Both µm and λ are

estimated parameters in Maiorano and Reyneri (Maiorano et al.,

2009).

For any missing values in the weekly ARI or vegetative index

features, we performed imputation using multivariate imputation

by chained equations; in specific, the predictive mean matching

(PMM) method was used in R (van Buuren and Groothuis-

Oudshoorn, 2011; Team, 2017). This imputation method allowed

us to determine plausible data values by adding a data point from

the original data whose regression-predicted values are closest to

the regression-predicted value for the missing data point from

the simulated regression model (van Buuren and Groothuis-

Oudshoorn, 2011). Due to the high number of missing data for ARI

in weeks 8, 16, 24, 32, 40, and 48, we decided to remove these input

features from the model. Finally, we linked the AFL data to the

feature data set to create a set of 1,772 data points and 153 features

or predictors. The inputs for the AFL model were weekly ARI for

each county (Supplementary Table 1). We also added to our input

features an average bi-weekly NDVI per county during the weeks of

the month when corn might not be in the field (below week 13 and

above week 45); an average corn and wheat NDVI; soil properties,

latitude, and longitude.

2.5. Weather data and imputation for the
FUM modeling

For FUM modeling, we could not use feature engineering

functions such as the ARI calculated for AFL produced by

Aspergillus because these equations were generated using

Aspergillus spp growth curves. The inputs for the FUM model

were weekly average temperature and precipitation. We also

added to our input features an average bi-weekly veg_index per

county during the days of the month when there is no corn in the

fields; an average corn and wheat-specific NDVI; soil properties;

latitude; and longitude. The daily precipitation and daily average

temperature data were averaged weekly per county; each calendar

year of weather data was kept separate and linked to mycotoxin
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yearly data for the 14 years of historical data per year and county

(Supplementary Table 1). Average temperatures were expressed

in degrees Celsius, and each county was assigned its geographical

centroids (latitude and longitude), climate zones (Beck et al.,

2018), crop-specific NDVI, and veg_index. For any missing values

in our weekly weather data, crop-specific NDVI, and veg_index

features, we performed imputation using multivariate imputation

by chained equations, specifically the predictive mean matching

(PMM) method in R (van Buuren and Groothuis-Oudshoorn,

2011; Team, 2017). Due to the high number of missing data for

weather variables in weeks 8, 16, 24, 32, 40, and 48, we decided to

remove these input features from the model. Finally, we linked the

FUM data to the feature data set to create a set of 1,772 data points

and 199 features or predictors.

2.6. Gradient boosting machine learning

GBM was used to perform the prediction of mycotoxin

contamination, as GBM allows for the determination of the relative

influence of input features on the output variable. The GBM

software package in R was used. This software provided extensions

to Freund and Schapire’s AdaBoost algorithm and Friedman’s

gradient boosting machine (Friedman, 2001). For performing

GBM, we first removed the IL county identifier from the data set

and the data for the year that was used for validation, as these

would lead to overfitting the model. Next, data were balanced by

using the synthetic minority oversampling technique (SMOTE)

from the DMwr package in R (Team, 2017), which created a

new balanced data set by oversampling observations from the

high contamination level class. Finally, the balanced data were

partitioned to generate training and testing sets by using a 70 to

30 ratio (Supplementary material 1). We performed GBM for AFL

and FUM separately, using the following flags on the training data:

a threshold of 500 trees, an interaction depth of 1, a shrinkage of

0.01, and 10 cross-validation folds with the distribution selected as

multinomial (Supplementary material 1).

The GBM R package (Ridgeway, 2006) was used to perform

prediction analysis using the testing data set and the best fit

generated from the training data. GBM uses decision trees in an

iterative process to determine the best number of trees leading to

the lowest error based on the decline of the loss function. Finally,

the GBM package was used to compute the effect values (variable

relative influence) for each predictor in the model. The relative

influence of each predictor from the tree ensemble is determined as

the reduction in the sum of squared error due to the splits on that

predictor, then averaging the improvement made by each variable

across all the trees to determine the relative effect (Friedman, 2001).

Thus, the variables with the largest average decrease in the sum

of squared error are considered the most important, expressed

as the percentage of the total reduction in the error given by

all the predictors. A confusion matrix was developed using the

caret package in R that computed the overall statistics, the specific

statistics by class, the receiver operating characteristic curve (ROC),

and the area under the ROC curve (AUC) values for the multi-class

classification to measure the quality of the model’s predictions.

For the FUMmodel, we used the following flags on the training

data set: a threshold of 500 trees, interaction depth of 1, shrinkage of

0.01, 10 cross-validation folds, and the distribution was selected as

multinomial (Supplementary material 1). The remaining analysis

was performed as described for AFL.

2.7. Neural network analysis

NN was selected as a second modeling method because of

its high performance in the prediction of rare events (Zamani

and Kremer, 2013; Gibson and Kroese, 2022). For performing

NN training, we first removed the IL county identifier and the

year from the data set to reduce potential overfitting. Then, we

selected only the input variables that show a relative influence

higher than zero in the GBM and then removed the data for the

year that was used for validation. Data without the validation set

were balanced using the SMOTE method described for GBM. Data

were partitioned to create training and testing sets using a 70-to-

30 ratio (Supplementary material 1). The same mean and standard

deviation scaling was applied to the testing and validation data

sets. We trained the NN model in AFL and FUM separately. The

best number of hidden layers and neurons was determined by an

exhaustive iterative process that aimed to find the combination of

NN parameters with the highest accuracy.

2.8. Validation analysis using GBM and NN

To perform prediction analysis using the GBM andNNmodels,

we used a single year: 2010 for AFL and 2016 for FUM. These years

were selected because their incidence of high contamination events

was higher than 3% (more than three high contamination events),

and the incidence of high contamination events was 4 and 8.1%,

respectively. Validation was performed by using the best fit of GBM

and the best number of hidden layers (2 layers) and neurons (65

neurons in layer 1 and 15 neurons in layer 2) for AFL and FUM

(65 neurons in layer 1 and 30 neurons in layer 2) determined from

the training data (Supplementary material 1). All the input features

for the validation years were prepared as previously described in

the Methods section for the training data. The mycotoxin data

for the years 2010 and 2016 included 99 counties and a total of

99 observations.

R code: Available in Supplementary material 1.

3. Results

3.1. AFL and FUM contamination in IL

The AFL data showed that only 3.1% of the samples had

concentrations >20 ppb, and only 5.4% of the samples had FUM

concentrations >5 ppm (Table 1).
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TABLE 1 Incidence of AFL and FUM contamination (high or low) in corn in Illinois from 2003 to 2021.

Year AFL FUM N total

Level Number of cases Incidence Level Number of cases Incidence

2003 High 2 2% High 16 16.20% 99

Low 97 98% Low 83 83.80%

2004 High 0 0% High 2 2% 99

Low 99 100% Low 97 98%

2008 High 2 2% High 25 25.30% 99

Low 97 98% Low 74 74.70%

2009 High 0 0% High 6 6.10% 99

Low 99 100% Low 93 93.90%

2010 High 4 4% High 0 0% 99

Low 95 96% Low 99 100%

2011 High 2 2% High 4 4% 99

Low 97 98% Low 95 96%

2012 High 35 35.40% High 3 3% 99

Low 64 64.60% Low 96 97%

2013 High 2 2% High 1 1% 99

Low 97 98% Low 98 99%

2014 High 0 0% High 1 1% 99

Low 99 100% Low 98 99%

2015 High 0 0% High 0 0% 99

Low 99 100% Low 99 100%

2016 High 1 1% High 8 8.10% 99

Low 98 99% Low 91 91.90%

2017 High 4 4% High 1 1% 99

Low 95 96% Low 98 99%

2018 High 2 2% High 16 16.20% 99

Low 97 98% Low 83 83.80%

2019 High 0 0% High 3 3% 99

Low 99 100% Low 96 97%

2021 High 1 0.30% High 10 2.60% 386

Low 385 99.70% Low 376 97.40%

Data were not collected in 2020 due to COVID-19. For AFL high is ≥20 ppb, and for FUM high is ≥5 ppm. N is the number of samples per year.

3.2. Weather variables and feature
engineering

AFL risk indexes (ARIs) were the main features engineered by

linking fungal growth (Battilani et al., 2013; Van der Fels-Klerx

et al., 2019; Liu et al., 2021; Castano-Duque et al., 2022) with

the weather. Using ARI instead of temperature and precipitation

led to a lower number of input variables incorporated into

the AFL model, which also decreased the correlation levels

among meteorological variables (Figures 1A, C). For the FUM

modeling, we could not use feature engineering functions such

as the ARI calculated for AFL produced by Aspergillus. FUM

output variables showed a significant correlation with general

veg_index, corn-specific NDVI, temperature, and several of the

soil properties (Figure 1C). Using GBM and only the relative

influential variables for the NN led to the inclusion of a

lower number of input variables in the models, decreasing the

autocorrelation among variables. Furthermore, GBM allows for

the control of overfitting caused by high correlation levels among

variables by sequentially generating model ensembles that can learn

from the errors of previous ensembles (Cooper, 1990; Friedman,

2001).
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FIGURE 1

Pair-wise correlation analysis of the significant input variables influencing GBM and summary of the GBM model using multinomial mycotoxin
outcome. (A) Correlation analysis of the features used for AFL modeling; (B) top 20 influential input features and their relative influence over the
model in the prediction of AFL; (C) correlation analysis of the features used for FUM modeling; (D) top 20 influential input features and their relative
influence over the model in the prediction of FUM. The correlation is depicted from positive (blue) to negative (red), with blank squares representing
non-significant p-values of correlation between variables. For the correlation analysis, the p-value cuto� was 0.05, and the confidence level was
0.95. The blue hue in GBM plots represents the relative influence of the input variables, with light blue high and dark blue low influence levels. The
green line is the testing set multinomial deviance loss, the black line is the training set multinomial deviance loss, and the blue dotted vertical line is
the number of iterations used.

3.3. GBM analysis for AFL and FUM

We used GBM to model AFL and FUM contamination levels

(factorial output variable) with our engineered features for AFL

and without engineered features for FUM. The models were

used to make predictions for the samples in the testing data set

(Table 2, Supplementary Table 1). The optimal number of trees for

GBM-AFL and GBM-FUM used was 500, which represents the

number of trees at which the cross-validation error is minimized

(Figures 1B, D). The McNemar P-value for the GBM-AFL was

0.4862 and for the GBM-FUM was 0.052 (Supplementary Table 1),

which indicated that the proportion of type I and type II errors

is the same, meaning that there is homogeneity in the proportion

of misclassification. This was expected because the training and

testing data sets were balanced by using SMOTE. The overall

accuracy of the GBM-AFL model in the test data set (30% of data)

was 96%, with a balanced accuracy for high contamination of 96%.

For GBM-FUM, the overall accuracy of the test data set was 92%,

with a balanced accuracy of 92% (Table 3, Supplementary Table 1).

Balanced accuracy or performance is a metric that uses the average

of the sensitivity and specificity of the model by considering

the predicted classes (high and low contamination). The model

performance was the same for the prediction of high and low

contamination events. Thus, the balanced accuracy is equal to the

overall accuracy. The multi-class area under the curve for GBM-

AFL in the testing data set was 0.97 and for GBM-FUM was
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TABLE 2 Contingency tables for GBM-AFL, GBM-FUM, NN-AFL, and NN-FUM from the test (30% of the data) and validation (single year) data sets.

Model Date set Prediction Reference

High Low

GBM-AFL Test High 455 14

Low 19 472

Validation High 0 0

Low 4 95

GBM-FUM Test High 445 48

Low 30 427

Validation High 6 20

Low 2 71

NN-AFL Test High 472 2

Low 14 472

Validation High 2 4

Low 2 91

NN-FUM Test High 449 12

Low 26 463

Validation High 8 27

Low 0 64

TABLE 3 Summary statistics of GBM and NN for AFL and FUM.

Overall accuracy
test-set

Balanced accuracy
test-set

Overall accuracy
validation-set (single year)

Balanced accuracy
validation-set (single

year)

AFL-GBM 96% 96% 96% 50%

AFL-NN 98%∗ (46/25/15/2)∗∗ 98%∗ 94%∗ 73%∗

FUM-GBM 92% 92% 78% 76%

FUM-NN 96%∗ (80/65/30/2)∗∗ 96%∗ 73%∗ 85%∗

Overall and balanced accuracy for AFL used 2010 as the independent year and FUM used 2016 (Year was not used as an input variable). ∗Used only input variables with non-zero influence in

the GBM. ∗∗Number of input variables/number of neurons in the first hidden layer/number of neurons in the second hidden layer/number of outputs.

0.92, which represents the classifier in its ability to distinguish

among classes.

The GBM-AFL model showed that of the 153 input

features (predictors), only 46 had non-zero influence

(Supplementary Table 1). The GBM-FUM showed that of

the 199 input features, only 85 had non-zero influence

(Supplementary Table 1). For the GBM-AFL model, the top

20 influential features were: ARI in January (Weeks 1, 2, 3, and

4), in February (Weeks 5 and 7), in March (Weeks 11 and 12), in

April (Week 18), in May (Week 20), in July (Weeks 27 and 30),

in September (Week 37), in October (Week 43), in November

(Weeks 45 and 47), and in December (Week 49), soil calcium

carbonate (CaCO3), soil electrical conductivity (ec) and soil

sodium absorption ratio (sar) (Figure 2, Supplementary Table 1).

In the GBM-AFL, ARI showed a positive correlation with

AFL contamination, meaning that high ARI led to high toxin

contamination (Figures 1A, 2). At a geospatial level, the ARI

throughout IL tends to be higher in the southern region

except during 2012, the year with the highest incidence of AFL

contamination in the historical data set evaluated (35.4%, Table 1),

when the ARI levels were the highest throughout the state in

March (week 11) and July (week 27) (Figures 1A, 2). Corn NDVI

showed a negative correlation with AFL contamination levels in

July (week 30) (Figure 3A) and a positive correlation with wheat

NDVI values in February (week 5) (Figure 3B). At a geospatial

historical scale, corn NDVI values in week 30 were lower in the

southern part of IL in 2012 compared to other years (Figure 3A),

and PRCP between weeks 28 and 31 was lower in 2012 compared

to other years throughout IL. Calcium carbonate levels in the

soil had a negative correlation with AFL levels, meaning that

low calcium carbonate tends to be associated with high AFL at

harvest (Figure 4A). Lower deposits of calcium carbonate were

observed in the southern regions of IL compared to the northeast

(Figure 4B). To summarize, the GBM-AFL model showed that

ARI pre-planting months (January, February, March, and April)

had a strong influence over predictions for AFL contamination
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FIGURE 2

ARI relationship with AFL contamination levels and their geospatial distribution in IL from 2003 to 2021. (A) Average ARI in week 4 (January); (B)
average ARI in week 11 (March); (C) average ARI in week 27 (July); (D) average ARI 45 (November). Box–Whiskers plot depicts the maximum (25th –
1.5 * interquartile range “IQR”) and minimum [75th percentile + 1.5 * interquartile range (IQR)], and the Box–Whisker plot depicts median, first (25th
percentile) and third (75th percentile) quantiles distribution; For AFL, high is >20 ppb and low ≤20 ppb. The violin plot is shaded in red and depicts
the density distribution of the soil property in low and high levels of mycotoxin contamination; and the gray dots depict each data point. Maps are
shaded in red in relation to the ARI value for a specific week in each year; and the y-axis is latitude and the x-axis is longitude.

at harvest time, and calcium carbonate levels in the soil influence

aflatoxin levels.

The GBM-FUM showed that of the 199 input features

(predictors), only 85 had non-zero influence (Table 2,

Supplementary Table 1). Among the 85 features, the top 20

were: latitude; temperature in January (week 2), February (week

5), April (week 14), July (weeks 30 and 31), August (week 34),

November/December (week 44), and December (week 52);

precipitation in February (week 7), March (week 12), September

(weeks 36 and 39), and October (weeks 41 and 42); veg_index

February (week 5) and March (week 11); corn-specific NDVI

January (week 1), May (week 19), July (week 28), and October

(week 42); wheat-specific NDVI in June/July (week 26); clay

percentage 25–50 cm depth; water storage and soil water capacity

(Supplementary Table 1). In the GBM-FUM, temperature in July

(Week 31) and October (Week 44) had a positive relationship with

FUM contamination levels (Figures 5A, B), similarly for PRCP

in February (Week 7), higher precipitation led to higher FUM

contamination levels (Figure 5C) at a geospatial historical level,

and high PCRP in March throughout IL in 2008 was linked to

the highest incidence of FUM (25.6%, Table 1). To summarize,

weather patterns such as precipitation levels in week 7 (February)

above 2.5mm and week 11 (March) above 0.3mm can lead

to higher FUM levels (Figure 5). Furthermore, temperatures

in week 31 (July) above 24◦C and week 44 (October) above

10◦C correlated with high levels of FUM contamination in corn

(Figure 5).

General vegetation index inMarch (Week 11) and corn-specific

NDVI in February (week 5), May (week 19), and October (week

42) were positively linked to high FUM contamination, which

tends to be observed in the southern parts of IL (Figure 6). While

the wheat-specific NDVI showed a negative relationship with

FUM contamination levels in June (week 26) (Figure 6D). Soil

moisture and available water-holding capacity showed a positive

correlation with FUM contamination levels, while clay at 0–

5 and 25–50 cm showed a negative correlation (Figure 7). At a

geospatial scale, both soil moisture and water-holding capacity

tend to be higher in the southwest areas of IL, while the clay

content tends to be higher in the northeast regions of the state

(Figure 7). GBM-FUM showed that pre-planting precipitation

and temperature influence the prediction of FUM contamination

levels. Furthermore, crop-specific NDVI is a high influencer,

as are several soil characteristics linked to water present in

the soil.
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FIGURE 3

Crop-specific NDVI relationship with AFL contamination levels and their spatial distribution in Illinois from 2003 to 2021. (A) Corn NDVI in week 30
(July); (B) wheat NDVI in week 5 (February). Box–Whisker plot depicts the maximum (25th – 1.5 * interquartile range “IQR”) and minimum [75th
percentile + 1.5 * interquartile range (IQR)], and the Box–Whisker plot depicts median, first (25th percentile), and third (75th percentile) quantiles
distribution. For AFL, high is >20 ppb and low ≤20 ppb. The violin plot is shaded in red and depicts the density distribution of the soil property in low
and high levels of mycotoxin contamination. The gray dots depict each data point. Maps show the average NDVI values for corn (green) and wheat
(yellow) for specific weeks each year.

3.4. NN analysis for AFL and FUM

We used NN to model AFL and FUM contamination

levels (factorial output variable) by using the input features

with non-zero relative influence values from the GBM results

(Supplementary Table 1). The McNemar P-value for testing

NN-AFL was 0.007 and for testing NN-FUM was 0.035

(Supplementary Table 1), which indicated that the proportion

of type I and type II errors is not the same, meaning that there

is a disproportion of misclassification. This misclassification

disproportionality can be seen in the NN-AFL model, which

classified 14 data points of 486 as low when they were high and

2 data points of 474 as high when they were low contamination

levels (Table 2, Supplementary Table 1). Similarly, the NN-FUM

classified 26 data points as low when they were high and 12 as

high when they were low (Table 2, Supplementary Table 1). The

Frontiers inMicrobiology 11 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1283127
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Castano-Duque et al. 10.3389/fmicb.2023.1283127

FIGURE 4

Calcium carbonate (CaCO3 Kg/m2) relationship with (A) AFL contamination levels from 2003 to 2021 and its (B) spatial distribution in IL. Box–Whisker
plot depicts the maximum (25th – 1.5 * interquartile range “IQR”) and minimum [75th percentile + 1.5 * interquartile range (IQR)], and the
Box–Whisker plot depicts median, first (25th percentile), and third (75th percentile) quantiles distribution. For AFL, high is >20 ppb and low ≤20 ppb.
The violin plot is shaded in red and depicts the density distribution of calcium carbonate in low and elevated levels of mycotoxin contamination; and
the gray dots depict each data point. Maps show the weight percentage of calcium carbonate values. For color legend, a non-linear ramp was used.
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FIGURE 5

Temperature, precipitation, and veg. index relationships with FUM contamination levels and their geospatial distribution in IL from 2003 to 2021. (A)
Average temperature in week 31, July, (B) average temperature in week 44, October, (C) average precipitation in week 7, February, (D) average veg.
index in week 11, March. Box–Whisker plot depicts the maximum (25th – 1.5 * interquartile range “IQR”) and minimum [75th percentile + 1.5 *
interquartile range (IQR)], and the Box–Whisker plot depicts median, first (25th percentile) and third (75th percentile) quantiles distribution; For FUM,
high is >5 ppm, and low ≤5 ppm. The violin plot is shaded in blue and depicts the density distribution of the temperature, precipitation, or veg. index
in low and high levels of mycotoxin contamination; and the gray dots depict each data point. Maps of geography are shaded in relation to
temperature (red), precipitation (blue), or vegetation index (green) values for specific weeks each year, the y-axis is latitude and the x-axis is longitude.

overall accuracy of the NN-AFL model was 98%, with a balanced

accuracy for high contamination of 98%. For NN-FUM, the overall

accuracy was 96% and the balanced accuracy was 96% (Table 3,

Supplementary Table 1). The multi-class area under the curve for

NN-AFL in the testing data set was 0.9835, and for NN-FUM, it

was 0.96.

3.5. GBM and NN model validation

Model validation was performed by using mycotoxin data

from 2010 for AFL (4% incidence) and 2016 for FUM (8.1%

incidence) (Table 1). The data included 99 counties and a total of 99

observations in each year (except 2021 with 386 observations). The

GBM-AFL model successfully explained low contamination levels

of AFL with an accuracy of 96% (Table 3, Supplementary Table 1).

The model was not able to correctly predict high contamination

events of AFL from the validation data set, which had four

observations labeled as high AFL. The overall accuracy of GBM-

FUM was 78%, with a specificity of 75% and a balanced accuracy

for high levels of 76% (Table 3, Supplementary Table 1). The NN

models showed higher balanced accuracy for both AFL and FUM.

The NN-AFL model explained high contamination levels with an

overall accuracy of 94% and a balanced accuracy of 73% (Table 3,

Supplementary Table 1). The NN-AFL model correctly classified

2 out of 4 high contamination events in the validation data set,

and only 4 out of 95 data points were misclassified as high when

they were low. The McNemar P-value for validating NN-AFL

was 0.68 (Supplementary Table 1). The NN-FUM model explained

high contamination levels with an overall accuracy of 73% and a

balanced accuracy of 85% (Table 3, Supplementary Table 1). The

NN-FUM model successfully classified all the high contamination

events in the validation data set, but it had 27 data points

misclassified as high when they were low. The McNemar P-

value for validating NN-FUM was close to zero (0.0000005,

Supplementary Table 1).

4. Discussion

Mycotoxin contamination in the US is a pervasive problem

that negatively impacts human and animal health and causes

losses in the agriculture industry (Vardon et al., 2003; Wu, 2006;

Mitchell et al., 2016; Winter and Pereg, 2019). AFL and FUM

predictive modeling has been recently studied in the US using

machine learning tools (Castano-Duque et al., 2022) that linked
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FIGURE 6

Crop-specific NDVI relationship with FUM contamination levels and their geospatial distribution in IL from 2003 to 2021. (A) Corn NDVI in week 5,
February, (B) corn NDVI in week 19, May, (C) corn NDVI in week 42, October, (D) wheat NDVI in week 26, June. Box–Whisker plot depicts the
maximum (25th – 1.5 * interquartile range “IQR”) and minimum [75th percentile + 1.5 * interquartile range (IQR)], and the Box–Whisker plot depicts
median, first (25th percentile) and third (75th percentile) quantiles distribution; For FUM, high is >5 ppm, and low ≤5 ppm. The violin plot is shaded in
blue and depicts the density distribution of the corn or wheat NDVI in low and high levels of mycotoxin contamination; and gray dots depict each
data point. Maps of geography are shaded in relation to corn NDVI (green) or wheat NDVI (yellow) values for specific weeks in each year.

weather parameters and latitudinal location in the IL state with

historical contamination events of these two mycotoxins. This

study builds upon this initial model (Castano-Duque et al., 2022),

which provided an IL state case study to account for daily changes

in historical weather data (instead of monthly). We also added

geospatial soil mineralogical chemical/physical properties and land

usage parameters to the models for AFL and FUM. Similarly,

predictive mycotoxin models have been developed for northern

Italy, linking cropping system factors, and weather variables with

deep neural network (DNN) models (Leggieri et al., 2021). Our

NN models are unique because we included geospatial dynamic

soil and land features linked to the GPS center coordinates of the

IL counties. Land usage and soil mineralogical physical/chemical

properties are variable for the specific geospatial locations in

the US, at both state and county specificity levels (Smith et al.,

2019). Using dynamic geospatial data in our models led to the

identification of new insights into factors that influence mycotoxin

contamination. These factors could be used for risk assessment

and to implement timely and region-specific mycotoxin control

management practices.

GBM-AFL identified that higher ARI in January, March,

July, and November corresponds to higher AFL contamination,

meaning that pre-sowing and post-harvest environmental

conditions have a strong influence on AFL levels at harvest time.

Given that the harvest takes place prior to November, our model

assumes that post-harvest input features will influence next year’s

mycotoxin contamination. Similar correlations were previously

proposed by research conducted in the US (Castano-Duque et al.,

2022), Africa (Keller et al., 2022), and Serbia (Liu et al., 2021).

GBM-FUM showed that high precipitation events during February

and March (pre-sowing time), as well as elevated temperatures

in July (flowering time) and October (harvest time), influence

FUM contamination. Consistently, previous model reports have

shown that warmer temperatures early in the planting season

(January–April) lead to higher AFL contamination levels in the

US (Yu et al., 2022). GBM-AFL showed that corn-specific NDVI

at week 30 (July—within flowering time) also influenced AFL

contamination; this feature is linked to plant health as NDVI

represents a composite satellite measurement of plant greenness.

Lower NDVI translates into less green, unhealthy and/or lower

density plants, and lower NDVI in week 30 would suggest that the

plants were stressed possibly due to abiotic and/or biotic factors.

Previous studies have suggested that crop stress in general also

correlates with mycotoxin contamination (Kebede et al., 2012). In

2012, when corn NDVI at week 30 was lower than in other years,

the corn crops suffered from extreme drought conditions (NOAA,
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FIGURE 7

Soil properties relationship with FUM contamination levels and their geospatial distribution in IL. (A) soil moisture (m3 H2O/m3 soil), (B) available
water-holding capacity (cm). Box–Whisker plot depicts the maximum (25th – 1.5 * interquartile range “IQR”) and minimum [75th percentile + 1.5 *
interquartile range (IQR)], and the Box–Whisker plot depicts median, first (25th percentile) and third (75th percentile) quantiles distribution; (C)
percentage of clay content from 0 to 5 cm below surface, (D) percentage of clay content from 25 to 50 cm below surface; For FUM, high is >5 ppm,
and low ≤5 ppm. The violin plot is shaded in blue and depicts the density distribution of the soil properties in low and elevated levels of mycotoxin
contamination; and the gray dots depict each data point. Maps of geographical shaded red in relation to soil properties values, scale is in miles. For
color, legend of soil moisture, a linear ramp was used, and for available water-holding capacity, and clay content, and a non-linear ramp was used.

2013), which were reflected in lower NDVI values and likely

contributed to AFL (contamination levels at harvest time). Studies

conducted in Kenya found that AFL contamination is positively

associated with high rainfall and NDVI during pre-flowering time

while negatively associated during post-flowering time and at

harvest (Smith et al., 2016). Our findings agree with published

logistic regression models that show that drought stress in corn

during flowering time (prior to and beyond mid-silk) is critical

for higher contamination at harvest (Damianidis et al., 2018).

US-IL models have shown that weather and ARI between corn-

growing seasons significantly influence the contamination at the

end (Castano-Duque et al., 2022). It is possible that environmental

conditions (weather conditions or other agricultural practices)

during the spring favor fungal growth (Borràs-Vallverdú et al.,

2022), leading to higher corn contamination at the end of the

growing season. The development of pest management strategies

that take into consideration climate change, such as warmer and

wetter spring seasons and drought during the flowering time, is

relevant for the management of mycotoxins.

AFL and FUM-GBMs showed that soil properties are also

influential factors contributing to the mycotoxin contamination

of corn across spatiotemporal scales. Higher calcium carbonate

content patterns throughout IL soil were negatively correlated with

historical AFL contamination levels. It has been demonstrated that

the calcium carbonate content in soils influences soil pH (Weil and

Brady, 2002), whereby greater dissolved calcium increases buffering

capacity and generates more alkaline soils. Geospatial differences

in calcium carbonate in IL soils are due to the advance and retreat

of the Laurentide glacier which deposits carbonate-rich materials

in the northern half of the state. The negative correlation between

AFL levels and calcium carbonate suggests that regions with lower

calcium carbonate are associated with higher AFL contamination

(Chang and Lynd, 1970), and therefore, calcium carbonate is an

important factor in AFL contamination risk.

The abundance of calcium is modulated by both abiotic and

biotic factors. In terms of abiotic processes, soils with greater

concentrations of CaCO3, such as Northern Illinois, typically

exhibit greater Ca2+ concentrations through the dissolution of

parent CaCO3 and other Ca-bearing mineralogy via infiltrating

rainwater (Smith et al., 2019). In terms of biotic factors, such

as soil bacteria, they can also modulate the calcium carbonate

content of soil by dissolving calcium carbonate into Ca2+ ions

and other carbonate species. Some of these “Calcite Dissolving

Bacteria” are Serratia marcescens, Sphingomonas changbaiensis, or

Novosphingobium panipatense (Peper et al., 2022). Furthermore,

the soil microbiome can become dominated by microbial

assemblages that suppress the growth of AFL-producing fungi

with increasing Ca2+ (Zhang et al., 2021), FUM-producing fungi

(Srinivasan et al., 2009), and suppression of mycotoxin-producing

fungi strains by non-toxin-producing fungi (Mehl et al., 2012;
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Ehrlich, 2014). The presence of both growth-suppressive bacteria

and fungi that dissolve calcium carbonate would potentially lead

to positive feedback in a calcium carbonate-rich soil. Fungi are

involved in carbonate rock destruction, dissolution, precipitation

(Verrecchia et al., 2003), and biomineralization (Bindschedler

et al., 2016) in laboratory environments. Other environmental

factors, such as wet and dry periods, affect the precipitation and

accumulation of calcium carbonate in soil (Birkeland, 1974). It

is possible that fungal communities and weather parameters co-

influence levels of calcium carbonate and calcium ions in the soil,

and these compounds can act as a feedback loop that modulates the

fungal communities present in the soil. Understanding the native

microbial communities and mycotoxin fungi/contamination could

aid in understanding the interaction of soil microbiome, calcium

carbonate, and AFL contamination. This knowledge of microbiome

diversity could be useful for the development of region-specific

biocontrol strategies.

The addition of calcium carbonate in the form of limestone to

soils is a major agricultural practice in humid climates worldwide,

used to directly change the chemical makeup of the rooting zone

and improve soil fertility (Weil and Brady, 2002). Greenhouse

experiments with peanut plants (Arachis hypogaea L.) showed

that adding calcium to the soil leads to a significant reduction

in AFL contamination of seeds (Uppala, 2011). Calcium-deficient

soils cause calcium deficiency in the corn plant, which can lead

to the failure of the upper leaves to unwrap at tasseling time

(Melsted, 1953), shorter roots, chlorosis, and necrosis of leaves (do

Moraes Gatti et al., 2023). These calcium-deficient symptomsmight

increase the propensity of fungal infections to thrive, as calcium

is an important component of pathogen-associated molecular-

triggered immunity (Fountain et al., 2016) and maize defense

responses to pathogens (Jiang and Zhang, 2003; Hu et al., 2007;

Ma and Berkowitz, 2011). We hypothesize that Northern IL soils,

which are richer in CaCO3 and Ca, are conducive to healthier

plants capable of greater resistance to fungal disease and supporting

microbiomes that also suppress AFL growth. The characterization

of IL native microbiome and fungi soil populations linked to their

geospatial location in calcium carbonate-rich or poor zones is not

known, although this could aid in understanding the interaction

of soil microbiome, calcium carbonate, and AFL contamination.

This knowledge of microbiome diversity could be useful for the

development of region-specific biocontrol strategies andmycotoxin

management alongside external limestone application in areas such

as Southern IL or other areas with elevated AFL risks, e.g., a corn-

growing season with a hot/wet spring followed by drought during

flowering time.

GBM-FUM showed that FUM contamination is correlated

with soil moisture, available water-holding capacity, and a high

percentage of clay. These soil hydropedology properties vary

across IL (Smith et al., 2019). Southern IL tends to have higher

soil moisture levels compared to the north, with the southern

area of the state having historically higher percentages of FUM

contamination (Castano-Duque et al., 2022). Correspondingly, a

positive correlation was observed between soil moisture and FUM

contamination. Other soil properties, such as the percentage of clay,

tend to be higher in the northeastern areas of IL (Smith et al.,

2019), which historically tend to have lower FUM contamination

(Castano-Duque et al., 2022) as demonstrated by the negative

correlation between these two variables.

Clay is the smallest mineral component of soil with the highest

surface area per unit mass, in general, it has a high water-

holding capacity and low hydraulic conductivity compared to

other soil textures, making it prone to becoming waterlogged in

moist conditions (Libohova et al., 2018), such as heavy rains.

Clay’s high water-holding capacity and poor permeability to water

and gases (Weil and Brady, 2002) can lead to flood stress and

waterlogging of plants during high precipitation events. While

the relationship between flood-stressed corn and Fusarium spp.

is not fully understood, it has been established that Fusarium is

a strongly aerobic fungus (Stover, 1953), and it has been shown

that among sandy loam, silt loam, or clay soil types, Fusarium

solani and Fusarium tricinctum have higher disease severity on

soybeans grown in sandy and silt loam soil (Yan and Nelson, 2022).

Clay soils have high infiltration capacities as water moves into the

shrinkage cracks, but when cracks are not present, their infiltration

rate is characteristically slow. The small pores of clay solids when

filled with water (saturated and under waterlogging conditions)

could also influence Fusarium spp by limiting oxygen availability.

It would be key to predict FUM outbreaks to understand the

biological effect of clay-rich soils and high precipitation events on

Fusarium growth and the diversity of species in different geospatial

locations in the US.

Soils in IL with prominent levels of clay, low soil moisture, and

low water-holding capacity offer conditions that historically might

lead to lower FUM contamination. Clay-rich soils bind strongly

to organic matter, contributing to soil aggregation, soil fertility,

and cation exchange. Therefore, clay influences soil fertility by

modulating cation exchange capacity and soil physical properties

(Weil and Brady, 2002). The capacity of clay to hold water and bind

to organic matter affects water in the soil and nutrients available

for crops. High precipitation events early in the year (February),

when there is no corn in the field, could lead to higher FUM

contamination. We hypothesize that there must be some biological

and chemical interaction between clay-rich soils early in the season

and snow and rain events that influence fungal growth in the fields.

The primary abiotic factors contributing to the presence of

FUM are water activity and temperature (Sanchis et al., 2006; Picot

et al., 2010), but the nature of this relation is complex in the context

of soil, hydroclimate variability, and plant water use. In optimal

temperatures, increased water activity promotes FUM production,

but at temperatures above the thermal optimum of 25◦C, decreased

water activity also promotes greater FUM production (Marin et al.,

2004; Samapundo et al., 2005; Sanchis et al., 2006; Picot et al., 2010).

Furthermore, F. verticillioides growth has been shown to be limited

by low water activity; however, the FUM1 gene expression was

significantly greater with lower water activity (Jurado et al., 2008).

Therefore, favorable conditions for FUM production may occur

under two different hydroclimate conditions: (1) a wet, i.e., high

water activity, period with temperatures in the thermal optimum

range; and (2) temperatures above the thermal optimum but dry,

i.e., low water activity. Some field-based evidence corroborates the

latter, where Roucou et al. (2021) noted increased FUM risk with

greater water stress, but only when temperatures were elevated. In

this study, the greater historical occurrence of FUM in Southern
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IL, where soils have less water and a propensity for water stress,

would support the second condition. Another biophysical feedback

between crop and soil may also drive greater water stress as starches

are produced during kernel ripening (Jurado et al., 2008; Picot

et al., 2010). As such, positive feedback driving greater risk for FUM

production into the latter part of a growing season may develop

when: (1) temperatures are elevated; (2) kernel ripening begins and

plant water use increases; (3) water stress is persistent, e.g., drought-

like conditions; and (4) crops are grown in soils that exasperate

water-holding capacity.

Depending on the soil type, complex plant–water interactions

can affect plant health positively or negatively. Soils conducive to

drought or flooding stress can result in crops with a lower ability to

fight fungal infections and increased susceptibility to AFL (Kebede

et al., 2012) and FUM (Parsons and Munkvold, 2010; Vaughan

et al., 2016) contamination. Furthermore, relative humidity affects

fungal sporulation and growth (Foister, 1946); therefore, both soil–

fungi–water interactions and plant–fungi–water interactions will

affect mycotoxin outbreaks. Further research that includes field

trials from different regions of the US that have variable soil types

and includes year-round time frames to account for the variation

of precipitation and temperature would aid in understanding the

causality that these spatial-temporal variables have on fungal load

and mycotoxin contamination.

The AFL and FUM-GBMmodels showed better accuracy values

than previously reported in the monthly-based models that did

not include geospatial soil dynamic features (Castano-Duque et al.,

2022). NN models showed high class-specific performance for 1-

year predictive validation for AFL (73%) and FUM (85%), thus the

NN models are recommended for annual mycotoxin prediction.

The observed overall and specific accuracy levels are at par when

compared to other mycotoxin non-US models that showed ranges

from 90 to 99% general accuracy for wheat models in Europe

(Wang et al., 2022), 75% general accuracy for corn using AFL-

maize models in Italy (Battilani et al., 2013) and >75% general

accuracy using machine learning models for toxin prediction in

corn in northern Italy (Leggieri et al., 2021). Because GBM and

NN models showed high-performance levels (Table 3), both can

be used for annual mycotoxin prediction. To be implemented,

these models would need to use input features for the months

of October–December from the previous year’s post-harvest and

projected weather and NDVI values for a maximum of a month

prior to harvest.

Our dynamic geospatial models offer additional information

about soil properties and remote-sensed data (NDVI) that influence

AFL and FUM contamination in corn. Aspergillus growth begins in

the soil, which is the habitat for the fungus; thus, the production

of AFL by fungi will be influenced by agricultural practices,

environmental conditions, and fungal interaction with soil and

plants (Winter and Pereg, 2019). Several studies have shown a

significant correlation between climate, soil properties, NDVI,

and agricultural management practices and AFL contamination in

several countries in sub-Saharan Africa, such as Kenya, Zambia,

and others, as reviewed by Keller et al. (2022). AFL surveys and

studies conducted in Eastern and Western Kenya (Köppen, 2011)

support the utility of remote-sensed data such as NDVI, rainfall,

and soil properties to predict aflatoxin contamination (Smith et al.,

2016). Satellite-generated databases have been previously used in

wheat studies in Europe and led to higher model accuracy (Wang

et al., 2022). Previous studies in Africa found that soil organic

carbon content, pH, total exchangeable bases, salinity, texture, and

soil type were significantly associated with AFL (Smith et al., 2016).

Soil data throughout IL embody important geographic variability

related to geologic deposition, age of material, climate, duration

of pedogenesis, natural history, and other factors. Soil conditions

strongly influence which species of fungi dominate in a given soil

environment (Weil and Brady, 2002). Our research shows that in

the US, specific properties available from geospatial data such as

calcium carbonate, pH, clay content, and soil moisture are key

factors correlated with historical AFL and FUM outbreaks. Our

dynamic geospatial models can guide research and identifymultiple

factors contributing to the risk of AFL or FUM contamination in a

geographical region and within weekly time frames.

Some agronomic practices take place between corn-growing

seasons, such as tilling and drilling (Borràs-Vallverdú et al.,

2022), while other factors are constant throughout the year,

such as soil properties (Smith et al., 2016) and other socio-

economical parameters such as training farmers on the detection

of contaminated crops in the field and mitigation strategies, and

the involvement of the private sector to provide incentives for

farmers to adopt aflatoxin management techniques (Titilayo, 2018)

that influence mycotoxin contamination. Several of these factors,

such as soil properties, were included in our models, although

much information on other agronomic practices is not available

at the historical geospatial scale needed for this mycotoxin data

set. Nevertheless, our models were able to determine that input

features linked to weekly temporal zones between corn-growing

seasons have a significant influence on the end-of-year mycotoxin

contamination. Among these input features, soil properties were

a novel addition to the IL models. It remains to be evaluated if

there are differences between the diverse fungi Aspergillus (AFL

producer) and Fusarium (FUM producer) (Samapundo et al.,

2005) in relation to growth, development, and toxin production

associated with environmental factors in the field, such as crop

rotation using winter wheat. For future applications, quarterly

historical data should be used to create a quarterly predictivemodel.

These models would be beneficial for farmers as they will be alerted

by the prediction of impending contamination several months

in advance before harvest, thus providing ample time to deploy

mitigationmeasures such as biocontrol, irrigation, and/or fungicide

application to avoid contamination of their crops.
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