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Sisal bole rot disease is the major phytosanitary problem of Agave plantations in Brazil.
The disease is caused by a cryptic species of Aspergillus: A. welwitschiae. To date, the
only way to diagnose the diseasewas to observe external symptoms, visible only when
the plant is already compromised, or through the isolation and sequencing of the
pathogen, which requires cutting the entire plant for bole tissue sampling. We
developed a new primer set based on a unique gene region of A. welwitschiae,
which can detect the phytopathogenic strains through PCR directly from sisal leaves.
Using the newmarker to study themain sisal-producing areas in Brazil, we discovered
a troublesome situation. The main producing areas of this crop had a pathogen
incidence of 78%–88%. The dispersion index indicates a regular spatial pattern for
disease distribution, suggesting that the use of contaminated suckers to establish new
fields may be the main disease-spreading mechanism. Altogether, the high incidence
of the pathogen, the unavailability of clean plants, the unpredictability of disease
progression, and the low investment capacity of farmers reveal the vulnerability of this
sector to a potential phytosanitary crisis. By correlating the disease symptomatology
with soil nutritional traits, we suggest that higher potassium availability might decrease
visual symptoms, while phosphorus may have the opposite effect. Also, we observe a
potential cultivar effect, suggesting that common sisal may be more susceptible than
hybrid cultivars (especially H400). This new molecular tool is a significant advance for
understanding the disease, enabling the implementation of amonitoring program and
studies that may lead to pathogen control strategies and changes in the Brazilian
production model.
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1 Introduction

Sisal is the popular name for a range of hard natural fibers
derived from Agave leaves, usually extracted from Agave sisalana
(common sisal), A. fourcroydes, or hybrid cultivars, like the
H11468 [(A. amaniensis x A. angustifolia) x A. amaniensis]
(Raya et al., 2021). In the past, sisal was a very relevant source of
hard fibers, which were gradually replaced by the synthetic fibers,
such as polypropylene (Davis and Long, 2015). However, given the
widespread comprehension of climate change and the need for
biorenewables, Agave might experience a resurgence to its former
status (Raya et al., 2022), reclaiming global significance not only as a
source of hard fibers, but also through profoundly diversified
utilization strategies of these resilient plants (Morán et al., 2008;
de Paula et al., 2012; Santos et al., 2015; Pérez-Zavala et al., 2020).

Since the 1960s, Brazil is the world’s leading producer of sisal
fiber, despite undergoing a significant decline in production. While
in 1990 the production was 300,200 Mg annually (Silva and Beltrão,
1999), today Brazil produces around 98,000 Mg per year. This
currently constitutes around 36% of the global annual sisal fiber
production (FAO, 2023), with the State of Bahia alone accounting
for approximately 94% of this output (IBGE, 2021). Sisal cultivation
is socioeconomically relevant by providing, directly or indirectly, the
main economic driver for a population of over 850,000 people in the
Brazilian semiarid, where it is often the only agricultural product
available (Broeren et al., 2017). Although other sisal fiber producing
countries, such as China and Tanzania, cultivate the H11648
(Monja-Mio et al., 2019), Brazilian fiber production is based on
the large-scale cultivation of undefinedA. sisalana plants, with lower
fiber yield (Azzini et al., 1989; Silva and Beltrão, 1999; Suinaga et al.,
2007). One of the main reasons for this scenario is the production
model based on a laborious fiber extraction with the utilization of
equipment that demands manual operation (the “Paraibana”
machine—see Silva and Beltrão, 1999). Therefore, the higher the
leaf fiber content, the greater the worker’s effort to accomplish their
job. In other countries, such as Tanzania or China, fiber extraction is
accomplished by stationary machines, with the leaves being
transported to small industries where they are processed
(Broeren et al., 2017). In this case, high fiber content becomes an
advantage and not a restriction. Nevertheless, somemore productive
Agave cultivars like H11648 or H400 leaves (“híbrido 400 folhas” in
Portuguese, named simply H400 from this point forward) can
eventually be found in sisal fields in Brazil (Silva and Beltrão,
1999; Alvarenga Jr, 2012) but at a much lower proportion. The
origin of H400, also known as the “white hybrid,” is not clear, but
seems to be closely related to the H11648 (Souza et al., 2018).

For the last 2 decades, sisal fiber production in Brazil has
significantly declined due to the bole rot disease, which
represents the primary phytosanitary issue in the country’s
sisal fields (Abreu, 2010; Soares et al., 2020). This disease is
caused by Aspergillus welwitschiae, a saprotrophic fungus that
switches to a necrotrophic lifestyle when infecting the wounded
sisal bole, destroying the parenchymal tissue (Duarte et al.,
2018). The primary symptoms of this disease involve the
decay of both the bole and leaf base, characterized by the
appearance of internal tissue exhibiting hues that span from
red to a spectrum of light and dark brown discoloration.
Subsequently, secondary indications become apparent through

the yellowing and wilting of leaves, eventually leading to the
demise of the entire plant (Duarte et al., 2018).

Drawing from extensive field observations and the documented
spread of the bole rot after an intense drought period spanning 2011-
2012 (both extensively detailed in prior publications by our research
group), we believe that the establishment of the necrotrophic phase
of the disease hinges on physiological stress. This stress can result
from nutritional deficiencies, the pressures induced by drought, or
even mechanical damage arising from plant manipulation during
leaf removal for fiber extraction or sucker elimination. Notably, the
influence of an insect, such as Bemisia tabaci (Quintanilha-Peixoto
et al., 2021), or yet by an infestation of pests, such as Dysmicoccus
spp. (Wang et al., 2022), could also contribute to this injury-induced
phase.

Our research group has recently discussed some molecular
characteristics and mechanisms possibly involved in the
pathogenicity of A. welwitschiae in sisal (Quintanilha-Peixoto
et al., 2019; Quintanilha-Peixoto et al., 2022b), but there are still
open questions on the disease cycle and susceptibility of fiber-
producing agaves. The identification of the etiological agent, A.
welwitschiae, was described only in 2018, along with a
comprehensive overview of the global prevalence of sisal bole rot
disease and its associated pathogen (Duarte et al., 2018). This is due
to the fact that within the Nigri section of the Aspergillus genus, A.
welwitschiae is considered a cryptic species of A. niger. This cryptic
nature implies that distinguishing between these two species is not
feasible using conventional microbiological methods like assessing
colony appearance and spore morphology (Varga et al., 2011), or
even relying on the primary fungal DNA barcode, nrITS (Susca et al.,
2016). Consequently, the current standard for identification and
comprehensive examination of the phylogeny and taxonomy of
these fungi relies on the meticulous sequencing of the calmodulin
(CaM) gene—a secondary marker gene for some fungal clades. This
identification method, applied by Duarte et al. (2018), entails
cultivating the fungus in a pure culture, extracting its DNA,
amplifying the CaM gene via PCR, and subsequently subjecting it
to sequencing using the Sanger technique. Efforts have been
undertaken to design specific primers targeting the CaM gene for
A. welwitschiae (Gherbawy et al., 2015; Palumbo and O’Keeffe,
2015), particularly for discerning strains associated with food
contamination. Nevertheless, as elucidated further, these primers
might exhibit amplification across other species within the Nigri
section.

In this study, our aim was to develop a more reliable and user-
friendly molecular marker for accurate A. welwitschiae
identification. To achieve this, we diverged from the conventional
approach of seeking minor polymorphisms within traditional genes,
opting instead to identify exclusive regions within the genomes of A.
welwitschiae, which have recently been released. Once this novel
marker was validated, we employed the test on samples obtained
from Brazil’s main sisal-producing regions, conducting an
epidemiological investigation. The new test offers an
unprecedented level of insight into bole rot disease in Brazil,
shedding light on potential correlations between disease
symptomatology and nutritional status, and even revealing
potential cultivar-specific effects. This new tool presents novel
opportunities for disease management, not only within Brazil but
also in sisal-producing regions worldwide.
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2 Materials and methods

2.1 A. welwitschiae unique regions
detection, primer design, and validation

For the development of a set of primers targeting the
detection of A. welwitschiae, we performed an analysis of
orthologous genes using the gene-coding sequences (CDS) of
40 Aspergillus strains and two other fungal species, Neurospora
crassa and Penicillium rubens. In this analysis, three strains of A.
welwitschiae were used, being CBS159.1 isolated from
Welwitschia mirabilis and CCMB 663 and CCMB 674 isolated
from sisal plants. We used the same set of species (Supplementary
Table S1) as seen in Quintanilha-Peixoto et al. (2022b) to find
unique genes in A. welwitschiae and design primers that could be
used to diagnose the bole rot disease. We used OrthoFinder v.
2.5.2 (Emms and Kelly, 2018) to perform the orthologous
analysis, using the parameter “-d” for DNA input. From the
results, we selected families that contained only A. welwitschiae
genes.

In order to design the primer sequences, we used Primer-BLAST
(available at https://www.ncbi.nlm.nih.gov/tools/primer-blast/)
under default settings and “A. welwitschiae” as the organism
option. Considering the housekeeping function of the gene
selected as a marker in A. welwitschiae, we complemented
OrthoFinder ortholog designation with a search for paralogs in
A. fumigatusAf293, A. nidulans FGSC A4, and A. nigerN402, which
were also compared against A. welwitschiae CCMB 674 and A.
welwitschiae CCMB 663 in the primer set validation.

Selected sets of primers were tested and then validated with
ECRA HIFI DNA Polymerase (ECRA Biotec), following
manufacturers procedures. After an initial in vitro screening, one
primer set (Aw_8 F: CACCTGATCCTGGAGGGAGA, Aw_8 R:
AGCCACCTGGAGAAGCAATC) was selected and optimized by
adding DMSO to the reaction mix and testing different annealing
temperatures to increase specificity. Primers previously described in
the literature as capable of segregating A. welwitschiae and A. niger
were also used as external controls. One pair of primers described by
Palumbo & O’Keeffe (2015) (Aw F: GGGATTTCGACAGCATTT
CTCAGAATT and Aw R: GATAAAACCATTGTTGTCGCGGTC
A) and the other by Gherbaway et al. (2015) (awaspec: ATTTCG
ACAGCATTTCTCAGAATTA and cmd6: CCGATAGAGGTC
ATAACGTGG) were selected.

2.2 Plant material and testing

A total of 179 samples of sisal plants from the main producing
areas in Bahia were tested. Samples were collected in August
2019 from three regions known as “identity territories”
(Figure 1) demarcated by environmental, economic, and
cultural criteria (Secretaria do Planejamento do Estado da
Bahia, 2016). The first territory, Piemonte da Diamantina, is in
the North of Bahia at an mean altitude of 740 m, has an average
annual maximum air temperature of 29.8°C and a minimum of
16.2°C (Fick and Hijmans, 2017), and an average annual rainfall of
492 mm (INMET, 2023). Sampling sites of Piemonte da
Diamantina included the municipalities of Jacobina, Várzea

Nova, and Ourolândia, which jointly account for 11,457 Mg of
sisal fiber produced per year (IBGE, 2021). The second territory,
Piemonte Norte do Itapicuru, is farther north at an average
altitude of 680 m, with a maximum annual air temperature of
up to 30.7°C and a minimum of 16.3°C (Fick and Hijmans,
2017), and average annual rainfall of 580 mm (INMET, 2023).
The sampling sites in this territory include only different areas
of the municipality of Campo Formoso, the largest sisal-
producing municipality in Brazil, with 22,546 Mg of fiber
produced per year (IBGE, 2021). The third territory, Sisal,
which is farther east than the others, has lower mean
altitude (600 m) and an annual maximum air temperature of
30.3°C and a minimum of 17.4°C (Fick and Hijmans, 2017) with
an average annual rainfall of 511 mm (INMET, 2023). Samples
were collected from the municipalities of Conceição do Coité,
Valente, Retirolândia, Itiúba, and Monte Santo, which are
responsible for the annual production of 20,397 Mg of fibers
(IBGE, 2021). For each territory, 45, 43, and 91 samples were
tested from Piemonte da Diamantina, Piemonte Norte do
Itapicuru, and Sisal territories respectively. In the Sisal
territory, more samples were collected as production areas
with hybrid cultivars were found during the survey,
specifically in Itiúba. The three sisal cultivars sampled are
represented in Figure 2.

Leaf samples were collected and maintained in styrofoam
coolers with ice, until arrival at the laboratory, where they were
frozen in liquid nitrogen. Total DNA was extracted from leaves
using the Sahu et al. (2012) protocol. A. welwitschiae detection was
performed as the conditions described in the previous section, but
using Agave’s 18S (Martinez-Hernandez et al., 2010) (Atq-
rRNA18SF CTGCCGTCCCGTCCTGCCGTCCCGTCCCTTCTG
C and Atq-rRNA18SR CCTGGTGGTGCCCTTCCGTCAA) as an
endogenous control and DNA extracted from A. welwitschiae strain
CCMB 674 was selected as an exogenous control. The results were
evaluated according to the presence (positive) or absence (negative)
of PCR product at the correct molecular weight.

2.3 Soil analyses

The sisal-producing areas, inserted in the semi-arid region of
Bahia, display a great environmental diversity, especially in relation
to climate, geology, geomorphology, and local vegetation, exhibiting
a high diversity of soil classes. Soils cultivated with sisal range from
undeveloped, shallow, fertile, and stony to well-weathered, deep,
chemically poor, and clayey soils. According to the updated soil map
of Bahia (IBGE, 2018) and the soil reclassification according to FAO/
WRB (2015), predominate in the territories of Piemonte da
Diamantina and Piemonte Norte do Itapicuru the Xantic
Ferralsols (Dystric) and the Eutric Cambisols, with less
occurrence of Dystric Leptosols, which is considered of low
potential for sisal cultivation.

Soil samples were collected from Eutric Planosols (ITM and
RLV), Eutric Cambisols (CFB, CFV, CFL, VNA, VNM, LBM,
and OUF) and Eutric Regosols (VLM and CCA). For each site,
composite samples were collected, from 0–20 cm, within 1 ha
(Raij et al., 2022) and sent to LAGRO—Laboratório
Agronônimo S/C Ltda (Indaiatuba, SP) for determination of
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soil granulometry and fertility (macro and micronutrients),
according to the methodology described by Raij et al. (2001).
Considering that there are no reference values available for
classifying soil nutrients in terms of availability as low, medium

and high, the guidelines for Cerrado soils were used as the
standard for macronutrients (Lopes and Guimarães, 1989). For
micronutrients, the references described for perennial species in
the State of São Paulo were used (Raij et al., 2022).

FIGURE 1
Sampling sites and domain map of soils cultivated with sisal in Bahia. On themain map, from left to right are the Piemonte da Diamantina, Piemonte
Norte do Itapicuru, and Sisal territories. OUF, Ourolândia; VNM, Várzea Nova—Mulungu; VNA, Várzea Nova—Angicos; LBM, Jacobina—Lages do Batata;
CFV, Campo Formoso—A volta; CFL, Campo Formoso—Ladeira do Vivi; CFB, Campo Formoso—Baixão; ITM, Itiúba; MSC, Monte Santo; RLV,
Retirolândia—Bela Vista; RLA, Retirolândia—Alto Bonito; VLM, Valente; CCA, Conceição do Coité; SGM, Conceição do Coité.

FIGURE 2
The sisal cultivars used in Brazil. (A) Agave sisalana; (B) H11648 [(A. amaniensis x A. angustifolia) x A. amaniensis]; (C) H400 leaves.
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2.4 Data integration and analysis

Epidemiological parameters were calculated according to Vale et
al. (2004). The incidence of the pathogen (PI) was calculated
through:

PI � iP
iS

(1)

where iP is the total number of positive individuals for A.
welwitschiae and iS is the total number of sampled individuals.

The prevalence (P) was defined by:

P � An

At
(2)

where An is the number of areas containing at least one plant
diagnosed with the disease and At is total number of sampled areas.

The dispersion index (DI) for each territory was calculated from
the pattern of contamination agglomeration in the collection sites, as
given by Eq. 3:

DI � σ2
t

�x
(3)

where σ2t is the variance and �x is the mean of pathogen incidence per
territory.

In order to understand the potential effect of soil characteristics on
the incidence of A. welwitschiae and persistence of bole rot symptoms,
we applied multivariate linear regression to the dataset. Because of the
small sample of fields (n = 11), the dependent variables set of the
regression model had to be reduced, so that the system would not be
overdetermined. Therefore, we selected the top nine soil characteristics
based on the highest Pearson correlation with pathogen incidence and
symptom (Supplementary Figure S1) and possible direct implications
on plant health. All selected characteristics had correlation coefficients
(r-values) higher than 0.4. With the selected soil characteristics (P, K,
Ca, Mg, CEC, V%, Na, Mn, Cu), we used the multivariate model for
both (i) pathogen incidence per field and (ii) the proportion of
symptomatic individuals in that field:

y � α +∑
i
βixi (4)

Where α is the intercept, βi is the effect coefficient of the dependent
variable xi, and y is the predictor equation of proportion of
symptomatic or infected individuals. In order to avoid biases
deriving from the different cultivars and over/sub represented areas,
we discarded the data from fields containing the hybrid cultivars. All
analyses were done using the R software R v4.1.3 (R Core Team, 2022)
and PAST software version 4.3 (Hammer et al., 2020).

3 Results

3.1 Detection of unique regions for the
diagnosis of the bole rot disease in Agave
sisalana

Initial tests with primers described in the literature by Palumbo
and O’Keeffe (2015) and Gherbawy et al. (2015) did not excel at
differentiating our strains ofA. welwitschiae (CCMB 674 and CCMB

663) from A. fumigatus Af293, A. nidulans FGSC A4, and A. niger
N402 (Figure 3). Meanwhile, our orthologous analysis using
nucleotide sequences initially described 51 orthologous clusters
exclusive to our 3 A. welwitschiae strains. 35 orthologous clusters,
initially annotated as “hypothetical protein,” were tested on
PrimerBLAST for obtaining common PCR products. Among
these, genes in four clusters did not share enough similarity for
primer design, and 13 produced off-target hits in the A. welwitschiae
genome. The top 10 longest PCR products from the remaining
clusters were selected for in vitro testing. Among the preselected
primers, only one primer set, Aw_08, was able to differentiate
A. welwitschiae from A. niger (Supplementary Figure S2), producing
a polymorphic PCR product with higher molecular weight. For
this primer set, we performed further reaction optimization tests
to improve specificity, and subsequently tested against A. niger,
A. fumigatus, and A. nidulans (Figure 3). By increasing the
annealing temperature to 64°C, Aw_8 was able to identify only the
A. welwitschiae phytopathogenic strains (Supplementary Figure S3)
(Quintanilha-Peixoto et al., 2022a), and with a sensitivity up to
0.75 ng μL−1 of DNA per sample (Supplementary Figure S3).

The full annotation of the proposed marker gene can be found in
Supplementary Table S2. To further investigate our primer set
specificity we searched for PC5R paralogs in the other genomes
used for validation (A. fumigatus Af293, A. nidulans FGSC A4, and
A. niger N402). This paralog analysis revealed other PC5R sequences
sharing similarity with the A. welwitschiae sequences clustered by
OrthoFinder. However, such sequences were highly divergent
(Figure 4C), which explains our primer specificity. The closest
sequence, XM_677456.1 from A. nidulans FGSC A4, shares a 69%
identity region, which covers only 52% of the A. welwitschiae sequence.

3.2 Molecular epidemiology

The developed molecular marker successfully identified the
presence of A. welwitschiae in sisal leaves. Out of all the collected
samples, those showing evident symptoms of bole rot disease
consistently tested positive for A. welwitschiae, whereas negative
results were obtained from visually healthy plants. Through
molecular analysis, we observed a pathogen prevalence of 100%
in sisal production areas. A. welwitschiae incidence within the
sampling sites varied from 25% to 100% (Table 1). In contrast,
symptoms occurrence ranged from 0% to 56%. The territories of
Piemonte Norte do Itapicuru and Sisal are traditionally known for
the more intense cultivation of sisal, in particular the municipalities
of Campo Formoso (largest producer) and Valente (largest fiber
industrial units). In these territories, approximately 17% of the
sampled plants showed bole rot symptoms. Among all
municipalities, Retirolândia (Sisal territory) had the highest
occurrence of sisal bole rot symptoms. The territory that
presented the higher incidence was Sisal, with 88%. Piemonte da
Diamantina had the lowest incidence, with 78%, and it was the
territory with the highest asymptomatic rate. The lowest incidence
was found in Ourolândia (Piemonte da Diamantina territory), the
municipality farthest from the territory with the highest incidence of
the disease (Sisal). For all territories, we encountered a dispersion
index lower than 1, indicating that this disease has a regular
dispersion pattern.
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FIGURE 3
In vitro analysis of candidate primers for molecular diagnosis of sisal bole rot disease. -: negative control, Ang: Aspergillus niger N402, And:
Aspergillus nidulans FGSC A4, Afg: Aspergillus fumigatus Af293, 663: Aspergillus welwitschiae strain CCMB 663, 674: Aspergillus welwitschiae strain
CCMB 674, AWF/AWR: primers set described by Palumbo and O’Keeffe, (2015), Awaspec/Condc6: primers set described by Gherbaway et al. (2015), Aw_
08: candidate primers set, and Ladder 1kb: 1Kb KASVI marker.

FIGURE 4
(A) SNPs in the PC5R genes of the 3 A. welwitschiae isolates (B) Representation of the flanking regions of the selected primer set (first layer and green
shadow), protein superfamilies, and protein domains in the selected gene, according to hmmscan (C) PC5R paralogs phylogeny with bootstrap support.

Frontiers in Chemical Engineering frontiersin.org06

Raya et al. 10.3389/fceng.2023.1174689

https://www.frontiersin.org/journals/chemical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fceng.2023.1174689


In addition, the incidence of A. welwitschiae and occurrence of
symptoms were compared amongst the sisal cultivars (A. sisalana,
H11648, and H400) (Table 2). Among them, the common sisal (A.
sisalana) showed the highest proportion of symptomatic
individuals, while no symptoms were observed for H400.
Furthermore, A. welwitschiae was detected in 76% of the
H11648 plants analyzed, but only 10% of this population showed
symptoms. Nonetheless, it is important to point out that the
presence of hybrid cultivars in commercial plantations is
uncommon, and 82% of the hybrid cultivars encountered
occurred in the same municipality (Itiúba).

3.3 Physical and chemical properties of soil
samples

The fertility analysis revealed acid toweak alkaline soils (pH 4.9–7.3),
with average organicmatter, and rich in Ca andMg (Table 3). Also, noAl
was found, and the potential acidity (H+ + Al³+) was low, which is
consistent with the pH. Base saturation (V%)was classified as high to very

high (>90), with Ca andMg levels asmajor contributors. Accordingly, the
cation exchange capacity (CEC) was average to high, indicating soils with
overall good natural fertility. Soil P availability varied from 6 to 54mg
dm−3 among the sites, which is considered low for most perennial crops
(Raij et al., 2022). Only Retirolândia and Conceição do Coité exhibited P
levels above the standard. For K, we found high variations, from 0.6 to
6.9 mmolc dm−3 and CFV, ITM, VLM, and RLV displayed the lowest
values. Sulphur ranges were low to medium, ranging from 2.3 to
8.0 mg dm−3.

For micronutrients, soil Mn and B levels were mostly high, while
Cu and Zn were low (Table 4). As for Fe, the samples ranged from
4 to 49 mg dm−3. Specifically for the Sisal territory, only high Fe
levels were found. It is important to emphasize that pH directly
influences the availability of several nutrients, and soils with higher
alkalinity have less availability of micronutrients, such as Fe, Zn, Cu,
and Mn, and more availability of Ca, Mg, K, P, S, and B. Soil Na
varied from 0.2 to 2.4 mmolc dm−3 among the sites. Granulometric
analysis of soil samples indicated a predominant texture of sandy to
medium, with sandy clay loam textural class being more frequent
(Supplementary Table S3).

TABLE 1 Epidemiology of sisal bole root disease in the main sisal-producing territories of Bahia.

Territory/Municipalities Incidence of A. welwitschiae (%) Asymptomatic plants (%) Dispersion index

Piemonte da Diamantina 78 89 0.11045

Ourolândia 25 100

Jacobina—Lages do Batata 71 70

Varzea Nova—Angicos 82 93

Varzea Nova—Mulungu 100 100

Piemonte Norte do Itapicuru 84 81 0.00352

Campo Formoso—Baixão 86 72

Campo Formoso—A Volta 90 78

Campo Formoso—Ladeira do Vivi 75 100

Sisal 88 81 0.01100

Itiúba 81 94

Monte Santo 100 100

Valente 100 83

Conceição do Coité 100 79

Retirolândia—Alto Bonito 75 50

Retirolândia—Bela Vista 90 44

The incidence of A. welwitschiae and the prevalence of asymptomatic plants within each territory (Piemonte da Diamantina, Piemonte Norte do Itapicuru, and Sisal) are calculated as averages

for the municipalities encompassed by them.

TABLE 2 Incidence of A. welwitschiae in sisal cultivars.

Cultivars Incidence (%) Symptomatic (%) Asymptomatic (%) Number of individuals

Agave sisalana 84 16 84 128

H11648 76 10 90 29

H400 95 0 100 22
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The PCA grouped the soil samples according to textural class,
separating the sandier soils on the surface: Eutric Planosols (ITM),
Eutric Regosols (VLM) and some Eutric Cambisols (CFB and VNA),
from those Cambisols with medium to clayey texture (Figure 5),
showing that the soil granulometry parameters (clay, silt, and sand)
were themain factor that contributed to sample segregation followed by
CEC and Ca. Despite this grouping, the greater dispersion of soils
demonstrates that there is diversity in soil compositionwithin territories
and evenwithin the samemunicipality, as can be seen in the segregation
between Várzea Nova samples. The studied Cambisols, associated with
the Xantic Ferralsols (Eutrics), with great occurrence in the
municipalities of Campo Formoso and Jacobina, are considered soils

of medium to high potential for the cultivation of sisal since they are
from little to very deep, medium to high fertility, medium to clayey
texture and then have reasonable water holding capacity. There are also
occurrences of Dystric Leptosols in these territories, which predominate
in the Sisal territory, along with Eutric Planosols, Eutric Regosols, and
Abruptic or Haplic Solonetzs. These less weathered soils are considered
of low potential for the cultivation of sisal, as they present medium to
low fertility, reduced effective depth, sandy texture, low water retention
capacity, and/or high salinity, factors that, associated with the semi-arid
climate of the region, lead to greater stress for cultivated plants.

Multivariate linear regression analysis revealed significant
(p-value ≤0.1) interactions between symptom occurrence and soil

TABLE 3 Soil fertility analysis.

Sampling sites pH CaCl2 O.M oxi P resin Kresin Caresin Mgresin Al ³ KCl H+ + Al³+ CEC V S F. Ca

g/dm³ mg/dm³ mmolc/dm³ % mg/dm³

Ourolândia 6.1 19 18 3 35 13 0 14 65.2 79 4.0

Jacobina—Lages do Batata 7.2 29 10 2.5 87 15 0 9 113.8 92 3.0

Varzia Nova—Angicos 7.1 23 9 6 106 13 0 11 136.2 92 8.0

Varzia Nova—Mulungu 6.3 22 9 6.9 108 24 0 16 155.3 90 4.0

Campo Formoso—Baixão 6.9 18.2 28.6 3.62 49.4 15.4 0 11 79.86 83.8 5.4

Campo Formoso—A Volta 7.3 33 7 0.7 129 9 0 9 148.1 94 6.0

Campo Formoso—Ladeira do Vivi 7.2 25 6 2.2 130 13 0 10 155.7 94 6.0

Itiúba 5.6 12.3 7.7 1.13 40 19.7 0 16 77.7 79.3 3.0

Valente 4.9 17 17 0.6 103 54 0 34 193 82 6.0

Conceição do Coité 6.7 32 41 4 109 100 0 16 230.7 93 3.0

Retirolândia 7.1 19 54 1.3 220 81 0 12 316.7 96 2.3

Data presented in bold are values considered above the reference standards, and in red are values considered below.

TABLE 4 Micronutrients and sodium determination.

Sampling sites Na Mehlich Fe DTPA Mn DTPA Cu DTPA Zn DTPA B Hot water

mmolc/dm³ mg/dm³

Ourolândia 0.2 15 46.0 0.7 0.6 1.1

Jacobina—Lages do Batata 0.3 4 21.0 0.6 0.8 2.2

Varzia Nova—Angicos 0.2 8 15.6 0.7 0.8 1.9

Varzia Nova—Mulungu 0.4 7 20.6 1.0 0.7 1.6

Campo Formoso—Baixão 0.4 6 44.9 1.4 1.0 1.6

Campo Formoso—A Volta 0.4 6 4.0 0.4 0.8 1.4

Campo Formoso—Ladeira do Vivi 0.5 4 17.0 0.8 1.1 2.3

Valente 1.4 42 32.0 2.6 0.4 1.1

Conceição do Coité 1.7 17 22.6 2.5 0.9 1.8

Retirolândia 2.4 12 12.0 1.2 0.7 1.5

Itiúba 0.9 49 7.4 0.8 0.4 0.8

Data presented in bold are values considered above the reference standards, and in red are values considered below.
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characteristics (Table 5). The adjusted model presented multiple R2 of
0.9936 and adjustedR2 of 0.9363. The generatedmatrix (Supplementary
Figure S4) displayed the expected correlations between the nutrient
availability and pH (Hartemink and Barrow, 2023), e.g., P, K, Ca, and
Mg, demonstrating that the soil data are consistent. The soil traits with
significance were P, K, Ca, Mg, CEC, and V%. Among them, K, Ca, and
Mg presented negative correlations with symptom occurrence. The
analysis summary for interaction with pathogen incidence is depicted in
Supplementary Table S4.

4 Discussion

Primer development for the detection and differentiation of
Aspergillus species has proven to be a challenge. Even though a

couple of studies have tackled this issue (Gherbawy et al., 2015;
Palumbo and O’Keeffe, 2015), both studies developed primer sets
based on the Calmodulin gene and validated them with local
samples. Calmodulin is a housekeeping gene present in all
eukaryotes, and its application for phylogenetic studies of the
Aspergillus genus is a consensus because it can be easily amplified
and a large dataset is available in public databases (Samson et al., 2014;
Tam et al., 2014; Alshehri and Palanisamy, 2020). Nonetheless, the
proper identification of several Aspergillus species of section Nigri is
often based on single-nucleotide polymorphisms (SNPs) of the CaM
gene. Relying on such small nuances might decrease PCR specificity,
leading to false positive results. When testing those literature primers,
we observed PCR amplification for A. nidulans, A. fumigatus, and A.
niger (Figure 3), which can bemisleading, since these species can behave
as saprotrophs (Tekaia and Latgé, 2005) and/or as endophytes
(Vijayanandan and Balakrishnan, 2018; Xu et al., 2018; Aziz et al.,
2021) and, therefore, can easily be found in complex samples. In this
study, we prospected potential targets and designed new primers from
orthologous clusters unique for the 3A. welwitschiae strains within their
available genomes. Among the developed primer sets, Aw_08 presented
the best outcome, proving to be specific, highly sensitive, and effective in
complex samples. This new marker gene codes for a D1-Pyrroline-5-
Carboxylate Reductase (P5CR) (Figure 4B), which participates in the
proline metabolism (Porcel et al., 2004; Yadav et al., 2020) and has also
been associated with pathogenicity in Cryphonectria parasitica (Yao
et al., 2013). The PC5R sequences are nearly identical in all three
examined strains of A. welwitschiae, differing by only five nucleotides
(Figure 4A). These variations do not exert a significant impact on the
amino acid sequence or structure. The phylogenetic analysis of Aw-
P5CR indicates that the closest sequences present in A. fumigatus
Af293, A. nidulans FGSC A4, and A. niger N402 genomes are highly
divergent paralogs (Figure 4C), whichmight contribute to the specificity
of this target in comparison with other Aspergillus species.

The new primer set (Aw_8) was able to amplify the Aw-P5CR
gene from complex samples. With high sensitivity, the test not only

FIGURE 5
Principal component analysis of soil samples. In red are the soil traits that most contribute to the separation of the samples, and the green lines of
these represent the factor contribution. OUF, Ourolândia; VNM, Várzea Nova—Mulungu; VNA, Várzea Nova—Angicos; LBM, Jacobina—Lages do Batata;
CFV, Campo Formoso—A volta; CFL, Campo Formoso—Ladeira do Vivi; CFB, Campo Formoso—Baixão; ITM, Itiúba; MSC, Monte Santo; RLV,
Retirolândia—Bela Vista; RLA, Retirolândia—Alto Bonito; VLM, Valente; CCA, Conceição do Coité; SGM, Conceição do Coité.

TABLE 5 Multivariate linear regression analysis for the presence of bole rot
symptoms against soil characteristics.

Estimate Std. Error t value Pr (>|t|)

Intercept −8.707943 1.297001 −6.714 0.0941*

P 0.030838 0.003970 7.768 0.0815*

K −0.091716 0.011966 −7.664 0.0826*

Ca −0.080246 0.011729 −6.842 0.0924*

Mg −0.082511 0.011543 −7.148 0.0885*

CEC 0.068762 0.010146 6.777 0.0933*

V% 0.103527 0.015078 6.866 0.0921*

Na 0.227607 0.137325 1.657 0.3456

Mn −0.003730 0.002522 −1.479 0.3784

Cu −0.319310 0.081089 −3.938 0.1583

*Significance at p < 0.1.
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detected A. welwitschiae in leaves of symptomatic plants but also in
samples of apparently healthy plants. This is a significant
advancement for research with sisal bole rot disease, regarding
epidemiological and control studies, since, until date, the
pathogen’s proper identification depended on a combination of
microbiology techniques with Sanger sequencing (Duarte et al.,
2018). The traditional identification methods are also destructive,
requiring internal stem samples that implicate cutting and
destroying the whole plant. Using leaf samples is an alternative
that allows periodic assessments to detect the pathogen at the early
stages of plant infection and colonization, before bole rot symptoms
become visible. Indeed, our epidemiological study with the Aw_
08 primer set detected A. welwitschiae in 81%–89% of A. sisalana
asymptomatic plants, as well as in the asymptomatic hybrids
H11648 and H400.

The last published research quantifying sisal bole rot disease in
Bahia described a 100% prevalence, while the disease incidence
varied from 5% to 40% (Coutinho et al., 2006; Abreu, 2010). Despite
the gap of over 10 years, our numbers are consistent with those
previous results. In our dataset, there is a prevalence of 100%, while
symptom occurrence ranges from 0% to 56% (Table 1).
Furthermore, the use of molecular epidemiology techniques
brought a higher resolution to this analysis. In our data, 81%–
89% of sampled sisal plants did not present any visual symptoms but
tested positive for the presence of A. welwitschiae. Moreover, this
pathogen was also detected in the hybrids H11648 and H400,
although only 10% of H11648 plants were symptomatic and all
plants of H400 were asymptomatic. According to the dispersion
index, the incidence of the disease is regular, indicating, for example,
that the spread of the disease may be related to the propagation of
contaminated suckers (Duarte et al., 2018; Soares et al., 2020).
Appropriately, the location with the lowest disease incidence is
the farthest from the territory with the highest incidence. No
significant correlation was found between pathogen incidence
and soil nutritional analysis, possibly due to the high infection
rate, which suggests that the incidence is probably more influenced
by the common use of contaminated plant suckers by sisal farmers as
planting material.

With the sisal market crisis triggered by the development of
synthetic fibers in the late 1960s, investments in research with this
crop were either reduced or canceled. In Brazil, the main example of
this process was the Agave breeding program. From the 1950s-80s,
the Agronomic Institute (IAC) was the country’s leader in the
development of new Agave cultivars (Medina, 1954; Medina,
1956; Medina, 1959; Ciaramello et al., 1975; Azzini and
Ciaramello, 1977; Salgado et al., 1979; Raya et al., 2023).
However, with the lack of investment and the retirement of the
leading researchers, there was no continuity of this program (Raya
et al., 2021; Raya et al., 2023). Currently, there is no sisal varietal
control in Brazil and producers are not concerned with this topic.
Nonetheless, with the advancement of bole rot disease, this scenario
begins to change. For instance, in Itiúba the high incidence of disease
and the susceptibility of the common sisal made many producers
lose their entire fields, which pushed those farmers to invest in
planting hybrid cultivars, which, according to their popular
knowledge, would be more resistant to the disease. Accordingly,
we observed a difference in symptomatology between common sisal
and hybrid cultivars, especially H400 which did not present any

symptoms (Table 2). Still, further experiments need to be performed
to confirm this possible resistance or tolerance. Hybrid cultivars are
not widespread in Brazil’s sisal farms, mainly because farmers claim
that fiber extraction is hampered by leaf rigidity and the foul smell of
the bagasse, which could be easily overcome with the adoption of
stationary machines.

There is an important parallel between the tequila industry in
Mexico and the Brazilian sisal situation that should be pointed out.
In the late 1990s, the combination of two pathogens (Fusarium
oxysporum and Erwinia spp.) together with a significant weather
event wiped out 1/5 of all Agave tequilana planted in Jalisco
(Jiménez-Hidalgo et al., 2004; Valenzuela-Zapata and Nabhan,
2004; Vega-Ramos et al., 2013; María de Jesús et al., 2017). In
both cases, there was the indiscriminate use of only one clonal line
and the presence of opportunistic necrotrophic pathogens. In the
Brazilian scenario, this situation could be potentially worse. As the
A. sisalana cultivated worldwide originated from plants taken to
Florida by Henry Perrine in 1836 (Medina, 1959), A. sisalana may
have higher genetic drift than other cultivated agaves. According to
our data, 84% of the A. sisalana plants are contaminated with A.
welwitschiae, and 16% present visible symptoms of bole rot disease
(Table 2). The process by which bole rot disease changes from an
asymptomatic to a symptomatic phase is complex and yet to be
described. However, disease progression might be triggered by
nutritional deficiency and/or other abiotic stresses such as water
deficit, or even changes in the microbiome (Medina, 1954; Duarte
et al., 2018; Quintanilha-Peixoto et al., 2021).

Based on our analysis, it appears that plant nutrition could play a
significant role in this pathosystem. Increased K in soil might inhibit
bole rot disease symptoms manifestation. Overall, K
supplementation has shown to improve plant resistance to
pathogens, decreasing the incidence of fungal diseases by 70%
(Perrenoud, 1977), and even disease severity (Williams and
Smith, 2001), possibly by modulating either basal susceptibility or
constitutive defense mechanisms, such as cell wall architecture or
secondary metabolites production (Amtmann et al., 2008; Wang
et al., 2013). In contrast, we found that higher P could increase
symptoms occurrence. Generally, P tends to improve plant health;
however, it can also increase pest infestation or disease severity in
several models, possibly by improving pathogen nutrition
(Perrenoud, 1990; Develash and Sugha, 1997; Walters and
Bingham, 2007).

We also noticed that CEC and V% appear to contribute to an
increase in symptom occurrence, whereas Ca andMg seem to have a
mitigating effect. Both Ca and Mg are essential minerals for plants,
and their balance has direct effects on pathogen-host interactions.
For instance, Fusarium wilt, a necrotrophic pathogen, presents less
severe infections when adequate Mg is available (Huber and Jones,
2013) and Ca is not only crucial for early signaling events for plant
defense responses but its supplementation has been shown to reduce
Phytophthora infections (Sugimoto et al., 2010; Zhang et al., 2014).
In our data, soil Ca andMg were found in concentrations considered
to be high for most crops (Raij et al., 2022). CEC and V%
measurements are both dependent on Ca, Mg, K, and Al levels.
Since no Al was detected, and K varied among soil samples, Ca and
Mg were the main contributing factors for CEC and V% correlation
to symptom occurrence, which is confirmed by the correlation
matrix (Supplementary Figure S4). Ca and Mg might contribute

Frontiers in Chemical Engineering frontiersin.org10

Raya et al. 10.3389/fceng.2023.1174689

https://www.frontiersin.org/journals/chemical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fceng.2023.1174689


to overall soil salinity, which can decrease biotic stress responses,
increasing plant susceptibility to pathogens (Bai et al., 2018).
Although Ca-deficiency was previously described as a possible
aggravating factor for bole rot disease (Medina, 1954; Duarte
et al., 2018), higher soil Ca levels may be detrimental. Besides
possible implications on the host health, Ca levels could be
influencing the pathogen’s physiology and modulating its
virulence. For instance, the recent study of the A. welwitschiae
genome revealed that Na+/Ca2+ exchanger genes were under
positive selection on phytopathogenic strains (Quintanilha-
Peixoto et al., 2022b). Also, Agave accumulates calcium oxalate as
a herbivory defense (Salinas et al., 2001; Corbin et al., 2015), but
fungal necrotrophic pathogens can use calcium oxalate crystals to
improve pathogenicity (Uloth et al., 2015). Nutrient uptake is a
complex process, and its relationships can be quite specific to each
pathosystem. This challenge becomes even more pronounced when
studying semiarid crops that naturally employ different strategies to
cope with abiotic stresses, such as salinity and drought. The
multivariate regression analysis provides intriguing insights into
the nutrient-health relationship. However, the limited data hampers
confidence in obtaining more meaningful results. In order to
comprehend the interplay between disease progression and
mineral nutrition, a comprehensive investigation of the
nutritional requirements for sisal cultivars is still necessary and
would greatly benefit from a thorough study.

The hybrid cultivars are more productive than the common sisal,
producing 30% more leaves per year and heavier leaves (Silva and
Beltrão, 1999). Productivity is a multifactor trait being the outcome of
several processes like photosynthesis, nutrient absorption, or stress
tolerance. Differences between these cultivars’ metabolism are
beginning to be described and would be crucial to understand
their agronomical performance. For instance, the H11648 biomass
was described as more recalcitrant than A. sisalana (Raya et al., 2021),
which can enhance resistance to necrotrophic pathogens (Miedes
et al., 2014) or abiotic stresses (Moura et al., 2010). Also, cultivar
interactions with sisal microbiome might be unique. Even though
taxonomically similar microorganisms in A. sisalana and
H11648 were found, transcriptomic analysis of these fungi revealed
that the same groups might be using different metabolisms in each
cultivar (Marone et al., 2022). The combination of these specific
mechanisms may contribute to robust hybrids that simply make them
healthier and, therefore, more able to deal with pathogenic
microorganisms, such as A. welwitschiae.

The sisal market crises have changed the profile of sisal
plantations in Brazil. Originally, sisal farms were large-scale
operations (Medina, 1954; Silva and Beltrão, 1999). Now, the
fiber is mainly produced by smallholders with little to no
agricultural management (Medina, 1954; Silva and Beltrão, 1999;
Broeren et al., 2017). Although Brazil is still the world’s largest
producer, this agro-extractivism system directly reflects in the
country’s fiber productivity. Nowadays, Brazil is only the 12th
country in fiber productivity (FAO, 2023), being five times lower
than the first in the ranking (China). The lack of disease control
measures and low level of technology used in sisal field management,
particularly the low quality of sisal plants used for planting new
fields, have contributed to the spread of bole rot disease (Soares et al.,
2020) but also limits farmers investment capacity. In this scenario, a
potential phytosanitary crisis arises. The current propagation system

of this crop is through rhizomes or suckers that may already be
contaminated (Kritzinger et al., 1997; Silva and Beltrão, 1999;
Applequist, 2003; Li et al., 2017). Another aggravating factor is
that there are no nurseries or biofactories (large-scale tissue culture
laboratories) producing sisal plants with high phytosanitary quality.
Even with access to healthy plants, currently economic fragility of
sisal producers is a barrier that blocks the plantations from being
renewed with proper field management technologies.

In order to prevent this possible crisis, it is urgent for the sector to
mobilize. Through public policies, it would be possible to restore
farmers’ investment capacity and encourage the production of
healthy plants through tissue culture techniques, given that this
technology is already mastered for Agave (Das, 1992; Bautista-
Montes et al., 2022) and is routinely used in other crops (Gerald
et al., 2007; Gerald et al., 2011). It is paramount for farmers to be able to
count on a broader variety of species/genotypes and affordable clean
plants. If the country wishes tomaintain the long-term feasibility of sisal
production or even correspond to Agave as biorenewables feedstock
prospects (Raya et al., 2022), the Agave breeding program must be re-
established. In fact, the sisal production system in Brazil needs to be
rethought, as the current one depends on decentralized and semi-
automatic fiber extraction process, which makes it difficult to introduce
and disseminate more robust productive varieties with greater tolerance
to the disease. Nonetheless, field removal of plants with bole rot
symptoms and the use of healthy plants for sisal plantations are still
the main disease control strategies recommended and farmers need to
be encouraged (and able) to follow it. Finally, the set of primers
developed in our study is an important tool to implement a disease
monitoring program using adequate and more precise techniques, such
as detection of the pathogen by PCR, before symptoms manifestation.
This approach can significantly enhance early detection and
management strategies.
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