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In the study of synchronization dynamics between interacting systems, several
techniques are available to estimate coupling strength and coupling direction.
Currently, there is no general ‘best’method thatwill performwell inmost contexts.
Inter-system recurrence networks (IRN) combine auto-recurrence and cross-
recurrence matrices to create a graph that represents interacting networks. The
method is appealing because it is based on cross-recurrence quantification
analysis, a well-developed method for studying synchronization between
2 systems, which can be expanded in the IRN framework to include N >
2 interacting networks. In this study we examine whether IRN can be used to
analyze coupling dynamics between physiological variables (acceleration, blood
volume pressure, electrodermal activity, heart rate and skin temperature)
observed in a client in residential care with severe to profound intellectual
disabilities (SPID) and their professional caregiver. Based on the cross-
clustering coefficients of the IRN conclusions about the coupling direction
(client or caregiver drives the interaction) can be drawn, however, deciding
between bi-directional coupling or no coupling remains a challenge.
Constructing the full IRN, based on the multivariate time series of five coupled
processes, reveals the existence of potential feedback loops. Further study is
needed to be able to determine dynamics of coupling between the different
layers.
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1 Introduction

In studies of the synchronization dynamics of interacting systems, many techniques are
available to determine whether there is a (statistical) dependence between observed time
series of the variables of interest, such as the cross-correlation function or the mutual
information measure. A more complicated research question concerns causal inference from
observed time series data, in which the goal is to quantify and qualify the nature of the
coupling dynamics between the interacting systems in terms of strength and direction
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(unidirectional, symmetric, asymmetric bidirectional, etc.). Many
different techniques are available like linear and nonlinear Granger
causality (Granger, 1969; Marinazzo et al., 2011), various
information theoretic measures such as transfer entropy
(Schreiber, 2000), conditional mutual information (Paluš et al.,
2001) and synergistic information (Quax et al., 2017), Cross-
RQA (Zbilut et al., 1998; Shockley et al., 2002; Richardson et al.,
2007) and Cross-Mapping techniques (Sugihara et al., 2012; Ma
et al., 2014; Ma et al., 2017; Leng et al., 2020). The accurate
identification of the coupling direction, however, remains a
challenge (Feldhoff et al., 2012; Runge et al., 2019). Determining
which technique is ‘best’ may depend on the specific context,
because different techniques come with different sets of
assumptions about the data generating process (e.g., linear,
stationary, etc.) and different requirements for the observed data
(e.g., time series length, noise levels). In addition, some measures of
coupling direction have been shown to give inaccurate results based
on the coupling strength and parameters such as frequency and
phase differences between the signals (Feldhoff et al., 2012).

In the cognitive, behavioral and neurosciences, Cross-
Recurrence Quantification analysis (CRQA) has frequently been
used to study coupling dynamics of human behavior and physiology,
for example, in postural sway, heart rate variability, interpersonal
behavior and emotion dynamics (Shockley, 2005; Konvalinka et al.,
2011; Cox et al., 2016; Main et al., 2016; Vink et al., 2018). In the
present paper we demonstrate how measures obtained from inter-
system recurrence networks (Feldhoff et al., 2012) can be used to
analyze the synchronization between physiological signals that were
simultaneously observed in two interacting individuals. Inter system
recurrence networks are an extension of multilayer recurrence
networks, in which the cross-recurrence matrix is used to
quantify the interdependence between different network layers
(Zou et al., 2019). The goal is not to present an optimal method
for detecting coupling direction, but to explore the applicability of
inter-system recurrence networks to analyze empirical data observed
in a healthcare setting. One reason to choose the (multiplex)
recurrence network framework is the potential for application in
clinical practice (Hasselman, 2022). Due to affordable wearable
sensors and electronic devices that allow experience sampling
and momentary ecological assessment (self-reports of
physiological, psychological, or emotional states), many
healthcare institutes are looking for ways to integrate such
process monitoring data into diagnostic and intervention
(Fartacek et al., 2016; Olthof et al., 2019; Hasselman, 2022), and
explore opportunities to personalize such procedures (Schiepek
et al., 2016; Olthof et al., 2023).

The data analyzed in the present paper concern a client in
residential care with severe to profound intellectual disabilities
(SPID) and their professional caregiver, both equipped with
wearable sensors which recorded a number of physiological
signals (acceleration, blood volume pressure, electrodermal
activity, heart rate and skin temperature) during regular daily
shifts (Simons et al., 2021). A substantial percentage of people
with SPID show severely challenging behavior, which most
frequently includes aggression and self-injury (Janssen et al.,
2002). In residential care, incidents in which SPID clients display
challenging behavior are obviously a stressor for the client, but also
for their environment, in particular the professional caregiver tasked

with resolving as well as preventing such incidents. The frequency of
occurrence and the severity of such incidents is known to affect
caregivers’ wellbeing and consequently the quality of the care they
are able to provide (Devereux et al., 2009). The focus of the analysis
will be to assess the coupling strength and direction of physiological
signals in the period before an incident with challenging behavior
occurred (see Figure 4 for an example of the data). The goal is to gain
insight in the role of physiological coupling dynamics between
individuals leading up to an incident which may inform methods
to reduce or prevent the frequency of occurrence and severity of
such incidents. First, we formally introduce the concept of inter-
system networks (IRN) and the measures that can be used to
quantify coupling dynamics, second, we use simulated data to
demonstrate the behavior of IRN measures in different coupling
scenarios, finally we present an analysis of the empirical client-
caregiver data using the same measures.

2 Inter-system recurrence
networks (IRN)

Recurrence networks represent a graph-theoretical approach to
time series analysis that is based on recurrence analysis, which
evaluates the proximity of phase space trajectories. The structural
properties of the recurrence network are associated to the geometry
of the underlying attractor (Zou et al., 2019). In this section we
describe how to construct a so-called inter-system recurrence
network which is a representation of 2 (or more) interacting
recurrence networks and examines to what extent the different
systems can be understood to share the same state space or show
evidence of coupled dynamics.

2.1 Constructing a recurrence network

An M dimensional multivariate timeseries yi{ }Ny

i�1 with yi �
y(ti) that captures the relevant degrees of freedom of a complex
system Y can be interpreted to represent its state evolution in an M
dimensional state space. Each state is represented by an m-tuple of
coordinates, the state vector yi

→ describes a trajectory through theM
dimensional state space. To study the dynamics of system Y, first, a
distance matrix is created that encodes the closeness of each
observed state relative to all other states. Second, the selection of
a distance threshold ε determines which states should be considered
close, or recurring states. Applying the threshold to the distance
matrix results in a binary auto-recurrence matrix

Rij ε( ) � RY yi, yj

∣∣∣∣∣ε( ) � Θ ε − yi
→− yj

→���� ����( ), i, j � 1, . . . , N (1)

in which ‖ · ‖ is a distance norm (e.g., Euclidean, Chebyshev) and
Θ(·) the Heaviside function, returning a 1 if a distance value is below
the threshold ε, and 0 otherwise. The threshold ε determines how
many recurrent states are found and is therefore monotonically
related to the Recurrence Rate (RR), the number of ε-recurrent
points on the maximal possible number of points. Often, a
predetermined recurrence rate is used to select a threshold ε (e.g.,
1%–5%). The recurrence matrix is used in Recurrence
Quantification Analysis (RQA) to obtain estimates of dynamical
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invariants and complexity measures from the (distribution of) ε−
recurrent points and the vertical and diagonal line structures they
form (Marwan et al., 2007).

The recurrence matrix can be used to generate a graph, a so-
called recurrence network (RN) (Zou et al., 2019). In a recurrence
network, each vertex (node) represents a time point and each edge (a
connection between 2 vertices) indicates that the values observed at
these time points are recurring values, given the threshold ε. In
general, to create an ε − RN of system X, the recurrence matrix
Rij(ε) � RX(εX), with its main diagonal set to 0, is considered to be
the adjacency matrix Aij(ε) � AX(εX) of a complex network (Zou
et al., 2019). This is an unweighted, undirected graph, in which each
vertex Vi represents a state of X observed at time point ti. For
example, the graph GX in Figure 1C, represents the ε recurring
values of time series X in Figure 1A. That is, the values ‖Xi


→− Xj

→‖

smaller than εX (the black circle in Figure 1A) are considered
recurring values of X (Eq. 1). The top left part of the matrix in
Figure 1B (blue cells) is the recurrence matrix RX(εX), turned into
the adjacency matrix AX(εX), the rows and columns of the matrix
represent the vertices of the network, a cell containing a 1 indicates
the vertices are connected by an edge. In Figure 1C, vertices v2 and
v3 are connected by an edge Ei→j with i � 2 and j � 2, indicating
that the state at Vi�2 recurs at Vj�3. The construction of graph GY in
Figure 1C follows the same steps but is based on timeseries Y in
Figure 1A.

2.2 Constructing an inter-system recurrence
network

An extension of RQA developed to study synchronization and
coupling dynamics is called Cross-RQA (Marwan and Kurths, 2002;
Shockley et al., 2002) and involves evaluating whether the state
evolution of two systems X and Y can be considered close, or
recurring trajectories in a shared state space. The procedure to
construct a cross-recurrence matrix is similar to the auto-recurrence
matrix, but instead of calculating the distances between the states of

Y at different time points, the distances between the states of X
relative to states of Y are evaluated as

CRij εXY( ) � CRXY xi, yj

∣∣∣∣∣εXY( ) � Θ εXY − xi
→− yj

→���� ����( ),
i, j � 1, . . . , N

(2)

where ‖ · ‖ is again a distance norm (e.g., Euclidean, Chebyshev) and
Θ(·) the Heaviside function. The cross-recurrence matrix is
generally not symmetrical around its diagonal, in fact, the
asymmetry provides information about the coupling dynamics
and can be visualized using Diagonal Cross-Recurrence Profiles
(DCRP) (Marwan and Kurths, 2002; Wallot and Leonardi, 2018),
also known as the τ-recurrence rate (Marwan et al., 2007). Figure 2
shows Cross-Recurrence Plots (a visualization of the CR) and
DCRPs for 2 coupled oscillators in 4 different coupling scenarios
(see Section 3 for more details). There have been attempts to use
statistical methods to study the DCRP patterns at a group level
(Main et al., 2016), however, often DCRPs require visual inspection
in order to make a reliable interpretation of the coupling strength
and direction about individual cases. Several measures calculated
from so-called inter-system recurrence networks (IRN) have been
suggested that do not require such visual inspection (Donges et al.,
2011; Feldhoff et al., 2012). Inter-system recurrence network can be
constructed from the recurrence and cross-recurrence matrices of
systemX andY. The idea is to use Cross-RQA to determine whether
there should be cross-network edges, such as the grey edges between
GX and GY in Figure 1C. More formally, to study the coupling
dynamics between GX and GY we can use the cross-recurrence
matrices CRXY(εXY) and CRYX � [CRXY(εXY)]T, to build the inter-
system recurrence matrix

IR ε( ) � RX εX( ) CRXY εXY( )
CRXY εXY( )[ ]T RY εY( )( ) (3)

with ε representing three threshold values εX, εY, εXY that can be
dissimilar. It is recommended to have less cross-system recurrences
than intra-system recurrences in the network, which can be

FIGURE 1
(A) shows two time series X (blue) and Y (green) and thresholds εX = εY (black circle) and εXY = εYX (grey circle). (B) shows the composite adjacency
matrix built from the recurrence matrices of X (top left, blue cells) and Y (bottom right, green cells) and their cross-recurrence matrices (bottom left and
top right, grey cells). (C) shows two recurrence networks GX and GY, joined together through the cross-recurrence matrix as an interconnected
recurrence network. To calculate triangle-based measures like the clustering coefficient, intersystem as well as intra system edges must be
evaluated, for example, the triangle starting in v1: E(GXY) = {(v1, u1), (u1, u2), (u2, v1)}, see the bold, underlined 1s in (B). Here, the cross-edge density ?XY = ?
YX = 0.33, cross-clustering CXY = 0.33 ≠ CYX = 0.
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controlled by choosing a threshold based on the recurrence rate (RR)
it yields RRXY ≤ (RRX ≈ RRY) (Feldhoff et al., 2012). IR(ε) is a
symmetric matrix, which can be turned into the adjacency matrix

A ε( ) � IR ε( ) − IN (4)
where IN is the identity matrix withN � NX +NY. This composite
matrix is shown in Figure 1 Panel B. The inter-system network
(IRN) is an undirected, unweighted, simple graph; however, it
consists of two unipartite graphs (the recurrence networks of
system X and Y) and two bipartite graphs (the cross-recurrence
networks for system X → Y and Y → X).

2.3 IRN measures

The first measure of interest for an IRN is the local vertex cross-
degree:

kXY
v � ∑

u∈VY

Avu (5)

with v ∈ VX, representing the number of edges that connect a vertex
in GX to any vertex in GY. This is comparable to distinguishing
between the in- and out-degree in a directed network, but in the
present case the purpose is to distinguish between within network
and between-network connections. In Figure 1C, the cross-degrees

for vertices v1, v2, v3{ } ofGX are 2,1,0, respectively, which is the same
as for vertices u1, u2, u3{ } of GY.

2.3.1 The cross-edge density

ρXY � 1
NXNY

∑
v∈VX,u∈VY

Avu (6)

is a proportion representing the total number of cross-edges over the
maximum possible number of edges which is equal to the cross-
recurrence rate RRXY. In Figure 1C the cross-edge density is 3/9 �
0.33.

The local cross-clustering coefficient is an estimate of the
probability that two neighbors of vertex v ∈ VX randomly drawn
from graph GY are also neighbors

CXY
v � 1

kYXv kYXv − 1( ) ∑
ui,uj∈VY

AvuiAuiujAujv, i, j � 1, . . . , N (7)

with i ≠ j and for vertices with a cross-degree of 0 or 1, CXY
v � 0.

This clearly distinguishes the cross-clustering coefficients from
Cross-RQA measures, because their calculation requires the
cross-recurrence matrix as well as the auto-recurrence matrices.
In Figure 1C the local clustering coefficients for v1, v2, v3{ } are 1,0,0,
but they are all 0 for u1, u2, u3{ }. The global cross-clustering
coefficient is simply the average over all vertices

FIGURE 2
(A) shows simulation of 201 time steps of 2 damped oscillators X and Y (standardized) in anti-phase for 4 different types of coupling scenarios:
Uncoupled, X driving Y, Y driving X, and Competitive bi-directional. The panels in row (B) show the Cross Recurrence Plots (CRPs) based on the joint 2D
state space of X (X, dX) and Y (Y, dY). Row (C) shows the Diagonal Cross-Recurrence Profiles (DCRP), representing the distribution of recurrent points
around the main diagonal (0 on the x-axis of the DCRP). The grey lines are based on 39 surrogate DCRP analyses in which the temporal order of Y
was randomized. If the (black) line falls above or below the grey line the observed value is above/below what may be expected based on chance (p < .05).
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CXY � 〈CXY
v 〉v∈VX

(8)
which gives CXY � 0.33 ≠ CYX � 0. If the distribution of edges
within GY and between GX and GY is uncorrelated, the expected
cross-clustering coefficient would be CXY ≈ ρY ≈ RRY, that is the
cross-edges would be randomly and independently distributed
between the graphs (Feldhoff et al., 2012). Coupling constants
CXY ≪ ρY and CXY ≫ ρY indicate substantial (anti-)persistent
correlations exist in the connectivity structure between the
networks.

The cross-clustering coefficient measures provide information
about the way the two systems are coupled and can be used to infer a
coupling direction. In Section 3 we demonstrate the behavior of
these measures for different coupling scenarios.

3 Simulation study: coupled oscillators

3.1 Method

The cross-clustering coefficients that can be computed from an
IRN have been shown to take on different values for different
coupling scenarios (Donges et al., 2011; Feldhoff et al., 2012).
Predictions can be made about the expected relative magnitudes
of the measures, here we demonstrate the behavior of these measures
using two coupled damped oscillators, because our goal is to analyze
physiological signals, which are usually periodic and may vary in
amplitude and frequency over time. However, the expectations
presented here do not differ from previous studies (Donges et al.,
2011; Feldhoff et al., 2012).

If the oscillators are uncoupled, any cross-recurrences found will
be spurious, however, they are expected because of the similarity
between the oscillators, the only difference will be a phase lag.
Therefore, the expectation is that CXY ≈ CYX . If there would be a
unidirectional coupling X → Y of sufficient strength, it is likely that
for two vertices vi, vj ∈ VX there exists a vertex uk ∈ VY that is
connected to both vi and vj. This would form a closed triplet from
the perspective of uk , which is a vertex of the driven system Y .
Therefore, the expectation would be to see CYX >CXY for a
unidirectional coupling X → Y . If the direction would be
reversed and X would be the driven system Y → X, the opposite
relation is expected CXY >CYX .

The analysis scripts are available at https://osf.io/5n9kv/.

3.1.1 Procedure
To study the behavior of inter-system recurrence network

measures, two linear damped oscillators X and Y were simulated:

d2X

d2t
� −ηxX + ζx

dX

dt
+ γyxY (9)

d2Y

d2t
� −ηyY + ζy

dY

dt
+ γxyX

Parameters ηx, ηy represent the frequency and ζx, ζy the
damping factor of X and Y respectively. The coupling dynamics
are governed by the parameters γxy and γyx, representing the effect
of X on d2Y and Y on d2X respectively. For all simulations the initial
values were X0 � 3 and Y0 � −3, resulting in an antiphase pattern.
The frequency parameters were ηx � ηy � 0.3 and the damping was

set to ζx � ζy � −0.05. The 4 coupling scenarios Uncoupled, X
driving Y, Y driving X, and Bi-directional (competitive) were
realized by changing the coupling parameters: γxy � γyx = 0 for
the Uncoupled scenario; γxy � +0.05, γyx � 0.00 for the X drives Y
scenario; γxy � 0.00, γyx � −0.05 for the Y drives X scenario and
γxy � +0.05, γyx � −0.05 for the Bi-directional scenario. Timeseries
of length 201 were simulated using package deSolve (Soetaert et al.,
2010) for the R computing environment (R Core Team, 2022), with
default ODE solver lsoda (Petzold, 1983).

To analyze the data, auto-recurrence matrices for RX(εX) and
RY(εY) and cross-recurrence matrix CRXY(εXY) were generated
based on the (standardized) state vectors [X, dX] and [Y, dY]which
describe the 2D state space of the damped oscillators
(i.e., dimension = 2, but no delay embedding procedure was
required to reconstruct phase space). Threshold values εX and εY

were chosen to yield RRX � RRY � .05, and εXY to get RRXY � .03.
In addition, DCRPs were created to study the distribution of
recurrent points around the main diagonal and evaluate how the
interaction patterns are associated to the IRN measures.

3.2 Results

Figure 2 shows the cross-recurrence plots (CRP) in row B and
the DCRPs in row C. Recurrent points in the diagonals of the upper
triangle of the CRP are due to values occurring first in X (negative
numbers on the x-axis of the DCRP), recurrent points in the lower
triangle (positive diagonal numbers) are due to values occurring first
in Y. If a peak is centered on the main diagonal this would suggest
the systems are fully synchronized and display the same states at
approximately the same point in time. If a peak is centered around
diagonals in the lower or upper triangle of the matrix the inference
can be made either system X or Y is leading the dynamics because
states that occurred at an earlier point in time in X recur at a later
point in time in Y, and vice versa. This can be seen in Figure 2, row C
for the scenarios X → Y and Y → X. If two or more off-diagonal
peaks are observed, to the left and right of the main diagonal, this
can point to a bi-directional coupling. In Figure 2 such a pattern can
be seen for both the uncoupled and bi-directional scenarios. For the
uncoupled scenario the symmetrical pattern emerges because the
oscillators have the same frequency and damping parameters, there
is however no peak around the main diagonal. For the bi-directional
coupling there is a peak at the lag which represents the phase
difference, and the pattern is symmetrical around that diagonal.

The interpretation by visual inspection of the DCRPs is
facilitated by our knowledge of the system under study. With an
unknown system, the unidirectional coupling would not pose a
problem in this case, but distinguishing between the uncoupled
scenario and the bi-directional coupling would likely be uncertain.
Figure 3C shows the IRN for the scenario “Y drives X” as two
coupled recurrence networks (Figures 3A, B) in a spiral layout
(Hasselman and Bosman, 2020).

Table 1 shows the results for the cross-clustering coefficients, as
well as the different thresholds used to generate the (cross-)
recurrence matrices. The magnitude differences are all in the
expected direction, that is, the difference between the uncoupled
and bi-directional scenarios are ≈ 0, when X → Y, CYX and are
larger than CXY, which is reversed for Y → X. These results
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correspond to the interpretation based on the visual inspection of
the DCRPs in Figure 2. In this stylized example, the uncoupled
scenario yields exactly the same cross-clustering for the different
directions. This can be used to distinguish it from the
bidirectional scenario, which gives a difference close to zero.
This will unlikely be possible with noisy real-world empirical
data. The bi-directional clustering coefficients are similar to the
largest coefficients obtained for the driven scenarios, which all
represent the same coupling strength magnitude in the
simulation (γxy � +0.05, γyx � −0.05).

To study the relationship between coupling strength and the
magnitude of the cross-clustering coefficient, further simulations
were conducted in which γxy and γyx were varied from 0 to 0.1 in
40 steps. For each combination of γxy and γyx the difference
ΔC � CXY − CYX was calculated, resulting in a 41 by 41 matrix
of differences.

Figure 4 is a graphical representation of the 41 by 41 matrix. It
shows that if both coupling strengths become very large, the two
signals become very similar and as expected, the cross-clustering
coefficients do not distinguish anymore between the true coupling

differences (i.e., CXY − CYX ≈ 0). Also, there are specific
combinations in which the coupling strength difference appears
to indicate the opposite direction of what is expected, this occurs
around the transition where the coupling strengths become stronger
than the damping factor and the oscillations exponentially increase
instead of decrease. The inset panels labelled A, B and C in Figure 4
show this in some more detail. Panel A and C represent the expected
relationship (Y leads X) based on the coupling strengths, but the
value of ΔC indicates a reversal (X leads Y) in panel B. This occurs
due to the initial phase difference, when the parameter settings
produce oscillator dynamics with approximately equal amplitudes
that decay very slowly.

4 Coupling between physiological
processes

4.1 Method

Data were collected in the context of a larger study of the
relation between physiological stress and challenging behavior in
clients in residential care with severe to profound intellectual
disabilities (SPID) (Simons et al., 2021). The goal of the study was
to examine whether information about the dynamics of
physiological stress in clients with SPID and their professional
caregivers can be used to understand the emergence of
challenging behavior and potentially prevent incidents from
occurring. In the present study we examine whether a
coupling direction can be detected in physiological signals
between client and caregiver in the period before an incident
occurred.

FIGURE 3
(A,B) represent the recurrence networks of oscillator X and Y for the coupling scenario “Y drives X.” In the spiral graph layout, the temporal order is
retained, with t = 1 at the lower end of the spiral and t = 201 at the upper end. The vertices are colored to distinguish 4 epochs of equal length. If edges
connect vertices from the same epoch, the edge color is the same as the vertex color. The size of the vertices scales with the vertex degree of each node.
(C) shows the inter-system recurrence network. The grey lines connecting the spirals represent the cross-edges.

TABLE 1 Inter-system recurrence network threshold parameters and clustering
measures.

εX εY εXY = εYX CXY CYX ΔC

Uncoupled .092 .092 .077 .328 .328 0

X drives Y .092 .364 .198 .131 .388 −.257

Y drives X .374 .092 .202 .393 .109 .284

Bi-directional .166 .169 .120 .384 .379 .005
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4.1.1 Participants, materials and procedure
The study was approved by the Faculty Ethics Committee of

the Radboud University (NL-number: NL71683.091.19)
12 February 2020. Informed consent was obtained from
caregivers and parents or legal representatives of clients. We
analyzed 33 incidents experienced by one client-caregiver dyad
over the course of 12 days between 3 August 2022 and
27 September 2022 during regular shifts of the caregiver. Both
participants wore an Empatica E4 wristband (Milstein and
Gordon, 2020; Schuurmans et al., 2020) which records
acceleration (ACC), blood volume pressure (BVP),
electrodermal activity (EDA), heart rate variability (HR) and
temperature (TEMP). Whenever an incident with challenging
behavior occurred the time was logged by pressing the event
marker button on the wristband. After the incident, the time was
also logged manually by the caregiver, providing more detailed
information about the incident.

4.1.2 Data analysis
The raw data from the Empatica E4 wristband were

imported using R package wearables (de Looff et al., 2022).
Figure 5 is an example of the data centered on the time at which
an incident occurred; the analyses are based on the 35 min

before the incident. There were 4 incidents for which 2 or
more timeseries were shorter than 25 min. The most
prominent cause was that the incident occurred within
25 min of putting on the wristband, other cases were due to
sensor failure. These timeseries were removed, leaving
29 incidents with 5 timeseries. All timeseries were resampled
to the same frequency (1 Hz), yielding time series of length
2,100. To construct the IRN, two auto-recurrence matrices were
created (one for the client and one for the caregiver) and one
cross-recurrence matrix for each incident and each variable. The
matrices are based on state space vectors constructed from delay
embedded time series. For each incident and variable separately,
the embedding lag and embedding dimension were determined
for client and caregiver using the mutual information criterion
to determine the optimal embedding lag and false nearest
neighbor analysis to determine the embedding dimension
(Marwan et al., 2007). One set of parameters was chosen for
all embeddings (embedding lag = 100 and embedding
dimension = 5). The recurrence threshold for the auto-
recurrence matrices was chosen to get 5% recurrent points
and the cross-recurrence matrix to get 4% recurrent points.
Subsequently, the local and global cross-clustering coefficients
were calculated.

FIGURE 4
Simulation results for the 41 × 41 matrix of different coupling strength values. Color coding represents the difference ΔC � CXY − CYX . Red
representsCXY < CYX , blueCXY > CYX andwhiteCXY ≈ CYX . Three examples of oscillator dynamics are shown in the panels on the right of thematrix. The
expected relationship (Y leads X) can be seen in (A,C), but there is a reversal in (B). See text for details.
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4.2 Results

Figure 6 displays the global cross-clustering coefficients for the
29 incidents, for the client (X) and the caregiver (Y). The location of
the dots above or below the line CXY � CYX is indicative of the
coupling direction X → Y (CXY <CYX), and Y → X (CXY >CYX).

This means the upper triangle shows cases in which the client
“drives” the caregiver’s physiology, whereas the lower triangle shows
cases in which the caregiver “drives” the client’s physiology. Points
close to, or on the diagonal can represent uncoupled processes or bi-
directional coupling dynamics.

The points in the magnified area represent cases in which
CXY ≪ ρY and CYX ≪ ρX, of which it is expected we should find
signals with anti-persistent correlations. The results agree with these
expectations as variables ACC and BVP predominantly yield values
smaller than .05, whereas the coefficients for HR, EDA and TEMP
are mostly larger than .05.

Table 2 shows the frequencies with which client and caregiver
were driving the interaction, or whether the interaction was bi-
directional or uncoupled, for each variable. If the difference
|CXY − CYX|≤ .01, this was counted as “Bi-directional/
Uncoupled,” CXY − CYX > .01 as “Caregiver leading” and CXY −
CYX < − .01 was counted as “Client leading.”

Across all 29 incidents the three types of coupling dynamics
occur with equal frequency (see the row Total in Table 2), however,
there are differences between the variables. Most notable: Compared
to the caregiver the client leads twice as often for the variable ACC,
for BVP the bi-directional/uncoupled type was clearly dominant,
and for EDA the caregiver most often was leading the interaction.

Finally, due to the choice for one sampling frequency and one set
of embedding parameters for all variables, it is possible to calculate a
cross-recurrence matrix for all variable pairs, so a full IRN
representing all the observed variables can be constructed. The
adjacency matrix has the auto-recurrence matrices of the
5 variables on its main diagonal, all off-diagonal cells represent
cross-recurrence matrices between different variable pairs. Figure 7
is a representation of such a multiplex inter-system recurrence

FIGURE 5
Raw time series data from caregiver and patient 30 min before and after an incident with challenging behavior occurred (dotted line at 17:55). Shown
are acceleration (ACC), blood volume pressure (BVP), electrodermal activity (EDA), heart rate (HR) and temperature (TEMP).

FIGURE 6
Global cross-clustering coefficients for 29 incidents for
5 different inter-system networks based on different physiological
time series observed in a client (X) and a caregiver (Y). The inset shows
cross-clustering coefficients in range [0,0.05].
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network for 1 incident. The edge weights represent the absolute
clustering coefficient difference and have been colored to reflect the
implied coupling direction. The size of a vertex represents its
weighted degree, the vertex strength (Barrat et al., 2004). For this
incident an interesting path can be seen that connects the vertices
with the greatest strength: The edges connecting EDA–HR–TEMP,
are characterized by the client driving the dynamics. A path
connecting the second largest set of 3 vertices in terms of
strength, is ACC–TEMP–HR. In this loop, the dynamics between
ACC–TEMP and ACC–HR are driven by the caregiver, as
mentioned before, TEMP–HR is driven by the client.

5 General discussion and conclusion

The purpose of the present paper was to examine whether inter-
system recurrence networks can be used to determine the coupling
direction between physiological signals associated with stress
measured simultaneously in a client-caregiver dyad, in which

challenging behavior by the client can lead to incidents that are
stressful for everyone involved. The question is whether such
analyses can inform potential intervention or prevention efforts
intended to reduce the number of incidents.

The simulation study in Section 3 provides results that are
similar to previous studies (Feldhoff et al., 2012), showing that
the magnitudes of the cross-coupling coefficients are associated to
coupling strength and can be used to determine a coupling direction.
In addition, we show that the qualification of the patterns of DCRPs
agree with the inferred coupling direction. However, analogous to
previous studies (Feldhoff et al., 2012), we also find parameter
settings that may lead to uncertain or incorrect inferences about
the coupling direction, given the true coupling strengths. In this
particular case, the question is whether this should be considered an
error of the method. If we were presented with the time series that
yielded this result (e.g., the inset in Figure 4), absent any knowledge
of the data generating process, we would conclude the estimated
coupling direction to be accurate. It is indeed the case that the
oscillator indicated by the cross-clustering coefficients is driving the

TABLE 2 Frequency of coupling directions per variable across all 29 incidents (percentage).

Variable Client leading (%) Caregiver leading (%) Bi-directional uncoupled (%)

ACC 41.4 20.7 37.9

BVP 13.8 10.3 75.9

EDA 31.0 58.6 10.3

HR 41.4 34.5 24.1

TEMP 44.8 41.4 13.8

Mean 34.5 33.1 32.4

FIGURE 7
The complete multiplex inter-system recurrence network for 1 incident. Edges represent the differences between the cross-clustering coefficients
for each variable. The colors are labelled according to the implied coupling direction. The vertex size reflects their strength (weighted degree).
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interaction. The conclusion should be that these analyses do not
recover the “true” coupling parameters, if such a thing is even
possible, but instead estimate the observed, or implied coupling
direction. An open question to be resolved is how to deal with
coefficient differences close to 0. These could imply bidirectional, as
well as completely uncoupled dynamics. One could argue that
completely uncoupled, independent dynamics are unlikely in a
measurement context in which individuals are in fact interacting,
however, we cannot be completely certain based exclusively on the
estimate.

The analysis of the physiological data related to 29 incidents
with challenging behavior (Section 4) yielded interpretable results,
as well as some corroboration of theoretical constraints on the
measures described in Section 2. To start with the latter, Figure 6
clearly shows the expected relationship between (anti-)persistent
correlations and edge density. The cross-clustering coefficients for
the anti-persistent signal BVP are all equal or smaller than the
recurrence rate of .05. For variable ACC there are 8 points outside
the magnified region, but in those cases one of the two cross-
clustering coefficients is always smaller than .05.

Based on Table 2 one can conclude that this dyad does not have a
clear driver of the (physiological) interaction dynamics in the 35 min
before an incident occurs. There are some differences between the
individual variables, but Figure 7 shows that such differences at the
aggregate level may be less informative to understand the interaction
dynamics preceding a particular incident. The figure reveals that when
all possible cross-edges between variables are considered, feedback loops
can be identified that span two ormore physiological signals. In Figure 7
there is clearly a strong coupling across heart rate, electrodermal activity
and skin temperature that is completely driven by the client. A second
motif connects heart rate and temperature to acceleration, which are
both driven by the caregiver. What cannot be determined based on the
current analyses is a temporal precedence for the emergence of these
feedback loops. That is, we cannot claim the caregiver’s movements as
measured by the acceleration variable drive the heart rate coupling
dynamics which causes a reinforcing feedback loop in the client
involving heartrate, electrodermal activity and temperature, that raise
the stress levels of both client and caregiver to a level beyond which an
incident is inevitable. The opposite scenario could also be true, in which
the heart rate of the client causes the caregiver to drive the acceleration
interaction dynamics, which in turn reinforces the driving of the
heartrate dynamics by the client via temperature.

Future studies should explore whether imposing temporal
constraints on the recurrence networks, i.e., turning them into
directed networks (Hasselman, 2022) can provide more detailed
information about temporal precedence in coupling dynamics. In
regular directed networks, cross-clustering coefficients can be
calculated to represent different types of connected triples, such as
cycles, fanning in, fanning out andmiddleman patterns (Fagiolo, 2007).
It is also possible to create weighted (and/or directed) recurrence
networks (Hasselman and Bosman, 2020), for example, by keeping
the distance values of the points that fall below the recurrence threshold
ε in the matrix. Another option is to use recurrence times to give more
weight to triangles representing states that will recur sooner rather than
later in the calculation of the cross-clustering coefficient.

To summarize, the inter-system recurrence network approach to the
analysis of coupled, multivariate systems produces estimates of coupling
direction that are interpretable relative to the measurement context and

provide insights into complex dependencies between different variables.
These initial results suggest that IRN measures can at least inform post-
hoc evaluations of interaction dynamics, which, in the present context,
could occur as soon as the Empatica4 data become available. More
research is required to determine whether the method can eventually be
used to inform decisions related to intervention/prevention of behavior
during real-time process monitoring of physiological and/or
psychological variables.
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