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Introduction: Small nucleolar RNAs (snoRNAs) are a group of non-coding RNAs

enriched in the nucleus which direct post-transcriptional modifications of rRNAs,

snRNAs and other molecules. Recent studies have suggested that snoRNAs have

a significant role in tumor oncogenesis and can be served as prognostic markers

for predicting the overall survival of tumor patients.

Methods: We screened 122 survival-related snoRNAs from public databases and

eventually selected 7 snoRNAs that were most relevant to the prognosis of

lower-grade glioma (LGG) patients for the establishment of the 7-snoRNA

prognostic signature. Further, we combined clinical characteristics related to

the prognosis of glioma patients and the 7-snoRNA prognostic signature to

construct a nomogram.

Results: The prognosticmodel displayed greater predictive power in both validation

set and stratification analysis. Results of enrichment analysis revealed that these

snoRNAs mainly participated in the post-transcriptional process such as RNA

splicing, metabolism and modifications. In addition, 7-snoRNA prognostic

signature were positively correlated with immune scores and expression levels of

multiple immune checkpoint molecules, which can be used as potential biomarkers

for immunotherapy prediction. From the results of bioinformatics analysis, we

inferred that SNORD88C has a major role in the development of glioma, and then

performed in vitro experiments to validate it. The results revealed that SNORD88C

could promote the proliferation, invasion and migration of glioma cells.

Discussion: We established a 7-snoRNA prognostic signature and nomogram

that can be applied to evaluate the survival of LGG patients with good sensitivity

and specificity. In addition, SNORD88C could promote the proliferation,

migration and invasion of glioma cells and is involved in a variety of biological

processes related to DNA and RNA.
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1 Introduction

Glioma is the most prevalent tumor in the central nervous

system, with an overall incidence of 4.67-5.73 per 100 000 persons

(1). Historically, glioma is a neuroepithelial tumor that originates

from glial cells in the central nervous system. Glial cell tumors

include astrocytic, oligodendroglial, oligoastrocytic, ependymal and

mixed neuronal-glial tumors (2, 3). According to the WHO

histological classification of gliomas, grades 2 and 3 gliomas

belong to lower-grade gliomas (LGG) (4). In molecular pathology,

IDH mutation status, MGMT promoter methylation status and

1p19q co-deletion status are important molecular pathological

features of gliomas and have a significant impact on the

prognosis of glioma patients (5). Currently, the main treatments

for LGG patients are radiotherapy, chemotherapy and surgery, with

surgical resection being the main treatment method (6). However,

the tumor’s tendency to infiltrate deep into the parenchyma can

make it difficult to completely resect the lesion tissue, thus leading

to a poor prognosis (7).

In recent years, non-coding RNAs (ncRNAs), especially long

non-coding RNAs (lncRNAs) and microRNAs (miRNAs), have

been found to play key roles in cellular activity, particularly in

relation to cancer. NcRNAs have been identified to act as oncogenic

drivers or tumor suppressors in several major tumor types (8).

NcRNAs in different tumors can be used as diagnostic or prognostic

biomarkers, as well as new targets for targeted therapy (9). Small

nucleolar RNAs (snoRNAs) are a family of short ncRNAs with a

length of 60-300 nucleotides, which are enriched in the nucleus and

guide post-transcriptional modifications of ribosomal and small

nuclear RNAs (snRNAs). Based on the characteristic nucleotide

motifs and the associated classical partner proteins, snoRNAs are

classified into C/D-box and H/ACA-box subfamilies, of which C/D-

box snoRNAs are responsible for 2’-O-methylation and H/ACA-

box snoRNAs for pseudouridylation of nucleotides on target

molecules (10, 11). Previous studies have revealed that snoRNAs

are associated with the development of many cancers and are

involved in a variety of cancer biological processes including

angiogenesis, activation of invasive and metastatic capabilities and

maintenance of proliferative signaling (12). Cornelius Pauli et al.

found that high expression of SNORD42A plays an important role

in the growth and survival of leukemia cells (13). Chunhong Cui

et al. demonstrated experimentally that SNORA65 and SNORA7A/

7B deletion inhibits the proliferation and tumorigenic capacity of

lung cancer cells (14). In gliomas, Xian-Ru Xia et al. confirmed that

overexpression of SNORD44 and its host gene GAS activates

caspase-dependent apoptosis signaling pathways to promote

apoptosis and is accompanied by inhibition of glioma cell

invasion, migration and proliferation (15). In addition, through

bioinformatics analyses, some researchers have found that the
Abbreviations: AUC, area under the curve; CCK-8, Cell Counting Kit-8; GO,

Gene ontology; GSEA, Gene set enrichment analysis; KEGG, Kyoto Encyclopedia

of Genes and Genomes; LASSO, Least absolute shrinkage and selection operator;

LGG, lower-grade glioma; OS, overall survival; qRT-PCR, quantitative real-time

PCR; RBP, RNA-binding protein; ROC curve, receiver operating characteristic

curve; snoRNA, small nucleolar RNA; TCGA, The Cancer Genome Atlas.
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expression of snoRNAs such as SNORD114-17, SNORA36B, U2,

U3, and SNORD78 in head and neck squamous carcinoma (16) and

SNORA2, SNORD116-2, SNORA59B, SNORD93, SNORD12B,

SNORA70B in clear cell renal cell carcinoma (17), correlates with

the prognosis of tumor patients, which can be used as prognostic

biomarkers for tumor patients.

Despite the continuous increasing of snoRNA researches in

cancer, the relationship between snoRNA and LGG is not fully

understood; therefore, identifying snoRNAs associated with LGG is

urgently warranted and will provide new directions for improving

the diagnosis, prognosis and targeted therapy of LGG. Based on the

SNORic database which systematically analyzed snoRNA

expression across 31 cancer types from The Cancer Genome Atlas

(18), we first screened prognostically relevant snoRNAs from

survival data and snoRNA expression matrices of 476 LGG

patients by using univariate Cox regression analysis. Next, we

constructed a 7-snoRNAs prognostic signature using LASSO

regression and multivariate Cox regression analyses. Further, we

evaluated the clinical predictive efficacy of the 7-snoRNAs

prognostic signature and validated it in a test set. Finally, we

predicted the biological functions of snoRNAs in the model and

experimentally validated the role of SNORD88C in glioma cell lines.
2 Materials and methods

2.1 TCGA-LGG datasets procurement
and preparation

We downloaded the snoRNA expression matrix of TCGA-LGG

patients from the SNORic database(http://bioinfo.life.hust.edu.cn/

SNORic/) (18) in the form of Reads Per Kilobase per Million

(RPKM) and TCGA-LGG clinical data from database UCSC Xena

(https://xenabrowser.net/datapages/). Then, the snoRNA

expression data were log (RPKM+1) transformed for the next

analysis. To avoid bias in the data analysis, we obtained data for

476 patients (Table S1) after removing patients with missing

survival data or OS (overall survival) time less than 30 days.

Further, we defined that the snoRNAs with no expression in less

than 25% of the total number of patients as effectively expressed

snoRNAs in LGG. Finally, we selected 476 cases and 358 effectively

expressed snoRNAs for the corresponding analysis. Besides, we

downloaded the gene expression RNAseq – HTSeq dataset of

TCGA-LGG in the form of log2(FPKM+1) from the database

UCSC Xena and selected the data corresponding to 476 patients.

The workflow chart of this study was illustrated in (Figure 1).
2.2 Construction of prognostic signature

Data from 476 patients were involved in the construction of the

prognostic model. We first randomly divided these patients into a

training set (n = 333) and a validation set (n =143) in a ratio of 7:3.

Then we used the univariable Cox regression method to identity the

survival-related snoRNAs in the whole set (n = 476) with cut-off

value P< 0.05, and finally got 122 survival-related snoRNAs using R
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package ‘survival’ version 3.2-10. Subsequently, R package ‘glmnet’

(version 4.1-1) (19) was performed to conduct least absolute

shrinkage and selection operator (LASSO) with a ten-fold cross-

validation method. LASSO regression was used to select the most

prognostically relevant snoRNAs from survival-related snoRNAs

and then multivariable Cox regression was performed with cut-off

value P< 0.05 to screen out the most powerful snoRNAs for the

construction of prognostic signature. Ultimately, 7 snoRNAs were

identified for model construction. The risk score is calculated by

means of 7-snoRNA prognostic signature as follows:

Risk   Score =  o
n

i=1
bi � Xi

bi represented the coefficients of each snoRNA calculated by the

multivariable Cox regression and the Xi indicated the expression

value in the form of log2(RPKM+1).
2.3 Construction of nomogram

To plot the nomogram, age, WHO grade and risk scores

calculated by 7-snoRNA prognostic signature were screened out

by univariate Cox regression for constructing the prognostic model.

Then, a multivariate Cox proportional hazard regression model was
Frontiers in Immunology 03
constructed in the training set. Finally, the nomogram was plotted

by using the R package ‘rms’ (version 6.2-0) to predict the

probability of survival at 1,3,5 years for LGG patients.
2.4 GO term and KEGG pathway analysis

We selected 100 proteins that interacted with each snoRNAs

from the RNA Interactome Database (20), followed by Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analyses. GO and KEGG analysis was

performed by R package ‘clusterProfiler’ (version 3.18.1) (21) and

R Package ‘org.Hs.eg.db’ (version 3.12.0), P-value< 0.05 was

considered statistically significant. The results of GO analysis

included Biological Process (BP), Cellular Component (CC) and

Molecular Function (MF), each section shows the five most

significantly enriched GO terms. KEGG analysis revealed the

most 10 significantly enriched pathways.
2.5 Gene set enrichment analysis

GESA was performed for the mRNA expression matrix of the

high-risk group and low-risk group by software ‘GSEA’ (version
FIGURE 1

Workflow chart of the entire study.
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4.1.0). Hallmark gene set (h.all.v7.4.symbols.gmt) was set as

reference to identify the different Hallmarks between the high-

risk group and low-risk group. |NES|>1, Nom P-value< 0.05 and

FDR q-value<0.25 were set as screening criteria.
2.6 Analysis of the immune characteristics
of gliomas

ESTIMATE Score, Immune Score, Stromal Score and tumor

purity were calculated by using R package ‘estimate’ (version 1.0.13)

(22). In addition, patients were divided into high-immunity group

and low-immunity group by the median of ESTIMATE Score. The

abundance of 22 types of immune cells was calculated by the

CIBERSORT algorithm (23).
2.7 Cell culture and quantitative
real-time PCR

Glioma cell lines (SHG44 andU251) were obtained from Xiangya

Medical school of Central South University, Changsha, China, and

were cultured with Dulbecco’s modified Eagle medium (DMEM)-

high glucose (Biological Industries, Israel) containing 10% fetal

bovine serum (purchased from QmSuero/Tsingmu Biotechnology,

Wuhan). Cells were cultured at 37°C in a humidified atmosphere

containing 5% carbon dioxide. The siRNA against SNORD88C

(target sequences, 5’-GCTCCCATGATGTCCAGCA-3’) was

purchased from RiboBio Corporation (Guangzhou, China). Glioma

cells were transfected with siRNAs using Lipofectamine 3000 kit

(Invitrogen, USA) according to the manufacturer’s direction. The

total RNA was extracted using the trizol RNA extraction method and

a RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific,

Waltham, MA) was used to reversely transcribe RNA to cDNA.

Quantitative real time-PCR (qRT-PCR) was used to assess the

expression of SNORD88C according to the manufacturer’s

instruction (SYBR Green Master Mix, Vazyme). 2-DDCt method was

used to calculate relative expression of the gene. Sangon (Shanghai,

China) provided the service of synthesizing primers and the

sequences are as follows: Human GAPDH forward (5’-CATTGA

CCTCAACTACATGGTT-3’), reverse (5’-CCATTGATGACAAG

CTTCCC-3’); Human SNORD88C forward (5’-CTGATCACCCCT

GAGGACACA-3 ’), reverse (5 ’-TGTCAAAGGTCCTGGG

GTGCA-3’).
2.8 Cell proliferation assay

The Cell Counting Kit-8 (CCK-8) assay was used for measuring

cell proliferation. Glioma cells were seeded into a 96-well plate

(1500 cells/well) after transfecting for 24 hours. At each detection

time point, 100ul DMEM containing 10% CCK-8 reagent was

added to each well. Then, the absorbance of each well was

measured at a wavelength of 450nm after incubation in an

incubator at 37°C for 90 minutes.
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2.9 Cell colony formation assay

Glioma cells were seeded into 6-well plate at a density of 1000

cells per well after transfecting for 24 hours. The culture medium

was changed every three days. The cell colonies were fixed with 4%

paraformaldehyde for 30 minutes after 10-14 days of culture,

subsequently stained with 0.1% crystal violet, and then the

number of colonies in each well was counted.
2.10 Transwell assays

Transwell assays were conducted by using previously described

methods (23).
2.11 Clinical sample collection
and processing

82 glioma specimens collected by the Department of

Neurosurgery of Xiangya Hospital were preserved in liquid

nitrogen and formalin, respectively. Formalin-fixed specimens

were paraffin-embedded and then made into tissue microarrays.

Frozen specimens were extracted for RNA and reverse transcribed

to cDNA, and the target snoRNA expression was further detected

by qRT-PCR assay (The method is as described previously).
2.12 Immunohistochemistry staining

The tissue microarrays were first subjected to antigen repair by

boiling antigen repair solution (Servicebio, Wuhan, China),

followed by blocking peroxidase activity by 3% hydrogen

peroxide (Servicebio, Wuhan, China). CD274 rabbit polyclonal

antibody at a dilution of 1:500 (CD274, Cat No: 28076-1-AP,

proteintech, China) were incubated overnight at 4°C after being

blocked for 1h at room temperature using goat serum. On the next

day, the Goat Anti-rabbit IgG/HRP antibody (Cat No: G1213-

100UL, Servicebio, Wuhan, China) was incubated for 1h at 37°C

and then developed using 3-3’-diaminobenzidine chromogenic

solution and finally stained with hematoxylin.
2.13 RNA sequencing analysis

U251-NC and U251-si-SNORD88C groups were set up, and the

cells were collected after 48h of treatment respectively, and cellular

RNA was extracted by using TRIzol. Then RNA quality was

analyzed by 5300 Bioanalyser (Agilent) and quantified using the

ND-2000 (NanoDrop Technologies). RNA purification, reverse

transcription, library construction and sequencing were

performed at Shanghai Majorbio Bio-pharm Biotechnology

Co.Ltd. (Shanghai, China). The RNA-seq transcriptome library

was prepared following Illumina® Stranded mRNA Prep, Ligation

from Illumina (San Diego, CA) using 1mg of total RNA. After
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quantified by Qubit 4.0, paired-end RNA-seq sequencing library

was sequenced with the NovaSeq Xplus sequencer. Sequencing data

were separately aligned to reference genome with orientation mode

and further converted to count and TPM for the following analysis.
2.14 Statistics analysis

The Kaplan–Meier survival curve and log-rank test were

performed to evaluate the overall survival of patients in the high-

risk and low-risk groups. The receiver operating characteristic

(ROC) curve was used to evaluate the validity of the prognostic

signature, and the area under the curve (AUC) value was calculated

to objectively reflect the accuracy of the model prediction ability.

The Student’s t-test was used for hypothesis testing of two

independent samples that conform to a normal distribution. The

Mann-Whitney U test was used for hypothesis testing of two

independent samples that do not satisfy the normal distribution.

All plots were drawn by the R package ‘ggplot2’ (version 3.3.3) (24)

or R basic plotting function.
3 Results

3.1 Construction of 7-snoRNA prognostic
signature in the training set

In order to construct the prognostic signature, LASSO

regression was performed to select the most powerful variable

from the 122 survival-related snoRNAs in the training set.

Minimum lambda was chosen by the ten-fold cross-validation to

seek out the best combination of variables and the outcome was a

combination of 15 snoRNAs (Figures 2A, B). Multivariable Cox

regression analysis was performed for these 15 snoRNAs, and

variables with P< 0.05 were screened out to enter the regression

model. Finally, we constructed a prognostic signature of LGG

containing 7 snoRNAs (SNORA32: ENSG00000206799,

SNORA36B: ENSG00000222370, SCARNA15: ENSG000

00277864, SNORA63E: ENSG00000199363, SNORA63D:

ENSG00000201229 , SNORD88C: ENSG00000220988 ,

SNORD38A: ENSG00000202031), and the coefficients of each

snoRNA are shown in (Figure 2C). The Risk Scores (RS) of each

patient were calculated by the 7-snoRNA prognostic signature, and

the patients in the training set were divided into a high-risk group

(RS ≥ median RS) and a low-risk group (RS< median RS) by the

median RS. The Kaplan–Meier survival curve showed a significant

difference in survival conditions between the high- and low-risk

groups, with patients in the high-risk group having a lower survival

probability and a shorter overall survival time compared to patients

in the low-risk group (Figure 2D). In addition, higher RS was

associated with shorter survival time and higher mortality

(Figure 2E). The ROC curves demonstrated the accuracy of the 7-

snoRNA prognostic signature in predicting survival at 1,3,5 years in

the training set. The AUC values corresponding to 1,3,5 years were
Frontiers in Immunology 05
0.928, 0.847, 0.788 respectively, indicating that this prediction

model has high specificity and sensitivity (Figure 2F).
3.2 Validation of 7-snoRNA prognostic
signature in the validation set

To verify the ability of the 7-snoRNA prognostic signature to

predict the prognosis of LGG patients, we calculated the RS of all

patients in the validation set by the prognostic signature and

divided them into high- and low-risk groups based on the median

RS. Similarly, there was a significant difference in survival between

the high and low-risk groups in the validation set, with LGG

patients in the high-risk group having a lower survival

probability, shorter survival time (Figure 2G), and more deaths

(Figure 2H) compared to the low-risk group, these conclusions were

consistent with the results in the training set. The ROC curve of the

validation set showed that the AUC for 1, 3, 5 years were 0.812,

0.824, 0.744 (Figure 2I). These results suggested that the 7-snoRNA

prognostic signature remains a robust predictive model for the

prognosis of LGG patients in the validation set.
3.3 Effect of snoRNAs on the prognosis of
LGG patients

To investigate the effects of different snoRNAs on the prognosis

of LGG patients, we first compared the differences in snoRNA

expression between the low-risk and high-risk groups. SNORA32,

SNORA36B, SCARNA15, SNORD88C, and SNORD38A were

upregulated in the high-risk group, indicating that they were risky

factors in LGG patients. SNORA63E were downregulated in the

high-risk group, which means that it may be a protective factor.

Nevertheless, the significance of SNORA63D remained unknown,

as there was no significant difference in expression between high

and low-risk groups (Figure 3A). The heatmap revealed that the

expression of SNORA36B, SCARNA15, SNORD38A, SNORA32,

and SNORD88C increased with increasing risk score, and that of

SNORA63E and SNORA63D decreased with increasing risk score

(Figure 3B). The forest plot showed the results of the multivariable

Cox regression of 7-snoRNA prognostic signature. The Hazard

ratio (HR) of SNORA32, SNORA36B, SCARNA15, SNORD88C,

and SNORD38A were >1, indicating that they were risky factors.

SNORA63D and SNORA63E were protective factors in LGG

patients with HR<1 (Figure 3C).
3.4 Stratification analysis to validate the
predictive value of the 7-snoRNA
prognostic signature

To identify whether different clinical characteristics of LGG

patients are associated with risk scores, we compared tumor

histologic grade, gender, age, and IDH1 mutation status between

high and low-risk groups in terms of risk scores. The LGG patients
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with WHO grade 3, age >40, IDH1-wildtype, unmethylated of

MGMT promoter and 1p19q non-codel status had higher risk

scores, but gender had no significant effect on risk scores

(Figures 3D–I). To further clarify whether the model still has the

ability to predict the prognosis of LGG patients among different

subgroups, we performed further survival analyses in the above-

mentioned subgroups. The high-risk group had a shorter OS,

regardless of whether the LGG patients were older than 40 years

old or younger (Figures S1A, D). Patients in the high-risk group also

had a shorter OS between the different genders (Figures S1B, E).

The 7-snoRNA prognostic signature also presented better

predictive power for the prognosis of LGG patients between

the high-risk and low-risk groups, in WHO grade 2 or WHO

grade 3 subgroups (Figures S1C, F), and IDH mutant or wild

type subgroups (Figures S1G, H). These results suggested that
Frontiers in Immunology 06
the 7-snoRNA prognostic signature is associated with the

clinicopathological features of LGG patients and has good

predictive ability for the prognosis of LGG patients in

different subgroups.
3.5 Construction and validation
of nomogram

The construction of a nomogram containing multiple LGG-

related risk factors helps to more accurately predict the probability

of survival in LGG patients. We first performed univariable Cox

regression to analyze the effect of age, gender, WHO grade, IDH1

mutation status and risk score calculated by 7-snoRNA prognostic
B C

D E F

G H I

A

FIGURE 2

Construction and validation of 7-snoRNA prognostic signature. (A, B) The least absolute shrinkage and selection operator (LASSO) regression (A) and
ten-fold cross-validation (B) were performed to calculate the minimum criteria. (C) Coefficients of 7 snoRNAs screened out by multivariable Cox
regression. (D, G) Kaplan–Meier survival curve was plotted to compare the overall survival (OS) between the high-risk group and low-risk group in
the training set (D) and validation set (G). (E, H) The distribution of risk score, survival time and status event in the training set (E) and validation set
(H). (F, I) Time-dependent ROC curve for predicting 1-, 3-, 5-years survival in the training set (F) and validation set (I).
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signature on the prognosis of LGG patients. The results revealed

that old age, WHO grade 3, IDH1 wild type, higher risk scores were

all risky factors (Figure 4A). Then we selected the age, WHO grade

and risk scores to construct a multivariate Cox proportional hazard

regression model, in which the global P-value< 0.001 and the

concordance is 0.89 indicated that the predicted values were in

good consistency with the actual results (Figure 4B). A nomogram

was plotted to demonstrate the results of multivariable Cox

regression of this prognostic model, and the 1-, 3-, 5-year survival

probability of LGG patients was calculated by summing the scores

of each independent risk factor (Figure 4C). To evaluate the

predictive accuracy of the Nomogram, we plotted time-dependent
Frontiers in Immunology 07
ROC curves and calibration plots both in the training set and

validation set. The AUC of Nomogram was higher than those of

other risk factors in each ROC curves, suggesting that prediction of

the survival probability of LGG patients based on the nomogram

had a higher accuracy than that by using the 7-snoRNA prognostic

signature alone both in the training set (Figures 4D–F) and

validation set (Figures S2A–C). The calibration plots were drawn

between the predicted survival probability and actual survival

probability in 1, 3, 5 years, which also indicated that the

prognostic model visualized by the nomogram had an excellent

concordance both in the training set (Figures 4G–I) and validation

set (Figures S2D–F).
B

C D

E F G H I

A

FIGURE 3

Prognostic and expression features of the 7 snoRNAs. (A) Box plots illustrate the expression values of the 7 snoRNAs between the high-risk and low-risk
groups (B) The heatmap shows the relationship between the expression values of 7 snoRNAs and risk scores. (C) The forest plot indicates the
multivariable Cox regression results of the 7 snoRNAs included in the prognostic signature. (D-I) The differences in risk scores were compared in
subgroups, including grade (D), age (E), gender (F), IDH1 mutation status (G), MGMT promoter methylation status (H) and 1p19q co-deletion status (I).
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3.6 Prediction of the potential biological
functions of snoRNAs

RNA-binding protein (RBP) is an important partner for RNA to

perform its function, and is involved in various post-transcriptional

regulation processes. RNAs interact with relevant RBPs to form

functional units called ribonucleoprotein complexes, which are

involved in the splicing, stabilization, translation, localization and

degradation of RNA (25). RBPs exhibit aberrant regulation in many

cancers, and disruption of the RBP-RNA interact network is causally

linked to cancer development (26). To further explore the role played

by these candidate snoRNAs in the development of glioma, we first

screened the proteins that interacted with candidate snoRNAs in RNA

Interactome Database (20). Next, we performed GO and KEGG

enrichment analysis of the proteins that interacted with each

snoRNA. The GO enrichment results showed that SNORA36B,

SNORA32, SNORA63E, SNORA63D, SNORD38A and SNORD88C

were mainly involved in biological processes (BP) such as RNA splicing

and regulation of mRNAmetabolism, while SCARNA15 was related to

chromatin and histone modification and involved in embryonic

development, hematopoiesis and other processes, which are not

consistent with classical snoRNA. Cellular component (CC) was
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mainly enriched in nuclear speck, ribonucleoprotein granule,

transcription regulator complex, etc. Molecular functions (MF)

included binding to DNA, RNA and transcription factors

(Figures 5A–C; Figures S3A–D). KEGG enrichment results revealed

that SCARNA15, SNORA36B, SNORA63E and SNORA63D were

related to viral carcinogenesis and transcriptional misregulation in

cancer and involved in the infection process of some viruses, such as

hepatitis B virus (HBV), human papillomavirus (HPV) and Human T-

cell leukemia virus 1 (HTLV-1). In addition, SNORA36B, SNORA63E

and SNORA63Dwere also involved in T-helper cell differentiation, and

SNORA63E and SNORA63D participated in TNF signaling pathways

and spliceosome (Figure 5D; Figures S3E–G). Moreover, SNORA32,

SNORD38A and SNORD88C were mainly enriched in the

spliceosome, RNA transport and mRNA surveillance pathway

(Figure 5E). Finally, an interaction network showed the relationship

between 7 candidate snoRNAs and its top 10 interacting

proteins (Figure 5F).

Non-coding RNAs can also interact with other RNAs to form

regulatory networks such as the competing endogenous RNA

network, and changes in the expression of any component of the

networks may disrupt the homeostasis of this complex system,

ultimately leading to the development and progression of cancer
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FIGURE 4

Establishment and validation of the Nomogram. (A) The forest plot revealed the univariable Cox regression results of age, gender, WHO grade, IDH1
mutation status and risk scores. (B) The results of the multivariate Cox proportional hazard regression model were constructed according to age,
WHO grade and risk scores calculated by 7-snoRNA prognostic signature. (C) The nomogram visualizes the outcomes of the multivariate Cox
proportional hazard regression model to predict the survival probability for LGG patients at 1-,3-,5-years. (D-F) Time-dependent ROC curves were
plotted to illustrate the AUC of nomogram, WHO grade, age and risk score at 1-,3-,5-years in the training set. (G-I) Calibration plots showed the
concordance between predicted survival probability and actual survival probability at 1-,3-,5-years in the training set.
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(27). To map out the RNA interaction networks involved in these

snoRNAs, we identified the RNAs that interacted with these

snoRNAs through the database ENCORI (28) and RNA

Interactome Database (20), queried the RNA interaction

information of six snoRNAs and displayed them in a waffle chart.

There were more RNAs interacting with the SNORA32,

SNORD38A and SNORD88C than other snoRNAs, which

involved many types of RNA, among which SNORA32 mainly

interacted with various rRNAs and mRNAs, while SNORD38A and
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SNORD88C mainly interacted with mRNAs and tRNAs

(Figure 6A). SCARNA15, unlike others, mainly interacted with

miRNAs, suggesting that SCARNA15 has a different function from

classical snoRNAs. Christine Ender et al. confirmed experimentally

that SCARNA15 is able to bind to Argonaute (Ago) proteins and

exerts miRNA-like effects (29). This kind of snoRNAs was named as

Dual function sno-miRNAs, which means they have the dual

functions of classical snoRNA and miRNA (30). To further

investigate whether the remaining snoRNAs may also have
B C
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A

FIGURE 5

Analysis of RNA-protein interaction in relation to 7 snoRNAs. Enrichment analysis of 100 proteins that interact with each candidate snoRNAs in Gene
Ontology (GO) enrichment (A-C) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis (D, E). Each section shows
the 5 most significant enrichment GO terms and 10 most significant KEGG pathways (SNORA32, SNORD38A and SNORD88C were only enriched in
3 or 4 pathways). Biological Process (BP), Cellular Component (CC), Molecular Function (MF). (F) A network drawn by the Cytoscape to illustrate the
relationship between 7 candidate snoRNAs and its top 10 interacting proteins (TF, transcription factor; RBP, RNA-binding protein).
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miRNA-like effects, we calculated the correlation coefficient

between the expression of snoRNAs and Ago proteins. We set the

correlation coefficient greater than 0.3 and P< 0.05 as a significant

correlation, and the results showed that SNORD38A and

SNORD88C were associated with Ago proteins, which led to the

speculation that these two snoRNAs might bind to AGO proteins

and play miRNA-like roles (Figure 6B). Finally, we selected the 10

RNAs with the highest interaction scores with each snoRNAs to

construct the snoRNA-RNA interaction network (Figure 6C).

To further investigate whether there are differences in gene sets

between the high-risk and low-risk groups, we performed a Gene

Set Enrichment Analysis (GSEA). GSEA results revealed that there
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were 7 hallmarks significantly enriched in the high-risk group,

including apical junction, IL-2-STAT5 signaling, glycolysis, reactive

oxygen species pathway, estrogen response late, PI3K-AKT-mTOR

signaling, and peroxisome (Figure S4).
3.7 Immune landscape of the different
subgroups based on 7-snoRNA model

Previous enrichment analysis revealed that these snoRNAs were

associated with the immune response, so we further explored the

relationship between the 7-snoRNA model and the tumor immune
B

C

A

FIGURE 6

RNA-RNA interaction analysis of 7 snoRNAs. (A) Waffle charts illustrate the RNAs predicted by the ENCORI and RNA Interactome Database which
can interact with snoRNAs (misc RNA, miscellaneous RNA; snRNA, small nuclear RNA). (B) The expression of SNORD88C and SNORD38A showed a
significant association with AGO proteins. (C) The network of six snoRNAs and their top 10 interaction RNAs.
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microenvironment. After calculating the scores for the low- and

high- risk groups by the ESTIMATE algorithm, it was found that

the ESTIMATE Score, Immune Score and Stromal Score were

higher in the high-risk group than in the low-risk group and the

tumor purity scores were lower (Figures 7A–D). In addition, the

abundance of 22 different immune cells was calculated for each

patient using the CIBERSORT algorithm. The results are shown in

Figures 7E, F, where M1 macrophages and CD8+ T cells were at

higher levels in the high-risk group while CD4+ naïve T cells and

dendritic cells were at higher levels in the low-risk group. To further

explore the interaction of risk grouping and immune score on

prognostic impact, we divided the patients into two groups based on

ESTIMATE score and found a higher percentage of high-immunity

group in the high-risk group (Figures 7G, H). Survival analysis

revealed that patients in the high-immunity group had a worse

prognosis, and interaction analysis between the different groups

showed that patients in the high-immunity and high-risk groups
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had the worst prognosis, while patients in the low-immunity and

low-risk groups had the best prognosis (Figures 7I, J).
3.8 Immune-related gene expression
profiles of 7-snoRNA model

The expression of immune-related genes can reflect the

immune status of different patients and whether they can benefit

from immunotherapy. We compared the expression of different

subgroups in a multiple immune-related gene set. The results

indicated that the high-risk group had higher expression levels in

IFN response and antigen presentation related genes (Figures 8A,

B). In addition, we noticed that the some immunostimulatory

molecules, such as CD276, CD40 and TNFRSF14 showed higher

expression levels in the high-risk group (Figure 8C). Among

immunosuppressive molecules, expression of multiple immune
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FIGURE 7

Analysis of 7-snoRNA models and tumor immune microenvironment. The Immune Score (A), Stromal Score (B), ESTIMATE Score (C) and Tumor
purity (D) in different subgroups. (E, F) Comparison of the abundance of 22 types of immune cells in different risk groups. (G, H) Distribution of
patients in the different immune and risk groups. (I) Survival analysis of the high- and low- immunity group. (J) Survival analysis of the interaction
between the two groups.
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checkpoints molecules, such as CD274, PDCD1 and LAG3 was

significantly higher in the high-risk group (Figure 8D). As an

important immune checkpoint molecule, the expression of

CD274 is of guiding significance for immunotherapy of tumors.

Therefore, we further validated it by clinical samples. 82 glioma

specimens collected by the Department of Neurosurgery of Xiangya

Hospital were made into tissue microarrays and performed

immunohistochemical experiments. Additional qRT-PCR was

performed to detect the 7 snoRNAs expression of each sample to

calculate the risk score. The results demonstrated that the H-score

of CD274 was higher in the high-risk group, which was consistent

with the results of our bioinformatics analysis (Figures 8E, F).
3.9 SNORD88C promotes the proliferation,
invasion and migration of glioma cells

Based on the results of above bioinformatics analysis, we

supposed that SNORD88C plays an important role in the

development of glioma, and therefore we performed in vitro
Frontiers in Immunology 12
experiments to validate it. The qRT-PCR results showed that the

expression of SNORD88C was significantly higher in the glioma cell

lines (SHG44 and U251) than in the normal glial cell line HEB

(Figure 9A). Small interfering (siRNA) was applied to knockdown

the expression of SNORD88C to investigate its biological function

in glioma. After transfection of SHG44 with si-SNORD88C (siRNA

targeting SNORD88C), there was a significant decrease in the

expression level of SNORD88C in the glioma cells, which

indicated that the interference was effective (Figure 9B).

Migration and invasive abilities are important biological

phenotypes of glioma cells. The results of Transwell assay showed

that knockdown of SNORD88C expression significantly decreased

the invasion ability and migration ability of glioma cells

(Figures 9C–F). As indicated by CCK-8 assay, the cell

proliferation ability was significantly inhibited in the si-

SNORD88C group compared to the negative control (NC) group

(Figures 9G–H). Finally, the outcomes of the colony formation

assay revealed that SHG44 and U251 cells with knockdown of

SNORD88C were significantly decreased in the count and volume

of colonies as compared to the NC group (Figure 9I). In addition,
B
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A

FIGURE 8

Analysis of immune-related gene expression profiles of 7-snoRNA model. The expression of IFN response related genes (A), antigen presentation genes
(B), stimulatory immune-related genes (C) and immunosuppressors (Immune checkpoint molecules were marked in red) (D) in different subgroups.
Representative immunohistochemical images of CD274 (200×) for different subgroups of clinical samples (E) and statistical results of H-score (F). *P<
0.05, **P< 0.01 and ***P< 0.001, ns means ‘no significance’.
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we examined the effects on glioma cells after overexpression of

SNORD88C. Transwell assay showed that overexpression of

SNORD88C increased the invasive and migratory capacity

of glioma cells (Figures 10A–D). CCK-8 assay and clone
Frontiers in Immunology 13
formation assay revealed that overexpression of SNORD88C

promotes glioma cell proliferation (Figures 10E–G). These

findings suggest that SNORD88C promotes glioma cell

proliferation, migration and invasion.
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FIGURE 9

Knockdown of SNORD88C attenuates the invasion, migration and proliferation of glioma cells. (A) The relative expression of SNORD88C was measured
by qRT-PCR in normal glial cell line HEB and glioma cell lines SHG44 and U251. (B) The transfection efficiency of siRNA in SHG44 and U251 cells after
transfection with si-SNORD88C (siRNA targeting SNORD88C) was quantified by qRT-PCR. (C, D) The invasion ability of SHG44 and U251 cells were
measured by Transwell assay, scale bars = 50mm. (E, F) The migration ability of SHG44 and U251 cells in both groups was determined by the Transwell
assay (no Matrigel), scale bars = 50mm. (G, H) The proliferation of SHG44 and U251 cells with or without SNORD88C knockdown was measured every
24 hours by the CCK-8 assay. (I) Colony formation assay was performed to detect the difference in proliferative capacity and viability of SHG44 and
U251 cells between the two groups. Data are expressed as the mean values ± SD. **P< 0.01 and ***P< 0.001.
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3.10 Potential mechanisms for SNORD88C
to perform biological functions

To further explore the potential mechanisms by which

SNORD88C exerts biological functions in glioma cells, we

performed RNA-seq after knockdown of SNORD88C expression

in U251 cells. A total of 865 differentially expressed genes were

identified after differential gene expression analysis of the RNA-seq

results (Figures 11A, B). These differentially expressed genes were
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further analyzed for GO enrichment analysis and Reactome

enrichment analysis, and the 20 terms with the most significant

enrichment are displayed respectively (Figures 11C, D). Enrichment

analysis showed that SNORD88C is involved in biological processes

such as DNA replication, DNA damage repair, chromatin assembly,

RNA transcription process and regulation of gene expression level.

Since the analysis results from public databases indicated that

SNORD88C was closely related to RNA metabolism and

catabolism, we further performed GSVA analysis targeting RNA-
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FIGURE 10

Overexpression of SNORD88C enhances the invasion, migration and proliferation of glioma cells. (A, B) The invasion ability of SHG44 and U251 cells in
two groups were measured by Transwell assay, scale bars = 50mm. (C, D) The migration ability of SHG44 and U251 cells in both groups was determined
by the Transwell assay (no Matrigel), scale bars = 50mm. (E, F) The proliferation of SHG44 and U251 cells with or without overexpression of SNORD88C
was measured every 24 hours by the CCK-8 assay. (G) Colony formation assay was performed to detect the difference in proliferative capacity and
viability of SHG44 and U251 cells between the two groups. Data are expressed as the mean values ± SD. **P< 0.01 and ***P< 0.001.
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related pathways in the RNA-seq results (Figure 11E). The results

demonstrated that knockdown of SNORD88C exhibited a

significant decrease in the activity of pathways associated with

rRNA, tRNA and mRNA, suggesting that SNORD88C is closely

related to RNA metabolism and exerts a biological function in

gliomas through the regulation of RNA levels.
4 Discussion
SnoRNAs are a group of non-coding RNAs with 60-300

nucleotides in length and are mainly located in the nucleolus. It is

generally believed that snoRNAs are mainly involved in post-

transcriptional modifications of ribosomes, snRNAs and other

target molecules (10, 11). However, in recent years, an increasing

number of studies have found a closer relationship between
Frontiers in Immunology 15
snoRNA and the progression of cancer, such as SNORD42A in

leukemia cells (13), SNORA65 and SNORA7A/7B in lung cancer

cells (14), and SNORD44 in glioma cells (15). In addition, some

researchers have found that several snoRNAs can act as prognostic

markers in cancer and have the effect of evaluating the prognosis of

tumor patients (16, 17).

Glioma is the most prevalent central nervous system tumor with

high malignancy and poor prognosis, and the discovery of new

prognostic molecules is needed to evaluate the prognosis of patients.

Therefore, we constructed a 7-snoRNA prognostic signature for

predicting it. Firstly, we screened 122 snoRNAs from the TCGA

database and SNORic database that were associated with survival of

glioma patients. Secondly, by using LASSO regression and

multivariate Cox regression, we selected the 7 most critical

snoRNAs from 122 survival-related snoRNAs and constructed a

prognostic signature. Finally, we combined the 7-snoRNA

prognostic signature and the relevant clinical characteristics of
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FIGURE 11

RNA-seq reveals the mechanism by which SNORD88C exerts biological functions in glioma cells. (A) The volcano plot illustrates the distribution of
differentially expressed genes. (B) The clustering heatmap demonstrates the expression of the differential genes between the two groups. Differentially
expressed genes were analyzed for GO enrichment analysis (C) and Reactome enrichment analysis (D), and the top 20 terms with the most significant
enrichment are shown. (E) Heatmap demonstrating GSVA results for RNA-related pathways between the two groups.
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glioma patients to construct a nomogram that could be utilized to

better predict the prognosis of glioma patients. The ROC curves

revealed that the 7-snoRNA prognostic signature and the

nomogram had high sensitivity and specificity in both the

training and validation sets.

Among the screened 7 snoRNAs, SNORA32, SNORA36B,

SCARNA15, SNORD88C, and SNORD38A were protective

factors, while SNORA63D and SNORA63E were risk factors.

Except SCARNA15, the remaining snoRNAs have not been

studied by other researchers. In order to investigate the role they

play in glioma, we performed functional prediction analyses. It is

generally believed that snoRNA binds to proteins, forms small

nucleolar ribonucleoproteins (snoRNPs), and participates in the

modification of rRNA as well as the assembly of ribosomes (31).

Therefore, we first searched the database for proteins that can

interact with each snoRNA, which are mainly RBPs and

transcription factors. Subsequently, we performed GO and KEGG

enrichment analysis of these interacting proteins to speculate on the

potential biological functions of each snoRNA. GO and KEGG

enrichment results revealed that most of these proteins are enriched

to perform post-transcriptional regulatory roles such as RNA

splicing, metabolism and modifications, suggesting that these

snoRNAs can bind to RBPs and regulate the post-transcriptional

modification process of multiple RNAs. Consistent with our

findings, Dong et al. found that the MSI2 (a kind of RBP) can

enhance the stability of SNORD12B to regulate post-transcriptional

modifications of ZBTB4 mRNA and affect glycolipid metabolism in

glioblastoma cells (32).

In addition to the snoRNA-protein interaction, we further

analyzed the relationship between snoRNAs and other RNAs.

Research has found that snoRNA can be degraded into shorter

RNA fragments that exert biological functions different from the

snoRNA itself, called sdRNA (sno-derived RNAs) (33). Patterson

et al. have demonstrated that SNORNA93-derived sdRNA93 has

microRNA-like effects and promotes invasion of breast cancer cells

by reducing pipox expression (34). U3-derived miR-U3 can work

like microRNA in vivo, targeting the 3’UTR of sortin nexin 27

mRNA (35). Our results showed that SNORA32, SNORD38A and

SNORD88C interacted with multiple mRNAs, further analysis of

the correlation between AGO proteins and snoRNAs revealed that

SNORD88C and SNORD38A were correlated with AGO protein

expression, thus it was hypothesized that these two snoRNAs may

also produce sdRNAs and fulfill microRNA-like roles.

Our study found a significant increase in the degree of immune

infiltration in the high-risk group, with elevated levels of multiple

immune cells, including CD8+ T cells. Intratumoural CD8+ T cells

are affected by the tumor immune microenvironment and no longer

exert the ability to eliminate cancers, becoming dysfunctional CD8+

T cell population (36). In addition, dysfunctional CD8+ T cell

population is significantly different from classical CD8+ T cell in

function, and may exhibit decreased secretion of cytokines such as

tumour necrosis factor (TNF) and interferon- g (IFNg), as well as
increased expression of inhibitory receptor genes such as PDCD1,

LAG3 and CTLA4 (37). Our results suggested that PDCD1, LAG3,

CTLA4 expression levels were increased in the high-risk group
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while IFNg levels were not different from the low-risk group. This

also indicates from another aspect that the increase of CD8+ T cells

in the high-risk group may be predominantly dysfunctional CD8+

T cells.

CD274, an important immunotherapeutic target, has achieved

good results in non-small cell lung cancer, colorectal cancer and

melanoma, and has also demonstrated prolonged overall survival in

several phase II clinical trials in glioma (38). We found elevated

levels of CD274 expression in the high-risk group by bioinformatics

analysis, which was further validated in clinical samples by

immunohistochemical assays. This suggests that 7-snoRNA

prognostic signature may be able to predict how well patients will

respond to immunotherapy and that patients in the high-risk group

may have a better clinical benefit from PD-L1 blocker therapy.

From the results of bioinformatics analysis indicated that

SNORD88C has a major role in the development of glioma, and

then in vitro experiments were performed to validate it. The

expression of SNORD88C was significantly higher in the glioma

cell lines SHG44 and U251 than in the normal astrocyte line HEB.

SNORD88C could promote the proliferation, migration and

invasion of glioma cells. RNA-seq results indicate that

SNORD88C is involved in DNA replication, DNA methylation,

DNA damage repair and regulation of gene expression levels in

gliomas, and especially has a significant effect on RNA-related

pathways. These results suggest that SNORD88C exerts a

promotional effect on glioma cells by participating in multiple

biological processes and may serve as a potential therapeutic

target for glioma.

Although we constructed a 7-snoRNA prognostic signature for

predicting glioma prognosis and performed functional analysis,

there is still much room for improvement in our research. Since

there are very few sequencing datasets about snoRNA in glioma and

only sequencing data for TCGA-LGG cohort are available in

SNORic database. This led us to construct a prognostic signature

for LGG only, not for the whole glioma. In addition, our assessment

of the predictive performance of the constructed prognostic

signature was somewhat biased due to the lack of other datasets

as external validation sets. In addition, bioinformatics analysis

suggested that SNORD88C functions as an oncogenic gene in

glioma, which was validated by cellular phenotype experiments.

The specific underlying mechanism in more detail remains to be

investigated in our future work.
5 Conclusion

This study reveals that snoRNA has an impact on the prognosis

of LGG patients and can be used as a potential prognostic marker.

We established a 7-snoRNA prognostic signature and nomogram

that can be applied to evaluate the survival of LGG patients with

good sensitivity and specificity. Further exploration of the functions

for candidate snoRNAs revealed that SNORD88C could promote

the proliferation, migration and invasion of glioma cells and is

involved in a variety of biological processes related to DNA

and RNA.
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