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Background: Interstitial fibrosis and tubular atrophy (IFTA) are the
histopathological manifestations of chronic kidney disease (CKD) and one of
the causes of long-term renal loss in transplanted kidneys. Necroptosis as a
type of programmed death plays an important role in the development of IFTA,
and in the late functional decline and even loss of grafts. In this study, 13 machine
learning algorithms were used to construct IFTA diagnostic models based on
necroptosis-related genes.

Methods: We screened all 162 “kidney transplant”–related cohorts in the GEO
database and obtained five data sets (training sets: GSE98320 and GSE76882,
validation sets: GSE22459 and GSE53605, and survival set: GSE21374). The
training set was constructed after removing batch effects of GSE98320 and
GSE76882 by using the SVA package. The differentially expressed gene (DEG)
analysis was used to identify necroptosis-related DEGs. A total of 13 machine
learning algorithms—LASSO, Ridge, Enet, Stepglm, SVM, glmboost, LDA,
plsRglm, random forest, GBM, XGBoost, Naive Bayes, and ANNs—were used
to construct 114 IFTA diagnostic models, and the optimal models were
screened by the AUC values. Post-transplantation patients were then
grouped using consensus clustering, and the different subgroups were
further explored using PCA, Kaplan–Meier (KM) survival analysis, functional
enrichment analysis, CIBERSOFT, and single-sample Gene Set Enrichment
Analysis.

Results: A total of 55 necroptosis-related DEGs were identified by taking the
intersection of the DEGs and necroptosis-related gene sets. Stepglm[both]+RF
is the optimal model with an average AUC of 0.822. A total of four molecular
subgroups of renal transplantation patients were obtained by clustering, and
significant upregulation of fibrosis-related pathways and upregulation of
immune response–related pathways were found in the C4 group, which
had poor prognosis.
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Conclusion: Based on the combination of the 13 machine learning algorithms, we
developed 114 IFTA classification models. Furthermore, we tested the top model
using two independent data sets from GEO.
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Introduction

Among 100,800 solid organ transplants worldwide, 69,400
(62.5%) were renal transplants (Ruenroengbun et al., 2021),
which were the most efficacious therapies for patients with
uremia due to a variety of causes (Zheng et al., 2022). The
incidence of survival of patients with transplanted kidneys has
improved with the development of post-transplantation
management, but 40% of grafts fail within 10 years of
transplantation (Lai et al., 2021). According to traditional theory,
allogeneic immune responses cause irreversible kidney damage,
resulting in graft loss (Stegall et al., 2011; Shiu et al., 2020). The
dominating histopathological findings in the end-stages of renal
transplantation include interstitial fibrosis and tubular atrophy
(IFTA) and glomerulosclerosis (Djudjaj and Boor, 2019), which
are the major cause of graft loss due to progressive loss of function
(Franquesa et al., 2012). To determine the prognosis of transplanted
kidneys, pathogenesis and prediction models of IFTA are essential to
understand.

Over the past few years, the technological advancements of gene
sequencing and statistical analysis on a large scale have been applied
and developed in genetic diagnosis and analysis. These
advancements have enabled the studying of rejection after kidney
transplantation to a greater depth. With the immunogenetic
approach to kidney transplantation, Dou et al. (2022) developed
a prognostic model, which is a good predictor of kidney graft
survival at 1 and 3 years. Zhang et al. (2021) discovered two
novel prognostic genes associated with ischemia-reperfusion
injury, using a total of 1,000 specimens which were collected
from 11 independent cohorts. Gu et al. (2021) discovered that
renal graft fibrosis, which results in chronic renal graft
dysfunction, is negatively regulated by ATG16L.

Necroptosis as a programmed necrosis initiated by agonists such
as TNF-α, FasL, and TRAIL was first identified in the field of organ
transplantation as being closely related to the quality of the
transplanted kidney (Wu et al., 2012; Belavgeni et al., 2020). In
addition, in subsequent studies, necroptosis was gradually found to
be an important factor involved in or even directly contributing to
transplant kidney injury. Linkermann et al. (2012) found that Rip1-
induced necrotic apoptosis of renal tubular epithelial cells occurs in
early ischemia/reperfusion injury in transplanted kidneys. With the
development of necrotic apoptosis, a large number of renal tubular
cells undergo acute necrosis, and the renal function further declines,
culminating in acute kidney failure (AKI) of the transplanted kidney
(Linkermann, 2016). The process of necroptosis releases large
amounts of endogenous factors that further promote
inflammation and even lead to a prolonged adaptive immune
response (Kaczmarek et al., 2013). Both acute necrosis of the
renal tubules in the early stages and long-term chronic

inflammatory response lead to irreversible damage to the grafts,
which in turn lead to fibrosis, a non-specific healing response
(Romagnani et al., 2017). Therefore, this study attempted to
construct a diagnostic model for IFTA, starting with necrotic
apoptosis, an important factor in fibrosis.

In a previous study of IFTA diagnosis based on mRNA
expression, the quantity of samples and method of filtering
variables were limited (Yang et al., 2022). With the progress
of machine learning algorithms, early linear models such as Least
Absolute Shrinkage and Selection Operator (LASSO), ridge
regression (Ridge), elastic net (Enet), stepwise generalized
linear models (Stepglm), linear discriminant analysis (LDA),
partial least squares regression (plsRglm), and Naive Bayes
have gradually evolved to non-linear models such as support
vector machines (SVM), generalized boosted models (glmboost),
random forest, gradient boosting machines (GBM), Extreme
Gradient Boosting (XGBoost), and artificial neural networks
(ANNs) and there are now many options available for the
construction of disease diagnostic models. However, on how
to construct a low-dimensional diagnostic model based on
high-dimensional data that still performs stably in the
validation set remains a research challenge. The key benefits
of random forest (RF) are its accuracy and resistance to
overfitting, which makes it a good choice of machine learning
algorithms (Wu et al., 2022), and it has also shown consistent
diagnostic efficacy in previous studies (Sun et al., 2022; Wu et al.,
2022; Xiang et al., 2022).

The purpose of this study is to construct 114 algorithm
combinations based on LASSO, Ridge, Enet, Stepglm, SVM,
glmboost, LDA, plsRglm, random forest, GBM, XGBoost, Naive
Bayes, and ANNs and finally to screen out the diagnostic model with
the best results by comparing the average AUC of each model in the
training group and test group. We then used GSE21374 to further
explore the influence of genes used to construct a diagnostic model
of IFTA on long-term graft loss.

Materials and methods

Data retrieval and organization

We performed a comprehensive search on the GEO official
website for expression matrix and annotated clinical information of
patients who underwent transplantation of the kidney. The
screening criteria for 162 “kidney transplant” cohorts in the GEO
were 1) all probes in each sample have a value greater than 0; 2) each
patient’s sample with publicly available gene expression profile
contained biopsy-confirmed IFTA information or survival
information about long-term graft loss; and 3) The total number
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of cohort samples is ≥50. Finally, we selected five data sets
(GSE22459, GSE53605, GSE76882, GSE98320, and GSE21374) to
be included in this study (Park et al., 2010; Modena et al., 2016;
Bontha et al., 2017; Reeve et al., 2017). As part of the data processing,
the original data matrix was downloaded, probe annotation
performed, and low-abundance genes in most samples were
removed. Each data set contained samples classified as IFTA and
non-IFTA, and the detailed description about the groups is shown in
Table 1.We used the combat function in the SVA package to remove
the batch effects of GSE76882 and GSE98320 and construct the
training set, and evaluate the efficacy of the model using
GSE22459 and GSE53605 as the test sets, respectively.

Construction of gene sets for algorithms of
machine learning

Using “necroptosis” as a keyword in GeneCards (https://www.
genecards.org/), the resulting genes were filtered according to the
following criteria: 1) they are protein coding genes 2) the correlation
score with “necroptosis” is more than 0.8. Through the “limma”
package in R (version 4.1.1) (Ritchie et al., 2015), we extracted the
differentially expressed genes (DEGs) in the training set, with
adjusted p-values = 0.05 as the filter criteria; then, by taking the
intersection of the DEGs and gene set of necroptosis, the DEGs were
visualized using the “ggplot2” R packages.

TABLE 1 Details of GEO data sets that meet the filter criteria.

GEO no Platform Species Tissues Non-IFTA IFTA Total Group

GSE22459 GPL570 Homo sapiens Kidney biopsy 25 40 65 Training set

GSE53605 GPL571 Homo sapiens Kidney biopsy 45 10 55 Training set

GSE76882 GPL13158 Homo sapiens Kidney biopsy 139 135 274 Validation set

GSE98320 GPL15207 Homo sapiens Kidney biopsy 974 234 1208 Validation set

GSE21374 GPL570 Homo sapiens Kidney biopsy 282 Prognosis set

FIGURE 1
Construction and differential gene expression of the training set. (A) GSE98320 and GSE76882 before de-batching. (B) GSE98320 and
GSE76882 after de-batching. (C) Volcanic maps of training set. (D) Extraction of necroptosis-related differential genes.
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Building and evaluating models

The models were first established using 13 machine learning
methods, and then further downscaling of the generated models was

carried out by combining the different modeling methods. In the
end, we constructed 114 diagnostic models for IFTA. The AUC
values of the generated models in the training set and test sets were
calculated. Finally, the models were ranked according to the average

FIGURE 2
Construction and validation of the IFTA diagnostic model by machine learning algorithm. (A) Screening the optimal model based on the mean AUC
of 114 diagnostic models in the modeling and validation groups. (B) Visualization of the random forest model constructed from 28 genes based on
Stepglm[both] screening. (C–E) Differential expression of modeling genes in the non-IFTA and IFTA groups; *p < 0.05, **p < 0.01, ***p < 0.001. (C)
Training set. (D) GSE22459. (E) GSE53605.
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AUC values to filter the optimal models. The model efficacy was
then further visualized by plotting the ROC and using the principal
component analysis (PCA).

Unsupervised clustering of kidney
transplantation patients

In order to identify potential molecular subtypes of transplanted
kidneys based on 28 key biomarkers, an unsupervised cluster
analysis was performed on the prognosis set using the
“ConsensusClusterPlus” R package, with the resampling set as
1,000. Classification stability was ensured by using the k-means
algorithm with 1,000 iterations and an 80% resampling rate. The

PCA maps are then plotted using the t-distributed stochastic
neighbor embedding (tSNE) algorithm to further visualize the
differences between the clusters. A Kaplan–Meier (KM) survival
curve was used to determine the survival differences among the
subtypes of kidney transplantation patients. The best and worst
prognostic groups were analyzed for differences with the other
groups using the limma package, and the DEGs were extracted.

Functional enrichment analysis

To further explore the source of the prognostic differences
between the different subgroups, we first transformed the gene
expression matrices of the prognosis sets into hallmark
enrichment matrices using the GSVA package, and visualized the
results using the pheatmap package. To further explore the reasons
for the two groups with the largest prognostic differences, we
performed Gene Ontology (GO) enrichment analysis on the
genes of the upregulated groups obtained from the two difference
analyses, using the “clusterProfiler” R package (Yu et al., 2012).
CIBERSORT, a deconvolution algorithm that quantifies cell types
based on the gene matrix, was used to quantify 22 kinds of immune
cell infiltration, and then a map of immune cell infiltration was
drawn to determine the difference of four subtypes by unsupervised
clustering, using the R package “ggpubr”. To further validate the
results of CIBERSORT, we similarly used enrichment analyses of
immune function by the ssGSEA for the four subgroups.

Results

Data organization and screening of genes
for modeling

Since the data sets used for modeling and validation were
sequenced using different platforms, we first took the intersection
of the four data set genes and ended up with 10,721 shared genes.
GSE76882 and GSE98320 used for modeling were then de-batched
by the combat function, and the change in the PCA plots from
Figures 1A, B shows that the batch effect had been eliminated for
both. Using the “limma” R package, a total of 4,587 DEGs were
identified according to the training set. There was a significant
difference between the IFTA and non-IFTA groups in these genes, as
shown in Figure 1C. The detailed results of the differential analysis
can be found in Supplementary Table S1. A total of 165 necroptosis-
related genes were obtained by filtering the results obtained from the
GeneCard database search (Supplementary Table S2). By
intersecting these two gene sets, a total of 55 necroptosis
(Figure 1D) with differences between IFTA and non-IFTA
groups of the training set were obtained (Supplementary Table S3).

Building and evaluating models

Based on the 55 necroptosis-related genes with differential
expression obtained from the previous screening, we used
LASSO, Ridge, Enet, Stepglm, SVM, glmboost, LDA, plsRglm,
random forest, GBM, XGBoost, Naive Bayes, and ANNs to

TABLE 2 Necroptosis-related genes strongly associated with IFTA screened by
Stepglm[both].

Vars Coef. Odds ratio Coef. 95% CI

ANXA1 0.351 1.42 0.094 to 0.609

BIRC3 0.725 2.065 0.456 to 1.000

BRD4 0.171 1.186 0.011 to 0.334

CASP6 0.145 1.155 −0.054 to 0.344

CASP8 0.195 1.215 0.019 to 0.372

CFLAR −0.271 0.762 −0.436 to −0.108

FADD 0.244 1.276 0.044 to 0.445

GNLY −0.173 0.841 −0.34 to −0.008

GSK3A −0.254 0.775 −0.442 to −0.069

HNRNPA1 0.381 1.464 0.162 to 0.604

JUN 0.33 1.391 0.161 to 0.499

KLHDC10 0.314 1.37 0.166 to 0.467

MAPK14 −0.321 0.726 −0.551 to −0.094

MKRN1 0.174 1.19 −0.023 to 0.372

PELI1 −0.197 0.821 −0.433 to 0.039

PGLYRP1 −0.126 0.882 −0.28 to 0.026

PITPNA 0.216 1.241 0.025 to 0.41

PRKAA2 −0.325 0.722 −0.515 to −0.134

PTGES3 −0.277 0.758 −0.521 to −0.035

SIRT2 0.334 1.396 0.153 to 0.517

SLC25A37 0.166 1.181 0.005 to 0.33

SLC39A7 −0.382 0.682 −0.582 to −0.185

SOAT1 −0.369 0.691 −0.618 to −0.125

SPATA2 0.138 1.148 −0.028 to 0.306

STUB1 −0.32 0.726 −0.527 to −0.116

TIMM50 −0.182 0.833 −0.378 to 0.012

TNFRSF10B −0.34 0.712 −0.576 to −0.106

TRAF5 −0.438 0.645 −0.716 to −0.163
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construct 114 diagnostic models. By visualizing the AUC values of
the 114 models (Figure 2A), it can be seen that Stepglm[both]+RF is
one of the 114 diagnostic models that shows good predictive power
in the training group and validation groups. Twenty-eight genes
with a high correlation with IFTA were screened by Stepglm[both]
(Table 2). A non-linear model was constructed based on these
28 genes using the rfsrc function in the randomForestSRC
package (Figure 2B). Visualizing the differences in the expression
of these 28 genes between the IFTA and non-IFTA groups in the
training group and the other two validation sets (Figures 2C–E).
Figures 3A–C show that there is a distinction between the IFTA
group and non-IFTA group. The AUC values of the training set and
validation cohorts are 1.000, 0.706, and 0.760 (Figures 3D–F).

Subgroup analysis of IFTA

In order to explore the roles of biomarkers in kidney
transplantation prognosis, the prognosis sets were classified using
consensus clustering. The number of iterations was set at 1,000 times
to ensure stability of the classification categories. The results suggest
that when the number of clusters (k) was 4, the samples in the
consensus profiles obtained an optimal allocation (Figures 4A, B).
Furthermore, by PCA, it can be seen that there are very significant

differences between the four subgroups (Figure 4C). The KM
survival curves were then plotted based on the four subgroups,
which showed that the C2 group had the best prognosis, with the
lowest percentage of kidney graft loss occurring as time progressed
post transplantation, in contrast to C4, which had the worst
prognosis (Figure 4E). As seen in Figure 4D, by comparing the
proportion of AR (Acute Rejection) occurring in the C2 and
C4 groups, where the difference in survival is most pronounced,
AR accounts for a significantly higher proportion of the C4 group,
which has a poorer prognosis and is indicative of the fact that
necroptosis may play a contributory role in the development and
progression of AR.

By enrichment analysis of the hallmark of the four groups, it is
seen that the difference between the C2 and C4 groups is extremely
obvious, with C2 having significant upregulation in the KRAS
signaling pathway–downregulated gene set, oxidative
phosphorylation gene set, and xenobiotic metabolism gene set,
whereas the C4 group, which has poorer prognosis, has
significant upregulation in the gene set for allogeneic
transplantation rejection, inflammatory response gene set,
apoptosis gene set, TGF-β signal pathway gene set, and
angiogenesis gene set (Figure 5A). To further validate the
aforementioned enrichment analysis results, we extracted the
upregulated genes from the C2 and C4 groups, using FDR > 0.05

FIGURE 3
Validation of the optimal diagnostic model. (A–C) Principal component analysis (PCA) of training set (A), GSE22459 (B), GSE53605 (C). (D–F) ROC
curves of training set (D), GSE22459 (E), and GSE53605 (F).
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|FC| > 1.5 as the screening criterion (Figures 5B, C). The GO
enrichment analysis of the set of upregulated genes showed
similar results to those of the hallmark enrichment analysis, that
is, the upregulated biological processes in the C4 group were mainly
in the immune-related processes (Figure 5D), whereas there was a
significant upregulation of various substance metabolisms mainly in
the C2 group (Figure 5E). We then used CIBERSORT to try and
further explore the differences in immune cell infiltration between
the different subgroups. Screening the samples at p < 0.05
(Figure 5F) showed that the most significant subgroups of
differences in the four groups were mainly in the T cells of the
thymic and macrophage lineages. To further validate the results of
the CIBERSORT immune cell infiltration analysis, we again used
ssGSEA to enrich different immune functions, and it was seen that
all of the immune function scores were significantly different
(Figure 5G).

Discussion

IFTA is not only the commonly occurring histopathological
manifestation of chronic kidney disease (CKD) but also the cause
of long-term renal failure in transplanted kidneys (Franquesa
et al., 2012; Djudjaj and Boor, 2019). As a result of chronic
fibrosis of the transplanted kidney, IFTA develops in the early
stages after transplantation, eventually causing renal failure
(Brouard et al., 2011). Although the diagnostic model for
IFTA can clearly identify it at the early stages and is helpful
in judging the prognosis of transplanted kidneys, the detection
method of the process is rare. The more popularly accepted view
of the onset and progression of fibrosis is that the graft receives
irreversible damage, ensures its basic structural stability, and is
repaired by a non-specific healing response like interstitial
fibrosis (Romagnani et al., 2017). There are many reasons for

FIGURE 4
Identification of molecular subgroups in IFTA. (A) Relative variation of the area under the CDF region at k = 2–9. (B) Consensus clustering matrix
when k = 4. (C) PCA of four clustered groups. (D) Comparison of the occurrence of acute rejection of grafts in four subgroups. (E) Comparison of KM
survival curves for post-transplantation graft loss occurring between four subgroups.
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irreversible damage to grafts; necroptosis being one of them
induces an adaptive immune system that can lead to chronic
fibrosis and even later on to a massive loss of nephrons leading to
renal decompensation (Maremonti et al., 2022). Calcineurin
inhibitors (CNIs), that are heavily used in renal
transplantation patients, also cause changes in the
morphological characteristics of renal tubules through

necroptosis (Claus et al., 2018). Therefore, in this study, we
started by exploring necroptosis, one of the causes of IFTA,
with 55 necroptosis-related genes with differential expression,
applied 13 machine learning methods to analyze the target data
set in the GEO database, established 114 IFTA diagnostic models,
and compared the AUC values of the models to arrive at the
optimal model.

FIGURE 5
Functional analysis of molecular subgroups in IFTA. (A) Heatmap of four clusters based on Z-scores of ssGSEA of 50 hallmarks. (B, C) Volcano plots
for differentially expressed genes (FDR > 0.05 |FC| > 1.5) in different subgroups. (B) C4 vs. C1 + C2 + C3. (C) C2 vs. C1 + C3 + C4. (D, E) GO enrichment
analysis of C2 and C4 upregulated genes. (D) C4. (E) C2. (F) Differences in infiltrated immune cells by CIBERSORT; *p < 0.05, **p < 0.01, ***p < 0.001. (G)
Differences of immune function by ssGSEA; *p < 0.05, **p < 0.01, ***p < 0.001.
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The best performing of ourmodels of 114machine learningmodels
was Stepglm[both]+RF, with an average AUC value of 0.822 in the one
modeling and two validation groups. The top 4 out of the 114 machine
learning methods were all non-linear models constructed by RF, which
shows that RF is indeed superior to the other methods in preventing
model overfitting. RF can automatically explore the interactions among
multiple variables and find the variables that matter more when dealing
with high-dimensional data. Furthermore, RF can avoid overfitting by
generating a large number of decision trees at random. As a result, RF
has demonstrated satisfactory accuracy both in the modeling and
validation groups in previous studies (Zhong et al., 2018).

The performance of the model in the validation group
GSE22459 was mediocre, with an AUC value of only 0.706, and the
results of the PCA also indicated that IFTA did not have high
discriminatory power. By contrast, the model performed much
better in GSE53605, with an AUC value of 0.760, and the results of
the PCA also indicated that there was a clear distinction between the
IFTA and non-IFTA groups. By visualizing the differences in the
expression of the modeled genes, we conclude that the 28 genes
used for modeling show significant differences in both the training
group and GSE53605, while the differences between the two groups
visible in GSE22459 are not significant. From this, we hypothesize that
the reason for the model’s mediocre performance in GSE22459 is that
first, the expression matrices of both the modeling and validation sets
are derived from sequencing files from different platforms and there is a
large batch effect between the gene sets, and second, the sample size of
the validation set is very small when compared to that of the training set.

To further explore the role of the modeling genes in the distant
future of transplanted kidneys, we performed unsupervised
clustering of the prognosis set based on the expression of
28 modeling genes, and finally obtained four subgroups, in which
the C2 group had the last prognosis and the C4 group had the worst
prognosis. In addition, in the subsequent enrichment analysis, it was
found that the poorer prognosis C1 and C4 groups were enriched,
having significant upregulation of the TGF-β signal pathway—the
graft rejection pathway associated with fibrosis. It can be seen that
the C4 group obtained by unsupervised clustering with the IFTA
diagnostic model is the group with the highest degree of fibrosis and
the worst prognosis, which can be used in future to classify the risk of
patients in the early stages of transplantation, so that high-risk
patients can be followed up with high-frequency screening and
prevent the occurrence of post-transplantation adverse events or
even the loss of transplanted kidneys.

Even so, several limitations also exist in this study. First,
transplanted kidney biopsy tissue samples were used as model input
data, and acquiring tissues is challenging in clinical practice. Second,
further experimental studies are required to explain the correlation
between certain biomarkers and IFTA mechanistically. However, too
many genes were used in constructing the model, and in considering
that other models with a much smaller number of genes performed
poorly in both the modeling and validation groups, we ended up
choosing the diagnostic model constructed by Stepglm[both]+RF.
Third, further exploration of clusters C4 and C2 was hampered by a
lack of clinical information. Finally, we screened the entire transplant
kidney cohorts in the GEO database to build a diagnostic model.
However, to build models, machine learning algorithms require a larger
number of samples. More independent kidney transplantation patient
cohorts should be used to evaluate and elevate our model’s

performance. In order to verify patient tissue samples, we will have
to collect samples from our hospital.

Conclusion

In summary, based on the combination of 13 machine learning
algorithms, we developed 114 IFTA classificationmodels. Furthermore,
we tested the top model using two independent data sets from GEO.
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